1
|
Cruz-Mirón R, Ramírez-Flores CJ, Lagunas-Cortés N, Mondragón-Castelán M, Ríos-Castro E, González-Pozos S, Aguirre-García MM, Mondragón-Flores R. Proteomic characterization of the pellicle of Toxoplasma gondii. J Proteomics 2021; 237:104146. [PMID: 33588107 DOI: 10.1016/j.jprot.2021.104146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Toxoplasma gondii is one of the most successful intracellular parasites in the world. The dynamic, adhesion, invasion, and even replication capabilities of Toxoplasma are based on dynamic machinery located in the pellicle, a three membrane complex that surrounds the parasite. Among the proteins that carry out these processes are inner membrane complex (IMC) proteins, gliding-associated proteins (GAP), diverse myosins, actin, tubulin, and SRS proteins. Despite the importance of the pellicle, the knowledge of its composition is limited. Broad protein identification from an enriched pellicle fraction was obtained by independent digestion with trypsin and chymotrypsin and quantified by mass spectrometry. By trypsin digestion, 548 proteins were identified, while by chymotrypsin digestion, additional 22 proteins were identified. Besides, a group of "sequences related to SAG1" proteins (SRS) were detected together with unidentified new proteins. From identified SRS proteins, SRS51 was chosen for analysis and modeling as its similarities with crystallized adhesion proteins, exhibiting the presence of a spatial groove that is apparently involved in adhesion and cell invasion. As SRS proteins have been reported to be involved in the activation of the host's immune response, further studies could consider them as targets in the design of vaccines or of drugs against Toxoplasma. SIGNIFICANCE: To date, the proteomic composition of the pellicle of Toxoplasma is unknown. Most proteins reported in Toxoplasma pellicle have been poorly studied, and many others remain unidentified. Herein, a group of new SRS proteins is described. Some SRS proteins previously described from pellicle fraction have adhesion properties to the host cell membrane, so their study would provide data related to invasion mechanism and to open possibilities for considering them as targets in the design of immunoprotective strategies or the design of new pharmacological treatments.
Collapse
Affiliation(s)
- Rosalba Cruz-Mirón
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Carlos J Ramírez-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Noé Lagunas-Cortés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | | | | | - M Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico.
| |
Collapse
|
2
|
Frénal K, Krishnan A, Soldati-Favre D. The Actomyosin Systems in Apicomplexa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:331-354. [PMID: 32451865 DOI: 10.1007/978-3-030-38062-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The phylum of Apicomplexa groups obligate intracellular parasites that exhibit unique classes of unconventional myosin motors. These parasites also encode a limited repertoire of actins, actin-like proteins, actin-binding proteins and nucleators of filamentous actin (F-actin) that display atypical properties. In the last decade, significant progress has been made to visualize F-actin and to unravel the functional contribution of actomyosin systems in the biology of Toxoplasma and Plasmodium, the most genetically-tractable members of the phylum. In addition to assigning specific roles to each myosin, recent biochemical and structural studies have begun to uncover mechanistic insights into myosin function at the atomic level. In several instances, the myosin light chains associated with the myosin heavy chains have been identified, helping to understand the composition of the motor complexes and their mode of regulation. Moreover, the considerable advance in proteomic methodologies and especially in assignment of posttranslational modifications is offering a new dimension to our understanding of the regulation of actin dynamics and myosin function. Remarkably, the actomyosin system contributes to three major processes in Toxoplasma gondii: (i) organelle trafficking, positioning and inheritance, (ii) basal pole constriction and intravacuolar cell-cell communication and (iii) motility, invasion, and egress from infected cells. In this chapter, we summarize how the actomyosin system harnesses these key events to ensure successful completion of the parasite life cycle.
Collapse
Affiliation(s)
- Karine Frénal
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, University of Bordeaux and CNRS, Bordeaux Cedex, France. .,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Mueller C, Graindorge A, Soldati-Favre D. Functions of myosin motors tailored for parasitism. Curr Opin Microbiol 2017; 40:113-122. [DOI: 10.1016/j.mib.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023]
|
4
|
Myosin B of Plasmodium falciparum (PfMyoB): in silico prediction of its three-dimensional structure and its possible interaction with MTIP. Parasitol Res 2017; 116:1373-1382. [PMID: 28265752 DOI: 10.1007/s00436-017-5417-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/21/2017] [Indexed: 10/24/2022]
Abstract
The mobility and invasion strategy of Plasmodium falciparum is governed by a protein complex known as the glideosome, which contains an actin-myosin motor. It has been shown that myosin A of the parasite (PfMyoA) is the myosin of the glideosome, and the interaction of PfMyoA with myosin tail domain interacting protein (MTIP) determines its correct location and its ability to function in the complex. Because PfMyoA and myosin B of P. falciparum (PfMyoB) share high sequence identity, are both small proteins without a tail domain, belong to the class XIV myosins, and are expressed in late schizonts and merozoites, we suspect that these myosins may have similar or redundant functions. Therefore, this work examined the structural similarity between PfMyoA and PfMyoB and performed a molecular docking between PfMyoB and MTIP. Three-dimensional (3D) models obtained for PfMyoA and PfMyoB achieved high scores in the structural validation programs used, and their superimposition revealed high structural similarity, supporting the hypothesis of possible similar functions for these two proteins. The 3D interaction models obtained and energy values found suggested that interaction between PfMyoB and MTIP is possible. Given the apparent abundance of PfMyoA relative to PfMyoB in the parasite, we believe that the interaction between PfMyoB and MTIP would only be detectable in specific cellular environments because under normal circumstances, it would be masked by the interaction between PfMyoA and MTIP.
Collapse
|
5
|
Unconventional actins and actin-binding proteins in human protozoan parasites. Int J Parasitol 2015; 45:435-47. [DOI: 10.1016/j.ijpara.2015.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/19/2014] [Accepted: 01/27/2015] [Indexed: 12/11/2022]
|
6
|
Invasion factors of apicomplexan parasites: essential or redundant? Curr Opin Microbiol 2013; 16:438-44. [DOI: 10.1016/j.mib.2013.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 05/05/2013] [Indexed: 02/03/2023]
|
7
|
Anderson-White B, Beck JR, Chen CT, Meissner M, Bradley PJ, Gubbels MJ. Cytoskeleton assembly in Toxoplasma gondii cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:1-31. [PMID: 22878103 PMCID: PMC4066374 DOI: 10.1016/b978-0-12-394309-5.00001-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell division across members of the protozoan parasite phylum Apicomplexa displays a surprising diversity between different species as well as between different life stages of the same parasite. In most cases, infection of a host cell by a single parasite results in the formation of a polyploid cell from which individual daughters bud in a process dependent on a final round of mitosis. Unlike other apicomplexans, Toxoplasma gondii divides by a binary process consisting of internal budding that results in only two daughter cells per round of division. Since T. gondii is experimentally accessible and displays the simplest division mode, it has manifested itself as a model for apicomplexan daughter formation. Here, we review newly emerging insights in the prominent role that assembly of the cortical cytoskeletal scaffold plays in the process of daughter parasite formation.
Collapse
Affiliation(s)
| | - Josh R. Beck
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Chun-Ti Chen
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| | - Markus Meissner
- Division of Infection and Immunity, Institute of Biomedical Life Sciences, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Peter J. Bradley
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Marc-Jan Gubbels
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| |
Collapse
|
8
|
SPM1 stabilizes subpellicular microtubules in Toxoplasma gondii. EUKARYOTIC CELL 2011; 11:206-16. [PMID: 22021240 DOI: 10.1128/ec.05161-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified two novel proteins that colocalize with the subpellicular microtubules in the protozoan parasite Toxoplasma gondii and named these proteins SPM1 and SPM2. These proteins have basic isoelectric points and both have homologs in other apicomplexan parasites. SPM1 contains six tandem copies of a 32-amino-acid repeat, whereas SPM2 lacks defined protein signatures. Alignment of Toxoplasma SPM2 with apparent Plasmodium SPM2 homologs indicates that the greatest degree of conservation lies in the carboxy-terminal half of the protein. Analysis of Plasmodium homologs of SPM1 indicates that while the central 32-amino-acid repeats have expanded to different degrees (7, 8, 9, 12, or 13 repeats), the amino- and carboxy-terminal regions remain conserved. In contrast, although the Cryptosporidium SPM1 homolog has a conserved carboxy tail, the five repeats are considerably diverged, and it has a smaller amino-terminal domain. SPM1 is localized along the full length of the subpellicular microtubules but does not associate with the conoid or spindle microtubules. SPM2 has a restricted localization along the middle region of the subpellicular microtubules. Domain deletion analysis indicates that four or more copies of the SPM1 repeat are required for localization to microtubules, and the amino-terminal 63 residues of SPM2 are required for localization to the subpellicular microtubules. Gene deletion studies indicate that neither SPM1 nor SPM2 is essential for tachyzoite viability. However, loss of SPM1 decreases overall parasite fitness and eliminates the stability of subpellicular microtubules to detergent extraction.
Collapse
|
9
|
Polonais V, Javier Foth B, Chinthalapudi K, Marq JB, Manstein DJ, Soldati-Favre D, Frénal K. Unusual anchor of a motor complex (MyoD-MLC2) to the plasma membrane of Toxoplasma gondii. Traffic 2011; 12:287-300. [PMID: 21143563 DOI: 10.1111/j.1600-0854.2010.01148.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)-like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.
Collapse
Affiliation(s)
- Valérie Polonais
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Kucera K, Koblansky AA, Saunders LP, Frederick KB, De La Cruz EM, Ghosh S, Modis Y. Structure-based analysis of Toxoplasma gondii profilin: a parasite-specific motif is required for recognition by Toll-like receptor 11. J Mol Biol 2010; 403:616-29. [PMID: 20851125 DOI: 10.1016/j.jmb.2010.09.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022]
Abstract
Profilins promote actin polymerization by exchanging ADP for ATP on monomeric actin and delivering ATP-actin to growing filament barbed ends. Apicomplexan protozoa such as Toxoplasma gondii invade host cells using an actin-dependent gliding motility. Toll-like receptor (TLR) 11 generates an innate immune response upon sensing T. gondii profilin (TgPRF). The crystal structure of TgPRF reveals a parasite-specific surface motif consisting of an acidic loop, followed by a long β-hairpin. A series of structure-based profilin mutants show that TLR11 recognition of the acidic loop is responsible for most of the interleukin (IL)-12 secretion response to TgPRF in peritoneal macrophages. Deletion of both the acidic loop and the β-hairpin completely abrogates IL-12 secretion. Insertion of the T. gondii acidic loop and β-hairpin into yeast profilin is sufficient to generate TLR11-dependent signaling. Substitution of the acidic loop in TgPRF with the homologous loop from the apicomplexan parasite Cryptosporidium parvum does not affect TLR11-dependent IL-12 secretion, while substitution with the acidic loop from Plasmodium falciparum results in reduced but significant IL-12 secretion. We conclude that the parasite-specific motif in TgPRF is the key molecular pattern recognized by TLR11. Unlike other profilins, TgPRF slows nucleotide exchange on monomeric rabbit actin and binds rabbit actin weakly. The putative TgPRF actin-binding surface includes the β-hairpin and diverges widely from the actin-binding surfaces of vertebrate profilins.
Collapse
Affiliation(s)
- Kaury Kucera
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Tran JQ, de Leon JC, Li C, Huynh MH, Beatty W, Morrissette NS. RNG1 is a late marker of the apical polar ring in Toxoplasma gondii. Cytoskeleton (Hoboken) 2010; 67:586-98. [PMID: 20658557 PMCID: PMC2998517 DOI: 10.1002/cm.20469] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/24/2010] [Indexed: 11/10/2022]
Abstract
The asexually proliferating stages of apicomplexan parasites cause acute symptoms of diseases such as malaria, cryptosporidiosis and toxoplasmosis. These stages are characterized by the presence of two independent microtubule organizing centers (MTOCs). Centrioles are found at the poles of the intranuclear spindle. The apical polar ring (APR), a MTOC unique to apicomplexans, organizes subpellicular microtubules which impose cell shape and apical polarity on these protozoa. Here we describe the characteristics of a novel protein that localizes to the APR of Toxoplasma gondii which we have named ring-1 (RNG1). There are related RNG1 proteins in Neospora caninum and Sarcocystis neurona but no obvious homologs in Plasmodium spp., Cryptosporidium spp. or Babesia spp. RNG1 is a small, low-complexity, detergent-insoluble protein that assembles at the APR very late in the process of daughter parasite replication. We were unable to knock-out the RNG1 gene, suggesting that its gene product is essential. Tagged RNG1 lines have also allowed us to visualize the APR during growth of Toxoplasma in the microtubule-disrupting drug oryzalin. Oryzalin inhibits nuclear division and cytokinesis although Toxoplasma growth continues, and similar to earlier observations of unchecked centriole duplication in oryzalin-treated parasites, the APR continues to duplicate during aberrant parasite growth.
Collapse
Affiliation(s)
- Johnson Q Tran
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 92697, USA
| | | | | | | | | | | |
Collapse
|
12
|
Heintzelman MB, Mateer MJ. GpMyoF, a WD40 repeat-containing myosin associated with the myonemes of Gregarina polymorpha. J Parasitol 2008; 94:158-68. [PMID: 18372636 DOI: 10.1645/ge-1339.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study presents the first characterization of a WD40 repeat-containing myosin identified in the apicomplexan parasite Gregarina polymorpha. This 222.7 kDa myosin, GpMyoF, contains a canonical myosin motor domain, a neck domain with 6 IQ motifs, a tail domain containing short regions of predicted coiled-coil structure, and, most notably, multiple WD40 repeats at the C-terminus. In other proteins such repeats assemble into a beta-propeller structure implicated in mediating protein-protein interactions. Confocal microscopy suggests that GpMyoF is localized to the annular myonemes that gird the parasite cortex. Extraction studies indicate that this myosin shows an unusually tight association with the cytoskeletal fraction and can be solubilized only by treatment with high pH (11.5) or the anionic detergent sarkosyl. This novel myosin and its homologs, which have been identified in several related genera, appear to be unique to the Apicomplexa and represent the only myosins known to contain the WD40 domain. The function of this myosin in G. polymorpha or any of the other apicomplexan parasites remains uncertain.
Collapse
Affiliation(s)
- Matthew B Heintzelman
- Department of Biology, Program in Cell Biology and Biochemistry, Bucknell University, Lewisburg, Pennsylvania 17837, USA.
| | | |
Collapse
|
13
|
Siden-Kiamos I, Pinder JC, Louis C. Involvement of actin and myosins in Plasmodium berghei ookinete motility. Mol Biochem Parasitol 2006; 150:308-17. [PMID: 17028009 DOI: 10.1016/j.molbiopara.2006.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/04/2006] [Accepted: 09/04/2006] [Indexed: 11/27/2022]
Abstract
Ookinetes of the genus Plasmodium are motile, invasive cells that develop in the mosquito midgut following ingestion of a parasite-infected blood meal. We show here that ookinetes display gliding motility on glass slides in the presence of insect cells. Moreover, in addition to stationary "flexing" and "twirling" of the cells, two distinct types of movements occur: productive forward translocational motility in straight segment that progresses with an average speed of approximately 6mum/min and rotational motility, which does not lead to forward translocation. Locomotion is reduced by treatment with butanedione monoxime, an inhibitor of myosin ATPase, and by three different actin inhibitors. We also studied the expression during ookinete development of genes encoding actin and two small class XIV myosins, PbMyoA, and PbMyoB. Western immunoblots revealed that PbMyoA is only present in fully mature ookinetes, whilst the other two proteins are additionally expressed in gametocytes and zygotes. Immunofluorescence experiments reveal that MyoA and actin co-localize in the apical tip of the parasite whereas MyoB displays a punctate pattern of expression around the entire cell periphery. Following treatment with jasplakinolide, the apparent level of detectable actin appears to substantially increase and becomes concentrated in a discrete area in the basal pole of the ookinete.
Collapse
Affiliation(s)
- Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, P.O. Box 1385, 71110 Heraklion, Crete, Greece
| | | | | |
Collapse
|
14
|
Foth BJ, Goedecke MC, Soldati D. New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 2006; 103:3681-6. [PMID: 16505385 PMCID: PMC1533776 DOI: 10.1073/pnas.0506307103] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosins are eukaryotic actin-dependent molecular motors important for a broad range of functions like muscle contraction, vision, hearing, cell motility, and host cell invasion of apicomplexan parasites. Myosin heavy chains consist of distinct head, neck, and tail domains and have previously been categorized into 18 different classes based on phylogenetic analysis of their conserved heads. Here we describe a comprehensive phylogenetic examination of many previously unclassified myosins, with particular emphasis on sequences from apicomplexan and other chromalveolate protists including the model organism Toxoplasma, the malaria parasite Plasmodium, and the ciliate Tetrahymena. Using different phylogenetic inference methods and taking protein domain architectures, specific amino acid polymorphisms, and organismal distribution into account, we demonstrate a hitherto unrecognized common origin for ciliate and apicomplexan class XIV myosins. Our data also suggest common origins for some apicomplexan myosins and class VI, for classes II and XVIII, for classes XII and XV, and for some microsporidian myosins and class V, thereby reconciling evolutionary history and myosin structure in several cases and corroborating the common coevolution of myosin head, neck, and tail domains. Six novel myosin classes are established to accommodate sequences from chordate metazoans (class XIX), insects (class XX), kinetoplastids (class XXI), and apicomplexans and diatom algae (classes XXII, XXIII, and XXIV). These myosin (sub)classes include sequences with protein domains (FYVE, WW, UBA, ATS1-like, and WD40) previously unknown to be associated with myosin motors. Regarding the apicomplexan "myosome," we significantly update class XIV classification, propose a systematic naming convention, and discuss possible functions in these parasites.
Collapse
Affiliation(s)
- Bernardo J Foth
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland.
| | | | | |
Collapse
|