1
|
Raavi, Koehler AN, Vegas AJ. At The Interface: Small-Molecule Inhibitors of Soluble Cytokines. Chem Rev 2025. [PMID: 40233276 DOI: 10.1021/acs.chemrev.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cytokines are crucial regulators of the immune system that orchestrate interactions between cells and, when dysregulated, contribute to the progression of chronic inflammation, cancer, and autoimmunity. Numerous biologic-based clinical agents, mostly monoclonal antibodies, have validated cytokines as important clinical targets and are now part of the standard of care for a number of diseases. These agents, while impactful, still suffer from limitations including a lack of oral bioavailability, high cost of production, and immunogenicity. Small-molecule cytokine inhibitors are attractive alternatives that can address these limitations. Although targeting cytokine-cytokine receptor complexes with small molecules has been a challenging research endeavor, multiple small-molecule inhibitors have now been identified, with a number of them undergoing clinical evaluation. In this review, we highlight the recent advancements in the discovery and development of small-molecule inhibitors targeting soluble cytokines. The strategies for identifying these novel ligands as well as the structural and mechanistic insights into their activity represent important milestones in tackling these challenging and clinically important protein-protein interactions.
Collapse
Affiliation(s)
- Raavi
- Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Arturo J Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
3
|
Weiner JA, Natarajan H, McIntosh CJ, Yang ES, Choe M, Papia CL, Axelrod KS, Kovacikova G, Pegu A, Ackerman ME. Selection of positive controls and their impact on anti-drug antibody assay performance. J Immunol Methods 2024; 528:113657. [PMID: 38479453 DOI: 10.1016/j.jim.2024.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
Development of assays to reliably identify and characterize anti-drug antibodies (ADAs) depends on positive control anti-idiotype (anti-id) reagents, which are used to demonstrate that the standards recommended by regulatory authorities are met. This work employs a set of therapeutic antibodies under clinical development and their corresponding anti-ids to investigate how different positive control reagent properties impact ADA assay development. Positive controls exhibited different response profiles and apparent assay analytical sensitivity values depending on assay format. Neither anti-id affinity for drug, nor sensitivity in direct immunoassays related to sensitivity in ADA assays. Anti-ids were differentially able to detect damage to drug conjugates used in bridging assays and were differentially drug tolerant. These parameters also failed to relate to assay sensitivity, further complicating selection of anti-ids for use in ADA assay development based on functional characteristics. Given this variability among anti-ids, alternative controls that could be employed across multiple antibody drugs were investigated as a more uniform means to define ADA detection sensitivity across drug products and assay protocols, which could help better relate assay results to clinical risks of ADA responses. Overall, this study highlights the importance of positive control selection to reliable detection and clinical interpretation of the presence and magnitude of ADA responses.
Collapse
Affiliation(s)
- Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, USA
| | - Calum J McIntosh
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cassidy L Papia
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
4
|
Ait-Oudhia S, Wang YM, Dosne AG, Roy A, Jin JY, Shen J, Kagan L, Musuamba FT, Zhang L, Kijima S, Gastonguay MR, Ouellet D. Challenging the Norm: A Multidisciplinary Perspective on Intravenous to Subcutaneous Bridging Strategies for Biologics. Clin Pharmacol Ther 2024; 115:412-421. [PMID: 38069528 DOI: 10.1002/cpt.3133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
The transition from intravenous (i.v.) to subcutaneous (s.c.) administration of biologics is a critical strategy in drug development aimed at improving patient convenience, compliance, and therapeutic outcomes. Focusing on the increasing role of model-informed drug development (MIDD) in the acceleration of this transition, an in-depth overview of the essential clinical pharmacology, and regulatory considerations for successful i.v. to s.c. bridging for biologics after the i.v. formulation has been approved are presented. Considerations encompass multiple aspects beginning with adequate pharmacokinetic (PK) and pharmacodynamic (i.e., exposure-response) evaluations which play a vital role in establishing comparability between the i.v. and s.c. routes of administrations. Selected key recommendations and points to consider include: (i) PK characterization of the s.c. formulation, supported by the increasing preclinical understanding of the s.c. absorption, and robust PK study design and analyses in humans; (ii) a thorough characterization of the exposure-response profiles including important metrics of exposure for both efficacy and safety; (iii) comparability studies designed to meet regulatory considerations and support approval of the s.c. formulation, including noninferiority studies with PK and/or efficacy and safety as primary end points; and (iv) comprehensive safety package addressing assessments of immunogenicity and patients' safety profile with the new route of administration. Recommendations for successful bridging strategies are evolving and MIDD approaches have been used successfully to accelerate the transition to s.c. dosing, ultimately leading to improved patient experiences, adherence, and clinical outcomes.
Collapse
Affiliation(s)
| | - Yow-Ming Wang
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anne-Gaelle Dosne
- Janssen Research & Development, LLC, Beerse, Belgium
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Amit Roy
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Jin Y Jin
- Genentech Inc., South San Francisco, California, USA
| | - Jun Shen
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Leonid Kagan
- Department of Pharmaceutics and Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Flora T Musuamba
- Belgian Federal Agency for Medicines and Health Products, Brussels, Belgium
- NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Lucia Zhang
- Health Canada, Biologic and Radiopharmaceutical Drugs Directorate, Ottawa, Ontario, Canada
| | - Shinichi Kijima
- Pharmaceuticals and Medical Devices Agency (PMDA), Tokyo, Japan
| | | | - Daniele Ouellet
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| |
Collapse
|
5
|
Jha SK, Imran M, Jha LA, Hasan N, Panthi VK, Paudel KR, Almalki WH, Mohammed Y, Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. ENVIRONMENTAL RESEARCH 2023; 236:116823. [PMID: 37543130 DOI: 10.1016/j.envres.2023.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The lack of knowledge about the absorption, distribution, metabolism, and excretion (ADME) of vaccines makes former biopharmaceutical optimization difficult. This was shown during the COVID-19 immunization campaign, where gradual booster doses were introduced.. Thus, understanding vaccine ADME and its effects on immunization effectiveness could result in a more logical vaccine design in terms of formulation, method of administration, and dosing regimens. Herein, we will cover the information available on vaccine pharmacokinetics, impacts of delivery routes and carriers on ADME, utilization and efficiency of nanoparticulate delivery vehicles, impact of dose level and dosing schedule on the therapeutic efficacy of vaccines, intracellular and endosomal trafficking and in vivo fate, perspective on DNA and mRNA vaccines, new generation sequencing and mathematical models to improve cancer vaccination and pharmacology, and the reported toxicological study of COVID-19 vaccines. Altogether, this review will enhance the reader's understanding of the pharmacokinetics of vaccines and methods that can be implied in delivery vehicle design to improve the absorption and distribution of immunizing agents and estimate the appropriate dose to achieve better immunogenic responses and prevent toxicities.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea; Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
6
|
Nada H, Sivaraman A, Lu Q, Min K, Kim S, Goo JI, Choi Y, Lee K. Perspective for Discovery of Small Molecule IL-6 Inhibitors through Study of Structure–Activity Relationships and Molecular Docking. J Med Chem 2023; 66:4417-4433. [PMID: 36971365 DOI: 10.1021/acs.jmedchem.2c01957] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that plays a key role in the pathogenesis and physiology of inflammatory and autoimmune diseases, such as coronary heart disease, cancer, Alzheimer's disease, asthma, rheumatoid arthritis, and most recently COVID-19. IL-6 and its signaling pathway are promising targets in the treatment of inflammatory and autoimmune diseases. Although, anti-IL-6 monoclonal antibodies are currently being used in clinics, huge unmet medical needs remain because of the high cost, administration-related toxicity, lack of opportunity for oral dosing, and potential immunogenicity of monoclonal antibody therapy. Furthermore, nonresponse or loss of response to monoclonal antibody therapy has been reported, which increases the importance of optimizing drug therapy with small molecule drugs. This work aims to provide a perspective for the discovery of novel small molecule IL-6 inhibitors by the analysis of the structure-activity relationships and computational studies for protein-protein inhibitors targeting the IL-6/IL-6 receptor/gp130 complex.
Collapse
|
7
|
Assessing the Impact of Immunogenicity and Improving Prediction of Trough Concentrations: Population Pharmacokinetic Modeling of Adalimumab in Patients with Crohn's Disease and Ulcerative Colitis. Clin Pharmacokinet 2023; 62:623-634. [PMID: 36905528 DOI: 10.1007/s40262-023-01221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Predicting adalimumab pharmacokinetics (PK) for patients impacted by anti-drug antibodies (ADA) has been challenging. The present study assessed the performance of the adalimumab immunogenicity assays in predicting which patients with Crohn's disease (CD) and ulcerative colitis (UC) have low adalimumab trough concentrations; and aimed to improve predictive performance of adalimumab population PK (popPK) model in CD and UC patients whose PK was impacted by ADA. METHODS Adalimumab PK and immunogenicity data obtained from 1459 patients in SERENE CD (NCT02065570) and SERENE UC (NCT02065622) were analyzed. Adalimumab immunogenicity was assessed using electrochemiluminescence (ECL) and enzyme-linked immunosorbent (ELISA) assays. From these assays, three analytical approaches (ELISA concentrations, titer, and signal-to-noise [S/N] measurements) were tested as predictors for classifying patients with/without low concentrations potentially affected by immunogenicity. The performance of different thresholds for these analytical procedures was assessed using receiver operating characteristic curves and precision-recall curves. Based on the results from the most sensitive immunogenicity analytical procedure, patients were classified into PK-not-ADA-impacted and PK-ADA-impacted subpopulations. Stepwise popPK modeling was implemented to fit the PK data to an empirical adalimumab two-compartment model with linear elimination and ADA delay compartments to account for the time delay to generate ADA. Model performance was assessed by visual predictive checks and goodness-of-fit plots. RESULTS The classical ELISA-based classification (with 20 ng/mL ADA as lower threshold) showed a good balance of precision and recall, to determine which patients had at least 30% adalimumab concentrations below 1 µg/mL. Titer-based classification with the lower limit of quantitation (LLOQ) as threshold showed higher sensitivity to classify these patients compared to the ELISA-based approach. Therefore, patients were classified as PK-ADA-impacted or PK-not-ADA impacted using the LLOQ titer threshold. In the stepwise modeling approach ADA-independent parameters were first fit using PK data from titer-PK-not-ADA-impacted population. The identified ADA-independent covariates included the effect of indication, weight, baseline fecal calprotectin, baseline C-reactive protein, baseline albumin on clearance; and sex and weight on volume of distribution of the central compartment. Pharmacokinetic-ADA-driven dynamics were characterized using PK data for the PK-ADA-impacted population. The categorical covariate based on the ELISA classification was the best at describing the additional effect of immunogenicity analytical approaches on ADA synthesis rate. The model was able to adequately describe the central tendency and variability for PK-ADA-impacted CD/UC patients. CONCLUSIONS The ELISA assay was found to be optimal for capturing impact of ADA on PK. The developed adalimumab popPK model is robust in predicting PK profiles for CD and UC patients whose PK was impacted by ADA.
Collapse
|
8
|
Fathallah AM, Oldfield P, Fiedler‐Kelly J, Ramadan A. Immunogenicity Considerations for Therapeutic Modalities Used in Rare Diseases. J Clin Pharmacol 2022; 62 Suppl 2:S110-S118. [DOI: 10.1002/jcph.2166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022]
Affiliation(s)
| | - Philip Oldfield
- Scientific and Regulatory Consultant Greater Montreal Metropolitan Canada
| | | | | |
Collapse
|
9
|
Bridging the Gap With Clinical Pharmacology in Innovative Rare Disease Treatment Modalities: Targeting DNA to RNA to Protein. J Clin Pharmacol 2022; 62 Suppl 2:S95-S109. [DOI: 10.1002/jcph.2172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022]
|
10
|
Talkington AM, McSweeney MD, Wessler T, Rath MK, Li Z, Zhang T, Yuan H, Frank JE, Forest MG, Cao Y, Lai SK. A PBPK model recapitulates early kinetics of anti-PEG antibody-mediated clearance of PEG-liposomes. J Control Release 2022; 343:518-527. [PMID: 35066099 PMCID: PMC9080587 DOI: 10.1016/j.jconrel.2022.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
PEGylation is routinely used to extend the systemic circulation of various protein therapeutics and nanomedicines. Nonetheless, mounting evidence is emerging that individuals exposed to select PEGylated therapeutics can develop antibodies specific to PEG, i.e., anti-PEG antibodies (APA). In turn, APA increase both the risk of hypersensitivity to the drug as well as potential loss of efficacy due to accelerated blood clearance of the drug. Despite the broad implications of APA, the timescales and systemic specificity by which APA can alter the pharmacokinetics and biodistribution of PEGylated drugs remain not well understood. Here, we developed a physiologically based pharmacokinetic (PBPK) model designed to resolve APA's impact on both early- and late-phase pharmacokinetics and biodistribution of intravenously administered PEGylated drugs. Our model accurately recapitulates PK and biodistribution data obtained from PET/CT imaging of radiolabeled PEG-liposomes and PEG-uricase in mice with and without APA, as well as serum levels of PEG-uricase in humans. Our work provides another illustration of the power of high-resolution PBPK models for understanding the pharmacokinetic impacts of anti-drug antibodies and the dynamics with which antibodies can mediate clearance of foreign species.
Collapse
Affiliation(s)
- Anne M Talkington
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Morgan D McSweeney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy Wessler
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA; Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Marielle K Rath
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Tao Zhang
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Yuan
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, UNC Chapel Hill, USA
| | | | - M Gregory Forest
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA; Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Chang HP, Shakhnovich V, Frymoyer A, Funk RS, Becker ML, Park KT, Shah DK. A population physiologically-based pharmacokinetic model to characterize antibody disposition in pediatrics and evaluation of the model using infliximab. Br J Clin Pharmacol 2022; 88:290-302. [PMID: 34189743 PMCID: PMC8714867 DOI: 10.1111/bcp.14963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 01/03/2023] Open
Abstract
AIMS In order to better predict the pharmacokinetics (PK) of antibodies in children, and to facilitate dose optimization of antibodies in paediatric patients, there is a need to develop systems PK models that integrate ontogeny-related changes in human physiological parameters. METHODS A population-based physiological-based PK (PBPK) model to characterize antibody PK in paediatrics has been developed, by incorporating age-related changes in body weight, organ weight, organ blood flow rate and interstitial volumes in a previously published platform model. The model was further used to perform Monte Carlo simulations to investigate clearance vs. age and dose-exposure relationships for infliximab. RESULTS By estimating only one parameter and associated interindividual variability, the model was able to characterize clinical PK of infliximab from two paediatric cohorts (n = 141, 4-19 years) reasonably well. Model simulations demonstrated that only 50% of children reached desired trough concentrations when receiving FDA-labelled dosing regimen for infliximab, suggesting that higher doses and/or more frequent dosing are needed to achieve target trough concentrations of this antibody. CONCLUSION The paediatric PBPK model presented here can serve as a framework to characterize the PK of antibodies in paediatric patients. The model can also be applied to other protein therapeutics to advance precision medicine paradigm and optimize antibody dosing regimens in children.
Collapse
Affiliation(s)
- Hsuan Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Valentina Shakhnovich
- Children's Mercy Kansas City, Kansas City, MO, United States
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Adam Frymoyer
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Ryan Sol Funk
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Kansas City, KS, United States
| | - Mara L. Becker
- Department of Pediatrics, Division of Rheumatology, Duke University, Durham, NC, United States
- Duke Clinical Research Institute, Durham, NC, United States
| | - K. T. Park
- Genentech, Inc., South San Francisco, CA, USA
| | - Dhaval K. Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
Tosca EM, Bartolucci R, Magni P, Poggesi I. Modeling approaches for reducing safety-related attrition in drug discovery and development: a review on myelotoxicity, immunotoxicity, cardiovascular toxicity, and liver toxicity. Expert Opin Drug Discov 2021; 16:1365-1390. [PMID: 34181496 DOI: 10.1080/17460441.2021.1931114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction:Safety and tolerability is a critical area where improvements are needed to decrease the attrition rates during development of new drug candidates. Modeling approaches, when smartly implemented, can contribute to this aim.Areas covered:The focus of this review was on modeling approaches applied to four kinds of drug-induced toxicities: hematological, immunological, cardiovascular (CV) and liver toxicity. Papers, mainly published in the last 10 years, reporting models in three main methodological categories - computational models (e.g., quantitative structure-property relationships, machine learning approaches, neural networks, etc.), pharmacokinetic-pharmacodynamic (PK-PD) models, and quantitative system pharmacology (QSP) models - have been considered.Expert opinion:The picture observed in the four examined toxicity areas appears heterogeneous. Computational models are typically used in all areas as screening tools in the early stages of development for hematological, cardiovascular and liver toxicity, with accuracies in the range of 70-90%. A limited number of computational models, based on the analysis of drug protein sequence, was instead proposed for immunotoxicity. In the later stages of development, toxicities are quantitatively predicted with reasonably good accuracy using either semi-mechanistic PK-PD models (hematological and cardiovascular toxicity), or fully exploited QSP models (immuno-toxicity and liver toxicity).
Collapse
Affiliation(s)
- Elena M Tosca
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Roberta Bartolucci
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Italo Poggesi
- Clinical Pharmacology & Pharmacometrics, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
13
|
Kelliny S, Bobrovskaya L, Zhou XF, Upton R. Pharmacokinetic Modelling of Human Recombinant Protein, p75ECD-Fc: A Novel Therapeutic Approach for Treatment of Alzheimer's Disease, in Serum and Tissue of Sprague Dawley Rats. Eur J Drug Metab Pharmacokinet 2021; 46:235-248. [PMID: 33507523 DOI: 10.1007/s13318-020-00662-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE p75ECD-Fc is a novel antagonist of toxic amyloid beta protein and other neurodegenerative factors with potential for the treatment of Alzheimer's disease (AD). Preclinical studies showed that it can alleviate the AD pathologies in animal models of dementia. In a previous paper, we used non-compartmental pharmacokinetic analysis to obtain preliminary pharmacokinetic data for p75ECD-Fc in Sprague Dawley (SD) rats. We also studied the tissue distribution in terms of drug metabolism that helped us to understand possible mechanisms of action. Here, we aim to develop population pharmacokinetic models that can describe the pharmacokinetics of p75ECD-Fc in serum and tissues. METHODS p75ECD-Fc was delivered to SD rats via two routes (intravenous and subcutaneous) at a single dose of 3 mg/kg (n = 15). Blood (n = 12) and tissue samples (n = 10-15) were then separated at different time points for a total duration of 42 days post dosage. The concentration of p75ECD-Fc in serum and tissues was measured using an enzyme-linked immunosorbent assay. RESULTS Data were best fitted to a 2-compartment model with linear elimination kinetics. The population parameter estimates for clearance, and volume of central and peripheral compartments were 0.000176 L/h, 0.0145 L and 0.0263 L, respectively. The presence of anti-drug antibodies was added to the final model as a covariate on clearance. The subcutaneous bioavailability was estimated to be 53.5% with a first-order absorption rate constant of 0.00745 1/h. By modeling of individual tissue concentrations, p75ECD-Fc was found to exhibit modest tissue distribution with estimated tissue/plasma partition coefficients (R) ranging from 0.004 to 0.2. CONCLUSION This is the first report of a pharmacokinetic model for p75ECD-Fc and these results may facilitate the ongoing development of p75ECD-Fc and translation to clinical studies.
Collapse
Affiliation(s)
- Sally Kelliny
- University of South Australia, Clinical and Health Sciences, Adelaide, SA, 5000, Australia.,Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Larisa Bobrovskaya
- University of South Australia, Clinical and Health Sciences, Adelaide, SA, 5000, Australia
| | - Xin-Fu Zhou
- University of South Australia, Clinical and Health Sciences, Adelaide, SA, 5000, Australia.
| | - Richard Upton
- University of South Australia, Clinical and Health Sciences, Australian Centre for Pharmacometrics, Adelaide, SA, 5000, Australia.
| |
Collapse
|
14
|
Germovsek E, Cheng M, Giragossian C. Allometric scaling of therapeutic monoclonal antibodies in preclinical and clinical settings. MAbs 2021; 13:1964935. [PMID: 34530672 PMCID: PMC8463036 DOI: 10.1080/19420862.2021.1964935] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Constant technological advancement enabled the production of therapeutic monoclonal antibodies (mAbs) and will continue to contribute to their rapid expansion. Compared to small-molecule drugs, mAbs have favorable characteristics, but also more complex pharmacokinetics (PK), e.g., target-mediated nonlinear elimination and recycling by neonatal Fc-receptor. This review briefly discusses mAb biology, similarities and differences in PK processes across species and within human, and provides a detailed overview of allometric scaling approaches for translating mAb PK from preclinical species to human and extrapolating from adults to children. The approaches described here will remain vital in mAb drug development, although more data are needed, for example, from very young patients and mAbs with nonlinear PK, to allow for more confident conclusions and contribute to further growth of this field. Improving mAb PK predictions will facilitate better planning of (pediatric) clinical studies and enable progression toward the ultimate goal of expediting drug development.
Collapse
Affiliation(s)
- Eva Germovsek
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Ming Cheng
- Development Biologicals, Drug Metabolism And Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, US
| | - Craig Giragossian
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, US
| |
Collapse
|
15
|
Sato M, Takeuchi S, Soga S, Aoyama K, Suzuki J. Generation and Characterization of a Novel Anti-Rat TLR4/MD2 Antibody with Potent Neutralizing Activity In Vivo. Monoclon Antib Immunodiagn Immunother 2020; 39:217-221. [PMID: 33290148 DOI: 10.1089/mab.2020.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Toll-like receptor 4 (TLR4) plays a critical role in the innate immune system and is involved in the pathogenesis of multiple diseases. Here, we report the antagonistic and ratized antibody, 52-1H4 e2 (e2), which completely inhibited lipopolysaccharide-induced interleukin-6 secretion in vitro. The average serum drug concentration was above 10 μg/mL for 28 days in rats injected with e2. The novel anti-rat TLR4/myeloid differentiation factor 2 antibody, e2, may be a useful tool for investigating the role of TLR4 in rat disease models.
Collapse
Affiliation(s)
- Masahito Sato
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| | - Satoshi Takeuchi
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| | - Shinji Soga
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| | - Koji Aoyama
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| | - Jotaro Suzuki
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Zhang J, Yuan Z, Zhong W, Wei Y. Stem Cell as Vehicles of Antibody in Treatment of Lymphoma: a Novel and Potential Targeted Therapy. Stem Cell Rev Rep 2020; 17:829-841. [PMID: 33205352 DOI: 10.1007/s12015-020-10080-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
Lymphoma is a heterogeneous malignancy and its incidence is increasing in the past decades all over the world. Although more than half of lymphoma patients achieve complete or partial remission from the standard first-line ABVD or R-CHOP based therapy, patients who fail to respond to these regimens will give rise to relapsed or refractory (R/R) lymphoma and may lead to a worse prognosis. Developing novel agents is important for R/R lymphoma. Based on the homing ability and being genetically modified easily, stem cells are usually used as vehicles in cell-based anti-tumor therapy, which can not only retain their own biological characteristics, but also make anti-tumor agents secrete constantly in tumor environment, to eventually kill the tumor cells more effectively. In this review, we will briefly introduce the properties of antibody therapy carried by stem cells, especially the hopes and hurdles of stem cell-mediated antibody secretion in the treatment of lymphoma.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Hotinger JA, May AE. Antibodies Inhibiting the Type III Secretion System of Gram-Negative Pathogenic Bacteria. Antibodies (Basel) 2020; 9:antib9030035. [PMID: 32726928 PMCID: PMC7551047 DOI: 10.3390/antib9030035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogenic bacteria are a global health threat, with over 2 million infections caused by Gram-negative bacteria every year in the United States. This problem is exacerbated by the increase in resistance to common antibiotics that are routinely used to treat these infections, creating an urgent need for innovative ways to treat and prevent virulence caused by these pathogens. Many Gram-negative pathogenic bacteria use a type III secretion system (T3SS) to inject toxins and other effector proteins directly into host cells. The T3SS has become a popular anti-virulence target because it is required for pathogenesis and knockouts have attenuated virulence. It is also not required for survival, which should result in less selective pressure for resistance formation against T3SS inhibitors. In this review, we will highlight selected examples of direct antibody immunizations and the use of antibodies in immunotherapy treatments that target the bacterial T3SS. These examples include antibodies targeting the T3SS of Pseudomonas aeruginosa, Yersinia pestis, Escherichia coli, Salmonella enterica, Shigella spp., and Chlamydia trachomatis.
Collapse
|
18
|
Toward comparability of anti-drug antibody assays: is the amount of anti-drug antibody–reagent complexes at cut-point (CP-ARC) the missing piece? Bioanalysis 2020; 12:1021-1031. [DOI: 10.4155/bio-2020-0143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Immunogenicity testing is a mandatory and critical activity during the development of therapeutic proteins. Multiple regulatory guidelines provide clear recommendations on appropriate immunogenicity testing strategies and required bioanalytical assay performances. Unfortunately, it is still generally accepted that a comparison of the immunogenicity of different compounds is not possible due to apparent performance differences of the used bioanalytical methods. In this perspective, we propose the ‘cut-point anti-drug antibody–reagents complex’ (CP-ARC) concept for technical comparability of the bioanalytical methods. The feasibility and implementation in routine assay development is discussed as well as the potential improvement of reporting of bioanalytical immunogenicity data to allow comparison across drugs. Scientific sound comparability of the bioanalytical methods is the first step toward comparability of clinical immunogenicity.
Collapse
|
19
|
Pan X, Stader F, Abduljalil K, Gill KL, Johnson TN, Gardner I, Jamei M. Development and Application of a Physiologically-Based Pharmacokinetic Model to Predict the Pharmacokinetics of Therapeutic Proteins from Full-term Neonates to Adolescents. AAPS JOURNAL 2020; 22:76. [DOI: 10.1208/s12248-020-00460-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
|
20
|
Lee DS, Suh MI, Kang SY, Hwang DW. Physiologic constraints of using exosomes in vivo as systemic delivery vehicles. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(3)070819.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Systemic delivery of exosomes meets hurdles which had not been elucidated using live molecular imaging for their biodistribution. Production and uptake of endogenous exosomes are expected to be nonspecific and specific, respectively, where external stimuli of production of exosomes and their quantitative degree of productions are not understood. Despite this lack of understanding of basic physiology of in vivo behavior of exosomes including their possible paracrine or endocrine actions, many engineering efforts are taken to develop therapeutic vehicles. Especially, the fraction of exosomes’ taking the routes of waste disposal and exerting target actions are not characterized after systemic administration. Here, we reviewed the literature about in vivo distribution and disposal/excretion of exogenous or endogenous exosomes and, from these limited resources of knowledge currently available, summarized the knowledge and the uncertainties of exosomes on physiologic standpoints. An eloquent example of the investigations to understand the roles and confounders of exosomes’ action in the brain was highlighted with emphasis on the recent discovery of brain lymphatics and hypothesis of glymphatic/lymphatic clearance pathways in diseases as well as in physiologic processes. The possibility of delivering therapeutic exosomes through the systemic circulation, across blood-brain barriers and finally to target cells such as microglia, astrocytes and/or neurons is a good testbed in which the investigators can formulate problems to solve for both understanding (science) and application (engineering).
Collapse
Affiliation(s)
- Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - MInseok Suh
- 2Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University,
| | - Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University Medical Center, Seoul,
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
21
|
Grimm HP, Schick E, Hainzl D, Justies N, Yu L, Klein C, Husar E, Richter WF. PKPD Assessment of the Anti-CD20 Antibody Obinutuzumab in Cynomolgus Monkey is Feasible Despite Marked Anti-Drug Antibody Response in This Species. J Pharm Sci 2019; 108:3729-3736. [PMID: 31351865 DOI: 10.1016/j.xphs.2019.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
Abstract
The pharmacokinetics (PK) of the anti-CD20 monoclonal antibody obinutuzumab was assessed after single intravenous dosing to cynomolgus monkeys. In addition, the pharmacokinetic-pharmacodynamic (PKPD) relationship for B-cell depletion was characterized. The PKPD model was used to estimate the B-cell repopulation during the recovery phase of chronic toxicology studies, thereby supporting the study design, in particular planning the recovery phase duration. Marked immunogenicity against obinutuzumab was observed approximately 10 days after single dose, leading to an up to ∼30-fold increase in obinutuzumab clearance in the affected monkeys. Despite this accelerated clearance, the PK could be characterized, either by disregarding the clearance in noncompartmental PK analysis or by capturing it explicitly as an additional time-dependent clearance process in compartmental modeling. This latter step was crucial to model the PKPD of B-cells as an indirect response to obinutuzumab exposure, showing that-without immune response-the limiting factor is obinutuzumab elimination with concentrations below 0.02 μg/mL required for initiation of B-cell recovery. Overall, the results demonstrate that despite a marked anti-drug antibody response in the nonclinical animal species, the PK and PKPD of obinutuzumab could be characterized successfully by appropriately addressing the immune-modulated clearance pathway in data analysis and modeling.
Collapse
Affiliation(s)
- Hans Peter Grimm
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Eginhard Schick
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Dominik Hainzl
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Nicole Justies
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Li Yu
- Roche Innovation Center New York, F. Hoffmann-La Roche Ltd., New York, New York 10016
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Glycart AG, Zürich, Switzerland
| | - Elisabeth Husar
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Wolfgang F Richter
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
22
|
Hamuro L, Tirucherai GS, Crawford SM, Nayeem A, Pillutla RC, DeSilva BS, Leil TA, Thalhauser CJ. Evaluating a Multiscale Mechanistic Model of the Immune System to Predict Human Immunogenicity for a Biotherapeutic in Phase 1. AAPS JOURNAL 2019; 21:94. [PMID: 31342199 DOI: 10.1208/s12248-019-0361-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
A mechanistic model of the immune response was evaluated for its ability to predict anti-drug antibody (ADA) and their impact on pharmacokinetics (PK) and pharmacodynamics (PD) for a biotherapeutic in a phase 1 clinical trial. Observed ADA incidence ranged from 33 to 67% after single doses and 27-50% after multiple doses. The model captured the single dose incidence well; however, there was overprediction after multiple dosing. The model was updated to include a T-regulatory (Treg) cell mediated tolerance, which reduced the overprediction (relative decrease in predicted incidence rate of 21.5-59.3% across multidose panels) without compromising the single dose predictions (relative decrease in predicted incidence rate of 0.6-13%). The Treg-adjusted model predicted no ADA impact on PK or PD, consistent with the observed data. A prospective phase 2 trial was simulated, including co-medication effects in the form of corticosteroid-induced immunosuppression. Predicted ADA incidences were 0-10%, depending on co-medication dosage. This work demonstrates the utility in applying an integrated, iterative modeling approach to predict ADA during different stages of clinical development.
Collapse
Affiliation(s)
- Lora Hamuro
- Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA
| | - Giridhar S Tirucherai
- Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA
| | - Sean M Crawford
- Bioanalytical Sciences, Translational Medicine, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA
| | - Akbar Nayeem
- Molecular Structure and Design, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA
| | - Renuka C Pillutla
- Bioanalytical Sciences, Translational Medicine, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA
| | - Binodh S DeSilva
- Analytical Strategy and Operations, Product Development, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA
| | - Tarek A Leil
- Quantitative Clinical Pharmacology, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey, 08543, USA
| | - Craig J Thalhauser
- Quantitative Clinical Pharmacology, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey, 08543, USA.
| |
Collapse
|
23
|
Yasunaga M. Antibody therapeutics and immunoregulation in cancer and autoimmune disease. Semin Cancer Biol 2019; 64:1-12. [PMID: 31181267 DOI: 10.1016/j.semcancer.2019.06.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/03/2019] [Indexed: 02/04/2023]
Abstract
Cancer and autoimmune disease are closely related, and many therapeutic antibodies are widely used in clinics for the treatment of both diseases. Among them, the anti-CD20 antibody has proven to be effective against both lymphoid malignancy and autoimmune disease. Moreover, immune checkpoint blockade using the anti-PD1/PD-L1/CTLA4 antibody has improved the prognosis of patients with refractory solid tumors. At the same time, however, over-enhancement of immunoreaction can induce autoimmune reaction. Although anti-TNF antibody therapies represent a breakthrough in the treatment of autoimmune diseases, optimal management is required to control the serious associated issues, including development and progression of cancer, and it is becoming more and more important to control the immunoreaction. In addition, next-generation antibody therapeutics such as antibody-drug conjugates and bispecific antibodies, are anticipated to treat uncontrolled cancer and autoimmune disease. IL-7R signaling plays an important role in the development and progression of both lymphoid malignancy and autoimmune disease. In addition, abnormal homing activity and steroid resistance caused by IL-7R signaling may worsen prognosis. Therefore, anti-IL-7R targeting antibody therapies that enable suppression of such pathophysiological status have the potential to be beneficial for the treatment of both diseases. In this review, we discuss current antibody therapeutics in cancer and autoimmune disease, and describe a new therapeutic strategy for immunoregulation including IL-7R targeting antibodies.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan.
| |
Collapse
|
24
|
Dingman R, Balu-Iyer SV. Immunogenicity of Protein Pharmaceuticals. J Pharm Sci 2019; 108:1637-1654. [PMID: 30599169 PMCID: PMC6720129 DOI: 10.1016/j.xphs.2018.12.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Protein therapeutics have drastically changed the landscape of treatment for many diseases by providing a regimen that is highly specific and lacks many off-target toxicities. The clinical utility of many therapeutic proteins has been undermined by the potential development of unwanted immune responses against the protein, limiting their efficacy and negatively impacting its safety profile. This review attempts to provide an overview of immunogenicity of therapeutic proteins, including immune mechanisms and factors influencing immunogenicity, impact of immunogenicity, preclinical screening methods, and strategies to mitigate immunogenicity.
Collapse
Affiliation(s)
- Robert Dingman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
25
|
Liu XI, Dallmann A, Wang YM, Green DJ, Burnham JM, Chiang B, Wu P, Sheng M, Lu K, van den Anker JN, Burckart GJ. Monoclonal Antibodies and Fc-Fusion Proteins for Pediatric Use: Dosing, Immunogenicity, and Modeling and Simulation in Data Submitted to the US Food and Drug Administration. J Clin Pharmacol 2019; 59:1130-1143. [PMID: 30865317 PMCID: PMC6617747 DOI: 10.1002/jcph.1406] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/23/2019] [Indexed: 12/12/2022]
Abstract
The experience with the use of monoclonal antibodies and Fc-fusion proteins (mAb/Fc) in the pediatric population is limited. The objective of this study is to review those factors impacting the clinical efficacy and product safety of mAb/Fc products in pediatric patients during drug development. We reviewed the list of biologic products in the US Food and Drug Administration's Purple Book as of March 2018 with a focus on mAb/Fc products that are indicated for use in both adults and pediatric patients. Of 68 mAb/Fc products in the Purple Book (excluding biosimilars), 20 products have approved indications in both adults and children. Thirteen products had concurrent approval for both adult and pediatric populations. The sample size of pediatric studies generally ranged from approximately 2% to 70% of the sample size of adult studies with the same indication. In general, pediatric dosing regimens were found to be more based on body weight and weight tiered than the regimens for adults. Modeling and simulation techniques comprised mainly population pharmacokinetic and pharmacodynamic models. A review of the immunogenicity incidence did not reveal any notable difference in the 5 products having data on both pediatric and adult patients. In conclusion, most of the mAb/Fc products have a different weight-based dosing regimen for pediatric patients versus adults. An understanding of the comparative experience in drug development for mAb/Fc products between adult and pediatric patients coupled with the application of advanced modeling and simulation methods should assist future development of new mAb/Fc products for pediatric patients.
Collapse
Affiliation(s)
- Xiaomei I Liu
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.,Children's National Medical Center, Washington, DC, USA
| | - André Dallmann
- Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital Basel (UKBB), Switzerland
| | - Yow-Ming Wang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Dionna J Green
- Office of Pediatric Therapeutics, Commissioner's Office, US Food and Drug Administration, Silver Spring, MD, USA
| | - Janelle M Burnham
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Beatrice Chiang
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Perry Wu
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Mark Sheng
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Kelley Lu
- College of Pharmacy, University of Texas, Austin, TX, USA
| | - John N van den Anker
- Children's National Medical Center, Washington, DC, USA.,Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital Basel (UKBB), Switzerland
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
26
|
Rekeland IG, Fluge Ø, Alme K, Risa K, Sørland K, Mella O, de Vries A, Schjøtt J. Rituximab Serum Concentrations and Anti-Rituximab Antibodies During B-Cell Depletion Therapy for Myalgic Encephalopathy/Chronic Fatigue Syndrome. Clin Ther 2018; 41:806-814. [PMID: 30502905 DOI: 10.1016/j.clinthera.2018.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/27/2018] [Accepted: 10/17/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE Previous Phase II trials indicated clinical benefit from B-cell depletion using the monoclonal anti-CD20 antibody rituximab in patients with myalgic encephalopathy/chronic fatigue syndrome (ME/CFS). The association between rituximab serum concentrations and the effect and clinical relevance of antidrug antibodies (ADAs) against rituximab in ME/CFS is unknown. We retrospectively measured rituximab concentrations and ADAs in serum samples from patients included in an open-label Phase II trial with maintenance rituximab treatment (KTS-2-2010) to investigate possible associations with clinical improvement and clinical and biochemical data. METHODS Patients with ME/CFS fulfilling the Canadian criteria received rituximab (500 mg/m2) infusions: 2 infusions 2 weeks apart (induction), followed by maintenance treatment at 3, 6, 10, and 15 months. The measured rituximab concentrations and ADAs in serum samples included 23 of 28 patients from the trial. FINDINGS There were no significant differences in mean serum rituximab concentrations between 14 patients experiencing clinical improvement versus 9 patients with no improvement. Female patients had higher mean serum rituximab concentrations than male patients at 3 months (P = 0.05). There was a significant negative correlation between B-cell numbers in peripheral blood at baseline and rituximab serum concentration at 3 months (r = -0.47; P = 0.03). None of the patients had ADAs at any time point. IMPLICATIONS Clinical improvement of patients with ME/CFS in the KTS-2-2010 trial was not related to rituximab serum concentrations or ADAs. This finding is also in line with a recent randomized trial questioning the efficacy of rituximab in ME/CFS. Rituximab concentrations and ADAs still offer supplemental information when interpreting the results of these trials.
Collapse
Affiliation(s)
- Ingrid G Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kine Alme
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kristin Risa
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Norway
| | | | - Jan Schjøtt
- Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Norway
| |
Collapse
|
27
|
Ren Y, Li L, Kirshner S, Wang Y, Sahajwalla C, Ji P. A Model-Based Approach to Quantify the Time-Course of Anti-Drug Antibodies for Therapeutic Proteins. Clin Pharmacol Ther 2018; 105:970-978. [PMID: 30372517 DOI: 10.1002/cpt.1267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 12/27/2022]
Abstract
A mathematical antidrug antibody (ADA) model was developed to quantitatively assess immunogenicity for therapeutic proteins. The ADA model was built with antibody titer data in subjects from 10 clinical trials. The time course of the antibody titers was quantitatively characterized with a two-component semimechanistic model describing the double peaks of ADA titers. The relationship between antibody titer and incidence was also explored. The ADA incidences in subjects from 12 clinical trials were used for internal and external validations. The ADA titers reasonably predicted the incidence of antibody. The model-predicted elimination rate constant for antibody titer was 14.1 × 10-3 day-1 and 8.1 × 10-3 day-1 in healthy subjects and patients, respectively. This research provided a useful tool to quantitatively evaluate immunogenicity and its impact for therapeutic proteins.
Collapse
Affiliation(s)
- Yupeng Ren
- Division of Clinical Pharmacology II, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Liang Li
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Susan Kirshner
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yaning Wang
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chandrahas Sahajwalla
- Division of Clinical Pharmacology II, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ping Ji
- Division of Clinical Pharmacology II, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
28
|
McSweeney MD, Wessler T, Price LSL, Ciociola EC, Herity LB, Piscitelli JA, Zamboni WC, Forest MG, Cao Y, Lai SK. A minimal physiologically based pharmacokinetic model that predicts anti-PEG IgG-mediated clearance of PEGylated drugs in human and mouse. J Control Release 2018; 284:171-178. [PMID: 29879519 DOI: 10.1016/j.jconrel.2018.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/18/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
Abstract
Circulating antibodies that specifically bind polyethylene glycol (PEG), a polymer routinely used in protein and nanoparticle therapeutics, have been associated with reduced efficacy and increased adverse reactions to some PEGylated therapeutics. In addition to acute induction of anti-PEG antibodies (APA) by PEGylated drugs, typically low but detectable levels of APA are also found in up to 70% of the general population. Despite the broad implications of APA, the dynamics of APA-mediated clearance of PEGylated drugs, and why many patients continue to respond to PEGylated drugs despite the presence of pre-existing APA, remains not well understood. Here, we developed a minimal physiologically based pharmacokinetic (mPBPK) model that incorporates various properties of APA and PEGylated drugs. Our mPBPK model reproduced clinical PK data of APA-mediated accelerated blood clearance of pegloticase, as well as APA-dependent elimination of PEGyated liposomes in mice. Our model predicts that the prolonged circulation of PEGylated drugs will be compromised only at APA concentrations greater than ~500 ng/mL, providing a quantitative explanation to why the effects of APA on PEGylated treatments appear to be limited in most patients. This mPBPK model is readily adaptable to other PEGylated drugs and particles to predict the precise levels of APA that could render them ineffective, providing a powerful tool to support the development and interpretation of preclinical and clinical studies of various PEGylated therapeutics.
Collapse
Affiliation(s)
- M D McSweeney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - T Wessler
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA.
| | - L S L Price
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - E C Ciociola
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - L B Herity
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - J A Piscitelli
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - W C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - M G Forest
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA.
| | - Y Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - S K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Zhang N, Zhang J, Wang P, Liu X, Huo P, Xu Y, Chen W, Xu H, Tian Q. Investigation of an antitumor drug-delivery system based on anti-HER2 antibody-conjugated BSA nanoparticles. Anticancer Drugs 2018; 29:307-322. [PMID: 29381491 DOI: 10.1097/cad.0000000000000586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Conjugation of a monoclonal antibody with a nanoparticle often improves its specificity and drug loading in cancer therapy. In this study, we prepared a novel targeting nanodrug-delivery system using 2-methoxy-estradiol (2-ME) based on anti-human epidermal growth factor receptor 2 (HER2) antibody-modified BSA to improve the clinical application and antitumor effect of 2-ME. 2-ME-loaded albumin nanoparticles (2-ME-BSANPs) were prepared using a desolvation method and the anti-HER2 antibodies were conjugated to 2-ME-BSANPs (HER2-2-ME-BSANPs) using the coupling agent, succinimidyl 3-(2-pyridyldithio)propionate. HER2-2-ME-BSANPs were characterized using SDS-polyacrylamide gel electrophoresis, an agglutination test, and an immunofluorescence assay. We found that mouse anti-human anti-HER2 monoclonal antibody was successfully conjugated to the 2-ME-BSANPs. Thereafter, the in-vitro and in-vivo toxicities were evaluated using two cancer cell lines, SK-BR-3 (HER2-overexpressing) and MCF-7 (HER2-underexpressing), using classic pharmacological methods and in-vivo imaging technology. We found that the HER2-2-ME-BSANPs retained the immunospecificity of the anti-HER2 monoclonal antibody, rapidly localized to HER2 receptors, and could be used for targeted cancer therapy.
Collapse
Affiliation(s)
| | | | - Pei Wang
- School of Pharmaceutical Sciences
| | | | | | - Yue Xu
- School of Pharmaceutical Sciences
| | | | | | - Qingfeng Tian
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Contreras-Sandoval AM, Merino M, Vasquez M, Trocóniz IF, Berraondo P, Garrido MJ. Correlation between anti-PD-L1 tumor concentrations and tumor-specific and nonspecific biomarkers in a melanoma mouse model. Oncotarget 2018; 7:76891-76901. [PMID: 27764774 PMCID: PMC5363557 DOI: 10.18632/oncotarget.12727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023] Open
Abstract
Blockade of PD-L1 with specific monoclonal antibodies (anti-PD-L1) represents a therapeutic strategy to increase the capability of the immune system to modulate the tumor immune-resistance. The relationship between anti-PD-L1 tumor exposition and anti-tumor effect represents a challenge that has been addressed in this work through the identification of certain biomarkers implicated in the antibody's mechanism of action, using a syngeneic melanoma mouse model. The development of an in-vitro/in-vivo platform has allowed us to investigate the PD-L1 behavior after its blockage with anti-PD-L1 at cellular level and in animals. In-vitro studies showed that the complex PD-L1/anti-PD-L1 was retained mainly at the cell surface. The antibody concentration and time exposure affected directly the recycling or ligand turnover. In-vivo studies showed that anti-PD-L1 was therapeutically active at all stage of the disease, with a rapid onset, a low but durable efficacy and non-relevant toxic effect. This efficacy measured as tumor shrinkage correlated with tumor-specific infiltrating lymphocytes (TILs), which increased as antibody tumor concentrations increased. Both, TILS and antibody concentrations followed similar kinetic patterns, justifying the observed anti-PD-L1 rapid onset. Interestingly, peripheral lymphocytes (PBLs) behave as infiltrating lymphocytes, suggesting that these PBLs might be considered as a possible biomarker for antibody activity.
Collapse
Affiliation(s)
- Ana M Contreras-Sandoval
- School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| | - María Merino
- School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Iñaki F Trocóniz
- School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - María J Garrido
- School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
31
|
Khatri A, Othman AA. Population Pharmacokinetics of the TNF-α and IL-17A Dual-Variable Domain Antibody ABT-122 in Healthy Volunteers and Subjects With Psoriatic or Rheumatoid Arthritis: Analysis of Phase 1 and 2 Clinical Trials. J Clin Pharmacol 2018; 58:803-813. [DOI: 10.1002/jcph.1068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Amit Khatri
- Clinical Pharmacology and Pharmacometrics; AbbVie; North Chicago IL USA
| | - Ahmed A. Othman
- Clinical Pharmacology and Pharmacometrics; AbbVie; North Chicago IL USA
| |
Collapse
|
32
|
Yasunaga M, Manabe S, Furuta M, Ogata K, Koga Y, Takashima H, Nishida T, Matsumura Y. Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.2.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 21-22:75-83. [PMID: 27978991 DOI: 10.1016/j.ddtec.2016.09.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 01/10/2023]
Abstract
Monoclonal antibodies (mAbs) are an important therapeutic class with complex pharmacology and interdependent pharmacokinetic (PK) and pharmacodynamics (PD) properties. Understanding the PK and PD of mAbs and their biological and mechanistic underpinnings are crucial in enabling their design and selection, designing appropriate efficacy and toxicity studies, translating PK/PD parameters to humans, and optimizing dose and regimen to maximize success in the clinic. Significant progress has been made in this field however many critical questions still remain. This article gives a brief overview of the PK and PD of mAbs, factors that influence them, and areas of ongoing inquiry. Current tools and translational approaches to predict the PK/PD of mAbs in humans are also discussed.
Collapse
|
34
|
van Brummelen EMJ, Ros W, Wolbink G, Beijnen JH, Schellens JHM. Antidrug Antibody Formation in Oncology: Clinical Relevance and Challenges. Oncologist 2016; 21:1260-1268. [PMID: 27440064 DOI: 10.1634/theoncologist.2016-0061] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/09/2016] [Indexed: 12/12/2022] Open
Abstract
: In oncology, an increasing number of targeted anticancer agents and immunotherapies are of biological origin. These biological drugs may trigger immune responses that lead to the formation of antidrug antibodies (ADAs). ADAs are directed against immunogenic parts of the drug and may affect efficacy and safety. In other medical fields, such as rheumatology and hematology, the relevance of ADA formation is well established. However, the relevance of ADAs in oncology is just starting to be recognized, and literature on this topic is scarce. In an attempt to fill this gap in the literature, we provide an up-to-date status of ADA formation in oncology. In this focused review, data on ADAs was extracted from 81 clinical trials with biological anticancer agents. We found that most biological anticancer drugs in these trials are immunogenic and induce ADAs (63%). However, it is difficult to establish the clinical relevance of these ADAs. In order to determine this relevance, the possible effects of ADAs on pharmacokinetics, efficacy, and safety parameters need to be investigated. Our data show that this was done in fewer than 50% of the trials. In addition, we describe the incidence and consequences of ADAs for registered agents. We highlight the challenges in ADA detection and argue for the importance of validating, standardizing, and describing well the used assays. Finally, we discuss prevention strategies such as immunosuppression and regimen adaptations. We encourage the launch of clinical trials that explore these strategies in oncology. IMPLICATIONS FOR PRACTICE Because of the increasing use of biologicals in oncology, many patients are at risk of developing antidrug antibodies (ADAs) during therapy. Although clinical consequences are uncertain, ADAs may affect pharmacokinetics, patient safety, and treatment efficacy. ADA detection and reporting is currently highly inconsistent, which makes it difficult to evaluate the clinical consequences. Standardized reporting of ADA investigations in the context of the aforementioned parameters is critical to understanding the relevance of ADA formation for each drug. Furthermore, the development of trials that specifically aim to investigate clinical prevention strategies in oncology is needed.
Collapse
Affiliation(s)
- Emilie M J van Brummelen
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Willeke Ros
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gertjan Wolbink
- Immunopathology, Sanquin Research, Amsterdam, The Netherlands Reade Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy, The Netherlands Cancer Institute, Amsterdam, The Netherlands Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
35
|
The Role of Aggregates of Therapeutic Protein Products in Immunogenicity: An Evaluation by Mathematical Modeling. J Immunol Res 2015; 2015:401956. [PMID: 26682236 PMCID: PMC4670651 DOI: 10.1155/2015/401956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/07/2015] [Indexed: 01/12/2023] Open
Abstract
Therapeutic protein products (TPP) have been widely used to treat a variety of human diseases, including cancer, hemophilia, and autoimmune diseases. However, TPP can induce unwanted immune responses that can impact both drug efficacy and patient safety. The presence of aggregates is of particular concern as they have been implicated in inducing both T cell-independent and T cell-dependent immune responses. We used mathematical modeling to evaluate several mechanisms through which aggregates of TPP could contribute to the development of immunogenicity. Modeling interactions between aggregates and B cell receptors demonstrated that aggregates are unlikely to induce T cell-independent immune responses by cross-linking B cell receptors because the amount of signal transducing complex that can form under physiologically relevant conditions is limited. We systematically evaluate the role of aggregates in inducing T cell-dependent immune responses using a recently developed multiscale mechanistic mathematical model. Our analysis indicates that aggregates could contribute to T cell-dependent immune response by inducing high affinity epitopes which may not be present in the nonaggregated TPP and/or by enhancing danger signals to break tolerance. In summary, our computational analysis is suggestive of novel insights into the mechanisms underlying aggregate-induced immunogenicity, which could be used to develop mitigation strategies.
Collapse
|
36
|
Edlund H, Melin J, Parra-Guillen ZP, Kloft C. Pharmacokinetics and pharmacokinetic-pharmacodynamic relationships of monoclonal antibodies in children. Clin Pharmacokinet 2015; 54:35-80. [PMID: 25516414 DOI: 10.1007/s40262-014-0208-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Monoclonal antibodies (mAbs) constitute a therapeutically and economically important drug class with increasing use in both adult and paediatric patients. The rather complex pharmacokinetic and pharmacodynamic properties of mAbs have been extensively reviewed in adults. In children, however, limited information is currently available. This paper aims to comprehensively review published pharmacokinetic and pharmacokinetic-pharmacodynamic studies of mAbs in children. The current status of mAbs in the USA and in Europe is outlined, including a critical discussion of the dosing strategies of approved mAbs. The pharmacokinetic properties of mAbs in children are exhaustively summarised along with comparisons to reports in adults: for each pharmacokinetic process, we discuss the general principles and mechanisms of the pharmacokinetic/pharmacodynamic characteristics of mAbs, as well as key growth and maturational processes in children that might impact these characteristics. Throughout this review, considerable knowledge gaps are identified, especially regarding children-specific properties that influence pharmacokinetics, pharmacodynamics and immunogenicity. Furthermore, the large heterogeneity in the presentation of pharmacokinetic/pharmacodynamic data limited clinical inferences in many aspects of paediatric mAb therapy. Overall, further studies are needed to fully understand the impact of body size and maturational changes on drug exposure and response. To maximise future knowledge gain, we propose a 'Guideline for Best Practice' on how to report pharmacokinetic and pharmacokinetic-pharmacodynamic results from mAb studies in children which also facilitates comparisons. Finally, we advocate the use of more sophisticated modelling strategies (population analysis, physiology-based approaches) to appropriately characterise pharmacokinetic-pharmacodynamic relationships of mAbs and, thus, allow for a more rational use of mAb in the paediatric population.
Collapse
Affiliation(s)
- Helena Edlund
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | | | | | | |
Collapse
|
37
|
Therapeutic outcomes, assessments, risk factors and mitigation efforts of immunogenicity of therapeutic protein products. Cell Immunol 2015; 295:118-26. [DOI: 10.1016/j.cellimm.2015.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
|