1
|
Wang X, Qian D, Xu L, Zhao C, Ma X, Han C, Mu Y. Green synthesis of AgNPs and their application in chitosan/polyvinyl alcohol/AgNPs composite sponges with efficient antibacterial activity for wound healing. Int J Biol Macromol 2025; 309:142935. [PMID: 40210066 DOI: 10.1016/j.ijbiomac.2025.142935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Wound infections can cause inflammation and delay healing, which becomes an important obstacle to wound recovery. To overcome this issue, various antibacterial agents have been integrated into wound dressings to prevent infection. Silver nanoparticles (AgNPs) are promising candidates due to their broad-spectrum antibacterial activities and no drug resistance. In this study, Dio-AgNPs were initially obtained by biological synthesis using the flavonoid compound diosmetin (Dio) as a reducing and capping agent. Dio-AgNPs exhibited strong antibacterial activity against S. aureus and E. coli by destroying the bacterial membrane structure and inducing the production of reactive oxygen species (ROS), finally leading to bacterial death. Furthermore, the composite sponges (SP-1, SP-2, and SP-3) for preventing wound infection were formulated using chitosan (CS) and polyvinyl alcohol (PVA) with different concentrations of Dio-AgNPs incorporated. The prepared sponges exhibited interconnected porous structures with water absorption capacities of >33 times their own weight. The wound healing experiments showed that after 14 days, the SP-3 sponge promoted complete wound healing by preventing wound infection, which is comparable to the commercial AgNPs gauze materials. SP-3 sponge also showed good biosafety. This work prepared a novel SP-3 sponge, which offers an effective and safe alternative for treating wound infections.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Dandan Qian
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Lihuan Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Chenhao Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Xiaoli Ma
- College of Nursing, Hebei University, Baoding 071000, PR China
| | - Changbao Han
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yajuan Mu
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China.
| |
Collapse
|
2
|
Haridas ESH, Varma MKR, Chandra GK. Bioactive silver nanoparticles derived from Carica papaya floral extract and its dual-functioning biomedical application. Sci Rep 2025; 15:9001. [PMID: 40089549 PMCID: PMC11910587 DOI: 10.1038/s41598-025-93864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Replacing synthetic phytochemicals with natural plant extracts for metal nanoparticle synthesis enable cost-effective, large-scale production with reduced environmental and health risks while enhancing biomedical efficacy. This study presents the green synthesis of silver nanoparticles (AgNPs) using a flavonol-enriched extract from male papaya flowers (KQE), an underutilized agricultural waste. Using 20% (v/v) KQE, highly stable, spherical KQ-AgNPs (12.3 ± 3.0 nm) were synthesized via in-situ generation of free radicals, such as ortho-quinones, which reduced Ag+ ions. KQ-AgNPs exhibit superior antibacterial activity against both gram-positive and gram-negative bacteria compared to chemically synthesized AgNPs (AgNPs-Chem) and KQE alone. In vitro anticancer assays reveal enhanced cytotoxicity against breast carcinoma cells (MCF-7) with an IC50 of 21.25 ± 1.14 µg/mL, significantly lower than AgNPs-Chem (33.05 ± 3.13 µg/mL), while maintaining high biocompatibility with normal cells (HEK-293) with a greater IC50 of 169.96 ± 2.3 µg/mL. This study highlights the dual therapeutic potential of KQ-AgNPs, emphasizing their enhanced antibacterial and anticancer efficacy while exemplifying an innovative waste-to-wealth approach.
Collapse
Affiliation(s)
- E S Harsha Haridas
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India
| | - M K Ravi Varma
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India
| | - Goutam Kumar Chandra
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India.
| |
Collapse
|
3
|
Sathiyaraj M, Elumalai D, Rajendran V, Hemavathi M, Ashok K, Babu M, Monisha U, Poonguzhali S, Punithavalli S, Abirami G. Biosynthesis, characterization, and multifaceted applications of Elytraria acaulis synthesized silver and gold nanoparticles: Anticancer, antibacterial, larvicidal, and photocatalytic activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 263:113102. [PMID: 39837097 DOI: 10.1016/j.jphotobiol.2025.113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Green synthesis of metal nanoparticles using plant extracts has emerged as an eco-friendly alternative to conventional methods, offering potential applications in biomedicine and environmental remediation. This study demonstrates the successful biosynthesis of silver nanoparticles (SNPs) and gold nanoparticles (GNPs) using Euphorbia acaulis leaf extract as a reducing and capping agent. The nanoparticles were thoroughly characterized using UV-Vis spectroscopy, HR-SEM, EDX, TEM, AFM, XRD, and FTIR analyses, confirming their successful synthesis and revealing their predominantly spherical morphology with sizes ranging from 1 to 100 nm. SNPs and GNPs exhibited significant anticancer activity against MCF-7 breast cancer cells, with IC50 values of 59.87 μg/mL and 91.074 μg/mL, respectively. The nanoparticles induce apoptosis and DNA damage in cancer cells, as evidenced by propidium iodide staining, DAPI staining, and comet assay. In antibacterial studies, SNPs demonstrated superior activity against both E. coli (17.00 mm zone of inhibition) and S. aureus (10.77 mm zone of inhibition) compared to GNPs. The nanoparticles also showed promising larvicidal activity against Aedes aegypti, with SNPs exhibiting higher potency (LC50: 20.81 mg/L) than GNPs (LC50: 51.10 mg/L). Histopathological analysis revealed significant tissue damage in SNP-treated larvae, particularly in the midgut, hindgut, muscles, and nerve ganglia. Additionally, both nanoparticles demonstrated photocatalytic activity in degrading methylene blue dye, with SNPs showing superior performance. These findings suggest that biofunctionalized SNPs and GNPs synthesized using E. acaulis possess multiple biological applications, making them promising candidates for various biomedical and environmental applications.
Collapse
Affiliation(s)
- Manickam Sathiyaraj
- Department of Chemistry, Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India
| | - Devan Elumalai
- PG. Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, Tamilnadu, India.
| | - Venugopal Rajendran
- PG. Department of Chemistry, Pachaiyappa's College for Men, Kanchipuram, Tamilnadu, India
| | | | - Kamalanathan Ashok
- Department of Microbiology and Biotechnology, Faculty of Arts and Science, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthu Babu
- Department of Microbiology and Biotechnology, Faculty of Arts and Science, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Ulaganathan Monisha
- PG. Department of Chemistry, Pachaiyappa's College for Men, Kanchipuram, Tamilnadu, India
| | | | - Sankar Punithavalli
- PG. Department of Chemistry, Pachaiyappa's College for Men, Kanchipuram, Tamilnadu, India
| | - Gnanasekaran Abirami
- PG. Department of Chemistry, Pachaiyappa's College for Men, Kanchipuram, Tamilnadu, India
| |
Collapse
|
4
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
5
|
Alrumaihi F, Almatroodi SA, Alharbi HOA, Alwanian WM, Alharbi FA, Almatroudi A, Rahmani AH. Pharmacological Potential of Kaempferol, a Flavonoid in the Management of Pathogenesis via Modulation of Inflammation and Other Biological Activities. Molecules 2024; 29:2007. [PMID: 38731498 PMCID: PMC11085411 DOI: 10.3390/molecules29092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Kaempferol, a flavonoid found in vegetables, fruits, and spices, is recognized for its various beneficial properties, including its antioxidant and anti-inflammatory potential. This molecule has been identified as a potential means of managing different pathogenesis due to its capability to manage various biological activities. Moreover, this compound has a wide range of health-promoting benefits, such as cardioprotective, neuroprotective, hepatoprotective, and anti-diabetic, and has a role in maintaining eye, skin, and respiratory system health. Furthermore, it can also inhibit tumor growth and modulate various cell-signaling pathways. In vivo and in vitro studies have demonstrated that this compound has been shown to increase efficacy when combined with other natural products or drugs. In addition, kaempferol-based nano-formulations are more effective than kaempferol treatment alone. This review aims to provide detailed information about the sources of this compound, its bioavailability, and its role in various pathogenesis. Although there is promising evidence for its ability to manage diseases, it is crucial to conduct further investigations to know its toxicity, safety aspects, and mechanism of action in health management.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fadiyah A. Alharbi
- Department of Obstetrics/Gynecology, Maternity and Children’s Hospital, Buraydah 52384, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
6
|
Liu J, Zhang N, Shen B, Zhang L, Zhang Z, Zhu L, Jiang L. Deinococcus wulumuqiensis R12 synthesized silver nanoparticles with peroxidase-like activity for synergistic antibacterial application. Biotechnol J 2024; 19:e2300584. [PMID: 38651247 DOI: 10.1002/biot.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
The use of a combination of several antibacterial agents for therapy holds great promise in reducing the dosage and side effects of these agents, improving their efficiency, and inducing potential synergistic therapeutic effects. Herein, this study provides an innovative antibacterial treatment strategy by synergistically combining R12-AgNPs with H2O2 therapy. R12-AgNPs were simply produced with the supernatant of an ionizing radiation-tolerant bacterium Deinococcus wulumuqiensis R12 by one-step under room temperature. In comparison with chemically synthesized AgNPs, the biosynthesized AgNPs presented fascinating antibacterial activity and peroxidase-like properties, which endowed it with the capability to catalyze the decomposition of H2O2 to generate hydroxyl radical. After the combination of R12-AgNPs and H2O2, an excellent synergistic bacteriostatic activity was observed for both Escherichia coli and Staphylococcus aureus, especially at low concentrations. In addition, in vitro cytotoxicity tests showed R12-AgNPs had good biocompatibility. Thus, this work presents a novel antibacterial agent that exhibits favorable synergistic antibacterial activity and low toxicity, without the use of antibiotics or a complicated synthesis process.
Collapse
Affiliation(s)
- Jingjia Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Nan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Liling Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, P.R. China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, P.R. China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
7
|
Hairil Anuar AH, Abd Ghafar SA, Hanafiah RM, Lim V, Mohd Pazli NFA. Critical Evaluation of Green Synthesized Silver Nanoparticles-Kaempferol for Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus. Int J Nanomedicine 2024; 19:1339-1350. [PMID: 38348172 PMCID: PMC10860521 DOI: 10.2147/ijn.s431499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/26/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction This study aimed to characterize silver nanoparticles-kaempferol (AgNP-K) and its antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA). Green synthesis method was used to synthesize AgNP-K under the influence of temperature and different ratios of silver nitrate (AgNO3 and kaempferol). Methods AgNP-K 1:1 was synthesized with 1 mM kaempferol, whereas AgNP-K 1:2 with 2 mM kaempferol. The characterization of AgNP-K 1:1 and AgNP-K 1:2 was performed using UV-visible spectroscopy (UV-Vis), Zetasizer, transmission electron microscopy (TEM), scanning electron microscopy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The antibacterial activities of five samples (AgNP-K 1:1, AgNP-K 1:2, commercial AgNPs, kaempferol, and vancomycin) at different concentrations (1.25, 2.5, 5, and 10 mg/mL) against MRSA were determined via disc diffusion assay (DDA), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) assay, and time-kill assay. Results The presence of a dark brown colour in the solution indicated the formation of AgNP-K. The UV-visible absorption spectrum of the synthesized AgNP-K exhibited a broad peak at 447 nm. TEM, Zetasizer, and SEM-EDX results showed that the morphology and size of AgNP-K were nearly spherical in shape with 16.963 ± 6.0465 nm in size. XRD analysis confirmed that AgNP-K had a crystalline phase structure, while FTIR showed the absence of (-OH) group, indicating that kaempferol was successfully incorporated with silver. In DDA analysis, AgNP-K showed the largest inhibition zone (16.67 ± 1.19 mm) against MRSA as compared to kaempferol and commercial AgNPs. The MIC and MBC values for AgNP-K against MRSA were 1.25 and 2.50 mg/mL, respectively. The time-kill assay results showed that AgNP-K displayed bacteriostatic activity against MRSA. AgNP-K exhibited better antibacterial activity against MRSA when compared to commercial AgNPs or kaempferol alone.
Collapse
Affiliation(s)
- Ariff Haikal Hairil Anuar
- Department of Basic Sciences, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, 55100, Malaysia
| | - Siti Aisyah Abd Ghafar
- Department of Basic Sciences, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, 55100, Malaysia
| | - Rohazila Mohamad Hanafiah
- Department of Basic Sciences, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, 55100, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia
| | - Nur Farah Atiqah Mohd Pazli
- Department of Basic Sciences, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, 55100, Malaysia
| |
Collapse
|
8
|
Mohamad Hanafiah R, Abd Ghafar SA, Lim V, Musa SNA, Yakop F, Hairil Anuar AH. Green synthesis, characterisation and antibacterial activities of Strobilanthes crispus-mediated silver nanoparticles (SC-AGNPS) against selected bacteria. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:549-559. [PMID: 37847252 DOI: 10.1080/21691401.2023.2268167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
This study aims to characterize and determine the antibacterial activities of synthesized Strobilanthes crispus-mediated AgNPs (SC-AgNPs) against Streptococcus mutans, Escherichia coli and Pseudomonas aeruginosa. S. crispus water extract acts as a reducing and capping agent in the synthesis of AgNPs. The synthesized AgNPs were characterized by using UV-Vis spectrophotometer, dynamic light scattering (DLS), field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR). FESEM images showed a rough surface with a spherical shape. The average size distribution of 75.25 nm with a polydispersity index (PDI) of 0.373. XRD analysis matched the face-centred cubic structure of silver. FTIR analysis revealed a shifted peak from 1404.99 to 1345.00 cm-1. MIC and MBC values of SC-AgNPs were 1.25 mg/mL and 2.5 mg/mL against E. coli, P. aeruginosa and S. mutans, respectively. Time-kill assay showed that SC-AgNPs significantly reduced bacterial growth as compared to non-treated bacteria. Morphologies of bacteria treated with SC-AgNPs were shrunk, lysed, irregular and smaller as compared to control. SC-AgNPs significantly disrupted the gene expression of eae A, gtf B and Pel A (p < 0.05). This study indicated that the synthesized SC-AgNPs were stable with enhanced antibacterial activities.
Collapse
Affiliation(s)
- Rohazila Mohamad Hanafiah
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Ampang Kuala Lumpur, Malaysia
| | - Siti Aisyah Abd Ghafar
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Ampang Kuala Lumpur, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang, Malaysia
| | - Siti Nor Asma Musa
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Ampang Kuala Lumpur, Malaysia
- Faculty of Science and Engineering, School of Pharmacy, University Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Fahmi Yakop
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Ampang Kuala Lumpur, Malaysia
| | - Arif Haikal Hairil Anuar
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Ampang Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Malla RK, Chandra G. Diospyros montana mediated reduction, stabilization, and characterization of silver nanoparticles and evaluation of their mosquitocidal potentiality against dengue vector Aedes albopictus. Sci Rep 2023; 13:17202. [PMID: 37821538 PMCID: PMC10567741 DOI: 10.1038/s41598-023-44442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Recent research has focused on nanoparticles. Aedes albopictus is a potential vector that transmits fatal diseases. Recently, Phyto-reduced silver nanoparticles (AgNPs) were shown to be mosquito larvicides. This study aimed to synthesize silver nanoparticles using Diospyros montana leaf extract, characterize them, and test their efficacy as larvicide and pupicide against Ae. albopictus mosquitoes, determine their duration of effectiveness as a larvicide, identify plant compounds that help to synthesize nanoparticles, and assess their effects on non-target organisms. Quercetin, luteolin, kaempferol, gallocatechin gallate, epigallocatechin gallate, and capsaicin are among the novel reducing and capping agents found in D. montana leaf through LCMS analysis. The color shift and distinctive peak in UV-Vis spectroscopy made it simple to see how biogenic AgNPs were produced by converting Ag+ ions into Ag0. Substantial negative value (- 19.10 mv) of zeta potential demonstrated the long-term stability of AgNPs. A moderate range (8.72 - 50.75 nm) of particle size distribution pattern was obtained using the DLS technique. SEM and TEM images depicted the quasi-spherical (or polyhedral) and spherical shape of the nanoparticles, having approximately 16.75 nm average size. Synthesized AgNPs had a low LC90 value (< 10 ppm) for all larval instars and pupae of Ae. albopictus and had negligible mal effect on non-target organisms. Regression equations showed dose-dependent mortality by the positive correlation between mortality rate and AgNPs concentration, and each time the regression coefficient (R2) value was larger than zero. This study shows that D. montana leaf extract is an environment-friendly and sustainable source of an effective reducing and capping agent to synthesize highly stable, ecologically acceptable silver nanoparticles and their application as mosquitocide.
Collapse
Affiliation(s)
- Rajesh Kumar Malla
- Mosquito Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Goutam Chandra
- Mosquito Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
10
|
Hu H, Tekin V, Hu B, Yaghoobi M, Khan A, Ghosh AK, Panda SK, Huang H, Luyten W. Metabolic profiling of Chimonanthus grammatus via UHPLC-HRMS-MS with computer-assisted structure elucidation and its antimicrobial activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1138913. [PMID: 37229132 PMCID: PMC10205022 DOI: 10.3389/fpls.2023.1138913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/27/2023] [Indexed: 05/27/2023]
Abstract
Chimonanthus grammatus is used as Hakka traditional herb to treat cold, flu, etc. So far, the phytochemistry and antimicrobial compounds have not been well investigated. In this study, the orbitrap-ion trap MS was used to characterize its metabolites, combined with a computer-assisted structure elucidation method, and the antimicrobial activities were assessed by a broth dilution method against 21 human pathogens, as well as the bioassay-guided purification work to clarify its main antimicrobial compounds. A total of 83 compounds were identified with their fragmentation patterns, including terpenoids, coumarins, flavonoids, organic acids, alkaloids, and others. The plant extracts can strongly inhibit the growth of three Gram-positive and four Gram-negative bacteria, and nine active compounds were bioassay-guided isolated, including homalomenol C, jasmonic acid, isofraxidin, quercitrin, stigmasta-7,22-diene-3β,5α,6α-triol, quercetin, 4-hydroxy-1,10-secocadin-5-ene-1,10-dione, kaempferol, and E-4-(4,8-dimethylnona-3,7-dienyl)furan-2(5H)-one. Among them, isofraxidin, kaempferol, and quercitrin showed significant activity against planktonic Staphylococcus aureus (IC50 = 13.51, 18.08 and 15.86 µg/ml). Moreover, their antibiofilm activities of S. aureus (BIC50 = 15.43, 17.31, 18.86 µg/ml; BEC50 = 45.86, ≥62.50, and 57.62 µg/ml) are higher than ciprofloxacin. The results demonstrated that the isolated antimicrobial compounds played the key role of this herb in combating microbes and provided benefits for its development and quality control, and the computer-assisted structure elucidation method was a powerful tool for chemical analysis, especially for distinguishing isomers with similar structures, which can be used for other complex samples.
Collapse
Affiliation(s)
- Haibo Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
- Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Volkan Tekin
- Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bin Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Mahdi Yaghoobi
- Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Phytochemistry, Medicinal Plants and Drug Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ajmal Khan
- Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
- Leishmania Diagnostic & Drug Delivery Research Laboratory, University of Peshawar, Peshawar, Pakistan
| | - Alokesh Kumar Ghosh
- Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Sujogya Kumar Panda
- Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
- Center of Environment Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Walter Luyten
- Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Salatin S, Bazmani A, Shahi S, Naghili B, Memar MY, Dizaj SM. Antimicrobial benefits of flavonoids and their nanoformulations. Curr Pharm Des 2022; 28:1419-1432. [DOI: 10.2174/1381612828666220509151407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Nowadays, there is an urgent need to discover and develop long-term and effective antimicrobial and biofilm-inhibiting compounds. Employing combination therapies using novel drug delivery systems and also natural antimicrobial substances is a promising strategy in this field. Nanoparticles (NPs)-based materials have become well appreciated in recent times due to serve as antimicrobial agents or the carriers for promoting the bioavailability and effectiveness of antibiotics. Flavonoids belong to the promising groups of bioactive compounds abundantly found in fruits, vegetables, spices, and medicinal plants with strong antimicrobial features. Flavonoids and NPs have potential as alternatives to the conventional antimicrobial agents, both on their own as well as in combination. Different classes of flavonoid NPs may be particularly advantageous in handling microbial infections. The most important antimicrobial mechanisms of flavonoid NPs include oxidative stress induction, non-oxidative mechanisms, and metal ion release. However, the efficacy of flavonoid NPs against pathogens and drug-resistant pathogens changes according to their physicochemical characteristics as well as the particular structure of microbial cell wall and enzymatic composition. In this review, we provide an outlook on the antimicrobial mechanism of flavonoid-based NPs and the crucial factors that are involved.
Collapse
Affiliation(s)
- Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Chandrasekharan S, Chinnasamy G, Bhatnagar S. Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Sci Rep 2022; 12:156. [PMID: 34997051 PMCID: PMC8742086 DOI: 10.1038/s41598-021-04025-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Increase in bacterial resistance to commonly used antibiotics is a major public health concern generating interest in novel antibacterial treatments. Aim of this scientific endeavor was to find an alternative efficient antibacterial agent from non-conventional plant source for human health applications. We used an eco-friendly approach for phyto-fabrication of silver nanoparticles (AgNPs) by utilizing logging residue from timber trees Gmelina arborea (GA). GC-MS analysis of leaves, barks, flowers, fruits, and roots was conducted to determine the bioactive compounds. Biosynthesis, morphological and structural characterization of GA-AgNPs were undertaken by UV-Vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD). GA-AgNPs were evaluated for antibacterial, antibiofilm, antioxidant, wound healing properties and their toxicity studies were carried out. Results identified the presence of terpenoids, sterols, aliphatic alcohols, aldehydes, and flavonoids in leaves, making leaf extract the ideal choice for phyto-fabrication of silver nanoparticles. The synthesis of GA-AgNPs was confirmed by dark brown colored colloidal solution and spectral absorption peak at 420 nm. Spherical, uniformly dispersed, crystalline GA-AgNPs were 34-40 nm in diameter and stable in solutions at room temperature. Functional groups attributed to the presence of flavonoids, terpenoids, and phenols that acted as reducing and capping agents. Antibacterial potency was confirmed against pathogenic bacteria Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by disc diffusion assay, MIC and MBC assay, biofilm inhibition assay, electron-microscopy, cell staining and colony counting techniques. The results from zone of inhibition, number of ruptured cells and dead-cell-count analysis confirmed that GA-AgNPs were more effective than GA-extract and their bacteria inhibition activity level increased further when loaded on hydrogel as GA-AgNPs-PF127, making it a novel distinguishing feature. Antioxidant activity was confirmed by the free radical scavenging assays (DPPH and ABTS). Wound healing potential was confirmed by cell scratch assay in human dermal fibroblast cell lines. Cell-proliferation study in human chang liver cell lines and optical microscopic observations confirmed non-toxicity of GA-AgNPs at low doses. Our study concluded that biosynthesized GA-AgNPs had enhanced antibacterial, antibiofilm, antioxidant, and wound healing properties.
Collapse
Affiliation(s)
- Smitha Chandrasekharan
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gandhimathi Chinnasamy
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Somika Bhatnagar
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
13
|
Shukla A, Shukla G, Parmar P, Patel B, Goswami D, Saraf M. Exemplifying the next generation of antibiotic susceptibility intensifiers of phytochemicals by LasR-mediated quorum sensing inhibition. Sci Rep 2021; 11:22421. [PMID: 34789810 PMCID: PMC8599845 DOI: 10.1038/s41598-021-01845-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/08/2021] [Indexed: 01/27/2023] Open
Abstract
There persists a constant threat from multidrug resistance being acquired by all human pathogens that challenges the well-being of humans. This phenomenon is predominantly led by Pseudomonas aeruginosa which is already resistant to the current generations of antibiotic by altering its metabolic pathways to survive. Specifically for this microbe the phenomenon of quorum sensing (QS) plays a crucial role in acquiring virulence and pathogenicity. QS is simply the cross talk between the bacterial community driven by signals that bind to receptors, enabling the entire bacterial microcosm to function as a single unit which has led to control P. aeruginosa cumbersome even in presence of antibiotics. Inhibition of QS can, therefore, be of a significant importance to curb such virulent and pathogenic strains of P. aeruginosa. Natural compounds are well known for their antimicrobial properties, of which, information on their mode of action is scarce. There can be many antimicrobial phytochemicals that act by hindering QS-pathways. The rationale of the current study is to identify such natural compounds that can inhibit QS in P. aeruginosa driven by LasR, PhzR, and RhlR dependent pathways. To achieve this rationale, in silico studies were first performed to identify such natural compounds which were then validated by in vitro experiments. Gingerol and Curcumin were identified as QS-antagonists (QSA) which could further suppress the production of biofilm, EPS, pyocyanin, and rhamnolipid along with improving the susceptibility to antibiotics.
Collapse
Affiliation(s)
- Arpit Shukla
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- Department of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Gaurav Shukla
- Pandit Deendayal Energy University, Raysan, Gandhinagar, Gujarat, 382426, India
| | - Paritosh Parmar
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Baldev Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|