1
|
Heijmans N, Wiese KE, Jonkers J, van Amerongen R. Transcriptomic Analysis of Pubertal and Adult Virgin Mouse Mammary Epithelial and Stromal Cell Populations. J Mammary Gland Biol Neoplasia 2024; 29:13. [PMID: 38916673 PMCID: PMC11199289 DOI: 10.1007/s10911-024-09565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
Conflicting data exist as to how mammary epithelial cell proliferation changes during the reproductive cycle. To study the effect of endogenous hormone fluctuations on gene expression in the mouse mammary gland, we performed bulk RNAseq analyses of epithelial and stromal cell populations that were isolated either during puberty or at different stages of the adult virgin estrous cycle. Our data confirm prior findings that proliferative changes do not occur in every mouse in every cycle. We also show that during the estrous cycle the main gene expression changes occur in adipocytes and fibroblasts. Finally, we present a comprehensive overview of the Wnt gene expression landscape in different mammary gland cell types in pubertal and adult mice. This work contributes to understanding the effects of physiological hormone fluctuations and locally produced signaling molecules on gene expression changes in the mammary gland during the reproductive cycle and should be a useful resource for future studies investigating gene expression patterns in different cell types across different developmental timepoints.
Collapse
Affiliation(s)
- Nika Heijmans
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Katrin E Wiese
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Raths F, Karimzadeh M, Ing N, Martinez A, Yang Y, Qu Y, Lee TY, Mulligan B, Devkota S, Tilley WT, Hickey TE, Wang B, Giuliano AE, Bose S, Goodarzi H, Ray EC, Cui X, Knott SR. The molecular consequences of androgen activity in the human breast. CELL GENOMICS 2023; 3:100272. [PMID: 36950379 PMCID: PMC10025454 DOI: 10.1016/j.xgen.2023.100272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
Estrogen and progesterone have been extensively studied in the mammary gland, but the molecular effects of androgen remain largely unexplored. Transgender men are recorded as female at birth but identify as male and may undergo gender-affirming androgen therapy to align their physical characteristics and gender identity. Here we perform single-cell-resolution transcriptome, chromatin, and spatial profiling of breast tissues from transgender men following androgen therapy. We find canonical androgen receptor gene targets are upregulated in cells expressing the androgen receptor and that paracrine signaling likely drives sex-relevant androgenic effects in other cell types. We also observe involution of the epithelium and a spatial reconfiguration of immune, fibroblast, and vascular cells, and identify a gene regulatory network associated with androgen-induced fat loss. This work elucidates the molecular consequences of androgen activity in the human breast at single-cell resolution.
Collapse
Affiliation(s)
- Florian Raths
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mehran Karimzadeh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan Ing
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Martinez
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yoona Yang
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tian-Yu Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brianna Mulligan
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suzanne Devkota
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wayne T. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Bo Wang
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | - Shikha Bose
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Edward C. Ray
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Transgender Surgery and Health Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon R.V. Knott
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
3
|
Saeki K, Chang G, Kanaya N, Wu X, Wang J, Bernal L, Ha D, Neuhausen SL, Chen S. Mammary cell gene expression atlas links epithelial cell remodeling events to breast carcinogenesis. Commun Biol 2021; 4:660. [PMID: 34079055 PMCID: PMC8172904 DOI: 10.1038/s42003-021-02201-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
The female mammary epithelium undergoes reorganization during development, pregnancy, and menopause, linking higher risk with breast cancer development. To characterize these periods of complex remodeling, here we report integrated 50 K mouse and 24 K human mammary epithelial cell atlases obtained by single-cell RNA sequencing, which covers most lifetime stages. Our results indicate a putative trajectory that originates from embryonic mammary stem cells which differentiates into three epithelial lineages (basal, luminal hormone-sensing, and luminal alveolar), presumably arising from unipotent progenitors in postnatal glands. The lineage-specific genes infer cells of origin of breast cancer using The Cancer Genome Atlas data and single-cell RNA sequencing of human breast cancer, as well as the association of gland reorganization to different breast cancer subtypes. This comprehensive mammary cell gene expression atlas ( https://mouse-mammary-epithelium-integrated.cells.ucsc.edu ) presents insights into the impact of the internal and external stimuli on the mammary epithelium at an advanced resolution.
Collapse
Affiliation(s)
- Kohei Saeki
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Desiree Ha
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
4
|
Tovar EA, Sheridan R, Essenburg CJ, Dischinger PS, Arumugam M, Callaghan ME, Graveel CR, Steensma MR. Dissecting the Rat Mammary Gland: Isolation, Characterization, and Culture of Purified Mammary Epithelial Cells and Fibroblasts. Bio Protoc 2020; 10:e3818. [PMID: 33659470 DOI: 10.21769/bioprotoc.3818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 11/02/2022] Open
Abstract
With the advent of CRISPR-Cas and the ability to easily modify the genome of diverse organisms, rat models are being increasingly developed to interrogate the genetic events underlying mammary development and tumorigenesis. Protocols for the isolation and characterization of mammary epithelial cell subpopulations have been thoroughly developed for mouse and human tissues, yet there is an increasing need for rat-specific protocols. To date, there are no standard protocols for isolating rat mammary epithelial subpopulations. Analyzing changes in the rat mammary hierarchy will help us elucidate the molecular events in breast cancer, the cells of origin for breast cancer subtypes, and the impact of the tumor microenvironment. Here we describe several methods developed for 1) rat mammary epithelial cell isolation; 2) rat mammary fibroblast isolation; 3) culturing rat mammary epithelial cells; and characterization of rat mammary cells by 4) flow cytometric analysis; and 5) immunofluorescence. Cells derived from this protocol can be used for many purposes, including RNAseq, drug studies, functional assays, gene/protein expression analyses, and image analysis.
Collapse
Affiliation(s)
- Elizabeth A Tovar
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Curt J Essenburg
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Patrick S Dischinger
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Menusha Arumugam
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Megan E Callaghan
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Carrie R Graveel
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Matthew R Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA.,Helen Devos Children's Hospital, Spectrum Health System, Grand Rapids, Michigan, USA.,Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| |
Collapse
|
5
|
Granit RZ, Masury H, Condiotti R, Fixler Y, Gabai Y, Glikman T, Dalin S, Winter E, Nevo Y, Carmon E, Sella T, Sonnenblick A, Peretz T, Lehmann U, Paz K, Piccioni F, Regev A, Root DE, Ben-Porath I. Regulation of Cellular Heterogeneity and Rates of Symmetric and Asymmetric Divisions in Triple-Negative Breast Cancer. Cell Rep 2019; 24:3237-3250. [PMID: 30232005 DOI: 10.1016/j.celrep.2018.08.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 01/06/2023] Open
Abstract
Differentiation events contribute to phenotypic cellular heterogeneity within tumors and influence disease progression and response to therapy. Here, we dissect mechanisms controlling intratumoral heterogeneity within triple-negative basal-like breast cancers. Tumor cells expressing the cytokeratin K14 possess a differentiation state that is associated with that of normal luminal progenitors, and K14-negative cells are in a state closer to that of mature luminal cells. We show that cells can transition between these states through asymmetric divisions, which produce one K14+ and one K14- daughter cell, and that these asymmetric divisions contribute to the generation of cellular heterogeneity. We identified several regulators that control the proportion of K14+ cells in the population. EZH2 and Notch increase the numbers of K14+ cells and their rates of symmetric divisions, and FOXA1 has an opposing effect. Our findings demonstrate that asymmetric divisions generate differentiation transitions and heterogeneity, and identify pathways that control breast cancer cellular composition.
Collapse
Affiliation(s)
- Roy Z Granit
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hadas Masury
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Reba Condiotti
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yaakov Fixler
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yael Gabai
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Tzofia Glikman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Simona Dalin
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eitan Winter
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center at The Hebrew University and Hadassah, Jerusalem 91120, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center at The Hebrew University and Hadassah, Jerusalem 91120, Israel
| | - Einat Carmon
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Tamar Sella
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Amir Sonnenblick
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Keren Paz
- Champions Oncology, Inc., Baltimore, MD 21205, USA
| | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and David H. Koch Institute of Integrative Cancer Biology, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
6
|
Basree MM, Shinde N, Koivisto C, Cuitino M, Kladney R, Zhang J, Stephens J, Palettas M, Zhang A, Kim HK, Acero-Bedoya S, Trimboli A, Stover DG, Ludwig T, Ganju R, Weng D, Shields P, Freudenheim J, Leone GW, Sizemore GM, Majumder S, Ramaswamy B. Abrupt involution induces inflammation, estrogenic signaling, and hyperplasia linking lack of breastfeeding with increased risk of breast cancer. Breast Cancer Res 2019; 21:80. [PMID: 31315645 PMCID: PMC6637535 DOI: 10.1186/s13058-019-1163-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background A large collaborative analysis of data from 47 epidemiological studies concluded that longer duration of breastfeeding reduces the risk of developing breast cancer. Despite the strong epidemiological evidence, the molecular mechanisms linking prolonged breastfeeding to decreased risk of breast cancer remain poorly understood. Methods We modeled two types of breastfeeding behaviors in wild type FVB/N mice: (1) normal or gradual involution of breast tissue following prolonged breastfeeding and (2) forced or abrupt involution following short-term breastfeeding. To accomplish this, pups were gradually weaned between 28 and 31 days (gradual involution) or abruptly at 7 days postpartum (abrupt involution). Mammary glands were examined for histological changes, proliferation, and inflammatory markers by immunohistochemistry. Fluorescence-activated cell sorting was used to quantify mammary epithelial subpopulations. Gene set enrichment analysis was used to analyze gene expression data from mouse mammary luminal progenitor cells. Similar analysis was done using gene expression data generated from human breast samples obtained from parous women enrolled on a tissue collection study, OSU-2011C0094, and were undergoing reduction mammoplasty without history of breast cancer. Results Mammary glands from mice that underwent abrupt involution exhibited denser stroma, altered collagen composition, higher inflammation and proliferation, increased estrogen receptor α and progesterone receptor expression compared to those that underwent gradual involution. Importantly, when aged to 4 months postpartum, mice that were in the abrupt involution cohort developed ductal hyperplasia and squamous metaplasia. Abrupt involution also resulted in a significant expansion of the luminal progenitor cell compartment associated with enrichment of Notch and estrogen signaling pathway genes. Breast tissues obtained from healthy women who breastfed for < 6 months vs ≥ 6 months showed significant enrichment of Notch signaling pathway genes, along with a trend for enrichment for luminal progenitor gene signature similar to what is observed in BRCA1 mutation carriers and basal-like breast tumors. Conclusions We report here for the first time that forced or abrupt involution of the mammary glands following pregnancy and lack of breastfeeding results in expansion of luminal progenitor cells, higher inflammation, proliferation, and ductal hyperplasia, a known risk factor for developing breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-019-1163-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mustafa M Basree
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Neelam Shinde
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Christopher Koivisto
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Cuitino
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Raleigh Kladney
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jianying Zhang
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Julie Stephens
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Marilly Palettas
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Allen Zhang
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Hee Kyung Kim
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Santiago Acero-Bedoya
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Anthony Trimboli
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel G Stover
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.,Department of Internal Medicine, College of Medicine, The Ohio State University, 320 West 10th Avenue, Columbus, OH, 43210, USA
| | - Thomas Ludwig
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ramesh Ganju
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.,Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Daniel Weng
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.,Department of Internal Medicine, College of Medicine, The Ohio State University, 320 West 10th Avenue, Columbus, OH, 43210, USA
| | - Peter Shields
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.,Department of Internal Medicine, College of Medicine, The Ohio State University, 320 West 10th Avenue, Columbus, OH, 43210, USA
| | - Jo Freudenheim
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, USA
| | - Gustavo W Leone
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gina M Sizemore
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Sarmila Majumder
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA.
| | - Bhuvaneswari Ramaswamy
- The Comprehensive Cancer Center, College of Medicine, The Ohio State University, 460 West 12th Avenue, Columbus, OH, 43210, USA. .,Department of Internal Medicine, College of Medicine, The Ohio State University, 320 West 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
French R, Tornillo G. Heterogeneity of Mammary Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:119-140. [PMID: 31487022 DOI: 10.1007/978-3-030-24108-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult female mammals are endowed with the unique ability to produce milk for nourishing their newborn offspring. Milk is secreted on demand by the mammary gland, an organ which develops during puberty, further matures during pregnancy and lactation, but reverts to a resting state after weaning. The glandular tissue (re)generated through this series of structural and functional changes is finely sourced by resident stem cells under the control of systemic hormones and local stimuli.Over the past decades a plethora of studies have been carried out in order to identify and characterize mammary stem cells, primarily in mice and humans. Intriguingly, it is now emerging that multiple mammary stem cell pools (co)exist and are characterized by distinctive molecular markers and context-dependent functions.This chapter reviews the heterogeneity of the mammary stem cell compartment with emphasis on the key properties and molecular regulators of distinct stem cell populations in both the mouse and human glands.
Collapse
Affiliation(s)
- Rhiannon French
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
ElShamy WM. The protective effect of longer duration of breastfeeding against pregnancy-associated triple negative breast cancer. Oncotarget 2018; 7:53941-53950. [PMID: 27248476 PMCID: PMC5288234 DOI: 10.18632/oncotarget.9690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022] Open
Abstract
Parity associated breast cancer (PABC) often diagnosed within the 2-5 years after a full term pregnancy. PABC is usually present with more advanced, poorly differentiated, high-grade cancers that show shorter time to progression and often of the triple negative breast cancer (TNBC) subtype. Data from around the world show that pregnancy-associated TNBC is independently associated with poor survival, underscoring the impact of the pregnant breast microenvironment on the biology and consequently the prognosis of these tumors. Although it is not yet clear, a link between pregnancy-associated TNBCs and lack or shorter duration of breastfeeding (not pregnancy per se) has been proposed. Here, we present epidemiological and experimental evidence for the protective effect of longer duration of lactation against pregnancy-associated TNBCs, and propose a putative molecular mechanism for this protective effect and its effect in eliminating any potential TNBC precursors from the breast by the end of the natural breast involution.
Collapse
Affiliation(s)
- Wael M ElShamy
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
9
|
Wang C, Christin JR, Oktay MH, Guo W. Lineage-Biased Stem Cells Maintain Estrogen-Receptor-Positive and -Negative Mouse Mammary Luminal Lineages. Cell Rep 2017; 18:2825-2835. [PMID: 28329676 DOI: 10.1016/j.celrep.2017.02.071] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/08/2017] [Accepted: 02/23/2017] [Indexed: 02/02/2023] Open
Abstract
Delineating the mammary differentiation hierarchy is important for the study of mammary gland development and tumorigenesis. Mammary luminal cells are considered a major origin of human breast cancers. However, how estrogen-receptor-positive (ER+) and ER- luminal cells are developed and maintained remains poorly understood. The prevailing model suggests that a common stem/progenitor cell generates both cell types. Through genetic lineage tracing in mice, we find that SOX9-expressing cells specifically contribute to the development and maintenance of ER- luminal cells and, to a lesser degree, basal cells. In parallel, PROM1-expressing cells give rise only to ER+ luminal cells. Both SOX9+ and PROM1+ cells specifically sustain their respective lineages even after pregnancy-caused tissue remodeling or serial transplantation, demonstrating characteristic properties of long-term repopulating stem cells. Thus, our data reveal that mouse mammary ER+ and ER- luminal cells are two independent lineages that are maintained by distinct stem cells, providing a revised mammary epithelial cell hierarchy.
Collapse
Affiliation(s)
- Chunhui Wang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Christin
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
10
|
O'Leary KA, Shea MP, Salituro S, Blohm CE, Schuler LA. Prolactin Alters the Mammary Epithelial Hierarchy, Increasing Progenitors and Facilitating Ovarian Steroid Action. Stem Cell Reports 2017; 9:1167-1179. [PMID: 28919264 PMCID: PMC5639259 DOI: 10.1016/j.stemcr.2017.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023] Open
Abstract
Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL) to increased risk for aggressive cancers that express estrogen receptor α (ERα). However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood. We employed the transgenic NRL-PRL model to examine the effects of PRL alone and with defined estrogen/progesterone exposure on stem/progenitor activity and regulatory networks that drive epithelial differentiation. PRL increased progenitors and modulated transcriptional programs, even without ovarian steroids, and with steroids further raised stem cell activity associated with elevated canonical Wnt signaling. However, despite facilitating some steroid actions, PRL opposed steroid-driven luminal maturation and increased CD61+ luminal cells. Our findings demonstrate that PRL can powerfully influence the epithelial hierarchy alone and temper the actions of ovarian steroids, which may underlie its role in the development of breast cancer.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael P Shea
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stephanie Salituro
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Courtney E Blohm
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Timmermans-Sprang EPM, Gracanin A, Mol JA. Molecular Signaling of Progesterone, Growth Hormone, Wnt, and HER in Mammary Glands of Dogs, Rodents, and Humans: New Treatment Target Identification. Front Vet Sci 2017; 4:53. [PMID: 28451590 PMCID: PMC5389977 DOI: 10.3389/fvets.2017.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Mammary tumors are the most common form of neoplasia in the bitch. Female dogs are protected when they are spayed before the first estrus cycle, but this effect readily disappears and is already absent when dogs are spayed after the second heat. As the ovaries are removed during spaying, ovarian steroids are assumed to play an essential role in tumor development. The sensitivity toward tumor development is already present during early life, which may be caused by early mutations in stem cells during the first estrus cycles. Later on in life, tumors arise that are mostly steroid-receptor positive, although a small subset of tumors overexpressing human epidermal growth factor 2 (HER2) and some lacking estrogen receptor, progesterone receptor (PR), and HER2 (triple negative) are present, as is the situation in humans. Progesterone (P4), acting through PR, is the major steroid involved in outgrowth of mammary tissue. PRs are expressed in two forms, the progesterone receptor A (PRA) and progesterone receptor B (PRB) isoforms derived from splice variants from a single gene. The dog and the whole family of canids have only a functional PRA isoform, whereas the PRB isoform, if expressed at all, is devoid of intrinsic biological activity. In human breast cancer, overexpression of the PRA isoform is related to more aggressive carcinomas making the dog a unique model to study PRA-related mammary cancer. Administration of P4 to adult dogs results in local mammary expression of growth hormone (GH) and wing less-type mouse mammary tumor virus integration site family 4 (Wnt4). Both proteins play a role in activation of mammary stem cells. In this review, we summarize what is known on P4, GH, and Wnt signaling in canine mammary cancer, how the family of HER receptors could interact with this signaling, and what this means for comparative and translational oncological aspects of human breast cancer development.
Collapse
Affiliation(s)
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Weber RJ, Desai TA, Gartner ZJ. Non-autonomous cell proliferation in the mammary gland and cancer. Curr Opin Cell Biol 2017; 45:55-61. [PMID: 28314237 PMCID: PMC8811621 DOI: 10.1016/j.ceb.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 12/28/2022]
Abstract
Cells decide whether to grow and divide by integrating internal and external signals. Non-autonomous cell growth and proliferation occurs when microenvironmental signals from neighboring cells, both physical and secreted, license this decision. Understanding these processes is vital to developing an accurate framework for cell-cell interactions and cellular decision-making, and is useful for advancing new therapeutic strategies to prevent dysregulated growth. Here, we review some recent examples of non-autonomous cell growth in the mammary gland and tumor cell proliferation.
Collapse
Affiliation(s)
- Robert J Weber
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, 600 16th Street, Room 522, San Francisco, California 94158, United States; Medical Scientist Training Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Group in Bioengineering, 1700 Fourth Street, Room 216, San Francisco, California 94158, United States; UCSF Bioengineering and Therapeutic Sciences, 1700 Fourth Street, Room 216B, San Francisco, California 94158, United States
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States; UC Berkeley-UCSF Group in Bioengineering, 1700 Fourth Street, Room 216, San Francisco, California 94158, United States; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, 600 16th Street, Room 522, San Francisco, California 94158, United States.
| |
Collapse
|
13
|
Mammary Development and Breast Cancer: A Wnt Perspective. Cancers (Basel) 2016; 8:cancers8070065. [PMID: 27420097 PMCID: PMC4963807 DOI: 10.3390/cancers8070065] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.
Collapse
|
14
|
Tarulli GA, Laven-Law G, Shakya R, Tilley WD, Hickey TE. Hormone-sensing mammary epithelial progenitors: emerging identity and hormonal regulation. J Mammary Gland Biol Neoplasia 2015; 20:75-91. [PMID: 26390871 DOI: 10.1007/s10911-015-9344-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/07/2015] [Indexed: 12/13/2022] Open
Abstract
The hormone-sensing mammary epithelial cell (HS-MEC-expressing oestrogen receptor-alpha (ERα) and progesterone receptor (PGR)) is often represented as being terminally differentiated and lacking significant progenitor activity after puberty. Therefore while able to profoundly influence the proliferation and function of other MEC populations, HS-MECs are purported not to respond to sex hormone signals by engaging in significant cell proliferation during adulthood. This is a convenient and practical simplification that overshadows the sublime, and potentially critical, phenotypic plasticity found within the adult HS-MEC population. This concept is exemplified by the large proportion (~80 %) of human breast cancers expressing PGR and/or ERα, demonstrating that HS-MECs clearly proliferate in the context of breast cancer. Understanding how HS-MEC proliferation and differentiation is driven could be key to unraveling the mechanisms behind uncontrolled HS-MEC proliferation associated with ERα- and/or PGR-positive breast cancers. Herein we review evidence for the existence of a HS-MEC progenitor and the emerging plasticity of the HS-MEC population in general. This is followed by an analysis of hormones other than oestrogen and progesterone that are able to influence HS-MEC proliferation and differentiation: androgens, prolactin and transforming growth factor-beta1.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Reshma Shakya
- Breast Cancer Genetics Laboratory, Centre for Personalised Cancer Medicine, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|