1
|
Chigumba DN, Mydy LS, de Waal F, Li W, Shafiq K, Wotring JW, Mohamed OG, Mladenovic T, Tripathi A, Sexton JZ, Kautsar S, Medema MH, Kersten RD. Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases. Nat Chem Biol 2022; 18:18-28. [PMID: 34811516 DOI: 10.1038/s41589-021-00892-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022]
Abstract
Many bioactive plant cyclic peptides form side-chain-derived macrocycles. Lyciumins, cyclic plant peptides with tryptophan macrocyclizations, are ribosomal peptides (RiPPs) originating from repetitive core peptide motifs in precursor peptides with plant-specific BURP (BNM2, USP, RD22 and PG1beta) domains, but the biosynthetic mechanism for their formation has remained unknown. Here, we characterize precursor-peptide BURP domains as copper-dependent autocatalytic peptide cyclases and use a combination of tandem mass spectrometry-based metabolomics and plant genomics to systematically discover five BURP-domain-derived plant RiPP classes, with mono- and bicyclic structures formed via tryptophans and tyrosines, from botanical collections. As BURP-domain cyclases are scaffold-generating enzymes in plant specialized metabolism that are physically connected to their substrates in the same polypeptide, we introduce a bioinformatic method to mine plant genomes for precursor-peptide-encoding genes by detection of repetitive substrate domains and known core peptide features. Our study sets the stage for chemical, biosynthetic and biological exploration of plant RiPP natural products from BURP-domain cyclases.
Collapse
Affiliation(s)
- Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Floris de Waal
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Wenjie Li
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Khadija Shafiq
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jesse W Wotring
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Osama G Mohamed
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tim Mladenovic
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Ashootosh Tripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.,Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Satria Kautsar
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands.
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Walinda E, Morimoto D, Sorada T, Iwai K, Sugase K. Expression, solubility monitoring, and purification of the co-folded LUBAC LTM domain by structure-guided tandem folding in autoinducing cultures. Protein Expr Purif 2021; 187:105953. [PMID: 34390872 DOI: 10.1016/j.pep.2021.105953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
The linear ubiquitin chain assembly complex tethering motif (LUBAC-LTM) domain is composed of two different accessory LUBAC components (HOIL-1L and SHARPIN) but folds as a single globular domain. Targeted disruption of the intricate LTM-LTM interaction destabilizes LUBAC in lymphoma cells, thereby attenuating LUBAC stability, which highlights that targeting the interaction between the two LTM motifs is a promising strategy for the development of new agents against cancers that depend on LUBAC activity for their survival. To further screen for small-molecule inhibitors that can selectively disrupt the LTM-LTM interaction, it is necessary to obtain high-purity samples of the LTM domain. Ideally, such a sample would not contain any components other than the LTM itself, so that false positives (molecules binding to other parts of LUBAC) could be eliminated from the screening process. Here we report a simple strategy that enabled successful bacterial production of the isolated LUBAC LTM domain in high yield and at high purity. The strategy combines (1) structural analysis highlighting the possibility of tandem expression in the SHARPINL™ to HOIL-1LL™ direction; (2) bacterial expression downstream of EGFP to efficiently monitor expression and solubility; (3) gentle low-temperature folding using autoinduction. Formation of stably folded LTM was verified by size-exclusion chromatography and heteronuclear NMR spectroscopy. From 200-ml cultures sufficient quantities (∼7 mg) of high-purity protein for structural studies could be obtained. The presented strategy will be beneficial for LUBAC LTM-based drug-screening efforts and likely serve as a useful primer for similar cases, i.e., whenever a smaller folded fragment is to be isolated from a larger protein complex for site-specific downstream applications.
Collapse
Affiliation(s)
- Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomoki Sorada
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Crowley EL, Rafferty SP. Review of lactose-driven auto-induction expression of isotope-labelled proteins. Protein Expr Purif 2019; 157:70-85. [PMID: 30708035 DOI: 10.1016/j.pep.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
NMR is an important method in the structural and functional characterization of proteins, but such experiments typically require isotopic labelling because of the low natural abundance of the nuclei of interest. Isotope-labelled protein for NMR experiments is typically obtained from IPTG-inducible bacterial expression systems in a minimal media that contains labelled carbon or nitrogen sources. Optimization of expression conditions is crucial yet challenging; large amounts of labelled protein are desired, yet protein yields are lower in minimal media, while the labelled precursors are expensive. Faced with these challenges there is a growing body of literature that apply innovative methods of induction to optimize the yield of isotope-labelled protein. A promising technique is lactose-driven auto-induction as it mitigates user intervention and can lead to higher protein yields. This review assesses the current advances and limitations surrounding the ability of researchers to isotope label proteins using auto-induction, and it identifies key components for optimization.
Collapse
Affiliation(s)
- Erika L Crowley
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| | - Steven P Rafferty
- Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| |
Collapse
|
4
|
Markley JL, Westler WM. Biomolecular NMR: Past and future. Arch Biochem Biophys 2017; 628:3-16. [PMID: 28495511 PMCID: PMC5701516 DOI: 10.1016/j.abb.2017.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/28/2022]
Abstract
The editors of this special volume suggested this topic, presumably because of the perspective lent by our combined >90-year association with biomolecular NMR. What follows is our personal experience with the evolution of the field, which we hope will illustrate the trajectory of change over the years. As for the future, one can confidently predict that it will involve unexpected advances. Our narrative is colored by our experience in using the NMR Facility for Biomedical Studies at Carnegie-Mellon University (Pittsburgh) and in developing similar facilities at Purdue (1977-1984) and the University of Wisconsin-Madison (1984-). We have enjoyed developing NMR technology and making it available to collaborators and users of these facilities. Our group's association with the Biological Magnetic Resonance data Bank (BMRB) and with the Worldwide Protein Data Bank (wwPDB) has also been rewarding. Of course, many groups contributed to the early growth and development of biomolecular NMR, and our brief personal account certainly omits many important milestones.
Collapse
Affiliation(s)
- John L Markley
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - William Milo Westler
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Konczal J, Gray CH. Streamlining workflow and automation to accelerate laboratory scale protein production. Protein Expr Purif 2017; 133:160-169. [PMID: 28330825 DOI: 10.1016/j.pep.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
Protein production facilities are often required to produce diverse arrays of proteins for demanding methodologies including crystallography, NMR, ITC and other reagent intensive techniques. It is common for these teams to find themselves a bottleneck in the pipeline of ambitious projects. This pressure to deliver has resulted in the evolution of many novel methods to increase capacity and throughput at all stages in the pipeline for generation of recombinant proteins. This review aims to describe current and emerging options to accelerate the success of protein production in Escherichia coli. We emphasize technologies that have been evaluated and implemented in our laboratory, including innovative molecular biology and expression vectors, small-scale expression screening strategies and the automation of parallel and multidimensional chromatography.
Collapse
Affiliation(s)
- Jennifer Konczal
- Drug Discovery Program, CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom
| | - Christopher H Gray
- Drug Discovery Program, CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom.
| |
Collapse
|
6
|
Coolbaugh M, Shakalli Tang M, Wood D. High-throughput purification of recombinant proteins using self-cleaving intein tags. Anal Biochem 2017; 516:65-74. [DOI: 10.1016/j.ab.2016.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
|
7
|
Expression platforms for producing eukaryotic proteins: a comparison of E. coli cell-based and wheat germ cell-free synthesis, affinity and solubility tags, and cloning strategies. ACTA ACUST UNITED AC 2015; 16:67-80. [PMID: 25854603 DOI: 10.1007/s10969-015-9198-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Vectors designed for protein production in Escherichia coli and by wheat germ cell-free translation were tested using 21 well-characterized eukaryotic proteins chosen to serve as controls within the context of a structural genomics pipeline. The controls were carried through cloning, small-scale expression trials, large-scale growth or synthesis, and purification. Successfully purified proteins were also subjected to either crystallization trials or (1)H-(15)N HSQC NMR analyses. Experiments evaluated: (1) the relative efficacy of restriction/ligation and recombinational cloning systems; (2) the value of maltose-binding protein (MBP) as a solubility enhancement tag; (3) the consequences of in vivo proteolysis of the MBP fusion as an alternative to post-purification proteolysis; (4) the effect of the level of LacI repressor on the yields of protein obtained from E. coli using autoinduction; (5) the consequences of removing the His tag from proteins produced by the cell-free system; and (6) the comparative performance of E. coli cells or wheat germ cell-free translation. Optimal promoter/repressor and fusion tag configurations for each expression system are discussed.
Collapse
|
8
|
Abstract
The expression and screening of the solubility of recombinant proteins is an important step in the high-throughput (HT) production of target proteins. For many applications, E. coli remains the most widely used expression system due to the relative ease of adapting it to HT pipelines. Herein is described a platform using a 96-well format for efficient expression and solubility screening of target proteins.
Collapse
Affiliation(s)
- Keehwan Kwon
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850, USA,
| | | |
Collapse
|
9
|
Lee W, Watters KE, Troupis AT, Reinen NM, Suchy FP, Moyer KL, Frederick RO, Tonelli M, Aceti DJ, Palmenberg AC, Markley JL. Solution structure of the 2A protease from a common cold agent, human rhinovirus C2, strain W12. PLoS One 2014; 9:e97198. [PMID: 24937088 PMCID: PMC4061012 DOI: 10.1371/journal.pone.0097198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/15/2014] [Indexed: 01/06/2023] Open
Abstract
Human rhinovirus strains differ greatly in their virulence, and this has been correlated with the differing substrate specificity of the respective 2A protease (2Apro). Rhinoviruses use their 2Apro to cleave a spectrum of cellular proteins important to virus replication and anti-host activities. These enzymes share a chymotrypsin-like fold stabilized by a tetra-coordinated zinc ion. The catalytic triad consists of conserved Cys (C105), His (H34), and Asp (D18) residues. We used a semi-automated NMR protocol developed at NMRFAM to determine the solution structure of 2Apro (C105A variant) from an isolate of the clinically important rhinovirus C species (RV-C). The backbone of C2 2Apro superimposed closely (1.41–1.81 Å rmsd) with those of orthologs from RV-A2, coxsackie B4 (CB4), and enterovirus 71 (EV71) having sequence identities between 40% and 60%. Comparison of the structures suggest that the differential functional properties of C2 2Apro stem from its unique surface charge, high proportion of surface aromatics, and sequence surrounding the di-tyrosine flap.
Collapse
Affiliation(s)
- Woonghee Lee
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kelly E. Watters
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrew T. Troupis
- Center for Eukaryotic Structural Genomics, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nichole M. Reinen
- Center for Eukaryotic Structural Genomics, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Fabian P. Suchy
- Center for Eukaryotic Structural Genomics, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kylie L. Moyer
- Center for Eukaryotic Structural Genomics, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ronnie O. Frederick
- Center for Eukaryotic Structural Genomics, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David J. Aceti
- Center for Eukaryotic Structural Genomics, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ann C. Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Eukaryotic Structural Genomics, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Makino SI, Beebe ET, Markley JL, Fox BG. Cell-free protein synthesis for functional and structural studies. Methods Mol Biol 2014; 1091:161-78. [PMID: 24203331 DOI: 10.1007/978-1-62703-691-7_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Recent advances in cell-free protein expression systems have made them reliable and practical for functional and structural studies of a wide variety of proteins. In particular, wheat germ cell-free translation can consistently produce target proteins in microgram quantities from relatively inexpensive, small-scale reactions. Here we describe our small-scale protein expression method for rapidly producing proteins for functional assay and techniques for determining if the target is suitable for scale-up to amounts potentially needed for structure determination. The cell-free system is versatile and can be easily customized with the inclusion of additives. We describe simple modifications used for producing membrane proteins.
Collapse
Affiliation(s)
- Shin-ichi Makino
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
11
|
McGraw J, Tatipelli VK, Feyijinmi O, Traore MC, Eangoor P, Lane S, Stollar EJ. A semi-automated method for purification of milligram quantities of proteins on the QIAcube. Protein Expr Purif 2014; 96:48-53. [PMID: 24508590 DOI: 10.1016/j.pep.2014.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/16/2014] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
Abstract
A growing number of studies require the purification of multiple proteins simultaneously and the development of simple economical high-throughput purification methods is essential. We have tested the purification of two related proteins in a variety of conditions to benchmark the semi-automated affinity chromatography method for the QIAcube that we have developed. We find that this new QIAcube method can successfully purify milligram quantities of proteins with minimal user involvement and performs as well as methods based on gravity. The method could easily be adapted to other chromatography resins and should prove to be a versatile method for optimizing protein expression or purification conditions for multiple proteins while obtaining sufficient amounts for subsequent biochemical analyses.
Collapse
Affiliation(s)
- J McGraw
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - V K Tatipelli
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - O Feyijinmi
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - M C Traore
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - P Eangoor
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - S Lane
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States
| | - E J Stollar
- Eastern New Mexico University, Department of Physical Sciences, Station #33, Portales, NM 88130, United States.
| |
Collapse
|
12
|
Beebe ET, Makino SI, Markley JL, Fox BG. Automated cell-free protein production methods for structural studies. Methods Mol Biol 2014; 1140:117-135. [PMID: 24590713 DOI: 10.1007/978-1-4939-0354-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In contrast to cell-based protein expression, cell-free production is highly consistent, scalable, and amenable to automation. Robots can handle many samples and perform repetitive procedures that are otherwise prone to human error. Here is described commercially available robotics for a wheat germ cell-free system with emphasis on practical applications for structural and functional studies. In addition, described is a cell-free method for preparing protein complexes.
Collapse
Affiliation(s)
- Emily T Beebe
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | | | | | | |
Collapse
|
13
|
Pei X, Zhang H, Meng L, Xu G, Yang L, Wu J. Efficient cloning and expression of a thermostable nitrile hydratase in Escherichia coli using an auto-induction fed-batch strategy. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Guertler P, Harwardt A, Eichelinger A, Muschler P, Goerlich O, Busch U. Development of a CTAB buffer-based automated gDNA extraction method for the surveillance of GMO in seed. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1916-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl Microbiol Biotechnol 2011; 91:1203-13. [DOI: 10.1007/s00253-011-3407-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
|
16
|
Ziarek JJ, Peterson FC, Lytle BL, Volkman BF. Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Methods Enzymol 2011; 493:241-75. [PMID: 21371594 PMCID: PMC3635485 DOI: 10.1016/b978-0-12-381274-2.00010-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last 15 years, the role of NMR spectroscopy in the lead identification and optimization stages of pharmaceutical drug discovery has steadily increased. NMR occupies a unique niche in the biophysical analysis of drug-like compounds because of its ability to identify binding sites, affinities, and ligand poses at the level of individual amino acids without necessarily solving the structure of the protein-ligand complex. However, it can also provide structures of flexible proteins and low-affinity (K(d)>10(-6)M) complexes, which often fail to crystallize. This chapter emphasizes a throughput-focused protocol that aims to identify practical aspects of binding site characterization, automated and semiautomated NMR assignment methods, and structure determination of protein-ligand complexes by NMR.
Collapse
Affiliation(s)
- Joshua J. Ziarek
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226 USA
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226 USA
| | - Betsy L. Lytle
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226 USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
17
|
Structural basis for selective activation of ABA receptors. Nat Struct Mol Biol 2010; 17:1109-13. [PMID: 20729860 PMCID: PMC2933299 DOI: 10.1038/nsmb.1898] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/20/2010] [Indexed: 01/23/2023]
Abstract
Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.
Collapse
|
18
|
Jensen DR, Woytovich C, Li M, Duvnjak P, Cassidy MS, Frederick RO, Bergeman LF, Peterson FC, Volkman BF. Rapid, robotic, small-scale protein production for NMR screening and structure determination. Protein Sci 2010; 19:570-8. [PMID: 20073081 DOI: 10.1002/pro.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three-dimensional protein structure determination is a costly process due in part to the low success rate within groups of potential targets. Conventional validation methods eliminate the vast majority of proteins from further consideration through a time-consuming succession of screens for expression, solubility, purification, and folding. False negatives at each stage incur unwarranted reductions in the overall success rate. We developed a semi-automated protocol for isotopically-labeled protein production using the Maxwell-16, a commercially available bench top robot, that allows for single-step target screening by 2D NMR. In the span of a week, one person can express, purify, and screen 48 different (15)N-labeled proteins, accelerating the validation process by more than 10-fold. The yield from a single channel of the Maxwell-16 is sufficient for acquisition of a high-quality 2D (1)H-(15)N-HSQC spectrum using a 3-mm sample cell and 5-mm cryogenic NMR probe. Maxwell-16 screening of a control group of proteins reproduced previous validation results from conventional small-scale expression screening and large-scale production approaches currently employed by our structural genomics pipeline. Analysis of 18 new protein constructs identified two potential structure targets that included the second PDZ domain of human Par-3. To further demonstrate the broad utility of this production strategy, we solved the PDZ2 NMR structure using [U-(15)N,(13)C] protein prepared using the Maxwell-16. This novel semi-automated protein production protocol reduces the time and cost associated with NMR structure determination by eliminating unnecessary screening and scale-up steps.
Collapse
Affiliation(s)
- Davin R Jensen
- Department of Biochemistry and Center for Eukaryotic Structural Genomics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Eschenfeldt WH, Maltseva N, Stols L, Donnelly MI, Gu M, Nocek B, Tan K, Kim Y, Joachimiak A. Cleavable C-terminal His-tag vectors for structure determination. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2010; 11:31-9. [PMID: 20213425 PMCID: PMC2885959 DOI: 10.1007/s10969-010-9082-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
High-throughput structural genomics projects seek to delineate protein structure space by determining the structure of representatives of all major protein families. Generally this is accomplished by processing numerous proteins through standardized protocols, for the most part involving purification of N-terminally His-tagged proteins. Often proteins that fail this approach are abandoned, but in many cases further effort is warranted because of a protein's intrinsic value. In addition, failure often occurs relatively far into the path to structure determination, and many failed proteins passed the first critical step, expression as a soluble protein. Salvage pathways seek to recoup the investment in this subset of failed proteins through alternative cloning, nested truncations, chemical modification, mutagenesis, screening buffers, ligands and modifying processing steps. To this end we have developed a series of ligation-independent cloning expression vectors that append various cleavable C-terminal tags instead of the conventional N-terminal tags. In an initial set of 16 proteins that failed with an N-terminal appendage, structures were obtained for C-terminally tagged derivatives of five proteins, including an example for which several alternative salvaging steps had failed. The new vectors allow appending C-terminal His(6)-tag and His(6)- and MBP-tags, and are cleavable with TEV or with both TEV and TVMV proteases.
Collapse
Affiliation(s)
- William H. Eschenfeldt
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL 60667, USA
| | - Lucy Stols
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Mark I. Donnelly
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Minyi Gu
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL 60667, USA
| | - Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL 60667, USA
| | - Kemin Tan
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Youngchang Kim
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL 60667, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL 60667, USA
| |
Collapse
|
20
|
Cell-free protein synthesis technology in NMR high-throughput structure determination. Methods Mol Biol 2010; 607:127-47. [PMID: 20204854 DOI: 10.1007/978-1-60327-331-2_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter describes the current implementation of the cell-free translation platform developed at the Center for Eukaryotic Structural Genomics (CESG) and practical aspects of the production of stable isotope-labeled eukaryotic proteins for NMR structure determination. Protocols are reported for the use of wheat germ cell-free translation in small-scale screening for the level of total protein expression, the solubility of the expressed protein, and the success in purification as predictive indicators of the likelihood that a protein may be obtained in sufficient quantity and quality to initiate structural studies. In most circumstances, the small-scale reactions also produce sufficient protein to permit bioanalytical and functional characterizations. The protocols incorporate the use of robots specialized for small-scale cell-free translation, large-scale protein production, and automated purification of soluble, His(6)-tagged proteins. The integration of isotopically labeled proteins into the sequence of experiments required for NMR structure determination is outlined, and additional protocols for production of integral membrane proteins in the presence of either detergents or unilamellar liposomes are presented.
Collapse
|
21
|
Schittmayer M, Birner-Gruenberger R. Functional proteomics in lipid research: Lipases, lipid droplets and lipoproteins. J Proteomics 2009; 72:1006-18. [DOI: 10.1016/j.jprot.2009.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/06/2009] [Accepted: 05/19/2009] [Indexed: 01/22/2023]
|
22
|
Markley JL, Aceti DJ, Bingman CA, Fox BG, Frederick RO, Makino SI, Nichols KW, Phillips GN, Primm JG, Sahu SC, Vojtik FC, Volkman BF, Wrobel RL, Zolnai Z. The Center for Eukaryotic Structural Genomics. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2009; 10:165-79. [PMID: 19130299 PMCID: PMC2705709 DOI: 10.1007/s10969-008-9057-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/12/2008] [Indexed: 10/29/2022]
Abstract
The Center for Eukaryotic Structural Genomics (CESG) is a "specialized" or "technology development" center supported by the Protein Structure Initiative (PSI). CESG's mission is to develop improved methods for the high-throughput solution of structures from eukaryotic proteins, with a very strong weighting toward human proteins of biomedical relevance. During the first three years of PSI-2, CESG selected targets representing 601 proteins from Homo sapiens, 33 from mouse, 10 from rat, 139 from Galdieria sulphuraria, 35 from Arabidopsis thaliana, 96 from Cyanidioschyzon merolae, 80 from Plasmodium falciparum, 24 from yeast, and about 25 from other eukaryotes. Notably, 30% of all structures of human proteins solved by the PSI Centers were determined at CESG. Whereas eukaryotic proteins generally are considered to be much more challenging targets than prokaryotic proteins, the technology now in place at CESG yields success rates that are comparable to those of the large production centers that work primarily on prokaryotic proteins. We describe here the technological innovations that underlie CESG's platforms for bioinformatics and laboratory information management, target selection, protein production, and structure determination by X-ray crystallography or NMR spectroscopy.
Collapse
Affiliation(s)
- John L Markley
- Center for Eukaryotic Structural Genomics, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fox BG, Blommel PG. Autoinduction of protein expression. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2009; Chapter 5:5.23.1-5.23.18. [PMID: 19365792 PMCID: PMC5602607 DOI: 10.1002/0471140864.ps0523s56] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This unit contains protocols for the use of lactose-derived autoinduction in Escherichia coli. The protocols allow for reproducible expression trials to be undertaken with minimal user intervention. A basic protocol covers production of unlabeled proteins for functional studies. Alternate protocols for selenomethionine labeling for X-ray structural studies, and multi-well plate growth for screening and optimization are also included.
Collapse
Affiliation(s)
- Brian G. Fox
- Department of Biochemistry, Biophysics Degree Program, and Center for Eukaryotic Structural Genomics, University of Wisconsin–Madison, Madison, Wisconsin
| | - Paul G. Blommel
- Department of Biochemistry, Biophysics Degree Program, and Center for Eukaryotic Structural Genomics, University of Wisconsin–Madison, Madison, Wisconsin
| |
Collapse
|
24
|
Goren MA, Fox BG. Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex. Protein Expr Purif 2008; 62:171-8. [PMID: 18765284 DOI: 10.1016/j.pep.2008.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 08/01/2008] [Accepted: 08/11/2008] [Indexed: 01/08/2023]
Abstract
A wheat germ cell-free extract was used to perform in vitro translation of human stearoyl-CoA desaturase in the presence of unilamelar liposomes, and near complete transfer of the expressed integral membrane protein into the liposome was observed. Moreover, co-translation of the desaturase along with human cytochrome b(5) led to transfer of both membrane proteins into the liposomes. A simple, single step purification via centrifugation in a density gradient yielded proteoliposomes with the desaturase in high purity as judged by capillary electrophoresis. After in vitro reconstitution of the non-heme iron and heme active sites, the function of the reconstituted enzyme complex was demonstrated by conversion of stearoyl-CoA to oleoyl-CoA. This simple translation approach obviates the use of detergents or other lipids to stabilize and isolate a catalytically active integral membrane enzyme. The applicability of cell-free translation to the assembly and purification of other integral membrane protein complexes is discussed.
Collapse
Affiliation(s)
- Michael A Goren
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|