1
|
Ioannidis I, Kokonopoulou V, Pashalidis I. Polyethylene terephthalate (PET) microplastics as radionuclide (U-232) carriers: Surface alteration matters the most. CHEMOSPHERE 2024; 363:142970. [PMID: 39084298 DOI: 10.1016/j.chemosphere.2024.142970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/31/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Polyethylene terephthalate (PET) plastics find widespread use in various aspects of our daily lives but often end up in the environment as (micro)plastic waste. In this study, the adsorption efficiency of PET microplastics for U-232 has been investigated prior and after surface alteration (e.g. oxidation (PET-ox), MnO2-coating (PET/MnO2) and biofilm-formation (PET/Biofilm)) in the laboratory (at pH 4, 7 and 9) and seawater samples under ambient conditions and as a function of temperature. The results revealed a significant increase in the adsorption efficiency upon surface alteration, particularly after biofilm development on the MP's surface. Specifically, the Kd values evaluated for the adsorption of U-232 by PET, PET-ox, PET/MnO2 and PET/Biofilm are 12, 27, 73 and 363, respectively, at pH 7 and under ambient conditions. The significantly higher adsorption efficiency of the altered and particularly biofilm-coated PET, emphasizes the significance of surface alteration, which may occur under environmental conditions. In addition, according to the thermodynamic investigations the adsorption of U-232 by PET-MPs (both non-treated and modified), the adsorption is an endothermic and entropy-driven reaction. A similar behavior has been also observed using seawater solutions and assumes that surface alteration is expected to enhance the radionuclide, stability, mobility and bioavailability in environmental water systems.
Collapse
Affiliation(s)
- Ioannis Ioannidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Vaia Kokonopoulou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.
| |
Collapse
|
2
|
Kumari B, Chauhan S, Chauhan GS, Kumar K, Jamwal P, Ranote S. A two-in-one thiosemicarbazide and whole pine needle-based adsorbent for rapid and efficient adsorption of methylene blue dye and mercuric ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21591-21609. [PMID: 38396177 DOI: 10.1007/s11356-024-32446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Herein, we report the synthesis of an oxidized pine needle-thiosemicarbazone Schiff base (OPN-TSC) from whole pine needles (WPN) as a dual-purpose adsorbent to remove a cationic dye, methylene blue (MB), and Hg2+ ions in separate processes. The adsorbent was synthesized by periodate oxidation of WPN followed by a reaction with thiosemicarbazide. The syntheses of OPN and OPN-TSC were confirmed by FTIR, XRD, FESEM, EDS, BET, and surface charge analysis. The emergence of new peaks at 1729 cm-1 (-CHO stretching) and 1639 cm-1 (-COO- stretching) in the FTIR spectrum of OPN confirmed the oxidation of WPN to OPN. FTIR spectrum of OPN-TSC has a peak at 1604 cm-1 (C = N stretching), confirming the functionalization of OPN to OPN-TSC. XRD studies revealed an increase in the crystallinity of OPN and a decrease in the crystallinity of OPN-TSC because of the attachment of thiosemicarbazide to OPN. The values of %removal for MB and Hg2+ ions by OPN-TSC were found to be 87.36% and 98.2% with maximum adsorption capacity of 279.3 mg/g and 196 mg/g for MB and Hg2+ ions, respectively. The adsorption of MB followed pseudo-second-order kinetics with correlation coefficient (R2 of 0.99383) and Freundlich isotherm (R2 = 0.97239), whereas Hg2+ ion removal demonstrated the Elovich (R2 = 0.97076) and Langmuir isotherm (R2 = 0.95110). OPN-TSC is regenerable with significant recyclability up to 10 cycles for both the adsorbates. The studies established OPN-TSC as a low-cost, sustainable, biodegradable, environmentally benign, and promising adsorbent for the removal of hazardous cationic dyes and toxic metal ions from wastewater and industrial effluents, especially the textile effluents.
Collapse
Affiliation(s)
- Babita Kumari
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005
| | - Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005.
| | - Ghanshyam S Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005
| | - Kiran Kumar
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005
| | - Pooja Jamwal
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005
| | - Sunita Ranote
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St, 41-819, Zabrze, Poland
| |
Collapse
|
3
|
Boussouga YA, Joseph J, Stryhanyuk H, Richnow HH, Schäfer AI. Adsorption of uranium (VI) complexes with polymer-based spherical activated carbon. WATER RESEARCH 2024; 249:120825. [PMID: 38118222 DOI: 10.1016/j.watres.2023.120825] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 12/22/2023]
Abstract
Adsorption processes with carbon-based adsorbents have received substantial attention as a solution to remove uranium from drinking water. This study investigated uranium adsorption by a polymer-based spherical activated carbon (PBSAC) characterised by a uniformly smooth exterior and an extended surface of internal cavities accessible via mesopores. The static adsorption of uranium was investigated applying varying PBSAC properties and relevant solution chemistry. Spatial time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to visualise the distribution of the different uranium species in the PBSAC. The isotherms and thermodynamics calculations revealed monolayer adsorption capacities of 28-667 mg/g and physical adsorption energies of 13-21 kJ/mol. Increasing the surface oxygen content of the PBSAC to 10 % enhanced the adsorption and reduced the equilibrium time to 2 h, while the WHO drinking water guideline of 30 µgU/L could be achieved for an initial concentration of 250 µgU/L. Uranium adsorption with PBSAC was favourable at the pH 6-8. At this pH range, uranyl carbonate complexes (UO2CO3(aq), UO2(CO3)22-, (UO2)2CO3(OH)3-) predominated in the solution, and the ToF-SIMS analysis revealed that the adsorption of these complexes occurred on the surface and inside the PBSAC due to intra-particle diffusion. For the uranyl cations (UO22+, UO2OH+) at pH 2-4, only shallow adsorption in the outermost PBSAC layers was observed. The work demonstrated the effective removal of uranium from contaminated natural water (67 µgU/L) and meeting both German (10 µgU/L) and WHO guideline concentrations. These findings also open opportunities to consider PBSAC in hybrid treatment technologies for uranium removal, for instance, from high-level radioactive waste.
Collapse
Affiliation(s)
- Youssef-Amine Boussouga
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - James Joseph
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, ProVIS-Centre for Chemical Microscopy, Helmholtz, Center for Environmental Research (UFZ), Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, ProVIS-Centre for Chemical Microscopy, Helmholtz, Center for Environmental Research (UFZ), Leipzig, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
4
|
Sharma AK, Ghodke PK, Goyal N, Bobde P, Kwon EE, Lin KYA, Chen WH. A critical review on biochar production from pine wastes, upgradation techniques, environmental sustainability, and challenges. BIORESOURCE TECHNOLOGY 2023; 387:129632. [PMID: 37562491 DOI: 10.1016/j.biortech.2023.129632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Pine wastes, including pine needles, cones, and wood, are abundantly produced as an agroforestry by-product globally and have shown tremendous potential for biochar production. Various thermochemical conversion technologies have exhibited promising results in converting pine wastes to biochar, displaying impressive performance. Hence, this review paper aims to investigate the possibilities and recent technological advancements for synthesizing biochar from pine waste. Furthermore, it explores techniques for enhancing the properties of biochar and its integrated applications in various fields, such as soil and water remediation, carbon sequestration, battery capacitor synthesis, and bio-coal production. Finally, the paper sheds light on the limitations of current strategies, emphasizing the need for further research and study to address the challenges in pine waste-based biochar synthesis. By promoting sustainable and effective utilization of pine wastes, this review contributes to environmental conservation and resource management.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemistry, Applied Sciences Cluster, School of Advance Engineering, and Centre for Alternate Energy Research (CAER), R&D, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Praveen Kumar Ghodke
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Nishu Goyal
- School of Health Sciences, University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Prakash Bobde
- R & D, University of Petroleum and Energy Studies, P.O. Bidholi Via-Prem Nagar, Dehradun 248007, India
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
5
|
Arkas M, Giannakopoulos K, Favvas EP, Papageorgiou S, Theodorakopoulos GV, Giannoulatou A, Vardavoulias M, Giannakoudakis DA, Triantafyllidis KS, Georgiou E, Pashalidis I. Comparative Study of the U(VI) Adsorption by Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111794. [PMID: 37299697 DOI: 10.3390/nano13111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Two different silica conformations (xerogels and nanoparticles), both formed by the mediation of dendritic poly (ethylene imine), were tested at low pHs for problematic uranyl cation sorption. The effect of crucial factors, i.e., temperature, electrostatic forces, adsorbent composition, accessibility of the pollutant to the dendritic cavities, and MW of the organic matrix, was investigated to determine the optimum formulation for water purification under these conditions. This was attained with the aid of UV-visible and FTIR spectroscopy, dynamic light scattering (DLS), ζ-potential, liquid nitrogen (LN2) porosimetry, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results highlighted that both adsorbents have extraordinary sorption capacities. Xerogels are cost-effective since they approximate the performance of nanoparticles with much less organic content. Both adsorbents could be used in the form of dispersions. The xerogels, though, are more practicable materials since they may penetrate the pores of a metal or ceramic solid substrate in the form of a precursor gel-forming solution, producing composite purification devices.
Collapse
Affiliation(s)
- Michael Arkas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Konstantinos Giannakopoulos
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Evangelos P Favvas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Sergios Papageorgiou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - George V Theodorakopoulos
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | - Artemis Giannoulatou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| | | | | | | | - Efthalia Georgiou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
6
|
Philippou M, Pashalidis I, Kalderis D. Removal of 241Am from Aqueous Solutions by Adsorption on Sponge Gourd Biochar. Molecules 2023; 28:molecules28062552. [PMID: 36985524 PMCID: PMC10052943 DOI: 10.3390/molecules28062552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Luffa cylindrica biomass was converted to biochar and the removal of 241Am by pristine and oxidized biochar fibers was investigated in laboratory and environmental water samples. This species has the added advantage of a unique microsponge structure that is beneficial for the production of porous adsorbents. The main purpose of this study was to valorize this biomass to produce an efficient adsorbent and investigate its performance in radionuclide-contaminated waters. Following the preparation of Am3+ solutions at a concentration of 10−12 mol/L, the adsorption efficiency (Kd) was determined as a function of pH, adsorbent mass, ionic strength, temperature, and type of aqueous solution by batch experiments. At the optimum adsorbent dose of 0.1 g and pH value of 4, a log10Kd value of 4.2 was achieved by the oxidized biochar sample. The effect of temperature and ionic strength indicated that adsorption is an endothermic and entropy-driven process (ΔH° = −512 kJ mol−1 and ΔS° = −1.2 J K−1 mol−1) leading to the formation of inner-sphere complexes. The adsorption kinetics were relatively slow (24 h equilibrium time) due to the slow diffusion of the radionuclide to the biochar surface and fitted well to the pseudo-first-order kinetic model. Oxidized biochar performed better compared to the unmodified sample and overall appears to be an efficient adsorbent for the treatment of 241Am-contaminated waters, even at ultra-trace concentrations.
Collapse
Affiliation(s)
- Maria Philippou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
- Correspondence: (I.P.); (D.K.)
| | - Dimitrios Kalderis
- Laboratory of Environmental Technologies and Applications, Department of Electronic Engineering, Hellenic Mediterranean University, 73100 Chania, Greece
- Correspondence: (I.P.); (D.K.)
| |
Collapse
|
7
|
Georgiou E, Raptopoulos G, Anastopoulos I, Giannakoudakis DA, Arkas M, Paraskevopoulou P, Pashalidis I. Uranium Removal from Aqueous Solutions by Aerogel-Based Adsorbents-A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020363. [PMID: 36678117 PMCID: PMC9866664 DOI: 10.3390/nano13020363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/12/2023]
Abstract
Aerogels are a class of lightweight, nanoporous, and nanostructured materials with diverse chemical compositions and a huge potential for applications in a broad spectrum of fields. This has led the IUPAC to include them in the top ten emerging technologies in chemistry for 2022. This review provides an overview of aerogel-based adsorbents that have been used for the removal and recovery of uranium from aqueous environments, as well as an insight into the physicochemical parameters affecting the adsorption efficiency and mechanism. Uranium removal is of particular interest regarding uranium analysis and recovery, to cover the present and future uranium needs for nuclear power energy production. Among the methods used, such as ion exchange, precipitation, and solvent extraction, adsorption-based technologies are very attractive due to their easy and low-cost implementation, as well as the wide spectrum of adsorbents available. Aerogel-based adsorbents present an extraordinary sorption capacity for hexavalent uranium that can be as high as 8.8 mol kg−1 (2088 g kg−1). The adsorption data generally follow the Langmuir isotherm model, and the kinetic data are in most cases better described by the pseudo-second-order kinetic model. An evaluation of the thermodynamic data reveals that the adsorption is generally an endothermic, entropy-driven process (ΔH0, ΔS0 > 0). Spectroscopic studies (e.g., FTIR and XPS) indicate that the adsorption is based on the formation of inner-sphere complexes between surface active moieties and the uranyl cation. Regeneration and uranium recovery by acidification and complexation using carbonate or chelating ligands (e.g., EDTA) have been found to be successful. The application of aerogel-based adsorbents to uranium removal from industrial processes and uranium-contaminated waste waters was also successful, assuming that these materials could be very attractive as adsorbents in water treatment and uranium recovery technologies. However, the selectivity of the studied materials towards hexavalent uranium is limited, suggesting further developments of aerogel materials that could be modified by surface derivatization with chelating agents (e.g., salophen and iminodiacetate) presenting high selectivity for uranyl moieties.
Collapse
Affiliation(s)
- Efthalia Georgiou
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100 Arta, Greece
| | | | - Michael Arkas
- Demokritos National Centre for Scientific Research, Institute of Nanoscience and Nanotechnology, 15771 Athens, Greece
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis Pashalidis
- Radioanalytical and Environmental Chemistry Group, Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| |
Collapse
|
8
|
Georgiou E, Pashalidis I. Effective Th(IV) adsorption by oxidized biochar prepared from palm tree fibers. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Ioannidis I, Anastopoulos I, Giannakopoulos K, Arkas M, Dosche C, Pashalidis I. A comprehensive investigation on the sorption of U(VI) and Eu(III) by polyamide microplastics: Surface-assisted microparticle formation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Uranium Isotope (U-232) Removal from Waters by Biochar Fibers: An Adsorption Study in the Sub-Picomolar Concentration Range. Molecules 2022; 27:molecules27196765. [PMID: 36235297 PMCID: PMC9571800 DOI: 10.3390/molecules27196765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 12/05/2022] Open
Abstract
The adsorption of the U-232 radionuclide by biochar fibers in the sub-picomolar concentration range has been investigated in laboratory aqueous solutions and seawater samples. The adsorption efficiency (Kd values and % relative removal) of untreated and oxidized biochar samples towards U-232 has been investigated as a function of pH, adsorbent mass, ionic strength and temperature by means of batch-type experiments. According to the experimental data, the solution pH determines to a large degree the adsorption efficiency, and adsorbent mass and surface oxidation lead to significantly higher Kd values. The ionic strength and temperature effect indicate that the adsorption is based on the formation of inner-sphere complexes, and is an endothermic and entropy-driven process (ΔH° and ΔS° > 0), respectively. Regarding the sorption kinetics, the diffusion of U-232 from the solution to the biochar surface seems to be the rate-determining step. The application of biochar-based adsorbents to treat radioactively (U-232) contaminated waters reveals that these materials are very effective adsorbents, even in the sub-picomolar concentration range.
Collapse
|
11
|
Georgiou E, Pashalidis I, Raptopoulos G, Paraskevopoulou P. Efficient Removal of Polyvalent Metal Ions (Eu(III) and Th(IV)) from Aqueous Solutions by Polyurea-Crosslinked Alginate Aerogels. Gels 2022; 8:gels8080478. [PMID: 36005078 PMCID: PMC9407238 DOI: 10.3390/gels8080478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 02/04/2023] Open
Abstract
The removal of polyvalent metal ions Eu(III) and Th(IV) from aqueous solutions using polyurea-crosslinked calcium alginate (X-alginate) aerogels has been investigated by batch-type experiments under ambient conditions and pH 3. The material presents relatively high sorption capacity for Eu(III) (550 g kg−1) and Th(IV) (211 g kg−1). The lower sorption capacity for Th(IV) compared to Eu(III) is attributed to the net charge of the dominant species in solution under the given experimental conditions, which is Eu3+ for Eu(III), and Th(OH)22+ and Th(OH)3+ for Th(IV). Generally, the sorption is an endothermic and entropy-driven process, and it follows the Langmuir isotherm model. According to the FTIR spectra, sorption occurs via formation of inner-sphere complexes between the surface functional groups and the f-metal cationic species. The presence of europium and thorium in the adsorbent material was confirmed and quantified with EDS analysis. To the best of our knowledge, this is the first report of an aerogel material used as an adsorbent for Eu(III). Compared to other materials used for the sorption of the specific ions, which are mostly carbon-based, X-alginate aerogels show by far the highest sorption capacity. Regarding Th(IV) uptake, X-alginate aerogels show the highest capacity per volume (27.9 g L−1) among the aerogels reported in the literature. Both Eu(III) and Th(IV) could be recovered from the beads by 65% and 70%, respectively. Furthermore, Th(VI) could also be quantitatively removed from wastewater, while Eu(III) could be removed by 20%. The above, along with their stability in aqueous environments, make X-alginate aerogels attractive candidates for water treatment and metal recovery applications.
Collapse
Affiliation(s)
- Efthalia Georgiou
- Laboratory of Radioanalytical and Environmental Chemistry, Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678 Nicosia, Cyprus;
| | - Ioannis Pashalidis
- Laboratory of Radioanalytical and Environmental Chemistry, Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678 Nicosia, Cyprus;
- Correspondence: (I.P.); (P.P.)
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
- Correspondence: (I.P.); (P.P.)
| |
Collapse
|
12
|
Noli F, Kapashi E, Pashalidis I, Margellou A, Karfaridis D. The effect of chemical and thermal modifications on the biosorption of uranium in aqueous solutions using winery wastes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Uranium removal from laboratory and environmental waters by oxidised biochar prepared from palm tree fibres. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Zhu H, Zhou J, Ding P, Liao H, Jin Y, Ding W. Hydrothermal synthesis of honey/bayberry microsphere for uranium removal from aqueous solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08011-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Ahmed W, Mehmood S, Núñez-Delgado A, Qaswar M, Ali S, Ying H, Liu Z, Mahmood M, Chen DY. Fabrication, characterization and U(VI) sorption properties of a novel biochar derived from Tribulus terrestris via two different approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146617. [PMID: 34030312 DOI: 10.1016/j.scitotenv.2021.146617] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Water contamination due to radionuclides is considered a crucial environmental issue. In this study, Tribulus terrestris plant biomass was used as a precursor for obtaining biochar (BC), that was further modified by two different methods using FeCl3 to obtain two different magnetic biochars. Both (one-step biochar, called 1S-BC, and two-steps biochar, called 2S-BC) were studied to investigate their capability for adsorbing/removing uranium (VI) from aqueous solutions. The U(VI) removal efficacy of both biochars was tested for different values of pH, ionic strength, initial concentration of U(VI) and temperature. Experimental adsorption data fitted well to the Freundlich model (achieving as highest value for adsorption capacity KF = 49.56 mg g-1 (mg L-1)-1/n, R2 = 0.99). Thermodynamic studies revealed that adsorption was endothermic, characterized by inner-sphere complexation, and entropy-driven with a relatively increased randomness in the solid-solution interface. X-ray photoelectron spectroscopy (XPS) revealed that U(VI) sorption took place by surface complexation between U(VI) and oxygen containing functional groups on both biochars. Five consecutive regeneration cycles verified an excellent reusability for 1S-BC. The overall results allow to conclude that the FeCl3 modification of the biochar obtained from Tribulus terrestris plant biomass could give an efficient alternative adsorbent for U(VI) removal in a variety of environmental conditions, promoting protection of the environment and human health, as well as facilitating resource utilization and sustainable management of the materials studied.
Collapse
Affiliation(s)
- Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Sajid Mehmood
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Muhammad Qaswar
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huang Ying
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zequan Liu
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Mohsin Mahmood
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agriculture and Forestry (A & F) University, Yangling 712100, China
| | - Di-Yun Chen
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
16
|
Giannakoudakis DA, Anastopoulos I, Barczak M, Αntoniou Ε, Terpiłowski K, Mohammadi E, Shams M, Coy E, Bakandritsos A, Katsoyiannis IA, Colmenares JC, Pashalidis I. Enhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: Surface chemistry matters the most. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125279. [PMID: 33607585 DOI: 10.1016/j.jhazmat.2021.125279] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
The removal of uranium species from aqueous phases using non-hazardous chemicals is still an open challenge, and remediation by adsorption is a prosperous strategy. Among the most crucial concerns regarding the design of an efficient material as adsorbent are, except the cost and the green character, the feasibility to be stable and effective under acidic pH, and to selectively adsorb the desired metal ion (e.g. uranium). Herein, we present a phosphonate functionalized ordered mesoporous silica (OMS-P), prepared by a one-step co-condensation synthesis. The physicochemical features of the material were determined by HR-TEM, XPS, EDX, N2 sorption, and solid NMR, while the surface zeta potential was also measured. The removal efficiency was evaluated at two different temperatures (20 and 50 °C) in acidic environment to avoid interferences like solid phase formation or carbonate complexation and the adsorption isotherms, including data fitting with Langmuir and Freundlich models and thermodynamic parameters are presented and discussed. The high and homogeneous dispersion of the phosphonate groups within the entire silica's structure led to the greatest reported up-todays capacity (345 mg/g) at pH = 4, which was achieved in less than 10 min. Additionally, OMS-P showed that the co-presence of other polyvalent cation like Eu(III) did not affect the efficiency of adsorption, which occurs via inner-sphere complex formation. The comparison to the non-functionalized silica (OMS) revealed that the key feature towards an efficient, stable, and selective removal of the U(VI) species is the specific surface chemistry rather than the textural and structural features. Based on all the results and spectroscopic validations of surface adsorbed U(VI), the main interactions responsible for the elevated uranium removal were proposed.
Collapse
Affiliation(s)
| | - Ioannis Anastopoulos
- Department of Chemistry, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus; Department of Electronics Engineering, School of Engineering, Hellenic Mediterranean University, Chania, Crete 73100, Greece.
| | - Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland.
| | - Εvita Αntoniou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | - Konrad Terpiłowski
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland
| | - Elmira Mohammadi
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc 78371, Czech Republic
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc 78371, Czech Republic; Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic
| | - Ioannis A Katsoyiannis
- Aristotle University, Department of Chemistry, Laboratory of Chemical and Environmental Technology, 54124 Thessaloniki, Greece
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus.
| |
Collapse
|
17
|
Ahmed W, Mehmood S, Núñez-Delgado A, Ali S, Qaswar M, Khan ZH, Ying H, Chen DY. Utilization of Citrullus lanatus L. seeds to synthesize a novel MnFe 2O 4-biochar adsorbent for the removal of U(VI) from wastewater: Insights and comparison between modified and raw biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144955. [PMID: 33736137 DOI: 10.1016/j.scitotenv.2021.144955] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Uranium (U) is a radioactive and highly toxic metal. Its excessive concentrations in the aqueous environments may result in severe and irreversible damage. To fight this hazard, a raw biochar was prepared from Citrullus lanatus L. seeds, then characterized and compared with a MnFe2O4 modified biochar, both tested for U(VI) adsorption from wastewater, which was assayed for the first time in this study. The characterization of the adsorbent materials was performed by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) with elemental mapping, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) techniques. The effects of solution pH, concentration of sorbate and sorbents, temperature, time and ionic strength were assessed as regards their influence on U(VI) adsorption. The experimental adsorption data showed good fit to a pseudo-second-order kinetic model (reaching a value of qe = 15.12 mg g-1, R2 = 0.96 at equilibrium), and to the Langmuir isotherm (achieving a maximum score of qmax = 27.61 mg g-1, R2 = 0.96). The maximum adsorption capacity was found at 318 K. The results of the study indicate that the binding of negatively charged functional groups (carbonyls, hydroxyls, and some carboxylic groups) with MnFe2O4 significantly enhanced U(VI) adsorption. In view of the overall results, it can be concluded that the MnFe2O4 modification of the Citrullus lanatus L. seeds biochar could give an efficient alternative adsorbent for U(VI) removal in a variety of environmental conditions, simultaneously promoting resource utilization and good sustainable management of the materials studied, aiding to protect the environment and human health.
Collapse
Affiliation(s)
- Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Sajid Mehmood
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Engineering Polytech. School, Campus Univ. Lugo, Univ. Santiago de Compostela, Spain
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Qaswar
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zulqarnain Haider Khan
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Huang Ying
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Di-Yun Chen
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Anastopoulos I, Katsouromalli A, Pashalidis I. Oxidized biochar obtained from pine needles as a novel adsorbent to remove caffeine from aqueous solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Utilization of pine tree biochar produced by flame-curtain pyrolysis in two non-agricultural applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Philippou K, Anastopoulos I, Dosche C, Pashalidis I. Synthesis and characterization of a novel Fe 3O 4-loaded oxidized biochar from pine needles and its application for uranium removal. Kinetic, thermodynamic, and mechanistic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109677. [PMID: 31629175 DOI: 10.1016/j.jenvman.2019.109677] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
This work investigates the fabrication of magnetic biochar (pncm) and Fe3O4-loaded oxidized biochar (pncom) obtained from pine needles for uranium removal. Adsorbent properties were characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) techniques. Using batch-type experiments the effect of the uranium concentration, solution pH, contact time, temperature and ionic strength on the uranium adsorption was investigated. The results showed better adsorptive properties for pncom, particularly in the acidic pH range. The experimental adsorption data were found to be well fitted with the Langmuir isotherm and the pseudo-second order kinetic model. For pncom, the maximum adsorption capacity obtained applying the Langmuir isotherm model was found to amount 2.6 mol/kg at pH 6 and 25 °C. Spectroscopic data indicated that the U(VI) adsorption was associated with the formation of inner-sphere complexes. Regeneration and reusability studies were performed with 0.1 M Na2CO3. After four cycles, the % relative adsorption and the desorption for pncom decreased from 99.5% to 87.2% and 99.6%-62.6%, respectively. The present results show that magnetization of oxidized pine needle biochar improves significantly the adsorption characteristics regarding the uranium removal from aqueous solutions.
Collapse
Affiliation(s)
- Katerina Philippou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678, Nicosia, Cyprus
| | - Ioannis Anastopoulos
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678, Nicosia, Cyprus.
| | - Carsten Dosche
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Cy-1678, Nicosia, Cyprus
| |
Collapse
|
21
|
Abstract
The Cu(II) adsorption from aqueous solutions by magnetic biochar obtained from pine needles has been studied by means of batch-type experiments. The biochar fibers have been magnetized prior (pncm: carbonized-magnetized pine needles) and after oxidation (pncom: carbonized-oxidized-magnetized pine needles) and have been used as adsorbents to study the presence of carboxylic moieties on the magnetization and following adsorption process. The effect of pH (2–10), initial metal concentration (10−5–9·10−3 mol·L−1) and contact time (0–60 min) has been studied by varying the respective parameter, and the adsorbents have been characterized by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) measurements prior and after Cu(II)-adsorption. FTIR measurements were performed to investigate the formation of surface species and XRD measurements to record possible solid phase formation and characterize formed solids, including the evaluation of their average crystal size. The data obtained from the batch-type studies show that the oxidized magnetic biochar (pncom) presents significantly higher adsorption capacity (1.0 mmol g−1) compared to pncm (0.4 mmol g−1), which is ascribed to the synergistic effect of the carboxylic moieties present on the pncom surface, and the adsorption process follows the pseudo-second order kinetics. On the other hand, the FTIR spectra prove the formation of inner-sphere complexes and XRD diffractograms indicate Cu(II) solid phase formation at pH 6 and increased metal ion concentrations.
Collapse
|
22
|
Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers. Carbohydr Polym 2019; 219:298-305. [DOI: 10.1016/j.carbpol.2019.05.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/25/2019] [Accepted: 05/10/2019] [Indexed: 01/08/2023]
|
23
|
Liang C, Jia M, Wang X, Du Z, Men J, Ding H. Preparation of potassium niobium sulfide and its selective adsorption properties for Sr2+ and Co2+. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06685-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
|