1
|
Expression analysis of novel long non-coding RNAs for invasive ductal and invasive lobular breast carcinoma cases. Pathol Res Pract 2023; 244:154391. [PMID: 36868097 DOI: 10.1016/j.prp.2023.154391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
AIM Long non-coding RNAs (LncRNAs) serve as important regulatory molecules of gene expression and protein functionality at multiple biological levels, and their deregulation plays a key role in tumorigenesis including in breast cancer metastasis. Therefore, in this study, we aim to compare the expression of novel lncRNAs in the landscape of invasive ductal carcinoma (IDC) and invasive lobular (ILC) carcinoma of breast. MAIN METHODS We have designed an in-silico approach to find the lncRNAs that regulate the breast cancer. Then, we used the clinical samples to carry out the verification of our in silico finding. In the present study, the tissues of breast cancer were deparaffinized. RNA was extracted by the TRIzole method. After synthesizing cDNA from the extracted RNA, expression levels of lncRNAs were analyzed by qPCR using primers specifically designed and validated for the targeted lncRNAs. In this study, breast biopsy materials from 41 female patients with IDC and 10 female patients with ILC were examined histopathological and expression changes of candidate lncRNAs were investigated in line with the findings. The results were analyzed using IBM SPSS Statistics 25 version. RESULTS The mean age of the cases was 53.78 ± 14.96. The minimum age was 29, while the maximum age was 87. While 27 of the cases were pre-menopausal, 24 cases were post-menopausal. The number of hormone receptor-positive cases was found to be 40, 35, and 27 for ER, PR, and cerb2/neu, respectively. While the expressions of LINC00501, LINC00578, LINC01209, LINC02015, LINC02584, ABCC5-AS1, PEX5L-AS2, SHANK2-AS3 and SOX2-OT showed significant differences (p < 0.05), the expressions of LINC01206, LINC01994, SHANK2-AS1, and TPRG1-AS2 showed no significant differences (p > 0.05). In addition, it was determined that the regulation of all lncRNAs could be able to involve in the development of cancer such as the NOTCH1, NFKB, and estrogen receptor signalings. CONCLUSION As a result, it was thought that the discovery of novel lncRNAs might be an important player in the diagnosis, prognosis and therapeutic development of breast cancer.
Collapse
|
2
|
Xuan R, Zhao X, Li Q, Zhao Y, Wang Y, Du S, Duan Q, Guo Y, Ji Z, Chao T, Wang J. Characterization of long noncoding RNA in nonlactating goat mammary glands reveals their regulatory role in mammary cell involution and remodeling. Int J Biol Macromol 2022; 222:2158-2175. [DOI: 10.1016/j.ijbiomac.2022.09.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|
3
|
Li L, Huang Q, Yan F, Wei W, Li Z, Liu L, Deng J. Association between long non-coding RNA H19 polymorphisms and breast cancer risk: a meta-analysis. Women Health 2022; 62:565-575. [PMID: 35818166 DOI: 10.1080/03630242.2022.2096748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Common genes mutation was demonstrated associating with the risk of breast cancer (BC) recently, while the role of long non-coding RNA (lncRNA) polymorphism is still controversial. A meta-analysis was designed to discuss the association between lncRNA H19 polymorphisms and susceptibility to BC. The related databases were systematically reviewed up to April 13, 2021. Estimates were summarized as ORs and 95 percent CIs for each included study. The heterogeneity was assessed by the I2 test and subgroup analysis. Ten studies with 10354 BC patients and 11,177 control cases were included in our study. LncRNA H19 single nucleotide polymorphism (SNP) rs2839698 C/T significantly increases the susceptibility of BC (OR = 1.717 , 95 percent CI = 1.052-2.803, P = 0.031). LncRNA H19 polymorphism rs3741219 and rs217727 also increase the risk of ER-positive BC (OR = 1.128 , 95 percent CI = 1.010-1.259, P = 0.0032 for rs3741219, and OR = 1.297, 95 percent CI = 1.027-1.639, P = 0.029 for rs217727). Our results demonstrated that lncRNA H19 SNP rs2839698 C/T was significantly associated with the susceptibility of BC. LncRNA H19 SNP rs217727 and rs3741219 were associated with the risks of ER-positive BC. However, further studies are needed to reach a robust conclusion.
Collapse
Affiliation(s)
- Li Li
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| | - Qin Huang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, China
| | - Fei Yan
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| | - Wujie Wei
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| | - Zihui Li
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| | - Li Liu
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| | - Jie Deng
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| |
Collapse
|
4
|
Lin Z, Ji X, Tian N, Gan Y, Ke L. Mapping Intellectual Structure for the Long Non-Coding RNA in Hepatocellular Carcinoma Development Research. Front Genet 2022; 12:771810. [PMID: 35047004 PMCID: PMC8762053 DOI: 10.3389/fgene.2021.771810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Emerging research suggests that long non-coding RNAs (lncRNAs) play an important role in a variety of developmental or physiological processes of hepatocellular carcinoma (HCC). Various differentially expressed lncRNAs have been identified in HCC. Thus, a deeper analysis of recent research concerning lncRNA and HCC development could provide scientists with a valuable reference for future studies. Methods: Related publications were retrieved from the Web of Science Core Collection database. CiteSpace version 5.6.R4 was employed to conduct bibliometric analysis. Several network maps were constructed to evaluate the collaborations between different countries, institutions, authors, journals, and keywords. Results: A total of 2,667 records were initially found from the year of 2010–2020. The annual related publications output had increased dramatically during these years. Although China was the most prolific country in terms of research publication, the United States played a leading role in collaborative network. The Nanjing Medical University was the most productive institute in the field of lncRNAs in HCC development. Gang Chen was the most prolific researcher, while Yang F was the most frequently co-cited author. Oncotarget, Cell, and Oncogene were the most highly co-cited journals. The most recent burst keywords were interaction, database, and pathway. Conclusion: This study provides a comprehensive overview for the field of lncRNAs in HCC development based on bibliometric and visualized methods. The results would provide a reference for scholars focusing on this field.
Collapse
Affiliation(s)
- Zhifeng Lin
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Ke
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Kim L, Park SA, Yang Y, Kim Y, Heo TH, Kim H. LncRNA SRA mediates cell migration, invasion, and progression of ovarian cancer via NOTCH signaling and epithelial-mesenchymal transition. Biosci Rep 2021; 41:BSR20210565. [PMID: 34402503 PMCID: PMC8421593 DOI: 10.1042/bsr20210565] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNA (lncRNA) is a newly identified regulator of tumor formation and tumor progression. The function and expression of lncRNAs remain to be fully elucidated, but recent studies have begun to address their importance in human health and disease. The lncRNA, SRA, known as steroid receptor activator, acts as an important modulator of gynecological cancer, and its expression may affect biological functions including proliferation, apoptosis, steroid formation, and muscle development. However, it is still not well known whether SRA is involved in the regulation of ovarian cancer. The present study investigated the molecular function and association between SRA expression and clinicopathological factors. In ovarian cancer cell lines, SRA knockdown and overexpression regulated cell migration, proliferation, and invasion. Both in vivo and in vitro experiments using knockdown and overexpression showed that SRA potently regulated epithelial-mesenchymal transition (EMT) and NOTCH pathway components. Further, clinical data confirmed that SRA was a significant predictor of overall survival (OS) and progression-free survival and patients with ovarian cancer exhibiting high expression of SRA exhibited higher recurrence rates than patients with low SRA expression. In conclusion, the present study indicates that SRA has clinical significance as its expression can predict the prognosis of ovarian cancer patients. High expression of the lncRNA SRA is strongly correlated with recurrence-free survival of ovarian cancer patients.
Collapse
Affiliation(s)
- Lee Kyung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, South Korea
| | - Sun-Ae Park
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, South Korea
| | - Yoolhee Yang
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Young Tae Kim
- Institute of Women's Life Medical Science, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, South Korea
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, South Korea
| |
Collapse
|
6
|
Michailidou S, Gelasakis A, Banos G, Arsenos G, Argiriou A. Comparative Transcriptome Analysis of Milk Somatic Cells During Lactation Between Two Intensively Reared Dairy Sheep Breeds. Front Genet 2021; 12:700489. [PMID: 34349787 PMCID: PMC8326974 DOI: 10.3389/fgene.2021.700489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
In dairy sheep industry, milk production dictates the value of a ewe. Milk production is directly related to the morphology and physiology of the mammary gland; both being designated targets of breeding strategies. Although within a flock breeding parameters are mutual, large differences in milk production among individual ewes are usually observed. In this work, we tested two of the most productive dairy sheep breeds reared intensively in Greece, one local the Chios breed and one foreign the Lacaune breed. We used transcriptome sequencing to reveal molecular mechanisms that render the mammary gland highly productive or not. While highly expressed genes (caseins and major whey protein genes) were common among breeds, differences were observed in differentially expressed genes. ENSOARG00000008077, as a member of ribosomal protein 14 family, together with LPCAT2, CCR3, GPSM2, ZNF131, and ASIP were among the genes significantly differentiating mammary gland's productivity in high yielding ewes. Gene ontology terms were mainly linked to the inherent transcriptional activity of the mammary gland (GO:0005524, GO:0030552, GO:0016740, GO:0004842), lipid transfer activity (GO:0005319) and innate immunity (GO:0002376, GO:0075528, GO:0002520). In addition, clusters of genes affecting zinc and iron trafficking into mitochondria were highlighted for high yielding ewes (GO:0071294, GO:0010043). Our analyses provide insights into the molecular pathways involved in lactation between ewes of different performances. Results revealed management issues that should be addressed by breeders in order to move toward increased milk yields through selection of the desired phenotypes. Our results will also contribute toward the selection of the most resilient and productive ewes, thus, will strengthen the existing breeding systems against a spectrum of environmental threats.
Collapse
Affiliation(s)
- Sofia Michailidou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Georgios Banos
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland’s Rural College, Easter Bush, Edinburgh, United Kingdom
| | - George Arsenos
- Laboratory of Animal Husbandry, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Lemnos, Greece
| |
Collapse
|
7
|
Huang WQ, Zhuang QR, He ZJ. ILF3-AS1 promotes the aerobic glycolysis and proliferation of melanoma cells by regulating miR-493-5p/PDK1 pathway. Ital J Dermatol Venerol 2021; 157:173-181. [PMID: 33913671 DOI: 10.23736/s2784-8671.21.06906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To investigate the role of ILF3-AS1 in regulating the survival of melanoma and its molecular mechanism. METHODS The relative expression level of ILF3-AS1 in melanoma was assessed by qPCR. The effect of ILF3-AS1 and PDK1 on the cell viability was tested by MTT assay. Glucose uptake colorimetric assay, lactate assay, the measurements of extracellular acidification rate (ECAR) and Oxygen consumption rate (OCR) were performed to test the effect of ILF3-AS1 and PDK1 on the cellular glycolysis. Luciferase assay was conducted to detect the interactions of ILF3-AS1, miR-493-5p and PDK1. RNA immunoprecipitation chip (RIP) assay was used to detect the enrichments of ILF3-AS1 and miR-493-5p in the complex. Protein level of PDK1 was detected by western blot analysis. RESULTS qPCR revealed that ILF3-AS1 was upregulated in human melanoma cell lines. MTT assay showed that ILF3-AS1 knockdown blunted cell proliferation, which was rescued by the overexpression of PDK1. Glucose uptake colorimetric assay, lactate assay, the measurements of ECAR and OCR indicated that ILF3-AS1 promoted glycolysis through PDK1. Western blotting results showed that ILF3-AS1 overexpression promoted PDK1 expression, which was prevented by miR-493-5p overexpression in SK-MEL-1 cells. CONCLUSIONS ILF3-AS1 promotes the aerobic glycolysis and survival of melanoma cells involving miR-493-5p/PDK1 pathway.
Collapse
Affiliation(s)
- Wen Q Huang
- Department of Pulmonary and Critical Care Medicine, Maoming People's Hospital, Maoming City, China
| | - Qian R Zhuang
- Department of Oncology, Maoming People's Hospital, Maoming City, China -
| | - Zhi J He
- Department of Oncology, Maoming People's Hospital, Maoming City, China
| |
Collapse
|
8
|
Liu Y, Zhang H, Wang H, Du J, Dong P, Liu M, Lin Y. Long non-coding RNA DUXAP8 promotes the cell proliferation, migration, and invasion of papillary thyroid carcinoma via miR-223-3p mediated regulation of CXCR4. Bioengineered 2021; 12:496-506. [PMID: 33522355 PMCID: PMC8291844 DOI: 10.1080/21655979.2021.1882134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is a differentiated type of thyroid malignancy with a high incidence. Long non-coding RNA (lncRNA) DUXAP8 has been reported to participate in the proliferation, migration, and invasion of several cancer types. However, its association with PTC has not yet been reported. The current study aimed to investigate the role of DUXAP8 in PTC and revealed the underlying mechanisms. The expression of DUXAP8 was knocked down in two PTC cell lines and the effects of DUXAP8 on the PTC biological behavior were examined by cell counting kit-8 (CCK-8), wound healing, and transwell invasion assays. Luciferase reporter assay was used to detect the binding activity between miR-223-3p and DUXAP8. We found that knockdown of DUXAP8 inhibited the proliferation, migration, and invasion of PTC cells. DUXAP8 could sponge miR-223-3p through the specific binding site. CXCR4 was a target of miR-223-3p. The malignant phenotypes of the PTC cells were suppressed by the over-expression of miR-223-3p. Moreover, miR-223-3p inhibition or CXCR4 over-expression partly restored the proliferation, migration, and invasion activities of DUXAP8-downregulated PTC cells. The results evidenced that DUXAP8 acted as an oncogene in PTC, these effects seemed to partly dependent on the miR-223-3p/CXCR4 axis.
Collapse
Affiliation(s)
- Yan Liu
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Hejia Zhang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Jiarui Du
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Peng Dong
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Meihan Liu
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Yuanqiang Lin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| |
Collapse
|
9
|
Nandwani A, Rathore S, Datta M. LncRNAs in cancer: Regulatory and therapeutic implications. Cancer Lett 2020; 501:162-171. [PMID: 33359709 DOI: 10.1016/j.canlet.2020.11.048] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a class of RNAs that do not code for proteins but are critical in regulating diverse cellular processes and maintaining cell function. In doing so, they have, in recent years, added a potentially new and significant layer of biological regulation. These are more than 200 nucleotides in length and are implicated in a range of diseases and therefore have emerged as potential tools for possible therapeutic intervention. For a disease as complex as cancer, emerging technologies suggest the presence of mutations on genomic loci that do not encode proteins, but give rise to lncRNAs. Aberrant signatures of lncRNAs are now a consistent feature of almost all types of cancers and their associated complications. Analysis and characterisation of functional pathways that lncRNAs are involved with suggest that lncRNAs interact with the chromatin, the protein or with the RNA to demonstrate their cellular effects to modulate proliferation, migration, differentiation, apoptosis and cell death. This review summarizes the current knowledge of lncRNAs, their implications in diverse types of cancer and their possible therapeutic utility.
Collapse
Affiliation(s)
- Arun Nandwani
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Shalu Rathore
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Hu C, Fang K, Zhang X, Guo Z, Li L. Dyregulation of the lncRNA TPT1-AS1 positively regulates QKI expression and predicts a poor prognosis for patients with breast cancer. Pathol Res Pract 2020; 216:153216. [PMID: 32961484 DOI: 10.1016/j.prp.2020.153216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
The long noncoding RNA (lncRNA) TPT1-AS1 has been reported to be involved in the development of multiple cancers. However, its clinical value, biological function, and underlying molecular mechanism in breast cancer (BC) remain unclear. In the present study, TPT1-AS1 expression was decreased in BC tissues, based on RNA-seq data download from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and the qRT-PCR results confirmed the above findings. Otherwise, low TPT1-AS1 expression was significantly associated with some clinical features of malignancy, such as high TNM stage, lymph node metastasis, a Her-2-negative status, and shorter overall survival. More importantly, univariate and multivariate Cox regression analyses indicated that TPT1-AS1 is an independent prognostic factor for patients with BC. Overexpression and knockdown of TPT1-AS1 in BC cell lines altered their proliferation, metastasis and invasion, as measured using the cell counting kit-8 (CCK-8) assay, wound-healing assay and transwell assay, respectively. In addition, a dual luciferase activity reporter assay validated that TPT1-AS1 and QKI shared a binding site in miR-330-3p. Based on these findings, TPT1-AS1 potentially represents a prognostic biomarker for patients with BC and participates in the development of BC through the TPT1-AS1/miR-330-3p/QKI axis.
Collapse
Affiliation(s)
- Caixia Hu
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Kai Fang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Xiufen Zhang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Zijian Guo
- Department of Oncological Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214062, China.
| | - Lihua Li
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, 214062, China.
| |
Collapse
|
11
|
Wong KK. DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol 2020; 72:198-213. [PMID: 32461152 DOI: 10.1016/j.semcancer.2020.05.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Altered epigenetics regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. In this review, the oncogenic functions rendered by DNMT1 in TNBCs, and DNMT1 inhibitors targeting TNBC cells are presented and discussed. In summary, DNMT1 expression is associated with poor breast cancer survival, and it is overexpressed in TNBC subtype. The oncogenic roles of DNMT1 in TNBCs include: (1) Repression of estrogen receptor (ER) expression; (2) Promotion of epithelial-mesenchymal transition (EMT) required for metastasis; (3) Induces cellular autophagy and; (4) Promotes the growth of cancer stem cells in TNBCs. DNMT1 confers these phenotypes by hypermethylating the promoter regions of ER, multiple tumor suppressor genes, microRNAs and epithelial markers involved in suppressing EMT. DNMT1 inhibitors exert anti-tumorigenic effects against TNBC cells. This includes the hypomethylating agents azacitidine, decitabine and guadecitabine that might sensitize TNBC patients to immune checkpoint blockade therapy. DNMT1 represents an epigenetic target for TNBC cells destruction as well as to derail their metastatic and aggressive phenotypes.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
12
|
Qiu X, Dong J, Zhao Z, Li J, Cai X. LncRNA LINC00668 promotes the progression of breast cancer by inhibiting apoptosis and accelerating cell cycle. Onco Targets Ther 2019; 12:5615-5625. [PMID: 31371999 PMCID: PMC6628964 DOI: 10.2147/ott.s188933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: To elucidate how lncRNA 00668 (LINC00668) influences the development of breast cancer (BC). Materials and methods: Genome-wide expression profile of BC and paracancerous tissues were downloaded from The Cancer Genome Atlas (TCGA) and BC tissues and paracancerous tissues enrolled from our hospital for analyzing the expression level of LINC00668 and its correlation with prognosis. GSEA was conducted to analyze the potential functions of LINC00668. By transfection of sh-LINC00668 in BC cells, proliferation, apoptosis, cell cycle and colony formation of BC cells were accessed. Western blot was conducted to detect protein expressions of Ki-67, CDK4, Bcl-2, p21 and genes in AKT/mTOR pathways after LINC00668 knockdown in BC cells. Finally, tumor-bearing nude mice were administrated with BC cells. We compared the proliferative rate in mice with different administrations. Immunohistochemistry was carried out to access expression levels of Ki-67, CDK4, Bcl-2 and P21 in mice. Results: Both TCGA data and BC tissues harvested from our hospital indicated the higher expression of LINC00668 in BC tissues. LINC00668 expression was negatively correlated to prognosis of BC patients. GSEA pointed out that LINC00668 is enriched in regulations of cell cycle and apoptosis. By transfection of sh-LINC00668 in MDA-MB-231 and MDA-MB-436 cells, the proliferative and colony formation abilities of BC cells decreased. Besides, LINC00668 knockdown in BC cells induced apoptosis and arrested cell cycle. LINC00668 knockdown downregulated Ki-67, CDK4 and Bcl-2, but upregulated p21. The AKT/mTOR pathway was inhibited after LINC00668 silenced. In vivo experiments demonstrated the decreased proliferative rate in tumor-bearing mice administrated with sh-LINC00668 transfected BC cells. Consistently, immunohistochemical results showed lower positive expressions of Ki-67, CDK4 and Bcl-2, but higher positive expression of p21 in sh-LINC00668 group. Conclusion: LINC00668 is highly expressed in BC tissues and can promote the progression of BC by inhibiting apoptosis and accelerating cell cycle progression.
Collapse
Affiliation(s)
- Xia Qiu
- Department of General Surgery, Pudong New Area Gongli Hospital Affiliated to Naval Military Medical University, Shanghai 200135, People's Republic of China
| | - Jiangnan Dong
- Department of General Surgery, Pudong New Area Gongli Hospital Affiliated to Naval Military Medical University, Shanghai 200135, People's Republic of China
| | - Zheng Zhao
- Department of General Surgery, Pudong New Area Gongli Hospital Affiliated to Naval Military Medical University, Shanghai 200135, People's Republic of China
| | - Jun Li
- Department of General Surgery, Pudong New Area Gongli Hospital Affiliated to Naval Military Medical University, Shanghai 200135, People's Republic of China
| | - Xiaoyan Cai
- Department of General Surgery, Pudong New Area Gongli Hospital Affiliated to Naval Military Medical University, Shanghai 200135, People's Republic of China
| |
Collapse
|
13
|
Cao Z, Wu P, Su M, Ling H, Khoshaba R, Huang C, Gao H, Zhao Y, Chen J, Liao Q, Cao D, Jin J, Zhang X. Long non-coding RNA UASR1 promotes proliferation and migration of breast cancer cells through the AKT/mTOR pathway. J Cancer 2019; 10:2025-2034. [PMID: 31205563 PMCID: PMC6548165 DOI: 10.7150/jca.29457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs longer than 200 nucleotides that function as regulatory factors in many human diseases, including cancer. However, majority of lncRNAs remain to be characterized. In this study, we characterized a novel lncRNA transcript, named UNC5B antisense RNA1 (UASR1). UASR1 is 647bp in length consisting of two exons. This lncRNA is an antisense of intron 1 of unc-5 netrin receptor B (UNC5B) gene. In breast cancer tissues, UASR1 was upregulated. Ectopic expression of UASR1 promoted proliferation and clonogenic growth of breast cancer cells MCF7 and MDA-MB-231. The migration of these cells also increased as demonstrated by wound healing and transwell assays. In contrast, silencing of UASR1 suppressed cell proliferation and migration. Further studies showed that UASR1 activated AKT and AKT-mediated mTOR signaling pathway to stimulate cell proliferation and growth. In these cells, active pAKT, pTSC2, p4EBP1 and pp70S6K were increased. Taken together, our data suggest that UASR1 plays an oncogenic role in breast cancer cells through activation of the AKT/mTOR signaling pathway, being a novel RNA oncogene.
Collapse
Affiliation(s)
- Zhe Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha 410013, Hunan, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Furong District, Changsha 410128, China
| | - Ping Wu
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine. 913 N. Rutledge Street, Springfield, IL 62794.,Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Min Su
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hongyan Ling
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine. 913 N. Rutledge Street, Springfield, IL 62794
| | - Ramina Khoshaba
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine. 913 N. Rutledge Street, Springfield, IL 62794.,Biotechnology Department, College of Science, Baghdad University, Baghdad, Iraq, 10071
| | - Chenfei Huang
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine. 913 N. Rutledge Street, Springfield, IL 62794
| | - Han Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Furong District, Changsha 410128, China
| | - Yan Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Furong District, Changsha 410128, China
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Furong District, Changsha 410128, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Deliang Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine. 913 N. Rutledge Street, Springfield, IL 62794
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, Guangxi, China
| | - Xuewen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Furong District, Changsha 410128, China
| |
Collapse
|
14
|
Mansoori Y, Zendehbad Z, Askari A, Kouhpayeh A, Tavakkoly-Bazzaz J, Nariman-Saleh-Fam Z, Bastami M, Saadatian Z, Mansoori B, Yousefvand A, Mansoori H, Daraei A. Breast cancer-linked lncRNA u-Eleanor is upregulated in breast of healthy women with lack or short duration of breastfeeding. J Cell Biochem 2018; 120:9869-9876. [PMID: 30548300 DOI: 10.1002/jcb.28269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Recently, it has been revealed that estrogen-related reproductive factors are linked with some early gene expression lesions associated with malignancy in clinically healthy breasts. Accordingly, the aim of the current study was to evaluate the association of expression levels of estrogen-related long noncoding RNAs (lncRNAs) upstream Eleanor (u-Eleanor) and HOX antisense intergenic RNA (HOTAIR) with the different patterns of reproductive factors in breast tissue of healthy women. The subjects of this study were 98 cancer-free women who had undergone cosmetic mammoplasty. The expression levels of u-Eleanor and HOTAIR were measured using quantitative real-time polymerase chain reaction. The results of the current study showed that the women without a history of breastfeeding had a high-level expression of u-Eleanor compared with the women with a breastfeeding duration greater than 6 to 24 months (P = 0.03) as well as the women with a breastfeeding duration of more than 24 months (P = 0.005). Furthermore, a higher expression of u-Eleanor was found in the women with a short breastfeeding duration for 1 to 6 months than that in the women with a breastfeeding duration of greater than 24 months (P = 0.02). In the same way, the results of correlation test (r = -0.258; P = 0.036) and multivariate regression model (β = -0.321; P = 0.023) are indicative of a significant relationship of elevated expression of u-Eleanor with decreasing breastfeeding duration in the women. These findings could be important to identify the molecular mechanisms behind the relationship between a lack or short duration of the breastfeeding and the risk of breast cancer, which has previously been reported by epidemiological studies.
Collapse
Affiliation(s)
- Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Zendehbad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Askari
- Department of Orthopedy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Yousefvand
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hosein Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
15
|
Yang L, Zhou JD, Zhang TJ, Ma JC, Xiao GF, Chen Q, Deng ZQ, Lin J, Qian J, Yao DM. Overexpression of lncRNA PANDAR predicts adverse prognosis in acute myeloid leukemia. Cancer Manag Res 2018; 10:4999-5007. [PMID: 30464600 PMCID: PMC6214337 DOI: 10.2147/cmar.s180150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background and purpose Abundant studies have shown that lncRNA PANDAR plays an oncogenic role in human solid tumors. Although abnormal expression of PANDAR has been well investigated in solid tumors, it was rarely studied in hematologic diseases. Hence, the aim of this study was to determine the PANDAR expression level and its clinical significance in patients with acute myeloid leukemia (AML). Materials and methods For detecting the expression level of PANDAR in 119 AML patients and 26 controls, real-time quantitative PCR was used in this study. The prognostic values were evaluated by using Kaplan-Meier analysis, Cox regression analyses, and logistic regression analysis. Results PANDAR was significantly overexpressed in AML and might be a promising biomarker which could distinguish AML from normal samples (P<0.001). Patients with high expression of PANDAR (PANDAR high) were older and showed higher bone marrow blasts than patients in PANDAR low group (P=0.029 and 0.032, respectively). Significant differences between these groups were also detected regarding risk group and karyotype finding (P=0.009 and 0.041, respectively). Importantly, PANDAR high patients presented a significant lower complete remission rate compared to PANDAR low patients (P<0.001). Furthermore, Kaplan-Meier analysis showed that PANDAR high patients had shorter overall survival compared to PANDAR low patients observing the whole AML cohort, and also in the non-M3 group of patients (P<0.001 and P=0.005, respectively). Multivariate analysis of Cox and logistic regression analysis confirmed that high PANDAR expression was an independent unfavorable risk factor for overall survival and complete remission in both observed patient groups. Conclusion These results revealed that PANDAR was overexpressed in AML, and that higher PANDAR expression was associated with poor clinical outcome. Our study therefore suggests that PANDAR expression is a promising biomarker for prognostic prediction for AML.
Collapse
Affiliation(s)
- Lan Yang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Jing-Dong Zhou
- The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, , .,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China,
| | - Ting-Juan Zhang
- The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, , .,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China,
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Gao-Fei Xiao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Qin Chen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Jun Qian
- The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, , .,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China,
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| |
Collapse
|
16
|
LncRNA PROX1-AS1 promotes proliferation, invasion, and migration in papillary thyroid carcinoma. Biosci Rep 2018; 38:BSR20180862. [PMID: 30061172 PMCID: PMC6131342 DOI: 10.1042/bsr20180862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Evidence has been provided that long noncoding RNAs (LncRNAs) play major roles in affecting essential physiological processes, and many of which seem to have functional roles in tumorigenesis and progression. However, the intrinsic molecular mechanism of LncRNAs acting on papillary thyroid carcinoma is not well understood. In the present study, we found that PROX1-AS1 levels were obviously increased in thyroid cancer cells compared with the normal thyroid epithelial cells. Knockdown of PROX1-AS1 gene expression by siRNA could inhibit cell proliferation. Subsequently, we also observed that silencing PROX1-AS1 might inhibit invasion and migration of thyroid cancer cell lines via modulating the expression of epithelial–mesenchymal transition related proteins. In conclusion, our study indicated that LncRNA PROX1-AS1 could promote papillary thyroid carcinoma development and might serve as a potential targeting marker for papillary thyroid carcinoma.
Collapse
|
17
|
Li P, Gao Y, Li J, Zhou Y, Yuan J, Guan H, Yao P. LncRNA MEG3 repressed malignant melanoma progression via inactivating Wnt signaling pathway. J Cell Biochem 2018; 119:7498-7505. [PMID: 29781534 DOI: 10.1002/jcb.27061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022]
Abstract
Accumulating evidence has indicated that MEG3 can serve as a tumor suppressive lncRNA in various tumors. It is aberrantly expressed in multiple cancers. However, the biological roles of MEG3 in melanoma are poorly understood. Therefore, in our study, we concentrated on the biological mechanism of MEG3 in melanoma progression. First, we observed that MEG3 was obviously decreased in melanoma cells including A375, SK-MEL-1, B16, and A2058 cells compared to human epidermal melanocytes HEMa-LP. MEG3 was restored by transfecting LV-MEG3 in to A375 and A2058 cells. Subsequently, we found that overexpression of MEG3 was able to inhibit cell proliferation and colony formation capacity. Meanwhile, melanoma cell apoptosis was induced by up-regulation of MEG3. Overexpression of MEG3 greatly repressed melanoma cell migration and invasion ability. In addition, Wnt signaling pathway has been identified in the progression of various cancers. Here, in our study, it was indicated that Wnt signaling was highly activated in melanoma cells with β-catenin expression significantly increased and GSK-3β decreased. Interestingly, MEG restoration strongly inactivated Wnt signaling pathway by reducing β-catenin and CyclinD1, elevating GSK-3β levels in vitro. Finally, in vivo experiments were carried out to confirm the inhibitory roles of MEG3 in vivo. Taken these together, we suggested that MEG3 can inhibit melanoma development through blocking Wnt signaling pathway.
Collapse
Affiliation(s)
- Peng Li
- Department of Dermatology, The Center Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Gao
- Department of Dermatology, The Center Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Dermatology, The Center Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Department of Dermatology, The Center Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Dermatology, The Center Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiwen Guan
- Department of Dermatology, The Center Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Yao
- Department of Dermatology, The Center Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Li Q, Shen F, Zhao L. The relationship between lncRNA PCGEM1 and STAT3 during the occurrence and development of endometrial carcinoma. Biomed Pharmacother 2018; 107:918-928. [PMID: 30257404 DOI: 10.1016/j.biopha.2018.08.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023] Open
Abstract
We investigated the effects of lncRNA PCGEM1 on the tumorigenesis and development of endometrial carcinoma (EC) and its possible molecular mechanism. We found that PCGEM1 expression was significantly higher in EC tissues than in normal endometrial tissues via quantitative reverse transcription (qRT)-PCR. The upregulation of PCGEM1 promoted the proliferation, migration, and invasive ability of EC cells while inhibiting apoptosis. The silencing of PCGEM1 had the opposite effects. Nude mouse xenograft assay showed that PCGEM1 overexpression could promote tumor growth in vivo. Western blotting and immunohistochemistry showed that PCGEM1 also upregulated STAT3 expression, which affected the expression of B-cell lymphoma-2, survivin, vascular endothelial growth factor A, and matrix metalloproteinase-2. Furthermore, the dual-luciferase reporter assay confirmed that miR-129-5p could bind directly to both PCGEM1 and STAT3. In addition, qRT-PCR showed that overexpression of PCGEM1 caused a decrease in miR-129-5p expression, and silencing of PCGEM1 produced the opposite result. In the PCGEM1-overexpressing cells, overexpression of miR-129-5p reduced the expression of STAT3 at both mRNA and protein levels. Thus, we confirmed that PCGEM1 could upregulate the expression of STAT3 by acting as a competing endogenous RNA for miR-129-5p, thereby affecting the occurrence and development of EC.
Collapse
Affiliation(s)
- Qianhui Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, 110042, People's Republic of China; Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Fan Shen
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, 110042, People's Republic of China; Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Lin Zhao
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, 110042, People's Republic of China; Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, People's Republic of China.
| |
Collapse
|
19
|
Jiang B, Li Y, Qu X, Zhu H, Tan Y, Fan Q, Jiang Y, Liao M, Wu X. Long noncoding RNA cancer susceptibility candidate 9 promotes doxorubicin‑resistant breast cancer by binding to enhancer of zeste homolog 2. Int J Mol Med 2018; 42:2801-2810. [PMID: 30106089 DOI: 10.3892/ijmm.2018.3812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/24/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of the long noncoding RNA cancer susceptibility candidate 9 (CASC9) on doxorubicin (DOX)‑resistant breast cancer and to reveal the potential underlying mechanisms. The expression of CASC9 in breast cancer tissues and cell lines, in addition to drug‑resistant breast cancer cells (MCF‑7/DOX), was detected by reverse transcription‑quantitative polymerase chain reaction. Subsequently, MCF‑7/DOX cells were transfected with the silencing vector pS‑CASC9, containing enhancer of zeste homolog 2 (EZH2), multidrug resistance protein 1 (MDR1) or control small interfering (si)RNAs. The viability, apoptosis, migration and invasion of the transfected cells were assessed via an MTT assay, flow cytometry and a Transwell assay, respectively. The expression levels of apoptosis‑associated proteins (apoptosis regulator Bcl‑2, apoptosis regulator BAX, caspase‑3 and caspase‑9) were determined by western blotting. An RNA pull‑down assay was performed to identify CASC9‑binding candidates. In addition, the expression levels of the MDR1 gene and its encoded protein, P‑glycoprotein, were detected. CASC9 expression was upregulated in breast cancer tissues and cell lines, and drug‑resistant breast cancer cells. CASC9 knockdown significantly inhibited the growth and metastasis of drug‑resistant breast cancer cells, and decreased the half‑maximal inhibitory concentration DOX in MCF‑7/DOX cells. The RNA pull‑down assay revealed that CASC9 engaged EZH2; EZH2 siRNA significantly inhibited the cell growth, metastasis and chemoresistance of MCF‑7/DOX cells. Additionally, EZH2 may regulate the MDR1 gene. The present study demonstrated the oncogenic role of CASC9 in drug‑resistant breast cancer by binding to EZH2 and regulating the MDR1 gene. Modulation of CASC9 expression may be a promising target in the therapy of breast cancer and drug‑resistant breast cancer.
Collapse
Affiliation(s)
- Baohong Jiang
- Department of Pharmacy, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuehua Li
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaofei Qu
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hongbo Zhu
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yeru Tan
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qun Fan
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yiling Jiang
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mingchu Liao
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoping Wu
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
20
|
Mansoori Y, Tabei MB, Askari A, Izadi P, Daraei A, Naghizadeh MM, Zendehbad Z, Bastami M, Nariman-Saleh-Fam Z, Mansoori H, Tavakkoly-Bazzaz J. A link between expression level of long-non-coding RNA ZFAS1 in breast tissue of healthy women and obesity. Int J Biol Markers 2018; 33:500-506. [PMID: 29690801 DOI: 10.1177/1724600818762258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Epidemiological and experimental literature indicates that the risk of breast cancer incidence is strongly linked to hormone-dependent factors, including reproductive history and obesity. However, the molecular mechanisms underlying the association between these factors and breast cancer risk are poorly understood. The aim of this study, therefore, was to determine whether obesity and reproductive history are associated with expression levels of two breast cancer-related long non-coding RNAs (lncRNAs), namely ZFAS1 and SRA1 in cancer-free breast tissues of women. METHODS In the current research, 145 healthy women were recruited, and the quantitative expression levels of the two lncRNAs were determined through qPCR assay after gathering the mammoplasty breast tissue samples. RESULTS It was found that women with body mass index (BMI)≥30 kg/m2 and BMI 25-29 kg/m2 show a low expression of ZFAS1 compared to the BMI<25 kg/m2 (P=0.031 and P=0.027, respectively). Then, the correlation analysis disclosed a negative correlation of ZFAS1 low expression with increasing BMI (r=-0.194, P=0.019). Interestingly, this analysis demonstrated a negative correlation between low expression of the ZFAS1 and high BMI in women with menarche age below 14 (r=-221; P=0.028). Lastly, it was also revealed that there was a negative association of the low expression level of ZFAS1 with increasing BMI in women through regression models (B=-0.048, P=0.019). CONCLUSIONS These findings suggest interesting clues about the links between high BMI and the expression levels of ZFAS1 in non-diseased breasts that may help us better understand the underlying mechanisms through which obesity contributes to breast carcinogenesis. However, such results need more validations in future research.
Collapse
Affiliation(s)
- Yaser Mansoori
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Bagher Tabei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Askari
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Bone and Joint Reconstraction Research Center, Shafa Orthopedic Haspital, Iran University of Medical Sciences, Tehran, IR Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Zahra Zendehbad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Bastami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Li Y, Wang H, Zhou D, Shuang T, Zhao H, Chen B. Up-Regulation of Long Noncoding RNA SRA Promotes Cell Growth, Inhibits Cell Apoptosis, and Induces Secretion of Estradiol and Progesterone in Ovarian Granular Cells of Mice. Med Sci Monit 2018; 24:2384-2390. [PMID: 29674607 PMCID: PMC5928913 DOI: 10.12659/msm.907138] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Increasing evidence indicates that long noncoding RNAs (LncRNAs) play a key role in multiple pathological processes. It has been shown that LncRNA steroid receptor RNA activator (SRA) is elevated in peripheral blood of patients with polycystic ovary syndrome (PCOS). The aim of this study was to assess the effect of elevated LncRNA SRA on ovarian granular cells of mice in vitro. MATERIAL AND METHODS We firstly isolated granular cells from mouse ovaries and over-expressed the LncRNA SRA by means of lentiviral transfection in this cell line. Then, we assessed the effects of LncRNA SRA on granular cells through real-time PCR, CCK-8 assay, flow cytometry, Hoechst staining, and Western blot assay. RESULTS We demonstrated that elevated LncRNA SRA stimulated cell growth, changed distribution of cell cycle phases with increase of Cyclin B, Cyclin E, and Cyclin D1, and inhibited cell apoptosis with up-regulation of bcl2 and down-regulation of bax, cleaved-caspase 3, and cleaved-PARP. Moreover, the contents of estradiol (E2) and progesterone (PG) and expressions of their key enzymes (CYP19A1 and CYP11A1) were up-regulated following over-expression of LncRNA SRA. CONCLUSIONS Taken together, our results indicate that abnormal LncRNA SRA may be a risk factor for evoking PCOS.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Haixu Wang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Dangxia Zhou
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Ting Shuang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Haibo Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Biliang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
22
|
Wang Y, Zhang J. Identification of differential expression lncRNAs in gastric cancer using transcriptome sequencing and bioinformatics analyses. Mol Med Rep 2018; 17:8189-8195. [PMID: 29693709 PMCID: PMC5983993 DOI: 10.3892/mmr.2018.8889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 07/28/2017] [Indexed: 01/17/2023] Open
Abstract
The current study aimed to identify novel long non-coding RNAs (lncRNAs) associated with gastric cancer (GC). Transcriptome sequencing of the lncRNAs and mRNAs from GC tissues and normal adjacent tissues was performed. The data were analyzed using bioinformatics analysis, specifically analysis of differentially expressed lncRNAs and mRNA, target gene prediction and functional enrichment analysis. A total of 1,181 differentially expressed mRNA and 390 differentially expressed lncRNAs were identified. The targets of upregulated lncRNAs were significantly enriched in functions associated with collagen fibril organization, whereas the downregulated lncRNA were significantly associated with ion transmembrane transport and regulation of membrane potential. A total of 7 lncRNAs were verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Following RT-qPCR validation, AC016735.2, AP001626.1, RP11-400N13.3 and RP11-243M5.2 were considered to be consistent with the prediction of the bioinformatics analysis. Transcriptome sequencing and RT-qPCR experiments identified 4 lncRNAs, including AC016735.2, AP001626.1, RP11-400N13.3 and RP11-243M5.2 to have an important role in the carcinogenesis of GC.
Collapse
Affiliation(s)
- Yiyi Wang
- Department of Laboratory Medicine, Shanghai Shuguang Hospital Affiliated with Shanghai University of TCM, Shanghai 200021, P.R. China
| | - Jue Zhang
- Department of Laboratory Medicine, Shanghai Shuguang Hospital Affiliated with Shanghai University of TCM, Shanghai 200021, P.R. China
| |
Collapse
|
23
|
Esmatabadi MJD, Motamedrad M, Sadeghizadeh M. Down-regulation of lncRNA, GAS5 decreases chemotherapeutic effect of dendrosomal curcumin (DNC) in breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:56-65. [PMID: 29655698 DOI: 10.1016/j.phymed.2018.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 02/03/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Despite positive results obtained from anticancer activities of curcumin, there are some obstacles that limit its use as an anticancer agent. HYPOTHESIS/PURPOSE Different methods such as employing the dendrosomal curcumin (DNC) were examined to overcome such problems. There is increasing evidence representing long non-coding RNAs play important roles in biological processes. In this study, we focused on the roles of GAS5 in the anti-cancer effects of DNC on breast cancer. METHODS We used several methods including MTT assay, apoptosis assay, cell cycle analysis, transwell migration assay and RT-PCR. RESULTS We observed a significant increase in the expression of Tusc7, and GAS5 genes with DNC treatment of MCF7, MDA-MB231, and SKBR3 cells. Also, the combination of GAS5 down-regulation and DNC treatment showed lower percentages of apoptotic cells and a higher level of penetration through the membrane compared with DNC treatment alone. Furthermore, DNC induced a significant increase in the number of cells in sub G1/G1 phase and a decrease in the G2/M phase of the cell cycle. But, after GAS5 down-regulation alone opposite results was observed compared to DNC. CONCLUSION We observed that GAS5 down-regulation can suppress many aspects of DNC anti-cancer effects in breast cancer cells, it seems that co-treatment with DNC and GAS5 over-expression may provide a clinically useful tool for drug-resistance breast cancer cells.
Collapse
Affiliation(s)
| | - Maryam Motamedrad
- Department of Biology, Faculty of Science, University of Birjand, Birjand, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
24
|
Kou N, Liu S, Li X, Li W, Zhong W, Gui L, Chai S, Ren X, Na R, Zeng T, Liu H. H19 Facilitates Tongue Squamous Cell Carcinoma Migration and Invasion via Sponging miR-let-7. Oncol Res 2018. [PMID: 29523225 PMCID: PMC7848458 DOI: 10.3727/096504018x15202945197589] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The long noncoding RNA (lncRNA) H19 has been described to participate in the metastasis of various tumors. Nevertheless, whether H19 promotes or impedes tongue squamous cell carcinoma (TSCC) cell migration and invasion remains controversial. Here we found that the expression of H19 was elevated in TSCC tissues compared with adjacent normal tissues. Moreover, we demonstrated that the expression of H19 was higher in metastasized tumors compared with unmetastasized tumors. Consistently, TSCC cells express higher levels of H19 than human squamous cells. Subsequently, depletion of H19 impaired the migration and invasion abilities of TSCC cells. Mechanistically, we demonstrated that H19 functions as a competing endogenous RNA (ceRNA) to sponge miRNA let-7a, leading to an increase in a let-7a target, the key regulator of tumor metastasis HMGA2, which is enriched in TSCC tissues and cell lines. Intriguingly, inhibition of let-7a significantly rescued the short hairpin H19 (shH19)-induced decrease in TSCC migration and invasion. These findings revealed that the H19/let-7a/HMGA2/EMT axis plays a critical role in the regulation of TSCC migration and invasion, which may provide a new therapeutic target for TSCC.
Collapse
Affiliation(s)
- Ni Kou
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Sha Liu
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiaojie Li
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Wuwei Li
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Weijian Zhong
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Lin Gui
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Songling Chai
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiang Ren
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Risu Na
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Tao Zeng
- Department of Stomatology, Dalian Stomatological Hospital, Dalian, Liaoning, P.R. China
| | - Huiying Liu
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
25
|
Chen L, Ma D, Li Y, Li X, Zhao L, Zhang J, Song Y. Effect of long non-coding RNA PVT1 on cell proliferation and migration in melanoma. Int J Mol Med 2017; 41:1275-1282. [PMID: 29286144 PMCID: PMC5819911 DOI: 10.3892/ijmm.2017.3335] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to investigate the potential role of the long non-coding RNA (lncRNA) Pvt1 oncogene (non-protein coding) (PVT1) in the progression and metastasis of malignant melanoma, and to reveal its possible molecular mechanisms. The expression of lncRNA PVT1 in melanoma tissues and adjacent normal skin from patients with melanoma, and in the melanoma A-375 and sk-mel-5 cell lines, was analyzed using reverse transcription-quantitative polymerase chain reaction and western blot analyses. The effects of PVT1 expression on cell proliferation, the cell cycle, cell migration and cell invasion were analyzed using MTT assay, flow cytometry, Transwell and scratch assays, respectively. The interaction between PVT1 and enhancer of zeste homolog 2 (EZH2) in melanoma cells was analyzed using RNA immunoprecipitation (RIP) assay. The effect of PVT1 on microRNA-200c (miR-200c) expression was analyzed by chromatin immunoprecipitation (ChIP) assay. PVT1 was highly expressed in the melanoma tissues and cells. Silencing of PVT1 significantly inhibited cell proliferation, migration and invasion, and arrested the cell cycle at the G0/G1 stage. Additionally, PVT1 silencing significantly decreased the cyclin D1 expression in the melanoma cells. The expression of E-cadherin was significantly increased and the expression of N-cadherin and vimentin was significantly decreased in the PVT1-silenced group. The RIP assay found that endogenous PVT1 was highly enriched by EZH2 RIP compared with that of the negative control. The ChIP assay revealed that the expression of miR-200c was decreased significantly in the PVT1-silenced group compared with the controls. Overall, the present study demonstrated that the lncRNA PVT1 may contribute to the tumorigenesis and metastasis of melanoma through binding to EZH2 and regulating the expression of miR-200c. lncRNA PVT1 may serve as a potential target for the therapy of melanoma.
Collapse
Affiliation(s)
- Lamei Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongmei Ma
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuanyuan Li
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaoying Li
- Laboratory of Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lei Zhao
- Institute of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing Zhang
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yali Song
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
26
|
Yu S, Zhao Y, Lai F, Chu M, Hao Y, Feng Y, Zhang H, Liu J, Cheng M, Li L, Shen W, Min L. LncRNA as ceRNAs may be involved in lactation process. Oncotarget 2017; 8:98014-98028. [PMID: 29228670 PMCID: PMC5716710 DOI: 10.18632/oncotarget.20439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
The main function of the mammary gland is to secret milk for newborn growth. Milk production process is regulated by hormones, growth factors, noncoding RNAs and other factors locally. Long non-coding RNAs (lncRNAs), one type of recently discovered non-coding RNA, have been found in mammary gland and some studies suggested lncRNA may play important roles in mammary gland development. Competing endogenous RNAs (ceRNAs) are emerging to compete for miRNA binding and, in turn, regulate each other. In the current study, we sequenced mRNA, miRNA and lncRNA in goat mammary tissue at 2 points in lactation (early and mature). All data were co-expressed together from the same samples. Our data showed that the ceRNAs up-regulated during the mature lactation phase were associated with lipid, protein, carbon and amino acid synthesis and metabolism. This correlates with the function of the mature lactation phase: i.e. the continuous production of large amounts of milk, rich in proteins, lipids, amino acids and other nutrients. Alternately, the ceRNAs up-regulated during early lactation were associated with PI3K-AKT pathways and ECM-receptor interactions; these fulfil the functional role of preparing the mammary gland for full lactation. Therefore, the results suggest that ceRNAs work synergistically during different developmental stages to regulate specific functions associated with lactation control. This study suggests that ceRNAs (lncRNA-mRNA) may be involved in lactation process.
Collapse
Affiliation(s)
- Shuai Yu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Fangnong Lai
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Meiqiang Chu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yanan Hao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University, Qingdao, P. R. China
| | - Ming Cheng
- Qingdao Veterinary and Livestock Administration, Qingdao, P.R. China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
| |
Collapse
|
27
|
Li Z, Gao B, Hao S, Tian W, Chen Y, Wang L, Zhang X, Luo D. Knockdown of lncRNA-PANDAR suppresses the proliferation, cell cycle and promotes apoptosis in thyroid cancer cells. EXCLI JOURNAL 2017; 16:354-362. [PMID: 28507479 PMCID: PMC5427478 DOI: 10.17179/excli2017-113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/14/2017] [Indexed: 01/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been found to show important regulatory roles in various human cancers. Lnc-RNA PANDAR is a novel identified lncRNA that was previously reported to show abnormal expression pattern in various cancers. However, little is known of its expression and biological function in thyroid cancer. Here, we used the quantitative real-time PCR (qRT-PCR) to determine the expression of PANDAR in 64 thyroid cancer tissues. We found that expression of PANDAR was up-regulated in thyroid cancer tissues compared with adjacent non-tumor tissues. Functional assays in vitro demonstrated that knockdown of PANDAR could inhibit proliferation, cell cycle progression, induces the apoptosis, inhibit invasion of thyroid cancer cells. Thus, our study provides evidence that PANDAR may function as a potential target for treatment for patients with thyroid cancer.
Collapse
Affiliation(s)
- Zhirong Li
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Bo Gao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Shuai Hao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wuguo Tian
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yi Chen
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lingli Wang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaohua Zhang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Donglin Luo
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
28
|
Insights from Global Analyses of Long Noncoding RNAs in Breast Cancer. CURRENT PATHOBIOLOGY REPORTS 2017; 5:23-34. [PMID: 28616363 DOI: 10.1007/s40139-017-0122-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The goal of this review was to compare and contrast the results and implications from several recent transcriptomic studies that analyzed the expression of lncRNAs in breast cancer. How many lncRNAs are dysregulated in breast cancer? Do dysregulated lncRNAs contribute to breast cancer etiology? Are lncRNAs viable biomarkers in breast cancer? RECENT FINDINGS Transcriptomic profiling of breast cancer tissues, mostly from The Cancer Genome Atlas, identified thousands of long noncoding RNAs that are expressed and dysregulated in breast cancer. The expression of lncRNAs alone can divide patients into molecular subtypes. Subsequent functional studies demonstrated that several of these lncRNAs have important roles in breast cancer cell biology. SUMMARY Thousands of lncRNAs are dysregulated in breast cancer that can be developed as biomarkers for prognostic or therapeutic purposes. The reviewed reports provide a roadmap to guide functional studies to discover lncRNAs with critical biological functions relating to breast cancer development and progression.
Collapse
|
29
|
Yu Q, Zhou X, Xia Q, Shen J, Yan J, Zhu J, Li X, Shu M. Long non-coding RNA CCAT1 that can be activated by c-Myc promotes pancreatic cancer cell proliferation and migration. Am J Transl Res 2016; 8:5444-5454. [PMID: 28078015 PMCID: PMC5209495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to investigate the potential role of lncRNA CCAT1 in the progression of pancreatic cancer (PC) and to reveal its possible molecular mechanism. The expression of CCAT1 was analyzed in PC tissues and their adjacent normal tissues from patients diagnosed with PC and in two pancreas cancer cell lines, namely PANC-1 and Aspc-1 using real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. The effects of CCAT1 expression on cell proliferation, cell cycle, and migration were analyzed using MTT assay, flow cytometry, and transwell assay, respectively. The effects of c-Myc expression on the expression of CCAT1 and E-box were also analyzed using RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays, respectively. The results showed that CCAT1 was highly expressed in PC tissues compared to the adjacent tissues (P<0.01) and was also overexpressed in PANC-1 and Aspc-1 cells (P<0.05). The silencing of CCAT1 significantly inhibited cell proliferation and migration (P<0.05), arrested cell cycle at G0/G1 stage, and decreased cyclin D1 expression (P<0.05). An increased expression of c-Myc was observed in the PC tissues compared to the adjacent tissues. We found that suppression of c-Myc altered CCAT1 expression by targeting its promoter at E-box. This study demonstrated that c-Myc-activated CCAT1 may contribute to tumorigenesis and metastasis of PC, which may serve as a potential target for the therapy of PC.
Collapse
Affiliation(s)
- Qiuyun Yu
- Department of Hepatopancreatobiliary Surgery, Ningbo NO.2 Hospital Ningbo 315010, Zhejiang, China
| | - Xinfeng Zhou
- Department of Hepatopancreatobiliary Surgery, Ningbo NO.2 Hospital Ningbo 315010, Zhejiang, China
| | - Qing Xia
- Department of Hepatopancreatobiliary Surgery, Ningbo NO.2 Hospital Ningbo 315010, Zhejiang, China
| | - Jia Shen
- Department of Hepatopancreatobiliary Surgery, Ningbo NO.2 Hospital Ningbo 315010, Zhejiang, China
| | - Jia Yan
- Department of Hepatopancreatobiliary Surgery, Ningbo NO.2 Hospital Ningbo 315010, Zhejiang, China
| | - Jiuting Zhu
- Department of Hepatopancreatobiliary Surgery, Ningbo NO.2 Hospital Ningbo 315010, Zhejiang, China
| | - Xiang Li
- Department of Hepatopancreatobiliary Surgery, Ningbo NO.2 Hospital Ningbo 315010, Zhejiang, China
| | - Ming Shu
- Department of Hepatopancreatobiliary Surgery, Ningbo NO.2 Hospital Ningbo 315010, Zhejiang, China
| |
Collapse
|
30
|
Long-term exposure of MCF-7 breast cancer cells to ethanol stimulates oncogenic features. Int J Oncol 2016; 50:49-65. [PMID: 27959387 PMCID: PMC5182011 DOI: 10.3892/ijo.2016.3800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
Alcohol consumption is a risk factor for breast cancer. Little is known regarding the mechanism, although it is assumed that acetaldehyde or estrogen mediated pathways play a role. We previously showed that long-term exposure to 2.5 mM ethanol (blood alcohol ~0.012%) of MCF-12A, a human normal epithelial breast cell line, induced epithelial mesenchymal transition (EMT) and oncogenic transformation. In this study, we investigated in the human breast cancer cell line MCF-7, whether a similar exposure to ethanol at concentrations ranging up to peak blood levels in heavy drinkers would increase malignant progression. Short-term (1-week) incubation to ethanol at as low as 1-5 mM (corresponding to blood alcohol concentration of ~0.0048-0.024%) upregulated the stem cell related proteins Oct4 and Nanog, but they were reduced after exposure at 25 mM. Long-term (4-week) exposure to 25 mM ethanol upregulated the Oct4 and Nanog proteins, as well as the malignancy marker Ceacam6. DNA microarray analysis in cells exposed for 1 week showed upregulated expression of metallothionein genes, particularly MT1X. Long-term exposure upregulated expression of some malignancy related genes (STEAP4, SERPINA3, SAMD9, GDF15, KRT15, ITGB6, TP63, and PGR, as well as the CEACAM, interferon related, and HLA gene families). Some of these findings were validated by RT-PCR. A similar treatment also modulated numerous microRNAs (miRs) including one regulator of Oct4 as well as miRs involved in oncogenesis and/or malignancy, with only a few estrogen-induced miRs. Long-term 25 mM ethanol also induced a 5.6-fold upregulation of anchorage-independent growth, an indicator of malignant-like features. Exposure to acetaldehyde resulted in little or no effect comparable to that of ethanol. The previously shown alcohol induction of oncogenic transformation of normal breast cells is now complemented by the current results suggesting alcohol's potential involvement in malignant progression of breast cancer.
Collapse
|
31
|
Diermeier SD, Chang KC, Freier SM, Song J, El Demerdash O, Krasnitz A, Rigo F, Bennett CF, Spector DL. Mammary Tumor-Associated RNAs Impact Tumor Cell Proliferation, Invasion, and Migration. Cell Rep 2016; 17:261-274. [PMID: 27681436 PMCID: PMC5079290 DOI: 10.1016/j.celrep.2016.08.081] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) represent the largest and most diverse class of non-coding RNAs, comprising almost 16,000 currently annotated transcripts in human and 10,000 in mouse. Here, we investigated the role of lncRNAs in mammary tumors by performing RNA-seq on tumor sections and organoids derived from MMTV-PyMT and MMTV-Neu-NDL mice. We identified several hundred lncRNAs that were overexpressed compared to normal mammary epithelium. Among these potentially oncogenic lncRNAs we prioritized a subset as Mammary Tumor Associated RNAs (MaTARs) and determined their human counterparts, hMaTARs. To functionally validate the role of MaTARs, we performed antisense knockdown and observed reduced cell proliferation, invasion, and/or organoid branching in a cancer-specific context. Assessing the expression of hMaTARs in human breast tumors revealed that 19 hMaTARs are significantly upregulated and many of these correlate with breast cancer subtype and/or hormone receptor status, indicating potential clinical relevance.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Survival
- Female
- Humans
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Neoplasms, Animal/therapy
- Mice
- Mice, Transgenic
- Oligoribonucleotides, Antisense/genetics
- Oligoribonucleotides, Antisense/metabolism
- Oligoribonucleotides, Antisense/therapeutic use
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Transcriptome
Collapse
Affiliation(s)
| | - Kung-Chi Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Junyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Alexander Krasnitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
32
|
Sas-Chen A, Aure MR, Leibovich L, Carvalho S, Enuka Y, Körner C, Polycarpou-Schwarz M, Lavi S, Nevo N, Kuznetsov Y, Yuan J, Azuaje F, Ulitsky I, Diederichs S, Wiemann S, Yakhini Z, Kristensen VN, Børresen-Dale AL, Yarden Y. LIMT is a novel metastasis inhibiting lncRNA suppressed by EGF and downregulated in aggressive breast cancer. EMBO Mol Med 2016; 8:1052-64. [PMID: 27485121 PMCID: PMC5009810 DOI: 10.15252/emmm.201606198] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as regulators of gene expression in pathogenesis, including cancer. Recently, lncRNAs have been implicated in progression of specific subtypes of breast cancer. One aggressive, basal‐like subtype associates with increased EGFR signaling, while another, the HER2‐enriched subtype, engages a kin of EGFR. Based on the premise that EGFR‐regulated lncRNAs might control the aggressiveness of basal‐like tumors, we identified multiple EGFR‐inducible lncRNAs in basal‐like normal cells and overlaid them with the transcriptomes of over 3,000 breast cancer patients. This led to the identification of 11 prognostic lncRNAs. Functional analyses of this group uncovered LINC01089 (here renamed LncRNA Inhibiting Metastasis; LIMT), a highly conserved lncRNA, which is depleted in basal‐like and in HER2‐positive tumors, and the low expression of which predicts poor patient prognosis. Interestingly, EGF rapidly downregulates LIMT expression by enhancing histone deacetylation at the respective promoter. We also find that LIMT inhibits extracellular matrix invasion of mammary cells in vitro and tumor metastasis in vivo. In conclusion, lncRNAs dynamically regulated by growth factors might act as novel drivers of cancer progression and serve as prognostic biomarkers.
Collapse
Affiliation(s)
- Aldema Sas-Chen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam R Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Limor Leibovich
- Department of Computer Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | - Silvia Carvalho
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Maria Polycarpou-Schwarz
- Division of RNA Biology & Cancer (B150), German Cancer Research Center (DKFZ), Heidelberg, Germany Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sara Lavi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Nevo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Justin Yuan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Francisco Azuaje
- Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | | | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sven Diederichs
- Division of RNA Biology & Cancer (B150), German Cancer Research Center (DKFZ), Heidelberg, Germany Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany German Cancer Consortium (DKTK), Freiburg, Germany Division of Cancer Research, Department of Thoracic Surgery, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany‡
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Zohar Yakhini
- Department of Computer Sciences, Technion-Israel Institute of Technology, Haifa, Israel Agilent Laboratories, Petach-Tikva, Israel
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
33
|
Gelfand R, Vernet D, Bruhn K, Vadgama J, Gonzalez-Cadavid NF. Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features. Int J Oncol 2016; 48:2399-414. [PMID: 27035792 PMCID: PMC4864041 DOI: 10.3892/ijo.2016.3461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022] Open
Abstract
Alcoholism is associated with breast cancer incidence and progression, and moderate chronic consumption of ethanol is a risk factor. The mechanisms involved in alcohol's oncogenic effects are unknown, but it has been speculated that they may be mediated by acetaldehyde. We used the immortalized normal human epithelial breast cell line MCF-12A to determine whether short- or long-term exposure to ethanol or to acetaldehyde, using in vivo compatible ethanol concentrations, induces their oncogenic transformation and/or the acquisition of epithelial mesenchymal transition (EMT). Cultures of MCF-12A cells were incubated with 25 mM ethanol or 2.5 mM acetaldehyde for 1 week, or with lower concentrations (1.0–2.5 mM for ethanol, 1.0 mM for acetaldehyde) for 4 weeks. In the 4-week incubation, cells were also tested for anchorage-independence, including isolation of soft agar selected cells (SASC) from the 2.5 mM ethanol incubations. Cells were analyzed by immunocytofluorescence, flow cytometry, western blotting, DNA microarrays, RT/PCR, and assays for miRs. We found that short-term exposure to ethanol, but not, in general, to acetaldehyde, was associated with transcriptional upregulation of the metallothionein family genes, alcohol metabolism genes, and genes suggesting the initiation of EMT, but without related phenotypic changes. Long-term exposure to the lower concentrations of ethanol or acetaldehyde induced frank EMT changes in the monolayer cultures and in SASC as demonstrated by changes in cellular phenotype, mRNA expression, and microRNA expression. This suggests that low concentrations of ethanol, with little or no mediation by acetaldehyde, induce EMT and some traits of oncogenic transformation such as anchorage-independence in normal breast epithelial cells.
Collapse
Affiliation(s)
- Robert Gelfand
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | - Dolores Vernet
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | - Kevin Bruhn
- Department of Surgery, Los Angeles Biomedical Research Institute (LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jaydutt Vadgama
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | | |
Collapse
|
34
|
Wang C, Li G, Wu Y, Xi J, Kang J. LincRNA1230 inhibits the differentiation of mouse ES cells towards neural progenitors. SCIENCE CHINA-LIFE SCIENCES 2016; 59:443-54. [PMID: 26920680 DOI: 10.1007/s11427-016-5008-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/13/2015] [Indexed: 01/07/2023]
Abstract
In vitro, mouse embryonic stem (ES) cells can differentiate into many somatic cell types, including neurons and glial cells. When cultured in serum-free medium, ES cells convert spontaneously and efficiently to a neural fate. Previous studies have shown that the neural conversion of mouse ES cells includes both the participation of neural-specific transcription factors and the regulation of epigenetic modifications. However, the intracellular mechanism underlying this intrinsic transition still remains to be further elucidated. Herein, we describe a long intergenic non-coding RNA, LincRNA1230, which participates in the regulation of the neural lineage specification of mouse ES cells. The ectopic forced expression of LincRNA1230 dramatically inhibited mouse ES cells from adopting a neural cell fate, while LincRNA1230 knockdown promoted the conversion of mouse ES cells towards neural progenitors. Mechanistic studies have shown that LincRNA1230 inhibits the activation of early neural genes, such as Pax6 and Sox1, through the modulation of bivalent modifications (tri-methylation of histone3 lysine4 and histone3 lysine27) at the promoters of these genes. The interaction of LincRNA1230 with Wdr5 blocked the localization of Wdr5 at the promoters of early neural genes, thereby inhibiting the enrichment of H3K4me3 modifications at these loci. Collectively, these findings revealed a crucial role for LincRNA1230 in the regulation of the neural differentiation of mouse ES cells.
Collapse
Affiliation(s)
- Chenxin Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
35
|
Sandhu GK, Milevskiy MJG, Wilson W, Shewan AM, Brown MA. Non-coding RNAs in Mammary Gland Development and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:121-153. [PMID: 26659490 DOI: 10.1007/978-94-017-7417-8_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that function to regulate the expression of numerous genes and associated biochemical pathways and cellular functions. NcRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs). They participate in the regulation of all developmental processes and are frequently aberrantly expressed or functionally defective in disease. This Chapter will focus on the role of ncRNAs, in particular miRNAs and lncRNAs, in mammary gland development and disease.
Collapse
Affiliation(s)
- Gurveen K Sandhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Michael J G Milevskiy
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Wesley Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
36
|
Lo PK, Wolfson B, Zhou X, Duru N, Gernapudi R, Zhou Q. Noncoding RNAs in breast cancer. Brief Funct Genomics 2015; 15:200-21. [PMID: 26685283 DOI: 10.1093/bfgp/elv055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian transcriptome has recently been revealed to encompass a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. MicroRNAs (miRNAs), the best studied of the short noncoding RNAs (sncRNAs), have been extensively characterized with regard to their biogenesis, function and importance in tumorigenesis. Another class of sncRNAs called piwi-interacting RNAs (piRNAs) has also gained attention recently in cancer research owing to their critical role in stem cell regulation. Long noncoding RNAs (lncRNAs) of >200 nucleotides in length have recently emerged as key regulators of developmental processes, including mammary gland development. lncRNA dysregulation has also been implicated in the development of various cancers, including breast cancer. In this review, we describe and discuss the roles of sncRNAs (including miRNAs and piRNAs) and lncRNAs in the initiation and progression of breast tumorigenesis, with a focus on outlining the molecular mechanisms of oncogenic and tumor-suppressor ncRNAs. Moreover, the current and potential future applications of ncRNAs to clinical breast cancer research are also discussed, with an emphasis on ncRNA-based diagnosis, prognosis and future therapeutics.
Collapse
|
37
|
Zhou Q, Chen J, Feng J, Wang J. Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid-stimulating hormone receptor (TSHR). Tumour Biol 2015; 37:3105-13. [PMID: 26427660 DOI: 10.1007/s13277-015-4149-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/23/2015] [Indexed: 01/13/2023] Open
Abstract
The purposes of this study were to investigate the potential roles of long noncoding RNA (lncRNA) PVT1 in thyroid cancer cell proliferation and to explore their possible mechanisms. A total of 84 patients who were diagnosed as having thyroid cancer (papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), and anaplastic thyroid carcinoma (ATC)) in Renji Hospital were enrolled in this study. Expressions of lncRNA PVT1 in thyroid cancer tissues and cell lines (IHH-4, FTC-133, and 8505C) were analyzed using RT-polymerase chain reaction (PCR) and western blotting analysis. The effects of lncRNA PVT1 expression on thyroid cancer cell proliferation and cell cycle were analyzed using flow cytometry. Furthermore, the effects of lncRNA expression on thyroid-stimulating hormone receptor (TSHR) expression and polycomb enhancer of zeste homolog 2 (EZH2) were also analyzed using RNA immunoprecipitation (RIP) assay and chromatin immunoprecipitation (ChIP) assay, respectively. Compared to the controls, lncRNA PVT1 was significantly up-regulated in thyroid tissues, as well as in three kinds of tumor cell lines (P < 0.05). Silenced PVT1 significantly inhibited thyroid cell line IHH-4, FTC-133, and 8505C cell proliferation and arrested cell cycle at G0/G1 stage and significantly decreased cyclin D1 and TSHR expressions (P < 0.05). Moreover, lncRNA PVT1 could be enriched by EZH2, and silencing PVT1 resulted in the decreased recruitment of EZH2. This study suggested that lncRNA PVT1 may contribute to tumorigenesis of thyroid cancer through recruiting EZH2 and regulating TSHR expression.
Collapse
Affiliation(s)
- Qinyi Zhou
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, #145 Shandong Road, Huangpu District, Shanghai, 200001, China
| | - Jun Chen
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, #145 Shandong Road, Huangpu District, Shanghai, 200001, China
| | - Jialin Feng
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, #145 Shandong Road, Huangpu District, Shanghai, 200001, China
| | - Jiadong Wang
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, #145 Shandong Road, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
38
|
Shi Y, Li J, Liu Y, Ding J, Fan Y, Tian Y, Wang L, Lian Y, Wang K, Shu Y. The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression. Mol Cancer 2015; 14:51. [PMID: 25742952 PMCID: PMC4350857 DOI: 10.1186/s12943-015-0318-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/09/2015] [Indexed: 12/15/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged recently as a new class of genes that regulate cellular processes, such as cell growth and apoptosis. The SPRY4 intronic transcript 1 (SPRY4-IT1) is a 708-bp lncRNA on chromosome 5 with a potential functional role in tumorigenesis. The clinical significance of SPRY4-IT1 and the effect of SPRY4-IT1 on cancer progression are unclear. Methods Quantitative reverse transcriptase PCR (qRT-PCR) was performed to investigate the expression of SPRY4-IT1 in 48 breast cancer tissues and four breast cancer cell lines. Gain and loss of function approaches were used to investigate the biological role of SPRY4-IT1 in vitro. Microarray bioinformatics analysis was performed to identify the putative targets of SPRY4-IT1, which were further verified by rescue experiments, and by western blotting and qRT-PCR. Results SPRY4-IT1 expression was significantly upregulated in 48 breast cancer tumor tissues comparedwith normal tissues. Additionally, increased SPRY4-IT1 expression was found to be associated with a larger tumor size and an advanced pathological stage in breast cancer patients. The knockdown of SPRY4-IT1 significantly suppressed proliferation and caused apoptosis of breast cancer cells in vitro. Furthermore, we discovered that ZNF703 was a target of SPRY4-IT1 and was downregulated by SPRY4-IT1 knockdown. Moreover, we provide the first demonstration that ZNF703 plays an oncogenic role in ER (−) breast carcinoma cells. Conclusions SPRY4-IT1 is a novel prognostic biomarker and a potential therapeutic candidate for breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0318-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongguo Shi
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China. .,Taixing People's Hospital, Taixing, Jiangsu, PR China.
| | - Juan Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Yangchen Liu
- Taixing People's Hospital, Taixing, Jiangsu, PR China.
| | - Jie Ding
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Yingrui Fan
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Yun Tian
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Li Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Yifan Lian
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Keming Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
39
|
Tao H, Yang JJ, Shi KH. Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis. Expert Opin Ther Targets 2015; 19:707-16. [PMID: 25652534 DOI: 10.1517/14728222.2014.1001740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cardiac fibroblast activation is a pivotal cellular event in cardiac fibrosis. Numerous studies have indicated that epigenetic modifications control cardiac fibroblast activation. Greater knowledge of the role of epigenetic modifications could improve understanding of the cardiac fibrosis pathogenesis. AREAS COVERED The aim of this review is to describe the present knowledge about the important role of non-coding RNA (ncRNA) transcripts in epigenetic gene regulation in cardiac fibrosis and looks ahead on new perspectives of epigenetic modification research. Furthermore, we will discuss examples of ncRNAs that interact with histone modification or DNA methylation to regulate gene expression. EXPERT OPINION MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) modulate several important aspects of function. Recently, some studies continue to find novel pathways, including the important role of ncRNA transcripts in epigenetic gene regulation. Targeting the miRNAs and lncRNAs can be a promising direction in cardiac fibrosis treatment. We discuss new perspectives of ncRNAs that interact with histone modification or DNA methylation to regulate gene expression, others that are targets of these epigenetic mechanisms. The emerging recognition of the diverse functions of ncRNAs in regulating gene expression by epigenetic mechanisms suggests that they may represent new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hui Tao
- The Second Hospital of Anhui Medical University, Department of Cardiothoracic Surgery , Fu Rong Road, Hefei 230601, Anhui Province , China +86 551 63869531 ; +86 551 63869531 ;
| | | | | |
Collapse
|
40
|
Xu N, Wang F, Lv M, Cheng L. Microarray expression profile analysis of long non-coding RNAs in human breast cancer: a study of Chinese women. Biomed Pharmacother 2014; 69:221-7. [PMID: 25661361 DOI: 10.1016/j.biopha.2014.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/01/2014] [Indexed: 02/09/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the second leading cause of cancer death among women. Long non-coding RNAs (lncRNAs) are key regulators of gene expression. Numerous lncRNAs have performed critical roles in cancer biology including breast cancer (BC). The expression levels of certain lncRNAs are associated with tumor development, recurrence, metastasis, and prognosis. However, the potential roles that lncRNAs regulate breast cancer tumorigenesis and tumor progression are still poorly understood. To investigate the potential roles of lncRNAs in the breast cancer, we constructed BC related lncRNA libraries by using microarray. Microarray expression profiling suggests 790 up-regulated and 637 down-regulated (log fold-change>2.3) lncRNAs were differently expressed between BC tissues and its paired adjacent tissues. Furthermore, we found differently expressed lncRNAs associated with immune regulation. RP4-583P15.10, an up-regulated lncRNA, was found to be located downstream of the natural antisense of the ZBTB46 gene, which may regulated breast cancer through influence immune system. In conclusion, our results for the first time indicate that distinct lncRNAs expression profiles of BC, which related to the immune network, may provide information for further research on immune regulation during the BC process.
Collapse
Affiliation(s)
- Nan Xu
- First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengliang Wang
- Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Mingming Lv
- Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lu Cheng
- Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| |
Collapse
|
41
|
Long non-coding RNAs differentially expressed between normal versus primary breast tumor tissues disclose converse changes to breast cancer-related protein-coding genes. PLoS One 2014; 9:e106076. [PMID: 25264628 PMCID: PMC4180073 DOI: 10.1371/journal.pone.0106076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 07/29/2014] [Indexed: 12/04/2022] Open
Abstract
Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes.
Collapse
|
42
|
Lund SH, Gudbjartsson DF, Rafnar T, Sigurdsson A, Gudjonsson SA, Gudmundsson J, Stefansson K, Stefansson G. A method for detecting long non-coding RNAs with tiled RNA expression microarrays. PLoS One 2014; 9:e99899. [PMID: 24937006 PMCID: PMC4061049 DOI: 10.1371/journal.pone.0099899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/20/2014] [Indexed: 01/08/2023] Open
Abstract
Long non-coding ribonucleic acids (lncRNAs) have been proposed as biomarkers in prostate cancer. This paper proposes a selection method which uses data from tiled microarrays to identify relatively long regions of moderate expression independent of the microarray platform and probe design. The method is used to search for candidate long non-coding ribonucleic acids (lncRNAs) at locus 8q24 and is run on three independent experiments which all use samples from prostate cancer patients. The robustness of the method is tested by utilizing repeated copies of tiled probes. The method shows high consistency between experiments that used the same samples, but different probe layout. There also is statistically significant consistency when comparing experiments with different samples. The method selected the long non-coding ribonucleic acid PCNCR1 in all three experiments.
Collapse
Affiliation(s)
- Sigrun Helga Lund
- Faculty of Physical Sciences, University of Iceland, Reykjavik, Iceland
- * E-mail:
| | | | | | | | | | | | | | - Gunnar Stefansson
- Faculty of Physical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
43
|
Pickard MR, Williams GT. Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy. Breast Cancer Res Treat 2014; 145:359-70. [PMID: 24789445 DOI: 10.1007/s10549-014-2974-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/17/2014] [Indexed: 12/21/2022]
Abstract
The putative tumour suppressor and apoptosis-promoting gene, growth arrest-specific 5 (GAS5), encodes long ncRNA (lncRNA) and snoRNAs. Its expression is down-regulated in breast cancer, which adversely impacts patient prognosis. In this preclinical study, the consequences of decreased GAS5 expression for breast cancer cell survival following treatment with chemotherapeutic agents are addressed. In addition, functional responses of triple-negative breast cancer cells to GAS5 lncRNA are examined, and mTOR inhibition as a strategy to enhance cellular GAS5 levels is investigated. Breast cancer cell lines were transfected with either siRNA to GAS5 or with a plasmid encoding GAS5 lncRNA and the effects on breast cancer cell survival were determined. Cellular responses to mTOR inhibitors were evaluated by assaying culture growth and GAS5 transcript levels. GAS5 silencing attenuated cell responses to apoptotic stimuli, including classical chemotherapeutic agents; the extent of cell death was directly proportional to cellular GAS5 levels. Imatinib action in contrast, was independent of GAS5. GAS5 lncRNA promoted the apoptosis of triple-negative and oestrogen receptor-positive cells but only dual PI3K/mTOR inhibition was able to enhance GAS5 levels in all cell types. Reduced GAS5 expression attenuates apoptosis induction by classical chemotherapeutic agents in breast cancer cells, providing an explanation for the relationship between GAS5 expression and breast cancer patient prognosis. Clinically, this relationship may be circumvented by the use of GAS5-independent drugs such as imatinib, or by restoration of GAS5 expression. The latter may be achieved by the use of a dual PI3K/mTOR inhibitor, to improve apoptotic responses to conventional chemotherapies.
Collapse
Affiliation(s)
- Mark R Pickard
- Apoptosis Research Group, Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, Huxley Building, Keele, ST5 5BG, UK,
| | | |
Collapse
|
44
|
Hah N, Kraus WL. Hormone-regulated transcriptomes: lessons learned from estrogen signaling pathways in breast cancer cells. Mol Cell Endocrinol 2014; 382:652-664. [PMID: 23810978 PMCID: PMC3844033 DOI: 10.1016/j.mce.2013.06.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022]
Abstract
Recent rapid advances in next generation sequencing technologies have expanded our understanding of steroid hormone signaling to a genome-wide level. In this review, we discuss the use of a novel genomic approach, global nuclear run-on coupled with massively parallel sequencing (GRO-seq), to explore new facets of the steroid hormone-regulated transcriptome, especially estrogen responses in breast cancer cells. GRO-seq is a high throughput sequencing method adapted from conventional nuclear run-on methodologies, which is used to obtain a map of the position and orientation of all transcriptionally engaged RNA polymerases across the genome with extremely high spatial resolution. GRO-seq, which is an excellent tool for examining transcriptional responses to extracellular stimuli, has been used to comprehensively assay the effects of estrogen signaling on the transcriptome of ERα-positive MCF-7 human breast cancer cells. These studies have revealed new details about estrogen-dependent transcriptional regulation, including effects on transcription by all three RNA polymerases, complex transcriptional dynamics in response to estrogen signaling, and identification novel, unannotated non-coding RNAs. Collectively, these studies have been useful in discerning the molecular logic of the estrogen-regulated mitogenic response.
Collapse
Affiliation(s)
- Nasun Hah
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States.
| | - W Lee Kraus
- The Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
45
|
Wagner S, Willenbrock S, Nolte I, Murua Escobar H. Comparison of non-coding RNAs in human and canine cancer. Front Genet 2013; 4:46. [PMID: 23579348 PMCID: PMC3619122 DOI: 10.3389/fgene.2013.00046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/13/2013] [Indexed: 12/21/2022] Open
Abstract
The discovery of the post-transcriptional gene silencing (PTGS) by small non-protein-coding RNAs is considered as a major breakthrough in biology. In the last decade we just started to realize the biologic function and complexity of gene regulation by small non-coding RNAs. PTGS is a conserved phenomenon which was observed in various species such as fungi, worms, plants, and mammals. Micro RNAs (miRNA) and small interfering RNAs (siRNAs) are two gene silencing mediators constituting an evolutionary conserved class of non-coding RNAs regulating many biological processes in eukaryotes. As this small RNAs appear to regulate gene expression at translational and transcriptional level it is not surprising that during the last decade many human diseases among them Alzheimer's disease, cardiovascular diseases, and various cancer types were associated with deregulated miRNA expression. Consequently small RNAs are considered to hold big promises as therapeutic agents. However, despite of the enormous therapeutic potential many questions remain unanswered. A major critical point, when evaluating novel therapeutic approaches, is the transfer of in vitro settings to an in vivo model. Classical animal models rely on the laboratory kept animals under artificial conditions and often missing an intact immune system. Model organisms with spontaneously occurring tumors as e.g., dogs provide the possibility to evaluate therapeutic agents under the surveillance of an in intact immune system and thereby providing an authentic tumor reacting scenario. Considering the genomic similarity between canines and humans and the advantages of the dog as cancer model system for human neoplasias the analyses of the complex role of small RNAs in canine tumor development could be of major value for both species. Herein we discuss comparatively the role of miRNAs in human and canine cancer development and highlight the potential and advantages of the model organism dog for tumor research.
Collapse
Affiliation(s)
- Siegfried Wagner
- Small Animal Clinic, University of Veterinary Medicine Hannover Hannover, Germany
| | | | | | | |
Collapse
|
46
|
Vennin C, Dahmani F, Spruyt N, Adriaenssens E. Role of long non-coding RNA in cells: Example of the <i>H</i>19/<i>IGF</i>2 locus. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.45a004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|