1
|
Radenković L, Karanović J, Pantović-Stefanović M, Lazić D, Brajušković G, Ivković M, Pešović J, Savić-Pavićević D. Dynamic Model of Serotonin Presynapse and Its Application to Suicide Attempt in Patients with Bipolar Disorder. Int J Mol Sci 2025; 26:4085. [PMID: 40362322 PMCID: PMC12072092 DOI: 10.3390/ijms26094085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Suicide attempts are prevalent among patients with bipolar disorder (BD). Impaired serotonin (5-HT) system in the pathogenesis of suicide attempt is partially heritable. To quantify the combined effects of multiple genetic variants, we developed a dynamic model of the 5-HT presynapse with functionally integrated individual genetic variants. The model includes five genetic variants in 5-HT system genes (TPH2, SLC6A4, MAOA) and quantitatively assesses their influence on 5-HT synthesis, reuptake, and degradation. The model was validated on 140 unaffected individuals and tested on 101 BD patients. Predicted mean concentrations of 5-HT, 5-HT precursor, and degradation product were compared between BD patients with and without a history of attempted suicide, and unaffected individuals. The model consists of eight differential equations that describe the temporal concentration change of model outputs. Calculated concentrations in unaffected control individuals aligned with published experimentally measured values, validating our model. BD patients with a history of suicide attempt showed lower calculated concentrations of 5-HT degradation product 5-hydroxy-3-indolacetic acid (5-HIAA) compared to unaffected individuals (p = 0.044). Additionally, higher calculated concentrations of free cellular 5-HT (p = 0.048) and stored 5-HT (p = 0.047), with the effect size d = 0.35, were observed when comparing suicide attempters to non-attempters.. Our approach illuminated a complex interplay of genetic variants in 5-HT system genes that contributes to the risk of suicide attempt, with quantitative and personalized outputs unattainable through genetic association studies.
Collapse
Affiliation(s)
- Lana Radenković
- University of Belgrade-Faculty of Biology, Centre for Human Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia; (L.R.); (D.L.); (G.B.); (J.P.)
| | - Jelena Karanović
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia;
| | - Maja Pantović-Stefanović
- Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia; (M.P.-S.); (M.I.)
- University of Belgrade-Faculty of Medicine, Doktora Subotića 8, 11000 Belgrade, Serbia
| | - Dušan Lazić
- University of Belgrade-Faculty of Biology, Centre for Human Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia; (L.R.); (D.L.); (G.B.); (J.P.)
| | - Goran Brajušković
- University of Belgrade-Faculty of Biology, Centre for Human Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia; (L.R.); (D.L.); (G.B.); (J.P.)
| | - Maja Ivković
- Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia; (M.P.-S.); (M.I.)
- University of Belgrade-Faculty of Medicine, Doktora Subotića 8, 11000 Belgrade, Serbia
| | - Jovan Pešović
- University of Belgrade-Faculty of Biology, Centre for Human Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia; (L.R.); (D.L.); (G.B.); (J.P.)
| | - Dušanka Savić-Pavićević
- University of Belgrade-Faculty of Biology, Centre for Human Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia; (L.R.); (D.L.); (G.B.); (J.P.)
| |
Collapse
|
2
|
Mavros CF, Bongers M, Neergaard FBF, Cusimano F, Sun Y, Kaufman A, Richardson M, Kammler S, Kristensen M, Sommer MOA, Wang HH. Bacteria Engineered to Produce Serotonin Modulate Host Intestinal Physiology. ACS Synth Biol 2024; 13:4002-4014. [PMID: 39601776 PMCID: PMC12016422 DOI: 10.1021/acssynbio.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bacteria in the gastrointestinal tract play a crucial role in intestinal motility, homeostasis, and dysfunction. Unraveling the mechanisms by which microbes impact the host poses many challenges due to the extensive array of metabolites produced or metabolized by bacteria in the gut. Here, we describe the engineering of a gut commensal bacterium, Escherichia coli Nissle 1917, to biosynthesize the human metabolite serotonin for examining the effects of microbially produced biogenic amines on host physiology. Upon oral administration to mice, our engineered bacteria reach the large intestine, where they produce serotonin. Mice treated with serotonin-producing bacteria exhibited biological changes in the gut at transcriptional and physiological levels. This work establishes a novel framework employing engineered bacteria to modulate luminal serotonin levels and suggests potential clinical applications of modified microbial therapeutics to address gut disorders in humans.
Collapse
Affiliation(s)
- Chrystal F. Mavros
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mareike Bongers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark
| | - Frederik B. F. Neergaard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark
| | - Frank Cusimano
- Department of Nutritional and Metabolic Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yiwei Sun
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew Kaufman
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Miles Richardson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Susanne Kammler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark
| | - Mette Kristensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark
| | - Morten O. A. Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark
| | - Harris H. Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Fitzpatrick PF, Daubner SC. Biochemical and biophysical approaches to characterization of the aromatic amino acid hydroxylases. Methods Enzymol 2024; 704:345-361. [PMID: 39300655 DOI: 10.1016/bs.mie.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase utilize a non-heme iron to catalyze the hydroxylation of the aromatic rings of their amino acid substrates, with a tetrahydropterin serving as the source of the electrons necessary for the monooxygenation reaction. These enzymes have been subjected to a variety of biochemical and biophysical approaches, resulting in a detailed understanding of their structures and mechanism. We summarize here the experimental approaches that have led to this understanding.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States.
| | - S Colette Daubner
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Wang B, Xu JZ, Liu S, Rao ZM, Zhang WG. Engineering of human tryptophan hydroxylase 2 for efficient synthesis of 5-hydroxytryptophan. Int J Biol Macromol 2024; 260:129484. [PMID: 38242416 DOI: 10.1016/j.ijbiomac.2024.129484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
L-Tryptophan hydroxylation catalyzed by tryptophan hydroxylase (TPH) presents a promising method for synthesizing 5-hydroxytryptophan (5-HTP), yet the limited activity of wild-type human TPH2 restricts its application. A high-activity mutant, MT10 (H318E/H323E), was developed through semi-rational active site saturation testing (CAST) of wild-type TPH2, exhibiting a 2.85-fold increase in kcat/Km over the wild type, thus enhancing catalytic efficiency. Two biotransformation systems were developed, including an in vitro one-pot system and a Whole-Cell Catalysis System (WCCS). In the WCCS, MT10 achieved a conversion rate of only 31.5 % within 32 h. In the one-pot reaction, MT10 converted 50 mM L-tryptophan to 44.5 mM 5-HTP within 8 h, achieving an 89 % conversion rate, outperforming the M1 (NΔ143/CΔ26) variant. Molecular dynamics simulations indicated enhanced interactions of MT10 with the substrate, suggesting improved binding affinity and system stability. This study offers an effective approach for the efficient production of 5-HTP.
Collapse
Affiliation(s)
- BingBing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China.
| |
Collapse
|
5
|
Song F, Gu T, Zhang L, Zhang J, You S, Qi W, Su R. Rational design of tryptophan hydroxylation 1 for improving 5-Hydroxytryptophan production. Enzyme Microb Technol 2023; 165:110198. [PMID: 36736156 DOI: 10.1016/j.enzmictec.2023.110198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
5-Hydroxytryptophan (5-HTP) is a chemical precursor of serotonin, which synthesizes melatonin and serotonin in animals and regulates mood, sleep, and behavior. Tryptophan hydroxylase (TPH) uses tetrahydrobiopterin (BH4) as a cofactor to hydroxylate L-tryptophan (L-Trp) to 5-HTP, and the low catalytic activity of TPH limits the rate of hydroxylation of L-Trp. In this study, the catalytic mechanism and structural features of L-Trp-TPH1-BH4 were investigated, and the catalytic activity was improved using a rational design strategy. Then the S337A/F318Y beneficial mutation was obtained. Molecular dynamics simulations showed that the S337A/F318Y mutant formed a salt bridge with TPH1 while forming an additional hydrogen bond with the substrate indole ring, stabilizing the indole ring and enhancing the binding affinity of the variant to L-Trp. As a result, the yield of 5-HTP was increased by 2.06-fold, resulting in the production of 0.91 g/L of 5-HTP. The rational design of the TPH structure to improve the hydroxylation efficiency of L-Trp offers the prospect of green production of 5-HTP.
Collapse
Affiliation(s)
- Feifei Song
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Tao Gu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Lin Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
6
|
Xie X, Ding D, Bai D, Zhu Y, Sun W, Sun Y, Zhang D. Melatonin biosynthesis pathways in nature and its production in engineered microorganisms. Synth Syst Biotechnol 2022; 7:544-553. [PMID: 35087957 PMCID: PMC8761603 DOI: 10.1016/j.synbio.2021.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Melatonin is a biogenic amine that can be found in plants, animals and microorganism. The metabolic pathway of melatonin is different in various organisms, and biosynthetic endogenous melatonin acts as a molecular signal and antioxidant protection against external stress. Microbial synthesis pathways of melatonin are similar to those of animals but different from those of plants. At present, the method of using microorganism fermentation to produce melatonin is gradually prevailing, and exploring the biosynthetic pathway of melatonin to modify microorganism is becoming the mainstream, which has more advantages than traditional chemical synthesis. Here, we review recent advances in the synthesis, optimization of melatonin pathway. l-tryptophan is one of the two crucial precursors for the synthesis of melatonin, which can be produced through a four-step reaction. Enzymes involved in melatonin synthesis have low specificity and catalytic efficiency. Site-directed mutation, directed evolution or promotion of cofactor synthesis can enhance enzyme activity and increase the metabolic flow to promote microbial melatonin production. On the whole, the status and bottleneck of melatonin biosynthesis can be improved to a higher level, providing an effective reference for future microbial modification.
Collapse
Affiliation(s)
- Xiaotong Xie
- Dalian Polytechnic University, Dalian, 116000, PR China
| | - Dongqin Ding
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Danyang Bai
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Yaru Zhu
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Wei Sun
- Tianjin University of science and technology, Tianjin, 300308, PR China
| | - Yumei Sun
- Dalian Polytechnic University, Dalian, 116000, PR China
- Corresponding author.
| | - Dawei Zhang
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Corresponding author. Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| |
Collapse
|
7
|
Direct coordination of pterin to Fe II enables neurotransmitter biosynthesis in the pterin-dependent hydroxylases. Proc Natl Acad Sci U S A 2021; 118:2022379118. [PMID: 33876764 PMCID: PMC8053929 DOI: 10.1073/pnas.2022379118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.
Collapse
|
8
|
Alrashidi H, Eaton S, Heales S. Biochemical characterization of proliferative and differentiated SH-SY5Y cell line as a model for Parkinson's disease. Neurochem Int 2021; 145:105009. [PMID: 33684546 DOI: 10.1016/j.neuint.2021.105009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a multifactorial neurodegenerative disease. The cellular pathology includes dopamine depletion, decrease in mitochondrial complex I enzyme activity, lysosomal glucocerebrosidase enzyme activity and glutathione levels. The SH-SY5Y human neuroblastoma cell line is one of the most widely used cell line models for Parkinson's disease. However, the consensus on its suitability as a model in its proliferative or differentiated state is lacking. In this study, we characterized and compared the biochemical processes most often studied in PD. This in proliferative and differentiated phenotypes of SH-SY5Y cells and several differences were found. Most notably, extracellular dopamine metabolism was significantly higher in differentiated SH-SY5Y. Furthermore, there was a greater variability in glutathione levels in proliferative phenotype (+/- 49%) compared to differentiated (+/- 16%). Finally, enzyme activity assay revealed significant increase in the lysosomal enzyme glucocerebrosidase activity in differentiated phenotype. In contrast, our study has found similarities between the two phenotypes in mitochondrial electron transport chain activity and tyrosine hydroxylase protein expression. The results of this study demonstrate that despite coming from the same cell line, these cells possess some key differences in their biochemistry. This highlights the importance of careful characterization of relevant disease pathways to assess the suitability of cell lines, such as SH-SY5Y cells, for modelling PD or other diseases, i.e. when using the same cell line but different differentiation states.
Collapse
Affiliation(s)
- Haya Alrashidi
- Genetics and Genomic Medicine, GOS Institute of Child Health, University College London, London, UK; Biochemistry Division, Faculty of Science, Kuwait University, Kuwait
| | - Simon Eaton
- Development Biology and Cancer, GOS Institute of Child Health, University College London, London, UK.
| | - Simon Heales
- Genetics and Genomic Medicine, GOS Institute of Child Health, University College London, London, UK; Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
9
|
Enhanced production of 5-hydroxytryptophan through the regulation of L-tryptophan biosynthetic pathway. Appl Microbiol Biotechnol 2020; 104:2481-2488. [PMID: 32006050 DOI: 10.1007/s00253-020-10371-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/01/2020] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
Abstract
5-Hydroxytryptophan (5-HTP) is the precursor of the neurotransmitter serotonin and has been used for the treatment of various diseases such as depression, insomnia, chronic headaches, and binge eating associated obesity. The production of 5-HTP had been achieved in our previous report, by the development of a recombinant strain containing two plasmids for biosynthesis of L-tryptophan (L-trp) and subsequent hydroxylation. In this study, the L-trp biosynthetic pathway was further integrated into the E. coli genome, and the promoter strength of 3-deoxy-7-phosphoheptulonate synthase, which catalyzes the first step of L-trp biosynthesis, was engineered to increase the production of L-trp. Hence, the 5-HTP production could be manipulated by the regulation of copy number of L-trp hydroxylation plasmid. Finally, the 5-HTP production was increased to 1.61 g/L in the shaking flasks, which was 24% improvement comparing to the original producing strain, while the content of residual L-trp was successfully reduced from 1.66 to 0.2 g/L, which is beneficial for the downstream separation and purification. Our work shall promote feasible progresses for the industrial production of 5-HTP.
Collapse
|
10
|
Kashi AA, Davis RW, Phair RD. The IDO Metabolic Trap Hypothesis for the Etiology of ME/CFS. Diagnostics (Basel) 2019; 9:E82. [PMID: 31357483 PMCID: PMC6787624 DOI: 10.3390/diagnostics9030082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating noncommunicable disease brandishing an enormous worldwide disease burden with some evidence of inherited genetic risk. Absence of measurable changes in patients' standard blood work has necessitated ad hoc symptom-driven therapies and a dearth of mechanistic hypotheses regarding its etiology and possible cure. A new hypothesis, the indolamine-2,3-dioxygenase (IDO) metabolic trap, was developed and formulated as a mathematical model. The historical occurrence of ME/CFS outbreaks is a singular feature of the disease and implies that any predisposing genetic mutation must be common. A database search for common damaging mutations in human enzymes produces 208 hits, including IDO2 with four such mutations. Non-functional IDO2, combined with well-established substrate inhibition of IDO1 and kinetic asymmetry of the large neutral amino acid transporter, LAT1, yielded a mathematical model of tryptophan metabolism that displays both physiological and pathological steady-states. Escape from the pathological one requires an exogenous perturbation. This model also identifies a critical point in cytosolic tryptophan abundance beyond which descent into the pathological steady-state is inevitable. If, however, means can be discovered to return cytosolic tryptophan below the critical point, return to the normal physiological steady-state is assured. Testing this hypothesis for any cell type requires only labelled tryptophan, a means to measure cytosolic tryptophan and kynurenine, and the standard tools of tracer kinetics.
Collapse
Affiliation(s)
- Alex A Kashi
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Departments of Biochemistry and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Robert D Phair
- Integrative Bioinformatics Inc., Mountain View, CA 94041, USA.
| |
Collapse
|
11
|
Tidemand KD, Peters GH, Harris P, Stensgaard E, Christensen HEM. Isoform-Specific Substrate Inhibition Mechanism of Human Tryptophan Hydroxylase. Biochemistry 2017; 56:6155-6164. [PMID: 29035515 DOI: 10.1021/acs.biochem.7b00763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tryptophan hydroxylase (TPH) catalyzes the initial and rate-limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression and irritable bowel syndrome. TPH exists in two isoforms: TPH1 and TPH2. TPH1 catalyzes the initial step in the synthesis of serotonin in the peripheral tissues, while TPH2 catalyzes this step in the brain. In this study, the steady-state kinetic mechanism for the catalytic domain of human TPH1 has been determined. Varying substrate tryptophan (Trp) and tetrahydrobiopterin (BH4) results in a hybrid Ping Pong-ordered mechanism in which the reaction can either occur through a Ping Pong or a sequential mechanism depending on the concentration of tryptophan. The catalytic domain of TPH1 shares a sequence identity of 81% with TPH2. Despite the high sequence identity, differences in the kinetic parameters of the isoforms have been identified; i.e., only TPH1 displays substrate tryptophan inhibition. This study demonstrates that the difference can be traced to an active site loop which displays different properties in the TPH isoforms. Steady-state kinetic results of the isoforms, and variants with point mutations in a loop lining the active site, show that the kinetic parameters of only TPH1 are significantly changed upon mutations. Mutations in the active site loop of TPH1 result in an increase in the substrate inhibition constant, Ki, and therefore turnover rate. Molecular dynamics simulations reveal that this substrate inhibition mechanism occurs through a closure of the cosubstrate, BH4, binding pocket, which is induced by Trp binding.
Collapse
Affiliation(s)
- Kasper D Tidemand
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Günther H Peters
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Eva Stensgaard
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Hans E M Christensen
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Tidemand KD, Christensen HEM, Hoeck N, Harris P, Boesen J, Peters GH. Stabilization of tryptophan hydroxylase 2 by l-phenylalanine-induced dimerization. FEBS Open Bio 2016; 6:987-999. [PMID: 27761358 PMCID: PMC5055035 DOI: 10.1002/2211-5463.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022] Open
Abstract
Tryptophan hydroxylase 2 (TPH2) catalyses the initial and rate‐limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression, obsessive compulsive disorder, and schizophrenia. Full‐length TPH2 is poorly characterized due to low purification quantities caused by its inherent instability. Three truncated variants of human TPH2 (rchTPH2; regulatory and catalytic domain, NΔ47‐rchTPH2; truncation of 47 residues in the N terminus of rchTPH2, and chTPH2; catalytic domain) were expressed, purified, and examined for changes in transition temperature, inactivation rate, and oligomeric state. chTPH2 displayed 14‐ and 11‐fold higher half‐lives compared to rchTPH2 and NΔ47‐rchTPH2, respectively. Differential scanning calorimetry experiments demonstrated that this is caused by premature unfolding of the less stable regulatory domain. By differential scanning fluorimetry, the unfolding transitions of rchTPH2 and NΔ47‐rchTPH2 are found to shift from polyphasic to apparent two‐state by the addition of l‐Trp or l‐Phe. Analytical gel filtration revealed that rchTPH2 and NΔ47‐rchTPH2 reside in a monomer–dimer equilibrium which is significantly shifted toward dimer in the presence of l‐Phe. The dimerizing effect induced by l‐Phe is accompanied by a stabilizing effect, which resulted in a threefold increase in half‐lives of rchTPH2 and NΔ47‐rchTPH2. Addition of l‐Phe to the purification buffer significantly increases the purification yields, which will facilitate characterization of hTPH2.
Collapse
Affiliation(s)
- Kasper D Tidemand
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| | | | - Niclas Hoeck
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| | - Pernille Harris
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| | - Jane Boesen
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| | - Günther H Peters
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| |
Collapse
|
13
|
Islahudin F, Tindall SM, Mellor IR, Swift K, Christensen HEM, Fone KCF, Pleass RJ, Ting KN, Avery SV. The antimalarial drug quinine interferes with serotonin biosynthesis and action. Sci Rep 2014; 4:3618. [PMID: 24402577 PMCID: PMC3885885 DOI: 10.1038/srep03618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/10/2013] [Indexed: 02/02/2023] Open
Abstract
The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmitter serotonin (5-HT), here we test the hypothesis that quinine disrupts serotonin function. Quinine inhibited serotonin-induced proliferation of yeast as well as human (SHSY5Y) cells. One possible cause of this effect is through inhibition of 5-HT receptor activation by quinine, as we observed here. Furthermore, cells exhibited marked decreases in serotonin production during incubation with quinine. By assaying activity and kinetics of the rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase (TPH2), we showed that quinine competitively inhibits TPH2 in the presence of the substrate tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells.
Collapse
Affiliation(s)
- Farida Islahudin
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- School of Pharmacy, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia
- Current address: Faculty of Pharmacy, University of Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Sarah M. Tindall
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ian R. Mellor
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Karen Swift
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Kevin C. F. Fone
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Richard J. Pleass
- University of Liverpool, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kang-Nee Ting
- School of Life Sciences, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|