1
|
Li C, Zhu Y, Fang Y. Discovery of bioactive compounds targeting endothelin A receptor and angiotensin II type 1 receptor in Gegen Qinlian decoction by co-immobilized receptor chromatography. J Pharm Biomed Anal 2025; 263:116918. [PMID: 40306138 DOI: 10.1016/j.jpba.2025.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
An increased interest in multi-target compounds screening from complex matrices has revolutionized drug development paradigms, as these compounds often exhibit superior therapeutic efficacy and reduced off-target liabilities compared to the single-target compound. However, conventional discovery methods have been constrained by their singular focus on single-target screening methodologies. To address this limitation, we introduce a co-immobilization strategy tailored for G protein-coupled receptors(GPCRs) implicated in cardiovascular pathologies-specifically the endothelin A receptor (ETAR) and angiotensin II type 1 receptor(AT1R)-to facilitate the identification of multi-target compound within traditional herbal formulations. This innovative approach involves the oriented co-immobilization of ETAR and AT1R onto silica gel surfaces via histidine-tag anchoring, ensuring precise spatial orientation and functional integrity. Rigorous chromatographic characterization using receptor-specific ligands validated the dual-receptor column's functionality. Subsequent screening of Gegen Qinlian Decoction (GQD) identified puerarin as a novel multi-target compound capable of engaging both the two receptors. Zonal elution revealed that puerarin competes with native ligands for overlapping binding sites on ETAR and AT1R. Injection-amount-dependent method, demonstrated that puerarin binds ETAR and AT1R with association constants of 2.5 × 10⁵ M-1 and 2.0 × 10⁵ M-1, respectively. These findings validate our co-immobilization platform as a powerful tool for dissecting multi-target interactions in traditional Chinese medicines (TCMs), offering a transformative strategy to unlock the therapeutic potential of complex herbal mixtures.
Collapse
Affiliation(s)
- Chan Li
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Shaanxi, China; Shaanxi Center for Drug and Vaccine Inspection, Shaanxi, China.
| | - Yanbing Zhu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Shaanxi, China; Shaanxi Pharmaceutical Holding Group Co., Ltd., Xi'an, Shaanxi, China
| | - Yu Fang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Shaanxi, China; Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Yao Q, Yin J, Ji X, Li X, Gao Y, Lu D, Chen Y, Li Q, Zhi D. Evaluation of binding interaction between compounds targeting peroxisome proliferator-activated receptor γ in Nelumbinis folium using receptor chromatography and molecular dynamic simulation. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1255:124528. [PMID: 39987855 DOI: 10.1016/j.jchromb.2025.124528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Despite considerable efforts invested in clinical trials aimed at treating obesity and enhancing the metabolic profiles of Nelumbinis Folium, the precise phytochemicals involved and their mechanisms of action remain unclear due to the absence of an efficient screening technique. Herein, Nelumbinis Folium serves as the focal point to elucidate the bioactive compounds that specifically bind to peroxisome proliferator-activated receptor γ using immobilized receptor chromatography. Following identification through liquid chromatography-mass spectrometry, the compounds were further evaluated using chromatographic techniques and molecular dynamics simulations. The results unveiled catechin and hypericin as the receptor-binding compounds present in Nelumbinis Folium, with hypericin exhibiting a stronger affinity and a faster dissociation rate constant compared to catechin. Molecular dynamics studies highlighted the crucial role of cysteine located at position of 285 in the receptor ligand binding domain during the initial ligand capture phase. Subsequently, Van Der Waals forces and electrostatic interactions facilitated the binding process. The calculated standard binding free energies were - 61.75 ± 2.61 kcal/mol for hypericin and - 43.19 ± 0.63 kcal/mol for catechin. Collectively, these findings provide valuable insights into receptor-drug interactions and confirm the effectiveness of immobilized receptor chromatography in screening potential lead compounds from complex systems.
Collapse
Affiliation(s)
- Qingqing Yao
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jiatai Yin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiuli Ji
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Xue Li
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yifan Gao
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Dan Lu
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Ying Chen
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Dalong Zhi
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
3
|
Cho S, Lee H, Han YH, Park TS, Seo SW, Park TH. Design of an effective small expression tag to enhance GPCR production in E. coli-based cell-free and whole cell expression systems. Protein Sci 2023; 32:e4839. [PMID: 37967042 PMCID: PMC10682694 DOI: 10.1002/pro.4839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in sensory, immune, and tumor metastasis processes, making them valuable targets for pharmacological and sensing applications in various industries. However, most GPCRs have low production yields in Escherichia coli (E. coli) expression systems. To overcome this limitation, we introduced AT10 tag, an effective fusion tag that could significantly enhance expression levels of various GPCRs in E. coli and its derived cell-free protein synthesis (CFPS) system. This AT10 tag consisted of an A/T-rich gene sequence designed via optimization of translation initiation rate. It is translated into a short peptide sequence of 10 amino acids at the N-terminus of GPCRs. Additionally, effector proteins could be utilized to suppress cytotoxicity caused by membrane protein expression, further boosting GPCR production in E. coli. Enhanced expression of various GPCRs using this AT10 tag is a promising approach for large-scale production of functional GPCRs in E. coli-based CFPS and whole cell systems, enabling their potential utilization across a wide range of industrial applications.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
| | - Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
| | - Yong Hee Han
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Tae Shin Park
- Receptech Research Institute, Receptech Inc.SiheungRepublic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
- Department of Nutritional Science and Food ManagementEwha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
4
|
Kaipa JM, Krasnoselska G, Owens RJ, van den Heuvel J. Screening of Membrane Protein Production by Comparison of Transient Expression in Insect and Mammalian Cells. Biomolecules 2023; 13:biom13050817. [PMID: 37238687 DOI: 10.3390/biom13050817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Membrane proteins are difficult biomolecules to express and purify. In this paper, we compare the small-scale production of six selected eukaryotic integral membrane proteins in insect and mammalian cell expression systems using different techniques for gene delivery. The target proteins were C terminally fused to the green fluorescent marker protein GFP to enable sensitive monitoring. We show that the choice of expression systems makes a considerable difference to the yield and quality of the six selected membrane proteins. Virus-free transient gene expression (TGE) in insect High Five cells combined with solubilization in dodecylmaltoside plus cholesteryl hemisuccinate generated the most homogeneous samples for all six targets. Further, the affinity purification of the solubilized proteins using the Twin-Strep® tag improved protein quality in terms of yield and homogeneity compared to His-tag purification. TGE in High Five insect cells offers a fast and economically attractive alternative to the established methods that require either baculovirus construction and the infection of the insect cells or relatively expensive transient gene expression in mammalian cells for the production of integral membrane proteins.
Collapse
Affiliation(s)
| | - Ganna Krasnoselska
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 18.5, 42, 2200 Copenhagen, Denmark
| | - Raymond J Owens
- Structural Biology Division, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QX, UK
| | - Joop van den Heuvel
- Helmholtz Center for Infection Research, Department of Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
5
|
Biswas PK, Park SR, An J, Lim KM, Dayem AA, Song K, Choi HY, Choi Y, Park KS, Shin HJ, Kim A, Gil M, Saha SK, Cho SG. The Orphan GPR50 Receptor Regulates the Aggressiveness of Breast Cancer Stem-like Cells via Targeting the NF-kB Signaling Pathway. Int J Mol Sci 2023; 24:ijms24032804. [PMID: 36769125 PMCID: PMC9917945 DOI: 10.3390/ijms24032804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The expression of GPR50 in CSLC and several breast cancer cell lines was assessed by RT-PCR and online platform (UALCAN, GEPIA, and R2 gene analysis). The role of GPR50 in driving CSLC, sphere formation, cell proliferation, and migration was performed using shGPR50 gene knockdown, and the role of GPR50-regulated signaling pathways was examined by Western blotting and Luciferase Assay. Herein, we confirmed that the expression of G protein-coupled receptor 50 (GPR50) in cancer stem-like cells (CSLC) is higher than that in other cancer cells. We examined that the knockdown of GPR50 in CSLC led to decreased cancer properties, such as sphere formation, cell proliferation, migration, and stemness. GPR50 silencing downregulates NF-kB signaling, which is involved in sphere formation and aggressiveness of CSLC. In addition, we demonstrated that GPR50 also regulates ADAM-17 activity by activating NOTCH signaling pathways through the AKT/SP1 axis in CSLC. Overall, we demonstrated a novel GPR50-mediated regulation of the NF-κB-Notch signaling pathway, which can provide insights into CSLC progression and prognosis, and NF-κB-NOTCH-based CSLC treatment strategies.
Collapse
Affiliation(s)
- Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sang Rok Park
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jongyub An
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yujin Choi
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-4207 or +82-2-444-4207
| |
Collapse
|
6
|
Cho S, Park TH. Advances in the Production of Olfactory Receptors for Industrial Use. Adv Biol (Weinh) 2023; 7:e2200251. [PMID: 36593488 DOI: 10.1002/adbi.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/11/2022] [Indexed: 01/04/2023]
Abstract
In biological olfactory systems, olfactory receptors (ORs) can recognize and discriminate between thousands of volatile organic compounds with very high sensitivity and specificity. The superior properties of ORs have led to the development of OR-based biosensors that have shown promising potential in many applications over the past two decades. In particular, newly designed technologies in gene synthesis, protein expression, solubilization, purification, and membrane mimetics for membrane proteins have greatly opened up the previously inaccessible industrial potential of ORs. In this review, gene design, expression and solubilization strategies, and purification and reconstitution methods available for modern industrial applications are examined, with a focus on ORs. The limitations of current OR production technology are also estimated, and future directions for further progress are suggested.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Smith ES, Balch LA, Scrivens M, Shi S, Wang W, Harvey CD, Cornelison AA, Gil-Moore M, Kirk RA, Mueller LL, Hall RL, Howell AP, Reilly CA, Mayer JM, Murante FG, Viggiani KA, Gersz EM, Bussler H, Keefe MR, Evans EE, Paris MJ, Zauderer M. Use of poxvirus display to select antibodies specific for complex membrane antigens. MAbs 2023; 15:2249947. [PMID: 37635331 PMCID: PMC10464538 DOI: 10.1080/19420862.2023.2249947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023] Open
Abstract
Antibody discovery against complex antigens is limited by the availability of a reproducible pure source of concentrated properly folded antigen. We have developed a technology to enable direct incorporation of membrane proteins such as GPCRs and into the membrane of poxvirus. The protein of interest is correctly folded and expressed in the cell-derived viral membrane and does not require any detergents or refolding before downstream use. The poxvirus is selective in which proteins are incorporated into the viral membrane, making the antigen poxvirus an antigenically cleaner target for in vitro panning. Antigen-expressing virus can be readily purified at scale and used for antibody selection using any in vitro display platform.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- Research, Vaccinex, Inc, Rochester, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gao J, Yuan X, Zheng X, Zhao X, Wang T, Liang Q, Xiao C, Wang J, Li Q, Zhao X. Two-point immobilization of a conformation-specific beta 2-adrenoceptor for recognizing the receptor agonists or antagonists inspired by binding-induced DNA assembly. Biomater Sci 2021; 9:7934-7943. [PMID: 34704989 DOI: 10.1039/d1bm01222c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immobilized protein has advanced in many areas like drug discovery. While this field evolved rapidly over the last three decades, the immobilization platform for the G-protein-coupled receptor (GPCR) remains unpromising due to its instability under the relatively harsh conditions of current methodologies. Taking beta2-adrenoceptor (β2-AR) as an example, we presented here a general strategy for immobilization of GPCRs by combining the His6-tag trap system, conformation-specific aptamer, and target binding induced DNA hybridization. Morphology characterization by diverse assays confirmed a monolayer of β2-AR on the microsphere surface. The radio-ligand binding assay and immuno-transmission electron microscopy showed desirable ligand- and antibody-binding activities. A case study of chromatography using the immobilized receptor as a stationary phase exhibited a demonstrable conformation specificity that enables the selective recognition of the receptor agonists or antagonists. Owing to the competitive strand displacement during the immobilization, the method proved to be capable of sensitively and directly determining the receptor density on the surface which enormously challenges most of the reported assays. This method is possible to turn into a general strategy for the immobilization of GPCRs with a defined orientation, conformation, function, and density, thus paving the way for precisely realizing the receptor-ligand binding interaction and screening the receptor agonist or antagonist with high efficiency.
Collapse
Affiliation(s)
- Juan Gao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinxin Zheng
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xue Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Taotao Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Qi Liang
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
9
|
Abiko LA, Rogowski M, Gautier A, Schertler G, Grzesiek S. Efficient production of a functional G protein-coupled receptor in E. coli for structural studies. JOURNAL OF BIOMOLECULAR NMR 2021; 75:25-38. [PMID: 33501610 PMCID: PMC7897205 DOI: 10.1007/s10858-020-00354-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in E. coli has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR E. coli expression and then describe the development of an optimized robust protocol for the E. coli expression and purification of two mutants of the turkey β1-adrenergic receptor (β1AR) uniformly or selectively labeled in 15N or 2H,15N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for E. coli expression. Optimization of E. coli expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2-0.3 mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-β1AR mutant also comprises the two native tyrosines Y5.58 and Y7.53, which enable G protein binding. High-quality 1H-15N TROSY spectra were obtained for E. coli-expressed YY-β1AR in three different functional states (antagonist, agonist, and agonist + G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.
Collapse
Affiliation(s)
- Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Marco Rogowski
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Antoine Gautier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
10
|
The Specificity of Downstream Signaling for A 1 and A 2AR Does Not Depend on the C-Terminus, Despite the Importance of This Domain in Downstream Signaling Strength. Biomedicines 2020; 8:biomedicines8120603. [PMID: 33322210 PMCID: PMC7764039 DOI: 10.3390/biomedicines8120603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Recent efforts to determine the high-resolution crystal structures for the adenosine receptors (A1R and A2AR) have utilized modifications to the native receptors in order to facilitate receptor crystallization and structure determination. One common modification is a truncation of the unstructured C-terminus, which has been utilized for all the adenosine receptor crystal structures obtained to date. Ligand binding for this truncated receptor has been shown to be similar to full-length receptor for A2AR. However, the C-terminus has been identified as a location for protein-protein interactions that may be critical for the physiological function of these important drug targets. We show that variants with A2AR C-terminal truncations lacked cAMP-linked signaling compared to the full-length receptor constructs transfected into mammalian cells (HEK-293). In addition, we show that in a humanized yeast system, the absence of the full-length C-terminus affected downstream signaling using a yeast MAPK response-based fluorescence assay, though full-length receptors showed native-like G-protein coupling. To further study the G protein coupling, we used this humanized yeast platform to explore coupling to human-yeast G-protein chimeras in a cellular context. Although the C-terminus was essential for Gα protein-associated signaling, chimeras of A1R with a C-terminus of A2AR coupled to the A1R-specific Gα (i.e., Gαi1 versus Gαs). This surprising result suggests that the C-terminus is important in the signaling strength, but not specificity, of the Gα protein interaction. This result has further implications in drug discovery, both in enabling the experimental use of chimeras for ligand design, and in the cautious interpretation of structure-based drug design using truncated receptors.
Collapse
|
11
|
Jain AR, Britton ZT, Markwalter CE, Robinson AS. Improved ligand-binding- and signaling-competent human NK2R yields in yeast using a chimera with the rat NK2R C-terminus enable NK2R-G protein signaling platform. Protein Eng Des Sel 2020; 32:459-469. [PMID: 32400863 DOI: 10.1093/protein/gzaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/09/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
The tachykinin 2 receptor (NK2R) plays critical roles in gastrointestinal, respiratory and mental disorders and is a well-recognized target for therapeutic intervention. To date, therapeutics targeting NK2R have failed to meet regulatory agency approval due in large part to the limited characterization of the receptor-ligand interaction and downstream signaling. Herein, we report a protein engineering strategy to improve ligand-binding- and signaling-competent human NK2R that enables a yeast-based NK2R signaling platform by creating chimeras utilizing sequences from rat NK2R. We demonstrate that NK2R chimeras incorporating the rat NK2R C-terminus exhibited improved ligand-binding yields and downstream signaling in engineered yeast strains and mammalian cells, where observed yields were better than 4-fold over wild type. This work builds on our previous studies that suggest exchanging the C-termini of related and well-expressed family members may be a general protein engineering strategy to overcome limitations to ligand-binding and signaling-competent G protein-coupled receptor yields in yeast. We expect these efforts to result in NK2R drug candidates with better characterized signaling properties.
Collapse
Affiliation(s)
- Abhinav R Jain
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA, 70118, USA
| | - Zachary T Britton
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,AstraZeneca, Antibody Discovery and Protein Engineering, Gaithersburg, MD 20878, USA
| | - Chester E Markwalter
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Anne S Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA, 70118, USA.,Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Jain AR, Robinson AS. Functional Expression of Adenosine A 3 Receptor in Yeast Utilizing a Chimera with the A 2AR C-Terminus. Int J Mol Sci 2020; 21:E4547. [PMID: 32604732 PMCID: PMC7352405 DOI: 10.3390/ijms21124547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 11/26/2022] Open
Abstract
The adenosine A3 receptor (A3R) is the only adenosine receptor subtype to be overexpressed in inflammatory and cancer cells and therefore is considered a novel and promising therapeutic target for inflammatory diseases and cancer. Heterologous expression of A3R at levels to allow biophysical characterization is a major bottleneck in structure-guided drug discovery efforts. Here, we apply protein engineering using chimeric receptors to improve expression and activity in yeast. Previously we had reported improved expression and trafficking of the chimeric A1R variant using a similar approach. In this report, we constructed chimeric A3/A2AR comprising the N-terminus and transmembrane domains from A3R (residues 1-284) and the cytoplasmic C-terminus of the A2AR (residues 291-412). The chimeric receptor showed approximately 2-fold improved expression with a 2-fold decreased unfolded protein response when compared to wild type A3R. Moreover, by varying culture conditions such as initial cell density and induction temperature a further 1.7-fold increase in total receptor yields was obtained. We observed native-like coupling of the chimeric receptor to Gai-Gpa1 in engineered yeast strains, activating the downstream, modified MAPK pathway. This strategy of utilizing chimeric receptor variants in yeast thus provides an exciting opportunity to improve expression and activity of "difficult-to-express" receptors, expanding the opportunity for utilizing yeast in drug discovery.
Collapse
Affiliation(s)
- Abhinav R. Jain
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118, USA;
| | - Anne S. Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118, USA;
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Munro R, de Vlugt J, Ladizhansky V, Brown LS. Improved Protocol for the Production of the Low-Expression Eukaryotic Membrane Protein Human Aquaporin 2 in Pichia pastoris for Solid-State NMR. Biomolecules 2020; 10:biom10030434. [PMID: 32168846 PMCID: PMC7175339 DOI: 10.3390/biom10030434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Solid-state nuclear magnetic resonance (SSNMR) is a powerful biophysical technique for studies of membrane proteins; it requires the incorporation of isotopic labels into the sample. This is usually accomplished through over-expression of the protein of interest in a prokaryotic or eukaryotic host in minimal media, wherein all (or some) carbon and nitrogen sources are isotopically labeled. In order to obtain multi-dimensional NMR spectra with adequate signal-to-noise ratios suitable for in-depth analysis, one requires high yields of homogeneously structured protein. Some membrane proteins, such as human aquaporin 2 (hAQP2), exhibit poor expression, which can make producing a sample for SSNMR in an economic fashion extremely difficult, as growth in minimal media adds additional strain on expression hosts. We have developed an optimized growth protocol for eukaryotic membrane proteins in the methylotrophic yeast Pichia pastoris. Our new growth protocol uses the combination of sorbitol supplementation, higher cell density, and low temperature induction (LT-SEVIN), which increases the yield of full-length, isotopically labeled hAQP2 ten-fold. Combining mass spectrometry and SSNMR, we were able to determine the nature and the extent of post-translational modifications of the protein. The resultant protein can be functionally reconstituted into lipids and yields excellent resolution and spectral coverage when analyzed by two-dimensional SSNMR spectroscopy.
Collapse
|
14
|
Wiseman DN, Otchere A, Patel JH, Uddin R, Pollock NL, Routledge SJ, Rothnie AJ, Slack C, Poyner DR, Bill RM, Goddard AD. Expression and purification of recombinant G protein-coupled receptors: A review. Protein Expr Purif 2020; 167:105524. [PMID: 31678667 PMCID: PMC6983937 DOI: 10.1016/j.pep.2019.105524] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
Given their extensive role in cell signalling, GPCRs are significant drug targets; despite this, many of these receptors have limited or no available prophylaxis. Novel drug design and discovery significantly rely on structure determination, of which GPCRs are typically elusive. Progress has been made thus far to produce sufficient quantity and quality of protein for downstream analysis. As such, this review highlights the systems available for recombinant GPCR expression, with consideration of their advantages and disadvantages, as well as examples of receptors successfully expressed in these systems. Additionally, an overview is given on the use of detergents and the styrene maleic acid (SMA) co-polymer for membrane solubilisation, as well as purification techniques.
Collapse
Affiliation(s)
- Daniel N Wiseman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abigail Otchere
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Jaimin H Patel
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Romez Uddin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | | | - Sarah J Routledge
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alice J Rothnie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Cathy Slack
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alan D Goddard
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
15
|
Use of syngeneic cells expressing membrane-bound GM-CSF as an adjuvant to induce antibodies against native multi-pass transmembrane protein. Sci Rep 2019; 9:9931. [PMID: 31289297 PMCID: PMC6616555 DOI: 10.1038/s41598-019-45160-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/12/2019] [Indexed: 12/23/2022] Open
Abstract
Membrane antigens (mAgs) are important targets for the development of antibody (Ab) drugs. However, native mAgs are not easily prepared, causing difficulties in acquiring functional Abs. In this study, we present a platform in which human mAgs were expressed in native form on cell adjuvants made with membrane-bound cytokines that were then used immunize syngeneic mice directly. The membrane-bound cytokines were used as immune stimulators to enhance specific Ab responses against the desired mAgs. Then, mAgs-expressing xenogeneic cells were used for Ab characterization to reduce non-specific binding. We established cell adjuvants by expressing membrane-bound cytokines (mIL-2, mIL-18, or mGM-CSF) on BALB/3T3 cells, which were effective in stimulating splenocyte proliferation in vitro. We then transiently expressed ecotropic viral integration site 2B (EVI2B) on the adjuvants and used them to directly immunize BALB/c mice. We found that 3T3/mGM-CSF cells stimulated higher specific anti-EVI2B Ab response in the immunized mice than the other cell adjuvants. A G-protein coupled receptor (GPCR), CXCR2, was then transiently expressed on 3T3/mGM-CSF cell adjuvant to immunize mice. The immune serum exhibited relatively higher binding to xenogeneic 293 A/CXCR2 cells than 293 A cells (~3.5-fold). Several hybridoma clones also exhibited selective binding to 293 A/CXCR2 cells. Therefore, the cell adjuvant could preserve the native conformation of mAgs and exhibit anti-mAg Ab stimulatory ability, providing a more convenient and effective method to generate functional Abs, thus possibly accelerating Ab drug development.
Collapse
|
16
|
Jain AR, Stradley SH, Robinson AS. The A2aR C-terminus provides improved total and active expression yields for adenosine receptor chimeras. AIChE J 2018. [DOI: 10.1002/aic.16398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Abhinav R. Jain
- Dept. of Chemical and Biomolecular Engineering; Tulane University; New Orleans LA 70118
| | - Steven H. Stradley
- Dept. of Chemical and Biomolecular Engineering; Tulane University; New Orleans LA 70118
| | - Anne S. Robinson
- Dept. of Chemical and Biomolecular Engineering; Tulane University; New Orleans LA 70118
| |
Collapse
|
17
|
Suzuki R, Sakakura M, Mori M, Fujii M, Akashi S, Takahashi H. Methyl-selective isotope labeling using α-ketoisovalerate for the yeast Pichia pastoris recombinant protein expression system. JOURNAL OF BIOMOLECULAR NMR 2018; 71:213-223. [PMID: 29869771 DOI: 10.1007/s10858-018-0192-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Methyl-detected NMR spectroscopy is a useful tool for investigating the structures and interactions of large macromolecules such as membrane proteins. The procedures for preparation of methyl-specific isotopically-labeled proteins were established for the Escherichia coli (E. coli) expression system, but typically it is not feasible to express eukaryotic proteins using E. coli. The Pichia pastoris (P. pastoris) expression system is the most common yeast expression system, and is known to be superior to the E. coli system for the expression of mammalian proteins, including secretory and membrane proteins. However, this system has not yet been optimized for methyl-specific isotope labeling, especially for Val/Leu-methyl specific isotope incorporation. To overcome this difficulty, we explored various culture conditions for the yeast cells to efficiently uptake Val/Leu precursors. Among the searched conditions, we found that the cultivation pH has a critical effect on Val/Leu precursor uptake. At an acidic cultivation pH, the uptake of the Val/Leu precursor was increased, and methyl groups of Val and Leu in the synthesized recombinant protein yielded intense 1H-13C correlation signals. Based on these results, we present optimized protocols for the Val/Leu-methyl-selective 13C incorporation by the P. pastoris expression system.
Collapse
Affiliation(s)
- Rika Suzuki
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Masayoshi Sakakura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Masaki Mori
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Moe Fujii
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hideo Takahashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
18
|
Saladi SM, Javed N, Müller A, Clemons WM. A statistical model for improved membrane protein expression using sequence-derived features. J Biol Chem 2018; 293:4913-4927. [PMID: 29378850 PMCID: PMC5880134 DOI: 10.1074/jbc.ra117.001052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/22/2018] [Indexed: 11/06/2022] Open
Abstract
The heterologous expression of integral membrane proteins (IMPs) remains a major bottleneck in the characterization of this important protein class. IMP expression levels are currently unpredictable, which renders the pursuit of IMPs for structural and biophysical characterization challenging and inefficient. Experimental evidence demonstrates that changes within the nucleotide or amino acid sequence for a given IMP can dramatically affect expression levels, yet these observations have not resulted in generalizable approaches to improve expression levels. Here, we develop a data-driven statistical predictor named IMProve that, using only sequence information, increases the likelihood of selecting an IMP that expresses in Escherichia coli The IMProve model, trained on experimental data, combines a set of sequence-derived features resulting in an IMProve score, where higher values have a higher probability of success. The model is rigorously validated against a variety of independent data sets that contain a wide range of experimental outcomes from various IMP expression trials. The results demonstrate that use of the model can more than double the number of successfully expressed targets at any experimental scale. IMProve can immediately be used to identify favorable targets for characterization. Most notably, IMProve demonstrates for the first time that IMP expression levels can be predicted directly from sequence.
Collapse
Affiliation(s)
- Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Nauman Javed
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Axel Müller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
19
|
Anu PV, Madanan MG, Nair AJ, Nair GA, Nair GPM, Sudhakaran PR, Satheeshkumar PK. Heterologous Expression, Purification and Characterization of an Oligopeptidase A from the Pathogen Leptospira interrogans. Mol Biotechnol 2018; 60:302-309. [PMID: 29502205 DOI: 10.1007/s12033-018-0073-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oligopeptidases are enzymes involved in the degradation of short peptides (generally less than 30 amino acids in size) which help pathogens evade the host defence mechanisms. Leptospira is a zoonotic pathogen and causes leptospirosis in mammals. Proteome analysis of Leptospira revealed the presence of oligopeptidase A (OpdA) among other membrane proteins. To study the role of oligopeptidase in leptospirosis, the OpdA of L. interrogans was cloned and expressed in Escherichia coli with a histidine tag (His-tag). The protein showed maximum expression at 37 °C with 0.5 mM of IPTG after 2 h of induction. Recombinant OpdA protein was purified to homogeneity using Ni-affinity chromatography. The purified OpdA showed more than 80% inhibition with a serine protease inhibitor but the activity was reduced to 30% with the cysteine protease inhibitor. The peptidase activity was increased significantly in the presence of Zn2+ at a neutral pH. Inhibitor assay indicate the presence of more than one active sites for peptidase activity as reported with the OpdA of E. coli and Salmonella. Over-expression of OpdA in E. coli BL21 (DE3) did not cause any negative effects on normal cell growth and viability. The role of OpdA as virulence factor in Leptospira and its potential as a therapeutic and diagnostic target in leptospirosis is yet to be identified.
Collapse
Affiliation(s)
- Prasannan V Anu
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India
| | | | - Ananthakrishnan J Nair
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India
| | - Gangaprasad A Nair
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India
| | - Govinda Pillai M Nair
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India
| | - Perumana R Sudhakaran
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India
| | - Padikara K Satheeshkumar
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India. .,Centre for Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
20
|
Expression, Purification and Characterization of the Human Cannabinoid 1 Receptor. Sci Rep 2018; 8:2935. [PMID: 29440756 PMCID: PMC5811539 DOI: 10.1038/s41598-018-19749-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
The human cannabinoid 1 receptor (hCB1) is involved in numerous physiological processes and therefore provides a wide scope of potential therapeutic opportunities to treat maladies such as obesity, cardio-metabolic disorders, substance abuse, neuropathic pain, and multiple sclerosis. Structure-based drug design using the current knowledge of the hCB1 receptor binding site is limited and requires purified active protein. Heterologous expression and purification of functional hCB1 has been the bottleneck for ligand binding structural studies using biophysical methods such as mass spectrometry, x-ray crystallography and NMR. We constructed several plasmids for in-cell or in vitro Escherichia coli (E. coli) based expression of truncated and stabilized hCB1 receptor (hΔCB1 and hΔCB1T4L) variants and evaluated their competency to bind the CP-55,940 ligand. MALDI-TOF MS analysis of in vitro expressed and purified hΔCB1T4Lhis6 variants, following trypsin digestion, generated ~80% of the receptor sequence coverage. Our data demonstrate the feasibility of a cell-free expression system as a promising part of the strategy for the elucidation of ligand binding sites of the hCB1 receptor using a "Ligand Assisted Protein Structure" (LAPS) approach.
Collapse
|
21
|
Satheeshkumar PK, Anu PV, Junaida MI, Madanan MG, Jebasingh T, Nair AJ, Nair GA, Nair GPM, Sudhakaran PR. Expression of Leptospira membrane proteins Signal Peptidase (SP) and Leptospira Endostatin like A (Len A) in BL-21(DE3) is toxic to the host cells. J Genet Eng Biotechnol 2018; 16:393-398. [PMID: 30733752 PMCID: PMC6353657 DOI: 10.1016/j.jgeb.2018.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Heterologous expression of Integral Membrane Proteins (IMPs) is reported to be toxic to the host system in many studies. Even though there are reports on various concerns like transformation efficiency, growth properties, protein toxicity, inefficient expression and protein degradation in IMP overexpression, no studies so far addressed these issues in a comprehensive way. In the present study, two transmembrane proteins of the pathogen Leptospira interrogans, namely Signal peptidase (SP), and Leptospira Endostatin like A (Len-A) were taken along with a cytosolic protein Hydrolase (HYD) to assess the differences in transformation efficiency, protein toxicity, and protein stability when over expressed in Escherichia coli (E. coli). Bioinformatics analysis to predict the transmembrane localization indicated that both SP and Len are targeted to the membrane. The three proteins were expressed in full length in the E. coli expression strain, BL 21 (DE3). Significant changes were observed for the strains transformed with IMP genes under the parameters analysed such as, the transformation efficiency, survival of colonies on IPTG-plate, culture growth kinetics and protein expression compared to the strain harbouring the cytosolic protein gene.
Collapse
Affiliation(s)
- Padikara K Satheeshkumar
- Interuniversity Centre for Genomics and Gene Technology, Department of Biotechnology, University of Kerala, Trivandrum, Kerala, India
| | - Prasannan V Anu
- Interuniversity Centre for Genomics and Gene Technology, Department of Biotechnology, University of Kerala, Trivandrum, Kerala, India
| | - Mohmed I Junaida
- Interuniversity Centre for Genomics and Gene Technology, Department of Biotechnology, University of Kerala, Trivandrum, Kerala, India
| | | | | | - Ananthakrishnan J Nair
- Interuniversity Centre for Genomics and Gene Technology, Department of Biotechnology, University of Kerala, Trivandrum, Kerala, India
| | - Gangaprasad A Nair
- Interuniversity Centre for Genomics and Gene Technology, Department of Biotechnology, University of Kerala, Trivandrum, Kerala, India
| | - Govinda Pillai M Nair
- Interuniversity Centre for Genomics and Gene Technology, Department of Biotechnology, University of Kerala, Trivandrum, Kerala, India
| | - Perumana R Sudhakaran
- Interuniversity Centre for Genomics and Gene Technology, Department of Biotechnology, University of Kerala, Trivandrum, Kerala, India
| |
Collapse
|
22
|
Ahmed A, Arshad M, Malik A, Parveen S, Alsenaidy AM. Camelus dromedarius glucose transporter 4: in silico analysis, cloning, expression, purification and characterisation in E. coli. Arch Physiol Biochem 2017; 123:254-264. [PMID: 28440667 DOI: 10.1080/13813455.2017.1312460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Camels have exceptional carbohydrate metabolism as their plasma glucose level is high and have low whole body insulin sensitivity, similar to that observed in type 2 diabetes patients. We aimed at studing an important component of insulin signalling pathway, the GLUT4, in camel. Camelus dromedarius GLUT4 (CdGLUT4) CDS is 1530 nucleotide in length that encodes for a 55KDa protein. CdGLUT4 has 23 amino acid substitutions and 3N-glycosylation sites, compared to 2 in Human GLUT4. 3 D structures of CdGLUT4 and HsGLUT4 generated by homology modelling revealed conservation of characteristic signature motifs. CdGLUT4 was cloned and expressed optimally in C43(DE3)pLysS strain and maximum detergent solubility was observed in n-Dodecyl-β-d-maltopyranoside. These preliminary data provide information on residual differences between CdGLUT4 and HsGLUT4 that may be responsible for camel's unique glucose metabolism. These differences are postulated to assist in designing and development of efficacious GLUT4 that might help in management of diabetic patients.
Collapse
Affiliation(s)
- Anwar Ahmed
- a Protein Research Chair, Department of Biochemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
- b Centre of Excellence in Biotechnology Research, Department of Biochemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Mohammed Arshad
- a Protein Research Chair, Department of Biochemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Ajamaluddin Malik
- a Protein Research Chair, Department of Biochemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Shama Parveen
- c Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Abdulrahman M Alsenaidy
- a Protein Research Chair, Department of Biochemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
23
|
Siu KH, Chen W. Control of the Yeast Mating Pathway by Reconstitution of Functional α-Factor Using Split Intein-Catalyzed Reactions. ACS Synth Biol 2017; 6:1453-1460. [PMID: 28505429 DOI: 10.1021/acssynbio.7b00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetic control strategies using signaling peptides to regulate and coordinate cellular behaviors in multicellular organisms and synthetic consortia remain largely underdeveloped because of the complexities necessitated by heterologous peptide expression. Using recombinant proteins that exploit split intein-mediated reactions, we presented here a new strategy for reconstituting functional signaling peptides capable of eliciting desired cellular responses in S. cerevisiae. These designs can potentially be tailored to any signaling peptides to be reconstituted, as the split inteins are promiscuous and both the peptides and the reactions are amenable to changes by directed evolution and other protein engineering tools, thereby offering a general strategy to implement synthetic control strategies in a large variety of applications.
Collapse
Affiliation(s)
- Ka-Hei Siu
- Department of Chemical and
Biomolecular Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and
Biomolecular Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| |
Collapse
|
24
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|
25
|
Sonnabend A, Spahn V, Stech M, Zemella A, Stein C, Kubick S. Production of G protein-coupled receptors in an insect-based cell-free system. Biotechnol Bioeng 2017; 114:2328-2338. [PMID: 28574582 PMCID: PMC5599999 DOI: 10.1002/bit.26346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 04/21/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein‐coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell‐free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell‐free system, performed within a short time and in a cost‐effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect‐based cell‐free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell‐free synthesized MOR in comparison to MOR expressed in a human cell line by “one‐point” radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328–2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Viola Spahn
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| | - Christoph Stein
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses Potsdam-Golm (IZI-BB), Am Muehlenberg 13, Potsdam 14476, Germany
| |
Collapse
|
26
|
Rabies vaccine development by expression of recombinant viral glycoprotein. Arch Virol 2016; 162:323-332. [PMID: 27796547 DOI: 10.1007/s00705-016-3128-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
The rabies virus envelope glycoprotein (RVGP) is the main antigen of rabies virus and is the only viral component present in all new rabies vaccines being proposed. Many approaches have been taken since DNA recombinant technology became available to express an immunogenic recombinant rabies virus glycoprotein (rRVGP). These attempts are reviewed here, and the relevant results are discussed with respect to the general characteristics of the rRVGP, the expression system used, the expression levels achieved, the similarity of the rRVGP to the native glycoprotein, and the immunogenicity of the vaccine preparation. The most recent studies of rabies vaccine development have concentrated on in vivo expression of rRVGP by viral vector transduction, serving as the biotechnological basis for a new generation of rabies vaccines.
Collapse
|
27
|
Claes K, Vandewalle K, Laukens B, Laeremans T, Vosters O, Langer I, Parmentier M, Steyaert J, Callewaert N. Modular Integrated Secretory System Engineering in Pichia pastoris To Enhance G-Protein Coupled Receptor Expression. ACS Synth Biol 2016; 5:1070-1075. [PMID: 27176489 DOI: 10.1021/acssynbio.6b00032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane protein research is still hampered by the generally very low levels at which these proteins are naturally expressed, necessitating heterologous expression. Protein degradation, folding problems, and undesired post-translational modifications often occur, together resulting in low expression levels of heterogeneous protein products that are unsuitable for structural studies. We here demonstrate how the integration of multiple engineering modules in Pichia pastoris can be used to increase both the quality and the quantity of overexpressed integral membrane proteins, with the human CXCR4 G-protein coupled receptor as an example. The combination of reduced proteolysis, enhanced ER folding capacity, GlycoDelete-based N-Glycan trimming, and nanobody-based fold stabilization improved the expression of this GPCR in P. pastoris from a low expression level of a heterogeneously glycosylated, proteolyzed product to substantial quantities (2-3 mg/L shake flask culture) of a nonproteolyzed, homogeneously glycosylated proteoform. We expect that this set of tools will contribute to successful expression of more membrane proteins in a quantity and quality suitable for functional and structural studies.
Collapse
Affiliation(s)
- Katrien Claes
- Unit
for Medical Biotechnology, Medical Biotechnology Center, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L.-Ledeganckstraat
35, 9000 Ghent, Belgium
| | - Kristof Vandewalle
- Unit
for Medical Biotechnology, Medical Biotechnology Center, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L.-Ledeganckstraat
35, 9000 Ghent, Belgium
| | - Bram Laukens
- Unit
for Medical Biotechnology, Medical Biotechnology Center, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L.-Ledeganckstraat
35, 9000 Ghent, Belgium
| | - Toon Laeremans
- Structural
Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural
Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Olivier Vosters
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Campus Erasme,
808 Route de Lennik, B-1070 Brussels, Belgium
| | - Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Campus Erasme,
808 Route de Lennik, B-1070 Brussels, Belgium
| | - Marc Parmentier
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Campus Erasme,
808 Route de Lennik, B-1070 Brussels, Belgium
- Welbio, Université Libre de Bruxelles (U.L.B.), Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | - Jan Steyaert
- Structural
Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural
Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nico Callewaert
- Unit
for Medical Biotechnology, Medical Biotechnology Center, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L.-Ledeganckstraat
35, 9000 Ghent, Belgium
| |
Collapse
|
28
|
The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability. Cell Mol Life Sci 2016; 74:23-38. [PMID: 27734094 PMCID: PMC5209436 DOI: 10.1007/s00018-016-2386-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for the disease cystic fibrosis (CF). It is a membrane protein belonging to the ABC transporter family functioning as a chloride/anion channel in epithelial cells around the body. There are over 1500 mutations that have been characterised as CF-causing; the most common of these, accounting for ~70 % of CF cases, is the deletion of a phenylalanine at position 508. This leads to instability of the nascent protein and the modified structure is recognised and then degraded by the ER quality control mechanism. However, even pharmacologically ‘rescued’ F508del CFTR displays instability at the cell’s surface, losing its channel function rapidly and it is rapidly removed from the plasma membrane for lysosomal degradation. This review will, therefore, explore the link between stability and structure/function relationships of membrane proteins and CFTR in particular and how approaches to study CFTR structure depend on its stability. We will also review the application of a fluorescence labelling method for the assessment of the thermostability and the tertiary structure of CFTR.
Collapse
|
29
|
Tokumoto T, Hossain MB, Wang J. Establishment of procedures for studying mPR-interacting agents and physiological roles of mPR. Steroids 2016; 111:79-83. [PMID: 26917245 DOI: 10.1016/j.steroids.2016.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 01/27/2023]
Abstract
More than 10years have passed since the discovery of membrane progestin receptors (mPRs). Although the identification of mPR genes in various organisms and mPR expression patterns have been described since then, the precise physiological roles of mPRs are still unclear, except their function as a receptor for maturation-inducing steroid in fish. The wide distribution of mPRs suggests variable actions for progestins through mPRs in the tissues. Information about the physiological roles of mPRs, such as roles in the progression of breast cancer and T-cell proliferation, has gradually accumulated recently. These results suggest that mPRs are possible targets for new pharmaceuticals. We established a cell line that was transformed with cDNAs for mPRα and a recombinant luciferase gene named GloSensor. The cells can be used for monitoring the effects of ligands on mPRα based on intracellular cyclic adenosine monophosphate (cAMP) levels. Studies using these cell lines indicated that the cAMP concentration is decreased by ligands for mPRα. The results provide support for previous results suggesting that mPRα is coupled to inhibitory G protein (Gi). We also established screening methods that make it possible to screen ligands for mPR. Recently, we succeeded in expressing and purifying recombinant mPR protein in the yeast Pichia pastoris. Relatively large amounts of mPR protein with hormonal binding activity can be purified by our method. The recombinant protein will be applicable to establishing a molecular probe to detect mPR-interacting agents. To obtain decisive evidence for the roles of mPRs, we are establishing strains of medaka fish that are deficient in mPRs. In medaka, four subtypes of mPR genes (α, β, γ, and α2) have been identified. By reverse genetic screening, we have selected three to four strains in which a point mutation has been induced in the coding sequence of the mPR subtypes. However, homozygous mutants of each mPR gene showed no phenotype. The results suggested that mPR genes share redundancy. We are currently producing double and triple mutants of the mPR subtypes. The physiological roles of mPRs will be demonstrated using the mutant medaka strains.
Collapse
Affiliation(s)
- Toshinobu Tokumoto
- Department of Biology, Faculty of Science, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan; Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Md Babul Hossain
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jun Wang
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
30
|
Jo M, Jung ST. Engineering therapeutic antibodies targeting G-protein-coupled receptors. Exp Mol Med 2016; 48:e207. [PMID: 26846450 PMCID: PMC4892866 DOI: 10.1038/emm.2015.105] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022] Open
Abstract
G-protein–coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution.
Collapse
Affiliation(s)
- Migyeong Jo
- Department of Bio and Nano Chemistry, Kookmin University, Seoul, Korea
| | - Sang Taek Jung
- Department of Bio and Nano Chemistry, Kookmin University, Seoul, Korea
| |
Collapse
|
31
|
Ehrengruber MU, Lundstrom K. Recombinant Alphavirus-Mediated Expression of Ion Channels and Receptors in the Brain. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-3064-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Mirian M, Taghizadeh R, Khanahmad H, Salehi M, Jahanian-Najafabadi A, Sadeghi-Aliabadi H, Kouhpayeh S. Exposition of hepatitis B surface antigen (HBsAg) on the surface of HEK293T cell and evaluation of its expression. Res Pharm Sci 2016; 11:366-373. [PMID: 27920818 PMCID: PMC5122825 DOI: 10.4103/1735-5362.192485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) is considered as a global health concern and hepatitis B surface antigen (HBsAg) is the most immunogenic protein of HBV. The purpose of this study was to evaluate the expression of HBsAg on the cell surface of human embryonic kidney cell line (HEK293T). After transformation of expression vector pcDNA/HBsAg to E.coli TOP10F’, plasmid was extracted and digested with BglII. Afterwards, the linearized vector was transfected to cells and treated with hygromycin B for 5 weeks to expand the resulted clonies. The permanent expression of HBsAg followed by flow cytometry uptill now about one year. Genomic DNA was extracted from transfected cells and the existence of HBsAg gene was assessed by PCR. Real-time RT-PCR was utilized to measure the expression at the RNA level and flow cytometery was carried out to assess protein expression. Insertion of HBsAg cDNA in HEK293T genome was confirmed by PCR. The results of real-time RT-PCR illustrated that each cell expresses 2275 copies of mRNA molecule. Flow cytometry showed that compared with negative control cells, 99.9% of transfected cells express HBsAg on their surface. In conclusion, stable expression of hepatitis B surface antigen on the membrane of HEK293T provides an accurate post-translational modification, proper structure, and native folding in contrast with purified protein from prokaryotic expression systems. Therefore, these exposing HBsAg cells are practical in therapeutic, pharmaceutical, and biological sets of research.
Collapse
Affiliation(s)
- Mina Mirian
- Department of genetics and molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Razieh Taghizadeh
- Department of genetics and molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hossein Khanahmad
- Department of genetics and molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mansour Salehi
- Department of genetics and molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Shirin Kouhpayeh
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
33
|
Snijder HJA, Hakulinen J. Membrane Protein Production in E. coli for Applications in Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:59-77. [PMID: 27165319 DOI: 10.1007/978-3-319-27216-0_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Producing high quality purified membrane proteins for structure-based drug design and biophysical assays compatible with typical timelines in drug discovery is a significant challenge. Escherichia coli has been an expression host of the utmost importance for soluble proteins and has applications for membrane proteins as well. However, membrane protein overexpression in E. coli may lead to toxicity and low yields of functional product. Here, we review the challenges encountered with heterologous overproduction of α-helical membrane proteins in E. coli and a range of strategies to overcome them. A detailed protocol is also provided for expression and screening of membrane proteins in E. coli using a His-specific fluorescent probe and fluorescent size-exclusion chromatography.
Collapse
Affiliation(s)
| | - Jonna Hakulinen
- Discovery Sciences, AstraZeneca R&D, SE-43183, Mölndal, Sweden
| |
Collapse
|
34
|
Emerging Approaches to GPCR Ligand Screening for Drug Discovery. Trends Mol Med 2015; 21:687-701. [DOI: 10.1016/j.molmed.2015.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/07/2023]
|
35
|
Hossain MB, Oshima T, Hirose S, Wang J, Tokumoto T. Expression and Purification of Human Membrane Progestin Receptor α (mPRα). PLoS One 2015; 10:e0138739. [PMID: 26398701 PMCID: PMC4580469 DOI: 10.1371/journal.pone.0138739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/01/2015] [Indexed: 02/01/2023] Open
Abstract
Membrane progestin receptors (mPRs) are responsible for mediating the rapid, nongenomic activity of progestins and belong to the G protein-coupled receptor (GPCR) family. mPRs are also considered as attractive proteins to draw a new medicinal approach. In this study, we optimized a procedure for the expression and purification of recombinant human mPRα protein (hmPRα) by a methylotropic yeast, Pichia pastoris, expression system. The protein expressed in crude membrane fractions exhibited a binding affinity of Kd = 3.8 nM and Bmax = 288.8 fmol/mg for progesterone. These results indicated that the hmPRα expressed in yeast was active. Solubilized hmPRα was purified through three column chromatography steps. A nickel-nitrilotriacetic acid (Ni-NTA) column was first used, and the mPRα proteins were then bound to cellulose resin with free amino groups (Cellufine Amino) and finally passed through an SP-Sepharose column. The optimization of expression and purification conditions resulted in a high yield of purified hmPRα (1.3–1.5 mg from 1 L culture). The purified hmPRα protein demonstrated progesterone binding (Kd = 5.2 nM and Bmax = 111.6 fmol/mg). The results indicated that we succeeded in solubilizing and purifying hmPRα in an active form. Sufficient amount of active hmPRα protein will support the establishment of applications for the screening of ligands for mPRα.
Collapse
MESH Headings
- Amino Acid Sequence
- Chromatography, Affinity
- Chromatography, Liquid
- Humans
- Kinetics
- Molecular Sequence Data
- Peptides/analysis
- Pichia/metabolism
- Progesterone/chemistry
- Progesterone/metabolism
- Protein Binding
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Progesterone/chemistry
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Md. Babul Hossain
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422–8529, Japan
| | - Takayuki Oshima
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422–8529, Japan
| | - Shizuka Hirose
- Department of Biological Science, Faculty of Science, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422–8529, Japan
| | - Jun Wang
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422–8529, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422–8529, Japan
- Department of Biological Science, Faculty of Science, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422–8529, Japan
- * E-mail:
| |
Collapse
|
36
|
Byrne B. Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 2015; 32:9-17. [DOI: 10.1016/j.sbi.2015.01.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/07/2015] [Accepted: 01/16/2015] [Indexed: 12/17/2022]
|
37
|
Milić D, Veprintsev DB. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 2015; 6:66. [PMID: 25873898 PMCID: PMC4379943 DOI: 10.3389/fphar.2015.00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/13/2015] [Indexed: 01/26/2023] Open
Abstract
Structural studies of G protein-coupled receptors (GPCRs) gave insights into molecular mechanisms of their action and contributed significantly to molecular pharmacology. This is primarily due to technical advances in protein engineering, production and crystallization of these important receptor targets. On the other hand, NMR spectroscopy of GPCRs, which can provide information about their dynamics, still remains challenging due to difficulties in preparation of isotopically labeled receptors and their low long-term stabilities. In this review, we discuss methods used for expression and purification of GPCRs for crystallographic and NMR studies. We also summarize protein engineering methods that played a crucial role in obtaining GPCR crystal structures.
Collapse
Affiliation(s)
- Dalibor Milić
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland ; Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich Switzerland
| |
Collapse
|
38
|
Shukla AK, Kumari P, Ghosh E, Nidhi K. From Recombinant Expression to Crystals: A Step-by-Step Guide to GPCR Crystallography. Methods Enzymol 2015; 556:549-61. [PMID: 25857799 DOI: 10.1016/bs.mie.2015.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptors (GPCRs) are the primary targets of drugs prescribed for many human pathophysiological conditions such as hypertension, allergies, schizophrenia, asthma, and various types of cancer. High-resolution structure determination of GPCRs has been a key focus area in GPCR biology to understand the basic mechanism of their activation and signaling and to materialize the long-standing dream of structure-based drug design on these versatile receptors. There has been tremendous effort at this front in the past two decades and it has culminated into crystal structures of 27 different receptors so far. The recent progress in crystallization and structure determination of GPCRs has been driven by innovation and cutting-edge developments at every step involved in the process of crystallization. Here, we present a step-by-step description of various steps involved in GPCR crystallization starting from recombinant expression to obtaining diffracting crystals. We also discuss the next frontiers in GPCR biology that are likely to be a primary focus for crystallography efforts in the next decade or so.
Collapse
Affiliation(s)
- Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| | - Punita Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Eshan Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Kumari Nidhi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
39
|
Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 2015; 16:69-81. [DOI: 10.1038/nrm3933] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Isotope Labeling of Eukaryotic Membrane Proteins in Yeast for Solid-State NMR. Methods Enzymol 2015; 565:193-212. [DOI: 10.1016/bs.mie.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
41
|
Engineering G Protein-Coupled Receptors for Drug Design. MULTIFACETED ROLES OF CRYSTALLOGRAPHY IN MODERN DRUG DISCOVERY 2015. [DOI: 10.1007/978-94-017-9719-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Isotopic labeling of mammalian G protein-coupled receptors heterologously expressed in Caenorhabditis elegans. Anal Biochem 2014; 472:30-6. [PMID: 25461480 DOI: 10.1016/j.ab.2014.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/28/2022]
Abstract
High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack post-translational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work, we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with (15)N,(13)C by providing them with isotopically labeled bacteria. (2)H labeling also was achieved by growing C. elegans in the presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the "test" GPCR to demonstrate the viability of this approach. Although the worms' cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization.
Collapse
|
43
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
44
|
Bawa Z, Routledge SJ, Jamshad M, Clare M, Sarkar D, Dickerson I, Ganzlin M, Poyner DR, Bill RM. Functional recombinant protein is present in the pre-induction phases of Pichia pastoris cultures when grown in bioreactors, but not shake-flasks. Microb Cell Fact 2014; 13:127. [PMID: 25186468 PMCID: PMC4159547 DOI: 10.1186/s12934-014-0127-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Pichia pastoris is a widely-used host for recombinant protein production; expression is typically driven by methanol-inducible alcohol oxidase (AOX) promoters. Recently this system has become an important source of recombinant G protein-coupled receptors (GPCRs) for structural biology and drug discovery. The influence of diverse culture parameters (such as pH, dissolved oxygen concentration, medium composition, antifoam concentration and culture temperature) on productivity has been investigated for a wide range of recombinant proteins in P. pastoris. In contrast, the impact of the pre-induction phases on yield has not been as closely studied. In this study, we examined the pre-induction phases of P. pastoris bioreactor cultivations producing three different recombinant proteins: the GPCR, human A2a adenosine receptor (hA2aR), green fluorescent protein (GFP) and human calcitonin gene-related peptide receptor component protein (as a GFP fusion protein; hCGRP-RCP-GFP). Results Functional hA2aR was detected in the pre-induction phases of a 1 L bioreactor cultivation of glycerol-grown P. pastoris. In a separate experiment, a glycerol-grown P. pastoris strain secreted soluble GFP prior to methanol addition. When glucose, which has been shown to repress AOX expression, was the pre-induction carbon source, hA2aR and GFP were still produced in the pre-induction phases. Both hA2aR and GFP were also produced in methanol-free cultivations; functional protein yields were maintained or increased after depletion of the carbon source. Analysis of the pre-induction phases of 10 L pilot scale cultivations also demonstrated that pre-induction yields were at least maintained after methanol induction, even in the presence of cytotoxic concentrations of methanol. Additional bioreactor data for hCGRP-RCP-GFP and shake-flask data for GFP, horseradish peroxidase (HRP), the human tetraspanins hCD81 and CD82, and the tight-junction protein human claudin-1, demonstrated that bioreactor but not shake-flask cultivations exhibit recombinant protein production in the pre-induction phases of P. pastoris cultures. Conclusions The production of recombinant hA2aR, GFP and hCGRP-RCP-GFP can be detected in bioreactor cultivations prior to methanol induction, while this is not the case for shake-flask cultivations of GFP, HRP, hCD81, hCD82 and human claudin-1. This confirms earlier suggestions of leaky expression from AOX promoters, which we report here for both glycerol- and glucose-grown cells in bioreactor cultivations. These findings suggest that the productivity of AOX-dependent bioprocesses is not solely dependent on induction by methanol. We conclude that in order to maximize total yields, pre-induction phase cultivation conditions should be optimized, and that increased specific productivity may result in decreased biomass yields. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0127-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
45
|
Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 2014; 98:7671-98. [PMID: 25070595 DOI: 10.1007/s00253-014-5948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 02/08/2023]
Abstract
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.
Collapse
Affiliation(s)
- Anita Emmerstorfer
- ACIB-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | | | | | | |
Collapse
|
46
|
Logez C, Berger S, Legros C, Banères JL, Cohen W, Delagrange P, Nosjean O, Boutin JA, Ferry G, Simonin F, Wagner R. Recombinant human melatonin receptor MT1 isolated in mixed detergents shows pharmacology similar to that in mammalian cell membranes. PLoS One 2014; 9:e100616. [PMID: 24959712 PMCID: PMC4069108 DOI: 10.1371/journal.pone.0100616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023] Open
Abstract
The human melatonin MT1 receptor—belonging to the large family of G protein-coupled receptors (GPCRs)—plays a key role in circadian rhythm regulation and is notably involved in sleep disorders and depression. Structural and functional information at the molecular level are highly desired for fine characterization of this receptor; however, adequate techniques for isolating soluble MT1 material suitable for biochemical and biophysical studies remain lacking. Here we describe the evaluation of a panel of constructs and host systems for the production of recombinant human MT1 receptors, and the screening of different conditions for their solubilization and purification. Our findings resulted in the establishment of an original strategy using a mixture of Fos14 and CHAPS detergents to extract and purify a recombinant human MT1 from Pichia pastoris membranes. This procedure enabled the recovery of relatively pure, monomeric and ligand-binding active MT1 receptor in the near-milligram range. A comparative study based on extensive ligand-binding characterization highlighted a very close correlation between the pharmacological profiles of MT1 purified from yeast and the same receptor present in mammalian cell membranes. The high quality of the purified MT1 was further confirmed by its ability to activate its cognate Gαi protein partner when reconstituted in lipid discs, thus opening novel paths to investigate this receptor by biochemical and biophysical approaches.
Collapse
Affiliation(s)
- Christel Logez
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Sylvie Berger
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Céline Legros
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean-Louis Banères
- CNRS UMR 5247, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier 1 and Montpellier 2, Faculté de Pharmacie, Montpellier, France
| | - William Cohen
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Philippe Delagrange
- Unité de Recherches et Découvertes en Neurosciences, Institut de Recherche Servier, Croissy-sur-Seine, France
| | - Olivier Nosjean
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A. Boutin
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
- * E-mail:
| | - Gilles Ferry
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Frédéric Simonin
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| | - Renaud Wagner
- CNRS UMR7242/Laboratoire d'excellence MEDALIS, Institut de Recherche de l'ESBS, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| |
Collapse
|
47
|
Expression and functional characterization of membrane-integrated mammalian corticotropin releasing factor receptors 1 and 2 in Escherichia coli. PLoS One 2014; 9:e84013. [PMID: 24465390 PMCID: PMC3894963 DOI: 10.1371/journal.pone.0084013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
Corticotropin-Releasing Factor Receptors (CRFRs) are class B1 G-protein-coupled receptors, which bind peptides of the corticotropin releasing factor family and are key mediators in the stress response. In order to dissect the receptors' binding specificity and enable structural studies, full-length human CRFR1α and mouse CRFR2β as well as fragments lacking the N-terminal extracellular domain, were overproduced in E. coli. The characteristics of different CRFR2β-PhoA gene fusion products expressed in bacteria were found to be in agreement with the predicted ones in the hepta-helical membrane topology model. Recombinant histidine-tagged CRFR1α and CRFR2β expression levels and bacterial subcellular localization were evaluated by cell fractionation and Western blot analysis. Protein expression parameters were assessed, including the influence of E. coli bacterial hosts, culture media and the impact of either PelB or DsbA signal peptide. In general, the large majority of receptor proteins became inserted in the bacterial membrane. Across all experimental conditions significantly more CRFR2β product was obtained in comparison to CRFR1α. Following a detergent screen analysis, bacterial membranes containing CRFR1α and CRFR2β were best solubilized with the zwitterionic detergent FC-14. Binding of different peptide ligands to CRFR1α and CRFR2β membrane fractions were similar, in part, to the complex pharmacology observed in eukaryotic cells. We suggest that our E. coli expression system producing functional CRFRs will be useful for large-scale expression of these receptors for structural studies.
Collapse
|
48
|
OSHIMA T, NAKAYAMA R, ROY SR, TOKUMOTO T. Purification of the goldfish membrane progestin receptor α (mPRα) expressedin yeast Pichia pastoris. Biomed Res 2014; 35:47-59. [DOI: 10.2220/biomedres.35.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Tumulka F, Roos C, Löhr F, Bock C, Bernhard F, Dötsch V, Abele R. Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:141-154. [PMID: 24013930 DOI: 10.1007/s10858-013-9774-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
The ATP binding cassette transporter TAPL translocates cytosolic peptides into the lumen of lysosomes driven by the hydrolysis of ATP. Functionally, this transporter can be divided into coreTAPL, comprising the transport function, and an additional N-terminal transmembrane domain called TMD0, which is essential for lysosomal targeting and mediates the interaction with the lysosomal associated membrane proteins LAMP-1 and LAMP-2. To elucidate the structure of this unique domain, we developed protocols for the production of high quantities of cell-free expressed TMD0 by screening different N-terminal expression tags. Independently of the amino acid sequence, high expression was detected for AU-rich sequences in the first seven codons, decreasing the free energy of RNA secondary structure formation at translation initiation. Furthermore, avoiding NGG codons in the region of translation initiation demonstrated a positive effect on expression. For NMR studies, conditions were optimized for high solubilization efficiency, long-term stability, and high quality spectra. A most critical step was the careful exchange of the detergent used for solubilization by the detergent dihexanoylphosphatidylcholine. Several constructs of different size were tested in order to stabilize the fold of TMD0 as well as to reduce the conformation exchange. NMR spectra with sufficient resolution and homogeneity were finally obtained with a TMD0 derivative only modified by a C-terminal His10-tag and containing a codon optimized AT-rich sequence.
Collapse
Affiliation(s)
- Franz Tumulka
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na,K-ATPase α3β1 isoform. Appl Microbiol Biotechnol 2013; 97:9465-78. [PMID: 23955473 DOI: 10.1007/s00253-013-5156-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 12/17/2022]
Abstract
The heterologous expression of mammalian membrane proteins in lower eukaryotes is often hampered by aberrant protein localization, structure, and function, leading to enhanced degradation and, thus, low expression levels. Substantial quantities of functional membrane proteins are necessary to elucidate their structure-function relationships. Na,K-ATPases are integral, human membrane proteins that specifically interact with cholesterol and phospholipids, ensuring protein stability and enhancing ion transport activity. In this study, we present a Pichia pastoris strain which was engineered in its sterol pathway towards the synthesis of cholesterol instead of ergosterol to foster the functional expression of human membrane proteins. Western blot analyses revealed that cholesterol-producing yeast formed enhanced and stable levels of human Na,K-ATPase α3β1 isoform. ATPase activity assays suggested that this Na,K-ATPase isoform was functionally expressed in the plasma membrane. Moreover, [(3)H]-ouabain cell surface-binding studies underscored that the Na,K-ATPase was present in high numbers at the cell surface, surpassing reported expression strains severalfold. This provides evidence that the humanized sterol composition positively influenced Na,K-ATPase α3β1 stability, activity, and localization to the yeast plasma membrane. Prospectively, cholesterol-producing yeast will have high potential for functional expression of many mammalian membrane proteins.
Collapse
|