1
|
Raza M, Jawaid M, Abu-Jdayil B. Nanocellulose extraction from date palm waste using 1-butyl-3-methylimidazolium hydrogen sulphate. Int J Biol Macromol 2025; 294:139539. [PMID: 39778835 DOI: 10.1016/j.ijbiomac.2025.139539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
This study provides insights into nanocellulose production using 1-butyl-3-methylimidazolium hydrogen sulphate ([Bmim]HSO4) as a green solvent, utilizing cellulose derived from date palm waste. Critical hydrolysis parameters were optimized through analysis of variance and response surface methodology. The predicted nanocellulose yield (Y) followed a quadric equation represented by Y=55.48-0.57pH-0.478ST+0.997T-0.006721T2+0.0681pH×ST-0.0681pH×T+0.003833ST×T. The developed empirical model showed excellent predictive accuracy (R2>0.95). The optimized hydrolysis parameters were pH 1, a temperature of 80 °C, and a stirring time of 45 min, resulting in an 80.5 % yield of nanocellulose. Scanning electron microscopy showed the nanocellulose's needle like morphology, while transmission electron microscopy indicated an average particle size ranging from 50 to 60 nm. Fourier transform infrared spectroscopy confirmed the purity of the nanocellulose by indicating the removal of non-cellulosic components. X-ray diffraction analysis showed a crystallinity index (Crl) of 72.22 %, representing a 67.5 % increase compared to the Crl raw date waste. Dynamic light scattering showed a hydrodynamic diameter of approximately 100 nm. Thermal stability performed using thermogravimetric analysis indicated a high initial degradation temperature (Tonset) of 233 °C, while differential scanning calorimetry confirmed the absence of melting transitions up to 250 °C, underscoring the material's exceptional thermal stability. This study highlights the robust capability of [Bmim]HSO4 to produce high quality nanocellulose from lignocellulose-derived cellulose, broadening its application beyond the previously reported use with microcrystalline cellulose to produce nanocellulose.
Collapse
Affiliation(s)
- Mohsin Raza
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO BOX 15551, Al Ain, United Arab Emirates
| | - Mohammad Jawaid
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO BOX 15551, Al Ain, United Arab Emirates
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO BOX 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
Malekkolaei KJ, Jafarian S, Javadian SR, Mahdavi SK, Bahram S. Edible coatings of chitosan and fucoidan with crucian carp protein hydrolysate to extend shelf life of beluga sturgeon fillets. Heliyon 2025; 11:e42296. [PMID: 40034276 PMCID: PMC11872524 DOI: 10.1016/j.heliyon.2025.e42296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/12/2025] [Accepted: 01/26/2025] [Indexed: 03/05/2025] Open
Abstract
This study investigates the problem of preserving the quality and shelf life of beluga sturgeon (Huso huso) fillets under refrigeration. The aim of the research is to evaluate the effectiveness of composite edible coatings made from chitosan and fucoidan, in combination with crucian carp (Carassius carassius) protein hydrolysate (CPH). Significant methodology includes the preparation of hydrolyzed proteins using the enzyme Alcalase for 90 min, followed by encapsulation within nanoliposomes. Fucoidan was extracted from the brown alga Sargassum latifolium, and its antioxidant and antimicrobial properties were assessed. Six types of edible coatings were developed, including chitosan and chitosan-fucoidan with CPH and nano CPH (NCPH) at concentrations of 0 %, 0.5 %, and 1 %. The chemical, microbiological, and sensory characteristics of the coated and uncoated fish fillets were evaluated over a 16-day storage period. Results indicated a particle size of 102.98 nm, a zeta potential of 12.29 mV, and an encapsulation efficiency of 75.84 %. The extraction yield of fucoidan was 5.89 %, with total carbohydrate content of 59.2 %, protein content of 9.21 %, sulfate content of 21.78 %, and uronic acid content of 8.85 %. Fucoidan exhibited significant antioxidant and antimicrobial activity. The analysis of chemical and microbiological factors in the fish fillets revealed significantly lower values in the coated fillets compared to the control (P < 0.05). The use of CPH significantly reduced the rate of oxidative spoilage, and increasing CPH concentration resulted in a slower rise in microbial load (P < 0.05). The best outcomes were observed in NCPH. Ultimately, the combination of chitosan-fucoidan and 1 % NCPH maintained acceptable conditions for most microbiological, chemical, and sensory indices by the end of the storage period. These findings suggest that these edible coatings could serve as an effective method for enhancing the quality and shelf life of fish fillets in the food industry.
Collapse
Affiliation(s)
| | - Sara Jafarian
- Food Science and Technology Department, Nour Branch, Islamic Azad Univercity, Nour, Iran
| | | | | | - Somayeh Bahram
- Department of Fisheries, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| |
Collapse
|
3
|
Batool Z, Sameen DE, Kamal MA, Shen B. Developing natural microcapsules by encapsulating peptides for preserving Zanthoxylum Bungeanum. Food Chem 2025; 463:141318. [PMID: 39298846 DOI: 10.1016/j.foodchem.2024.141318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Natural edible microcapsules, were developed to improve the shelf life of Zanthoxylum bungeanum. Antimicrobial peptides, extracted from seeds of Sichuan pepper corn by ultrasound and microwave assisted extraction were encapsulated with nisin using water-in-oil-in-water (W/O/W) microencapsulation technique. Prepared microcapsules exhibited maximum encapsulation efficiency (ω %) of 30.20 at 3:1 ratio of extracted protein (EP) to gum Arabic (GA). After characterization, microcapsules were applied to Sichuan peppers by coating them during 10-days storage. Meanwhile, antimicrobial activity, total phenolic content (TPC), total flavonoid content (TFC) and radical scavenging activity (%) of treated pepper samples were evaluated; demonstrating that S3 and S4 microcapsules provided maximum antimicrobial activity (89.75 and 81.33 %), TPC (543.56 ± 3.87 and 481.40 ± 6.54 GAE/g), TFC (266.02 ± 2.64 QE/g and 306.96 ± 3.87 QE/g) and DPPH radical scavenging activity (78.06 ± 2.87 and 76.52 ± 1.67 %), respectively. Hence, S3 and S4 micro-capsules can be successfully employed as edible coating packaging to improve quality and shelf life of pepper.
Collapse
Affiliation(s)
- Zahra Batool
- Center of High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Mohammad Amjad Kamal
- Center of High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, China; King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Bairong Shen
- Center of High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Honrado A, Miguel M, Ardila P, Beltrán JA, Calanche JB. From Waste to Value: Fish Protein Hydrolysates as a Technological and Functional Ingredient in Human Nutrition. Foods 2024; 13:3120. [PMID: 39410155 PMCID: PMC11482619 DOI: 10.3390/foods13193120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Fish provides a low-caloric content, polyunsaturated fatty acids, many essential trace elements and is also a rich source of protein, ranging from 10% to 25%. Therefore, the production of FPH (fish protein hydrolysates) is of great interest, as the resulting products exhibit a variety of important bioactive and technological properties, making them potential ingredients for new functional foods and supplements. The aim of this review was to compile and analyze information on enzymatic hydrolysates, with particular emphasis on those derived from fish by-products, as a potential ingredient in human nutrition. Their nutritional characteristics, food safety aspects, bioactive properties, technological attributes, key influencing factors, and applications in food products were evaluated. The findings revealed that these properties are influenced by several factors, such as the raw material, enzymes used, degree of hydrolysis, and the molecular weight of the peptides, which need to be considered as a whole. In conclusion, the gathered information suggests that it is possible to obtain high-value products through enzymatic hydrolysis, even when using fish by-products. However, although numerous studies focused on FPH derived from fish muscle, research on by-products remains limited. Further investigation is needed to determine whether the behavior of FPH from by-products differs from that of muscle-derived FPH.
Collapse
Affiliation(s)
| | | | | | | | - Juan B. Calanche
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Miguel Servet 177, 50013 Zaragoza, Spain; (A.H.); (P.A.); (J.A.B.)
| |
Collapse
|
5
|
Zhang W, Park HB, An EK, Kim SJ, Ryu D, Kim D, Lim D, Hwang J, Kwak M, You S, Lee PCW, Jin JO. Fucoidan from Durvillaea Antarctica enhances the anti-cancer effect of anti-PD-L1 antibody by activating dendritic cells and T cells. Int J Biol Macromol 2024; 280:135922. [PMID: 39322135 DOI: 10.1016/j.ijbiomac.2024.135922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Immune checkpoint inhibitors are showing groundbreaking results in tumor immunotherapy. However, there are cases where treatment efficiency is insufficient due to limitations in immune activity, and various trials to overcome this are being studied. In this study, we investigated the immune activation ability of fucoidan extracted from Durvillaea antarctica (FDA) and whether it can enhance the anti-cancer effects of immune checkpoint inhibitors. FDA treatment resulted in an elevation of co-stimulator and major histocompatibility complex molecule expression, as well as the production of pro-inflammatory cytokines in bone marrow-derived and splenic dendritic cells (DCs). Administration of 50 mg/kg FDA increased the number of splenic CD8 T cells by >1.4-fold compared to PBS administration. Additionally, 50 mg/kg FDA increased the production of IFN-γ in CD4 and CD8 T cells by 4.3-fold and 7.2-fold, respectively, compared to the PBS control. FDA promoted immune cell activation was TLR4 dependent. Furthermore, anti-PD-L1 antibody administration inhibited CT-26 tumor growth by approximately 3-fold compared to the PBS control group, whereas combined treatment with FDA and anti-PD-L1 antibody showed an 8.4-fold tumor growth inhibition effect compared to the PBS control group. Therefore, FDA may be used to enhance the anti-cancer effects of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 05505, South Korea
| | - Dayoung Kim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Daeun Lim
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Juyoung Hwang
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon 210-702, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 05505, South Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea.
| |
Collapse
|
6
|
Kong Z, Li Z, Zhang L, Dai L, Wang Y, Sun Q, McClements DJ, Cheng Y, Zhang Z, Wang C, Xu X. Development of pea protein nanoparticle/hydrolyzed rice glutelin fibril emulsion gels for encapsulation of curcumin. Int J Biol Macromol 2024; 276:133640. [PMID: 38969047 DOI: 10.1016/j.ijbiomac.2024.133640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The potential of using emulsion gels stabilized by binary plant protein nanoparticle mixtures for the encapsulation and delivery of lipophilic nutraceuticals was evaluated. The particle characteristics, physical stability, water diffusivity, microrheology, large amplitude oscillating shear (LAOS) properties, and in vitro digestion of emulsion gels prepared by different ratios of hydrolyzed rice glutelin fibrils (HRGFs) and pea protein nanoparticle (PNP) were characterized. The emulsion gel with P/H = 2:1 (0.84 μm) exhibited the best storage stability and freeze-thaw stability, as seen by the smaller oil droplet size (1.02 and 1.42 μm, respectively). Low-field pulsed NMR indicated that the majority of water in samples was highly mobile. All the samples were predominantly elastic-like materials. The P/H 2:1 emulsion gel had the lowest FI value (6.21 × 10-4 Hz), the highest MVI value (5.57 s/nm2), G'/ G″ values and enclosed area, showing that it had denser 3D network structures, higher stiffness values, and a high sensitivity to changes in strain. Additionally, P/H 2:1 emulsion gel had a relatively high lipid digestibility (96.1 %), curcumin bioaccessibility (58.9 %), and curcumin stability (94.2 %). This study showed that emulsion gels stabilized by binary protein nanoparticle mixtures (PNP/HRGF) have potential as edible delivery systems for lipophilic nutraceuticals.
Collapse
Affiliation(s)
- Zhihao Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Zhiying Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Liwen Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | | | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhao Zhang
- Shandong Sinoglory Health Food Co., Ltd, Liaocheng, Shandong Province 252400, China
| | - Caili Wang
- Shandong Sinoglory Health Food Co., Ltd, Liaocheng, Shandong Province 252400, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China; Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
8
|
Jiang Y, Zhang S, Pan L, Leng J, Zhou T, Liu M, Li L, Zhao W. β-Glucan-based superabsorbent hydrogel acts as a gastrointestinal exoskeleton enhancing satiety and interfering fat hydrolysis. Int J Biol Macromol 2024; 275:133333. [PMID: 38945724 DOI: 10.1016/j.ijbiomac.2024.133333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Fat and its hydrolysis products, fatty acids, are indispensable nutritional components; however, prolonged excessive fat consumption, particularly in western diets, contributes to the onset of obesity and multiple metabolic disorders. In this study, we propose a daily-ingestible hydrogel (denoted as βC-MA hydrogel) composed of natural β-glucan and sodium carboxymethylcellulose crosslinked by malic acid at 120 °C. This hydrogel exhibits rapid swelling performance, up to 24-fold within 1 min and 176-fold after 1 h in deionized water. It also lengthens gastric retention and increases endogenous satiety signal levels, potentially controlling appetite and reducing food intake. Furthermore, βC-MA hydrogels that enter the small intestine can effectively inhibit fat hydrolysis and decrease triglyceride synthesis and transport. Specifically, the hydrogels inhibit the release of free fatty acids (FFAs) by approximately 50 % during digestion, influence the translocation of triglycerides and FFAs across the intestinal epithelium, and reduce the serum triglyceride levels by 22.2 %. These findings suggest that βC-MA hydrogels could serve as a noninvasive gastrointestinal device for weight control, with the advantage of reducing food intake and restoring lipid metabolism homeostasis.
Collapse
Affiliation(s)
- Yiming Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shiqi Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Linfan Pan
- School of Design, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Juncai Leng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Tingyi Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Mingxuan Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Li Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
9
|
Pires C, Leitão M, Sapatinha M, Gonçalves A, Oliveira H, Nunes ML, Teixeira B, Mendes R, Camacho C, Machado M, Pintado M, Ribeiro AR, Vieira EF, Delerue-Matos C, Lourenço HM, Marques A. Protein Hydrolysates from Salmon Heads and Cape Hake By-Products: Comparing Enzymatic Method with Subcritical Water Extraction on Bioactivity Properties. Foods 2024; 13:2418. [PMID: 39123610 PMCID: PMC11311982 DOI: 10.3390/foods13152418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Fish by-products can be converted into high-value-added products like fish protein hydrolysates (FPHs), which have high nutritional value and are rich in bioactive peptides with health benefits. This study aims to characterise FPHs derived from salmon heads (HPSs) and Cape hake trimmings (HPHs) using Alcalase for enzymatic hydrolysis and Subcritical Water Hydrolysis (SWH) as an alternative method. All hydrolysates demonstrated high protein content (70.4-88.7%), with the degree of hydrolysis (DH) ranging from 10.7 to 36.4%. The peptide profile of FPHs indicated the breakdown of proteins into small peptides. HPSs showed higher levels of glycine and proline, while HPHs had higher concentrations of glutamic acid, leucine, threonine, and phenylalanine. Similar elemental profiles were observed in both HPHs and HPSs, and the levels of Cd, Pb, and Hg were well below the legislated limits. Hydrolysates do not have a negative effect on cell metabolism and contribute to cell growth. HPSs and HPHs exhibited high 2,2'-azino-bis(3 ethylbenzthiazoline-6)-sulfonic acid (ABTS) radical scavenging activity, Cu2+ and Fe2+ chelating activities, and angiotensin-converting enzyme (ACE) inhibitory activity, with HPHs generally displaying higher activities. The α-amylase inhibition of both FPHs was relatively low. These results indicate that HPHs are a promising natural source of nutritional compounds and bioactive peptides, making them potential candidates for use as an ingredient in new food products or nutraceuticals. SWH at 250 °C is a viable alternative to enzymatic methods for producing FPHs from salmon heads with high antioxidant and chelating properties.
Collapse
Affiliation(s)
- Carla Pires
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Matilde Leitão
- Department of Chemistry, Nova School of Science and Technology, Nova University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Maria Sapatinha
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Department of Chemistry, Nova School of Science and Technology, Nova University Lisbon, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Amparo Gonçalves
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Helena Oliveira
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Maria Leonor Nunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Bárbara Teixeira
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Rogério Mendes
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - Manuela Machado
- Centre for Biotechnology and Fine Chemistry (CBQF), Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.M.); (M.P.)
| | - Manuela Pintado
- Centre for Biotechnology and Fine Chemistry (CBQF), Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.M.); (M.P.)
| | - Ana Rita Ribeiro
- Blue Bioeconomy CoLAB, Av. da Liberdade s/n, 4450-718 Leça da Palmeira, Portugal;
| | - Elsa F. Vieira
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (E.F.V.); (C.D.-M.)
| | - Cristina Delerue-Matos
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Instituto Superior de Engenharia do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (E.F.V.); (C.D.-M.)
| | - Helena Maria Lourenço
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| | - António Marques
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (M.S.); (A.G.); (H.O.); (B.T.); (R.M.); (H.M.L.); (A.M.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.L.N.); (C.C.)
| |
Collapse
|
10
|
Amaral YMS, de Castro RJS. Unraveling the biological potential of chicken viscera proteins: a study based on their enzymatic hydrolysis to obtain hydrolysates with antioxidant properties. Prep Biochem Biotechnol 2024; 54:809-818. [PMID: 38153252 DOI: 10.1080/10826068.2023.2297685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Chicken meat production has increased over the years, leading to a proportional increase in waste generation, which often contains high levels of proteins, such as viscera. Therefore, this study aimed to investigate the enzymatic hydrolysis of chicken viscera proteins as a strategy to value solid waste from the poultry industry. The hydrolysates were characterized for their antioxidant properties and molecular weight distribution. Additionally, the enzymatic hydrolysis process was scaled up from 125 mL flasks with 50 mL of protein solution to 3 L using a 6 L bioreactor. The enzymatic hydrolysis of chicken viscera proteins using a binary mixture of proteases (85.25 U/mL of each enzyme, Alcalase and Flavourzyme, totaling 170.5 U/mL) resulted in an increase of up to 245% in 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, 353% 2,2-diphenyl-1-picryl-hydrazyl (DPPH) in radical scavenging, 69% in Ferric Reducing Antioxidant Power Assay (FRAP) and 146% in total reducing capacity (TRC). The antioxidant properties of the protein hydrolysates are preserved during the scale-up of enzymatic hydrolysis. Protein fractions smaller than 5 kDa showed the highest ABTS and DPPH radical scavenging activities, while fractions greater than 30 kDa showed the best results for the FRAP method.
Collapse
Affiliation(s)
- Yuri Matheus Silva Amaral
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, São Paulo, Brazil
| | | |
Collapse
|
11
|
Nemati M, Shahosseini SR, Ariaii P. Review of fish protein hydrolysates: production methods, antioxidant and antimicrobial activity and nanoencapsulation. Food Sci Biotechnol 2024; 33:1789-1803. [PMID: 38752116 PMCID: PMC11091024 DOI: 10.1007/s10068-024-01554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 05/18/2024] Open
Abstract
Marine products have gained popularity due to their valuable components, especially protein, despite generating significant waste. Protein hydrolysates are widely recognized as the most effective method for transforming these low-value raw materials into high-value products. Fish protein hydrolysate (FPH), sourced from various aquatic wastes such as bones, scales, skin, and others, is rich in protein for value-added products. However, the hydrophobic peptides have limitations like an unpleasant taste and high solubility. Microencapsulation techniques provide a scientific approach to address these limitations and safeguard bioactive peptides. This review examines current research on FPH production methods and their antioxidant and antibacterial activities. Enzymatic hydrolysis using commercial enzymes is identified as the optimal method, and the antioxidant and antibacterial properties of FPH are substantiated. Microencapsulation using nanoliposomes effectively extends the inhibitory activity and enhances antioxidant and antibacterial capacities. Nevertheless, more research is needed to mitigate the bitter taste associated with FPH and enhance sensory attributes.
Collapse
Affiliation(s)
- Mahrokh Nemati
- Department of Fisheries Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
- Research Consultant of Parmida Gelatin Company, Amol, Iran
| | | | - Peiman Ariaii
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
- Managing Director of Parmida Gelatin Company, Amol, Iran
| |
Collapse
|
12
|
Patil ND, Bains A, Sridhar K, Bhaswant M, Kaur S, Tripathi M, Lanterbecq D, Chawla P, Sharma M. Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review. Foods 2024; 13:1398. [PMID: 38731769 PMCID: PMC11083271 DOI: 10.3390/foods13091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Plant-based proteins have gained popularity in the food industry as a good protein source. Among these, chickpea protein has gained significant attention in recent times due to its high yields, high nutritional content, and health benefits. With an abundance of essential amino acids, particularly lysine, and a highly digestible indispensable amino acid score of 76 (DIAAS), chickpea protein is considered a substitute for animal proteins. However, the application of chickpea protein in food products is limited due to its poor functional properties, such as solubility, water-holding capacity, and emulsifying and gelling properties. To overcome these limitations, various modification methods, including physical, biological, chemical, and a combination of these, have been applied to enhance the functional properties of chickpea protein and expand its applications in healthy food products. Therefore, this review aims to comprehensively examine recent advances in Cicer arietinum (chickpea) protein extraction techniques, characterizing its properties, exploring post-modification strategies, and assessing its diverse applications in the food industry. Moreover, we reviewed the nutritional benefits and sustainability implications, along with addressing regulatory considerations. This review intends to provide insights into maximizing the potential of Cicer arietinum protein in diverse applications while ensuring sustainability and compliance with regulations.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education Deemed to be University, Coimbatore 641021, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (N.D.P.)
| | | |
Collapse
|
13
|
Yu J, Xu J, Jiang R, Yuan Q, Ding Y, Ren J, Jiang D, Wang Y, Wang L, Chen P, Zhang L. Versatile chondroitin sulfate-based nanoplatform for chemo-photodynamic therapy against triple-negative breast cancer. Int J Biol Macromol 2024; 265:130709. [PMID: 38462120 DOI: 10.1016/j.ijbiomac.2024.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Versatile nanoplatform equipped with chemo-photodynamic therapeutic attributes play an important role in improving the effectiveness of tumor treatments. Herein, we developed multifunctional nanoparticles based on chondroitin sulfate A (CSA) for the targeted delivery of chlorin e6 (Ce6) and doxorubicin (DOX), in a combined chemo-photodynamic therapy against triple-negative breast cancer. CSA was chosen for its hydrophilic properties and its affinity to CD44 receptor-overexpressed tumor cells. The CSA-ss-Ce6 (CSSC) conjugate was synthesized utilizing a disulfide linker. Subsequently, DOX-loaded CSSC (CSSC-D) nanoparticles were fabricated, showcasing a nearly spherical shape with an average particle size of 267 nm. In the CSSC-D nanoparticles, the chemically attached Ce6 constituted 1.53 %, while the physically encapsulated DOX accounted for 8.11 %. Both CSSC-D and CSSC nanoparticles demonstrated a reduction-sensitive release of DOX or Ce6 in vitro. Under near-infrared (NIR) laser irradiation, CSSC-D showed the enhanced generation of reactive oxygen species (ROS), improving cytotoxic effects against triple-negative breast cancer 4T1 and MDA-MB-231 cells. Remarkably, the CSSC-D with NIR exhibited the most potent tumor growth inhibition in comparison to other groups in the 4T1-bearing Balb/c mice model. Overall, this CSSC-D nanoplatform shows significant promise as a powerful tool for a synergetic approach in chemo-photodynamic therapy in triple-negative breast cancer.
Collapse
Affiliation(s)
- Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada; School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Jing Xu
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Renliang Jiang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Qinglan Yuan
- University Hospital, Jiujiang University, Jiujiang 332005, China
| | - Yuanyuan Ding
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Jing Ren
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Dengzhao Jiang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Yiqiu Wang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Liangliang Wang
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| |
Collapse
|
14
|
Zhai Y, Peng W, Luo W, Wu J, Liu Y, Wang F, Li X, Yu J, Wang S. Component stabilizing mechanism of membrane-separated hydrolysates on frozen surimi. Food Chem 2024; 431:137114. [PMID: 37595381 DOI: 10.1016/j.foodchem.2023.137114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
This study investigated the cryoprotective mechanism of ultrafiltration membrane-separated fractions (>10 kDa, UF-1; 3-10 kDa, UF-2; and <3 kDa, UF-3) derived from silver carp hydrolysates on frozen surimi. The surimi gel incorporating UF-3 exhibited a compact, continuous structure with uniform pores, even after undergoing six freeze-thaw (F-T) cycle, with the minimal reduction in entrapped water (from 95.1 % to 91.1 %) and least increase in free water (from 4.5 % to 6.6 %) as revealed by SEM and LF-NMR analysis. Through molecular docking analysis, three major peptides in UF-3 were identified to form robust interactions with the myosin head pocket, facilitated by hydrogen bonds, electrostatic forces, and hydrophobic interactions. Furthermore, molecular dynamics simulations demonstrated that the three peptides effectively prevented myosin from unfolding and aggregating by tightly binding to basic amino acids (Arg, Lys) and hydrophobic amino acids (Phe, Leu, Ile, Met, and Val) residues in the myosin head pocket, primarily governed by electrostatic energies (-156.95, -321.38, and -267.53 kcal/mol, respectively) and van der Waals energies (-395.05, -347.46, and -319.16 kcal/mol, respectively). Notably, the key action site was identified as Lys599 on myosin. The hydrophilic and hydrophobic hotspot residues of the peptides worked synergistically to stabilize the myosin structure in frozen surimi.
Collapse
Affiliation(s)
- Yueying Zhai
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Wanqi Peng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China
| | - Wei Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China.
| | - Jian Yu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China.
| |
Collapse
|
15
|
Mighan NM, Ariaii P, Soltani MS, Jafarian S. Investigating the possibility of increasing the microbial and oxidative stability of silver carp burgers using hydrolyzed protein of watermelon seeds. Food Sci Biotechnol 2024; 33:375-388. [PMID: 38222918 PMCID: PMC10786770 DOI: 10.1007/s10068-023-01370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 01/16/2024] Open
Abstract
In this study, watermelon seeds (Citrullus lanatus) protein hydrolyzed (WSPH) was produced using microbial enzymes Alcalase and Protamex. Then, the effect of different concentrations of WSPH (0, 1, 2, and 3%) on the quality of the silver carp (Hypophthalmichthys molitrix) burger during refrigerated storage (4 ± 1 °C) was investigated. According to the results, WSPH by alcalase had significantly higher degree of hydrolysis and antioxidant activity (p < 0.05) and it was used for burger tests. The results showed that, the addition of WSPH was able to reduce the microbial, chemical spoilage and sensory score during 16 days compared to the control, and with increasing the concentration of WSPH, better results were observed (p < 0.05). According to the chemical, microbial and sensory indicators, WSPH at 3% could increase the shelf life of fish burgers up to 8 days compared to the control, and this treatment was within the permissible quality limit until the end of the refrigerated storage. Graphical abstract
Collapse
Affiliation(s)
- Nasim Mahdavi Mighan
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Peiman Ariaii
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mahdi Sharifi Soltani
- Department of Veterinary, Agriculture Faculty, Islamic Azad University, Chalous Branch, Chalous, Iran
| | - Sara Jafarian
- Department of Food Science and Technology, Islamic Azad University, Savadkooh Branch, Savadkooh, Iran
| |
Collapse
|
16
|
Pirveisi N, Ariaii P, Esmaeili M, Ahmadi M. Investigating active packaging based on cellulose nanofibers oxidized by TEMPO method containing hydrolyzed protein obtained from pine tree fruit on the quality of pacific white shrimp (Litopenaeus vannamei) during the storage period. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
17
|
Formation, texture, and stability of yolk-free mayonnaise: Effect of soy peptide aggregates concentration. Food Chem 2023; 403:134337. [DOI: 10.1016/j.foodchem.2022.134337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
|
18
|
Golpaigani MH, Ariaii P, Ahmadi M, Safari R. Preservation effect of protein hydrolysate of rainbow trout roe with a composite coating on the quality of fresh meat during storage at 4 ± 1 °C. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Onsaard W, Kate-Ngam S, Onsaard E. Physicochemical and antioxidant properties of rice bran protein hydrolysates obtained from different proteases. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Zhang R, Song X, Liu W, Xiang Q. Mixed fermentation of Chlorella pyrenoidosa and Bacillus velezensis SW-37 by optimization. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Rana S, Singh A, Surasani VKR, Kapoor S, Desai A, Kumar S. Fish processing waste: a novel source of
non‐conventional
functional proteins. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sudha Rana
- Department of Food Science and Technology Punjab Agriculture University Ludhiana Punjab 141004 India
| | - Arashdeep Singh
- Department of Food Science and Technology Punjab Agriculture University Ludhiana Punjab 141004 India
| | - Vijay Kumar Reddy Surasani
- College of Fisheries Guru Angad Dev Veterinary and Animal Sciences University Ludhiana Punjab 141004 India
| | - Swati Kapoor
- Department of Food Science and Technology Punjab Agriculture University Ludhiana Punjab 141004 India
| | - Ajay Desai
- College of Fisheries Dr BS Konkan Krishi Vidyapeeth Dapoli Maharashtra 415629 India
| | - Siddhnath Kumar
- College of Fisheries Guru Angad Dev Veterinary and Animal Sciences University Ludhiana Punjab 141004 India
| |
Collapse
|
22
|
Kiyota K, Yoshimitsu M, Matsui H. Determination of degradation degree of ovalbumin in hen’s egg enzymatic hydrolysates using liquid chromatography–tandem mass spectrometry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Cristina da Silva N, Benedito Garrido Assis O, Giovanini de Oliveira Sartori A, Matias de Alencar S, Martelli-Tosi M. Chitosan suspension as extractor and encapsulating agent of phenolics from acerola by-product. Food Res Int 2022; 161:111855. [DOI: 10.1016/j.foodres.2022.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022]
|
24
|
Mirzapour Z, Ariaii P, Safari R, Ahmadi M. Evaluation the Effect Hydrolyzed Canola Meal Protein with Composite Coating on Physicochemical and Sensory Properties of Chicken Nugget. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Hasani K, Ariaii P, Ahmadi M. Antimicrobial, antioxidant and anti-cancer properties of protein hydrolysates from indian mackerel (Rastrelliger kanagurta) waste prepared using commercial enzyme. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10396-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Ghanbarinia S, Ariaii P, Safari R, Najafian L. The effect of hydrolyzed sesame meal protein on the quality and shelf life of hamburgers during refrigerated storage. Anim Sci J 2022; 93:e13729. [PMID: 35543135 DOI: 10.1111/asj.13729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 01/19/2023]
Abstract
In this study, to improve the quality and shelf life of hamburgers, sesame meal protein hydrolysates (SPH) were produced using two enzymes of alcalase and flavourzyme and then four hamburger treatments: T1: control (10% soybean), T2: 1% SPH + soybean 9%, T3: 2% SPH + soybean 8%, and T4: 3% SPH + soybean 7% were prepared. Physicochemical properties were analyzed at the beginning of the storage period; microbial and chemical quality was evaluated at intervals of 0, 4, 8, 12, and 16 days. The results of SPH showed that alcalase enzyme can produce a SPH with a higher antioxidant properties (DPPH, FRAP, and beta-carotene-linoleic acid) (P < 0.05); therefore, this SPH was used for hamburger properties. According to the results, with the addition of SPH, moisture, fat, texture firmness decreased, protein, and brightness increased (P < 0.05), and all treatments had the allowable range. SPH replacement with soybean slowed down the increasing trend of oxidation and microbial spoilage (P < 0.05). In general, better results were observed in T3 and T4, which had a permissible range chemical and microbial index until the end of the storage period, as well as these treatments inhibited the growth of Staphylococcus aureus and Escherichia coli. Only T3 was approved by the evaluators.
Collapse
Affiliation(s)
- Shabnam Ghanbarinia
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Peiman Ariaii
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Reza Safari
- Caspian Sea Ecology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization, Sari, Iran
| | - Leila Najafian
- Department of Food Science & Technology, Sari Branch, Islamic Azad University, Sari, Iran
| |
Collapse
|