1
|
Kim HY, Do HY, Park S, Kim KW, Min D, Lee EY, Shim D, Cho SY, Park JO, Lee CS, Nam SJ, Ko J. 2,4,6-Triphenyl-1-hexene, an Anti-Melanogenic Compound from Marine-Derived Bacillus sp. APmarine135. Mar Drugs 2024; 22:72. [PMID: 38393043 PMCID: PMC10890162 DOI: 10.3390/md22020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Although melanin protects against ultraviolet radiation, its overproduction causes freckles and senile lentigines. Recently, various biological effects of metabolites derived from marine microorganisms have been highlighted due to their potential for biological and pharmacological applications. In this study, we discovered the anti-melanogenic effect of Bacillus sp. APmarine135 and verified the skin-whitening effect. Fractions of APmarine135 showed the melanin synthesis inhibition effect in B16 melanoma cells, and 2,4,6-triphenyl-1-hexene was identified as an active compound. The melanogenic capacity of 2,4,6-triphenyl-1-hexene (1) was investigated by assessing the intracellular melanin content in B16 cells. Treatment with 5 ppm of 2,4,6-triphenyl-1-hexene (1) for 72 h suppressed the α-melanocyte-stimulating hormone (α-MSH)-induced intracellular melanin increase to the same level as in the untreated control group. Additionally, 2,4,6-triphenyl-1-hexene (1) treatment suppressed the activity of tyrosinase, the rate-limiting enzyme for melanogenesis. Moreover, 2,4,6-triphenyl-1-hexene (1) treatment downregulated tyrosinase, Tyrp-1, and Tyrp-2 expression by inhibiting the microphthalmia-associated transcription factor (MITF). Furthermore, 2,4,6-triphenyl-1-hexene (1) treatment decreased the melanin content in the three-dimensional (3D) human-pigmented epidermis model MelanoDerm and exerted skin-whitening effects. Mechanistically, 2,4,6-triphenyl-1-hexene (1) exerted anti-melanogenic effects by suppressing tyrosinase, Tyrp-1, and Tyrp-2 expression and activities via inhibition of the MITF. Collectively, these findings suggest that 2,4,6-triphenyl-1-hexene (1) is a promising anti-melanogenic agent in the cosmetic industry.
Collapse
Affiliation(s)
- Hye Yeon Kim
- Department of Beauty and Cosmetic Science, Eulji University, Seongnam 13135, Republic of Korea; (H.Y.K.); (D.S.)
| | - Hye-Yeon Do
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (H.-Y.D.); (E.-Y.L.)
| | - Saitbyul Park
- Basic Research & Innovation Division, AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea; (S.P.); (D.M.); (S.Y.C.)
| | - Keon Woo Kim
- Department of Natural Product Laboratory, Daebong LS Co., Ltd., Incheon 21697, Republic of Korea; (K.W.K.); (J.O.P.)
| | - Daejin Min
- Basic Research & Innovation Division, AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea; (S.P.); (D.M.); (S.Y.C.)
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (H.-Y.D.); (E.-Y.L.)
| | - Dabin Shim
- Department of Beauty and Cosmetic Science, Eulji University, Seongnam 13135, Republic of Korea; (H.Y.K.); (D.S.)
| | - Sung Yeon Cho
- Basic Research & Innovation Division, AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea; (S.P.); (D.M.); (S.Y.C.)
| | - Jin Oh Park
- Department of Natural Product Laboratory, Daebong LS Co., Ltd., Incheon 21697, Republic of Korea; (K.W.K.); (J.O.P.)
| | - Chang Seok Lee
- Department of Beauty and Cosmetic Science, Eulji University, Seongnam 13135, Republic of Korea; (H.Y.K.); (D.S.)
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (H.-Y.D.); (E.-Y.L.)
| | - Jaeyoung Ko
- Basic Research & Innovation Division, AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea; (S.P.); (D.M.); (S.Y.C.)
| |
Collapse
|
2
|
Deguchi T, Tamai A, Asahara K, Miyamoto K, Miyamoto A, Nomura M, Kawata-Tominaga T, Yoshioka Y, Murata K. Anti-tyrosinase and Anti-oxidative Activities by Asana: the Heartwood ofPterocarpusmarsupium. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19883727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Asana (the heartwood of Pterocarpus marsupium) has been utilized as an agent for diabetes mellitus in Ayurveda traditional medicine. In our research program to explore novel functions of asana extract, we focused on its skin-whitening effect because asana has been used as a remedy for chronic skin diseases. In addition, the authors have already reported an improvement in blood fluidity that brightens dull facial skin. Based on these effects, asana is a promising candidate agent that possesses both blood fluidity and anti-tyrosinase activities. We focused on the anti-tyrosinase activity and anti-oxidative activities of asana and the results are summarized in this report. We found that a 50% ethanolic extract obtained from asana (PM-ext) showed 23%, 53%, and 71% inhibition against mushroom tyrosinase at 12.5, 50, and 200 µg/mL. Oxyresveratrol and isoliquiritigenin were identified as the active compounds by activity-guided purification. Oxyresveratrol has higher potency than isoliquiritigenin and the IC50of oxyresveratrol was estimated to be 2.1 µM. On the other hand, isoliquiritigenin showed 21%, 28%, and 38% inhibition at 10, 50, and 100 µM, respectively. The inhibitory activity of oxyresveratrol was compared with 3 stilbenes, pterostilbene, resveratrol, and piceatannol. Although oxyresveratrol showed 72.8%, 81.0%, and 85.4% inhibition at 2, 5, and 10 µM, respectively, pterostilbene, resveratrol, and piceatannol showed no effects at the same concentration; these compounds also demonstrated anti-melanogenesis activity on B16 murine melanoma cells. As a result, oxyresveratrol showed the most potent activity, without cytotoxicity, with 38%, 74%, and 84% inhibition at 2, 10, and 20 µM, respectively, while pterostilbene showed 26%, 71%, and 79% inhibition at the same concentration with cytotoxicity at 10 and 20 µM. Resveratrol showed 20%, 41%, and 57% inhibition without cytotoxicity at 2, 10, and 20 µM, respectively. Auto-oxidation is one of the major factors in melanin biosynthesis and anti-oxidative activity is suitable for an anti-melanogenesis agent. We investigated the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity by PM-ext. As a result, PM-ext showed 16%, 33%, and 73% DPPH radical-scavenging activity at 10, 20, and 50 µg/mL, respectively. Oxyresveratrol showed 19%, 31%, and 59% scavenging activity at 10, 20, and 50 µM, respectively, similar to piceatannol. In addition, PM-ext showed 29%, 48%, and 80% suppressive activity on AGEs production at 3.1, 12.5, and 50 µg/mL, respectively. Oxyresveratrol showed 32%, 47%, and 55% activity at 10, 50, and 100 µM, respectively, and this was the most potent among the stilbenes tested. These results suggest that PM-ext could be a promising candidate as skin-whitening agent.
Collapse
Affiliation(s)
| | - Atsushi Tamai
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Keito Asahara
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Kana Miyamoto
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | | | - Mio Nomura
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | | | | | - Kazuya Murata
- Faculty of Pharmacy, Kindai University, Osaka, Japan
- Antiaging Center, Kindai University, Osaka, Japan
| |
Collapse
|
3
|
Xu M, Huang J, Shi Y, Zhang H, He M. Comparative transcriptomic and proteomic analysis of yellow shell and black shell pearl oysters, Pinctada fucata martensii. BMC Genomics 2019; 20:469. [PMID: 31176356 PMCID: PMC6555990 DOI: 10.1186/s12864-019-5807-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The pearl oyster Pinctada fucata martensii (Pfu.), widely cultured in the South China Sea, is a precious source of sea pearls and calcifying materials. A yellow shell variety of Pfu. was obtained after years of artificial breeding. To identify differentially expressed genes between yellow shell and normal black shell pearl oysters, we performed transcriptomic sequencing and proteomic analyses using mantle edge tissues. RESULTS A total of 56,969 unigenes were obtained from transcriptomic, of which 21,610 were annotated, including 385 annotated significant up-regulated genes and 227 significant down-regulated genes in yellow shell oysters (| log2 (fold change) | ≥2 and false discovery rate < 0.001). Tyrosine metabolism, calcium signalling pathway, phototransduction, melanogenesis pathways and rhodopsin related Gene Ontology (GO) terms were enriched with significant differentially expressed genes (DEGs) in transcriptomic. Proteomic sequencing identified 1769 proteins, of which 51 were significantly differentially expressed in yellow shell oysters. Calmodulin, N66 matrix protein, nacre protein and Kazal-type serine protease inhibitor were up-regulated in yellow shell oysters at both mRNA and protein levels, while glycine-rich protein shematrin-2, mantle gene 4, and sulphide: quinone oxidoreductase were down-regulated at two omics levels. Particularly, calmodulin, nacre protein N16.3, mantle gene 4, sulphide: quinone oxidoreductase, tyrosinase-like protein 3, cytochrome P450 3A were confirmed by quantitative real-time PCR. Yellow shell oysters possessed higher total carotenoid content (TCC) compared than black shell oyster based on spectrophotography. CONCLUSIONS The yellow phenotype of pearl oysters, characterised by higher total carotenoids content, may reflect differences in retinal and rhodopsin metabolism, melanogenesis, calcium signalling pathway and biomineralisation. These results provide insights for exploring the relationships between calcium regulation, biomineralisation and yellow shell colour pigmentation.
Collapse
Affiliation(s)
- Meng Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
4
|
Ku KE, Choi N, Oh SH, Kim WS, Suh W, Sung JH. Src inhibition induces melanogenesis in human G361 cells. Mol Med Rep 2019; 19:3061-3070. [PMID: 30816523 PMCID: PMC6423603 DOI: 10.3892/mmr.2019.9958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/08/2019] [Indexed: 01/08/2023] Open
Abstract
The Src kinase family (SKF) includes non-receptor tyrosine kinases that interact with many cellular cytosolic, nuclear and membrane proteins, and is involved in the progression of cellular transformation and oncogenic activity. However, there is little to no evidence on the effect of SKF or its inhibitors on melanogenesis. Therefore, the present study investigated whether C-terminal Src kinase inhibition can induce melanogenesis and examined the associated signaling pathways and mRNA expression of melanogenic proteins. First, whether stimulators of melanogenesis, such as ultraviolet B and α-melanocyte-stimulating hormone, can dephosphorylate Src protein was evaluated, and the results revealed that SU6656 and PP2 inhibited the phosphorylation of Src in G361 cells. Src inhibition by these chemical inhibitors induced melanogenesis in G361 cells and upregulated the mRNA expression levels of melanogenesis-associated genes encoding microphthalmia-associated transcription factor, tyrosinase-related protein 1 (TRP1), TRP2, and tyrosinase. In addition, Src inhibition by small interfering RNA induced melanogenesis and upregulated the mRNA expression levels of melanogenesis-associated genes. As the p38 mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element binding (CREB) pathways serve key roles in melanogenesis, the present study further examined whether Src mediates melanogenesis via these pathways. As expected, Src inhibition via SU6656 or PP2 administration induced the phosphorylation of p38 or CREB, as determined by western blotting analysis, and increased the levels of phosphorylated p38 or CREB, as determined by immunofluorescence staining. In addition, the induced pigmentation and melanin content of G361 cells by Src inhibitors was significantly inhibited by p38 or CREB inhibitors. Taken together, these data indicate that Src is associated with melanogenesis, and Src inhibition induces melanogenesis via the MAPK and CREB pathways in G361 cells.
Collapse
Affiliation(s)
- Kyung-Eun Ku
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Nahyun Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Sang-Ho Oh
- Department of Dermatology, Severance Hospital and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Wonhee Suh
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
5
|
Alon M, Arafeh R, Lee JS, Madan S, Kalaora S, Nagler A, Abgarian T, Greenberg P, Ruppin E, Samuels Y. CAPN1 is a novel binding partner and regulator of the tumor suppressor NF1 in melanoma. Oncotarget 2018; 9:31264-31277. [PMID: 30131853 PMCID: PMC6101293 DOI: 10.18632/oncotarget.25805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/05/2018] [Indexed: 11/25/2022] Open
Abstract
Neurofibromin 1 (NF1), a tumor suppressor that negatively regulates RAS through its GTPase activity, is highly mutated in various types of sporadic human cancers, including melanoma. However, the binding partners of NF1 and the pathways in which it is involved in melanoma have not been characterized in an in depth manner. Utilizing a mass spectrometry analysis of NF1 binding partners, we revealed Calpain1 (CAPN1), a calcium-dependent neutral cysteine protease, as a novel NF1 binding partner that regulates NF1 degradation in melanoma cells. ShRNA-mediated knockdown of CAPN1 or treatment with a CAPN1 inhibitor stabilizes NF1 protein levels, downregulates AKT signaling and melanoma cell growth. Combination treatment of Calpain inhibitor I with MEKi Trametinib in different melanoma cells is more effective in reducing melanoma cell growth compared to treatment with Trametinib alone, suggesting that this combination may have a therapeutic potential in melanoma. This novel mechanism for regulating NF1 in melanoma provides a molecular basis for targeting CAPN1 in order to stabilize NF1 levels and, in doing so, suppressing Ras activation; this mechanism can be exploited therapeutically in melanoma and other cancers.
Collapse
Affiliation(s)
- Michal Alon
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Rand Arafeh
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Joo Sang Lee
- Center for Bioinformatics and Computational Biology, The University of Maryland, College Park, Maryland, USA
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Sanna Madan
- Center for Bioinformatics and Computational Biology, The University of Maryland, College Park, Maryland, USA
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Shelly Kalaora
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Nagler
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Tereza Abgarian
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Polina Greenberg
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eytan Ruppin
- Center for Bioinformatics and Computational Biology, The University of Maryland, College Park, Maryland, USA
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Yardena Samuels
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Yun WJ, Kim EY, Park JE, Jo SY, Bang SH, Chang EJ, Chang SE. Microtubule-associated protein light chain 3 is involved in melanogenesis via regulation of MITF expression in melanocytes. Sci Rep 2016; 6:19914. [PMID: 26814135 PMCID: PMC4728609 DOI: 10.1038/srep19914] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Although autophagy plays a role in melanogenesis by regulating melanosome degradation and biogenesis in melanocytes, a detailed understanding of the regulatory functions of autophagy factors is lacking. Here, we report a mechanistic link between microtubule-associated protein light chain 3 (LC3) activation and melanogenesis. We observed high expression of LC3 in melanosome-associated pigment-rich melanocytic nevi of sun-exposed skin, as indicated by patterns of melanosomal protein MART1 expression. Rapamycin-induced autophagy significantly increased the melanin index, tyrosinase activity and expression of several proteins linked to melanosome biogenesis, including microphthalmia transcription factor (MITF), pre-melanosome protein and tyrosinase, in Melan-a melanocytes. siRNA-mediated knockdown of LC3, but not beclin-1 or ATG5, decreased melanin content and tyrosinase activity. LC3 knockdown also markedly inhibited MITF expression and subsequent rapamycin-induced melanosome formation. More importantly, LC3 knockdown suppressed α-MSH-mediated melanogenesis by attenuating cAMP response element-binding protein (CREB) phosphorylation and MITF expression in Melan-a cells via decreased extracellular signal-regulated kinase (ERK) activity. Overexpression of constitutively active ERK reversed the effect of LC3 knockdown on CREB phosphorylation and MITF expression. These findings demonstrate that LC3 contributes to melanogenesis by increasing ERK-dependent MITF expression, thereby providing a mechanistic insight into the signaling network that links autophagy to melanogenesis.
Collapse
Affiliation(s)
- Woo Jin Yun
- Department of Dermatology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Eun Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Youn Jo
- Department of Dermatology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seung Hyun Bang
- Department of Dermatology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Eun Chang
- Department of Dermatology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
7
|
Inhibitory Effects of Bakuchiol, Bavachin, and Isobavachalcone Isolated fromPiper longumon Melanin Production in B16 Mouse Melanoma Cells. Biosci Biotechnol Biochem 2014; 74:1504-6. [DOI: 10.1271/bbb.100221] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Lee HE, Kim EH, Choi HR, Sohn UD, Yun HY, Baek KJ, Kwon NS, Park KC, Kim DS. Dipeptides Inhibit Melanin Synthesis in Mel-Ab Cells through Down-Regulation of Tyrosinase. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:287-91. [PMID: 22915995 PMCID: PMC3419765 DOI: 10.4196/kjpp.2012.16.4.287] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 11/17/2022]
Abstract
This study investigated the effects of proline-serine (PS) and valine-serine (VS) dipeptides on melanogenesis in Mel-Ab cells. Proline-serine and VS significantly inhibited melanin synthesis in a concentration-dependent manner, though neither dipeptide directly inhibited tyrosinase activity in a cell-free system. Both PS and VS down-regulated the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. In a follow-up study also described here, the effects of these dipeptides on melanogenesis-related signal transduction were quantified. Specifically, PS and VS induced ERK phosphorylation, though they had no effect on phosphorylation of the cAMP response element binding protein (CREB). These data suggest that PS and VS inhibit melanogenesis through ERK phosphorylation and subsequent down-regulation of MITF and tyrosinase. Properties of these dipeptides are compatible with application as skin-whitening agents.
Collapse
Affiliation(s)
- Hyun-E Lee
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Masuda M, Itoh K, Murata K, Naruto S, Uwaya A, Isami F, Matsuda H. Inhibitory effects of Morinda citrifolia extract and its constituents on melanogenesis in murine B16 melanoma cells. Biol Pharm Bull 2012; 35:78-83. [PMID: 22223341 DOI: 10.1248/bpb.35.78] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to examine the effects of Morinda citrifolia (noni) extract and its constituents on α-melanocyte stimulating hormone (α-MSH)-stimulated melanogenesis in cultured murine B16 melanoma cells (B16 cells). A 50% ethanolic extract of noni seeds (MCS-ext) showed significant inhibition of melanogenesis with no effect on cell proliferation. MCS-ext was more active than noni leaf and fruit flesh extracts. Activity guided fractionation of MCS-ext led to the isolation of two lignans, 3,3'-bisdemethylpinoresinol (1) and americanin A (2), as active constituents. To elucidate the mechanism of melanogenesis inhibition by the lignans, α-MSH-stimulated B16 cells were treated with 1 (5 μM) and 2 (200 μM). Time-dependent increases of intracellular melanin content and tyrosinase activity, during 24 to 72 h, were inhibited significantly by treatment with the lignans. The activity of 1 was greater than that of 2. Western blot analysis suggested that the lignans inhibited melanogenesis by down regulation of the levels of phosphorylation of p38 mitogen-activated protein kinase, resulting in suppression of tyrosinase expression.
Collapse
Affiliation(s)
- Megumi Masuda
- Faculty of Pharmacy, Kinki University, 3–4–1 Kowakae, Higashiosaka, Osaka 577–8502, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Nishiura H, Kumagai J, Kashino G, Okada T, Tano K, Watanabe M. The bystander effect is a novel mechanism of UVA-induced melanogenesis. Photochem Photobiol 2011; 88:389-97. [PMID: 22091933 DOI: 10.1111/j.1751-1097.2011.01046.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We successfully identified the bystander effect in B16 murine melanoma cells exposed to UVA irradiation. The effect was identified based on melanogenesis following the medium transfer of the B16 cells, which had been cultured for 24 h after being exposed to UVA irradiation, to nonirradiated cells (bystander cells). Our confirmation study of the functional mechanism of bystander cells confirmed the reduced levels of mitochondrial membrane potential 1-4 h after the medium transfer. In addition, we observed increased levels of intracellular oxidation after 9-12 h, and the generation of melanin radicals, including long-lived radicals, 24 h after medium transfer. Further analysis of bystander factors revealed that the administration of EGTA treatment at the time of medium transfer led to an inhibition of melanogenesis and to neutralization of the mitochondrial membrane potential level, as well as to the restoration of intracellular oxidation levels to those of controls. The results demonstrated that the UVA irradiation bystander effect in B16 cells, as indicated by melanogenesis, was induced by the increase in intracellular oxidation due to the mitochondrial activity of calcium ions, which were among the bystander factors involved in the increase.
Collapse
Affiliation(s)
- Hideki Nishiura
- Division of Radiation Life Science, Department of Radiation Life Science and Radiation Medical Science, Kyoto University Research Reactor Institute, Sennan-gun, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Batubara I, Darusman L, Mitsunaga T, Aoki H, Rahminiwat M, Djauhari E, Yamauchi K. Flavonoid from Intsia palembanica as Skin Whitening Agent. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jbs.2011.475.480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Melanin biosynthesis inhibitors from Tarragon Artemisia dracunculus. Biosci Biotechnol Biochem 2011; 75:1628-30. [PMID: 21821921 DOI: 10.1271/bbb.110306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The EtOH extract of tarragon Artemisia dracunculus, a perennial herb in the family Asteraceae, was found to potently inhibit α-melanocyte-stimulating hormone (α-MSH) induced melanin production in B16 mouse melanoma cells. Bioassay-guided fractionation led to the isolation of two alkamide compounds, isobutyl (1) and piperidiyl (2) amides of undeca-2E,4E-dien-8,10-dynoic acid. The respective EC(50) values for melanin biosynthesis inhibition were 1.8 and 2.3 µg/mL for 1 and 2.
Collapse
|
13
|
Park KC, Huh SY, Choi HR, Kim DS. Biology of melanogenesis and the search for hypopigmenting agents. DERMATOL SIN 2010. [DOI: 10.1016/s1027-8117(10)60011-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Lee EH, Lim YJ, Ha SK, Kang TH, Koketsu M, Kang C, Kim SY, Park JH. Inhibitory effects of 5-chloroacetyl-2-piperidino-1,3-selenazole, a novel selenium-containing compound, on skin melanin biosynthesis. J Pharm Pharmacol 2010; 62:352-9. [PMID: 20487219 DOI: 10.1211/jpp.62.03.0010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
Increased production and accumulation of melanin leads to many hyperpigmentation disorders such as melasma, freckles and geriatric pigment spots. Thus, there is a need for the development of depigmenting agents. Based on our previous reports, selenium derivatives as anti-melanogenic lead compounds could be very important. The aim of this study was to investigate the depigmenting effect of novel selenium-containing compounds.
Methods
The inhibitory effects of 5-chloroacetyl-2-piperidino-1,3-selenazole (CS1), a novel selenium-containing compound, on melanogenesis were investigated in B16F10 melanoma cells and cultured brownish guinea pig skin tissue with α-melanocyte-stimulating hormone stimulation.
Key findings
We found that CS1 inhibited melanin production in B16F10 cells by suppressing tyrosinase activity and its protein expression. In addition, Western blotting analysis revealed that CS1 suppressed the expression of tyrosinase-related protein (TRP)-1 and TRP-2. Therefore, the depigmenting effect of CS1 might have been due to inhibition of tyrosinase activity and expression of melanogenic enzymes. Furthermore, CS1 had inhibitory effects on melanin biosynthesis of primary cultured skin of brownish guinea pig.
Conclusions
The results suggested that CS1 could be a useful candidate for the treatment of skin hyperpigmentation.
Collapse
Affiliation(s)
- Eunjoo H Lee
- Graduate School of East-West Medical Science, Japan
- East-West Integrated Medical Science Research Center, Japan
| | - Yu-Ji Lim
- Graduate School of East-West Medical Science, Japan
| | - Sang Keun Ha
- Graduate School of East-West Medical Science, Japan
| | - Tong Ho Kang
- Department of Oriental Medicinal Material & Processing, College of Life Science, Japan
| | - Mamoru Koketsu
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, Gifu, Japan
| | - Chulhun Kang
- Graduate School of East-West Medical Science, Japan
- East-West Integrated Medical Science Research Center, Japan
| | - Sun Yeou Kim
- Graduate School of East-West Medical Science, Japan
- East-West Integrated Medical Science Research Center, Japan
- Skin Biotechnology Research Center, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ji-Ho Park
- Graduate School of East-West Medical Science, Japan
- East-West Integrated Medical Science Research Center, Japan
| |
Collapse
|
15
|
Galus R, Niderla J, Śladowski D, Sajjad E, Włodarski K, Jóźwiak J. Fluvastatin increases tyrosinase synthesis induced by α-melanocyte-stimulating hormone in B16F10 melanoma cells. Pharmacol Rep 2010; 62:164-9. [DOI: 10.1016/s1734-1140(10)70253-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 02/03/2010] [Indexed: 10/25/2022]
|
16
|
Lim YJ, Lee EH, Kang TH, Ha SK, Oh MS, Kim SM, Yoon TJ, Kang C, Park JH, Kim SY. Inhibitory effects of arbutin on melanin biosynthesis of α-melanocyte stimulating hormone-induced hyperpigmentation in cultured brownish guinea pig skin tissues. Arch Pharm Res 2009; 32:367-73. [DOI: 10.1007/s12272-009-1309-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/29/2022]
|
17
|
Abstract
We have previously shown that Wnt5A and ROR2, an orphan tyrosine kinase receptor, interact to mediate melanoma cell motility. In other cell types, this can occur through the interaction of ROR2 with the cytoskeletal protein filamin A. Here, we found that filamin A protein levels correlated with Wnt5A levels in melanoma cells. Small interfering RNA (siRNA) knockdown of WNT5A decreased filamin A expression. Knockdown of filamin A also corresponded to a decrease in melanoma cell motility. In metastatic cells, filamin A expression was predominant in the cytoplasm, which western analysis indicated was due to the cleavage of filamin A in these cells. Treatment of nonmetastatic melanoma cells with recombinant Wnt5A increased filamin A cleavage, and this could be prevented by the knockdown of ROR2 expression. Further, BAPTA-AM chelation of intracellular calcium also inhibited filamin A cleavage, leading to the hypothesis that Wnt5A/ROR2 signaling could cleave filamin A through activation of calcium-activated proteases, such as calpains. Indeed, WNT5A knockdown decreased calpain 1 expression, and by inhibiting calpain 1 either pharmacologically or using siRNA, it decreased cell motility. Our results indicate that Wnt5A activates calpain-1, leading to the cleavage of filamin A, which results in a remodeling of the cytoskeleton and an increase in melanoma cell motility.
Collapse
|
18
|
Passiatore G, Rom S, Eletto D, Peruzzi F. HIV-1 Tat C-terminus is cleaved by calpain 1: implication for Tat-mediated neurotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:378-87. [PMID: 19022302 DOI: 10.1016/j.bbamcr.2008.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/24/2008] [Accepted: 10/14/2008] [Indexed: 01/15/2023]
Abstract
HIV-Encephalopathy (HIVE) is a common neurological disorder associated with HIV-1 infection and AIDS. The activity of the HIV trans-activating protein Tat is thought to contribute to neuronal pathogenesis. While Tat proteins from primary virus isolates consist of 101 or more amino acids, 72 and 86 amino acids forms of Tat are commonly used for in vitro studies. Although Tat72 contains the minimal domain required for viral replication, other activities of Tat appear to vary according to its length, sub-cellular localization, cell type and the stage of cellular differentiation. In this study, we investigated the stability of intracellular Tat101 during proliferation and differentiation of neuronal cells in culture. We have utilized rat neuronal progenitors as a model of neuronal cell proliferation and differentiation, as well as rat primary cortical neurons as a model of fully differentiated cells. Our results indicate that, upon internalization, Tat101 was degraded more rapidly in proliferating cells than in cells which either underwent neuronal differentiation or were fully differentiated. Intracellular degradation of Tat was prevented by the calpain 1 inhibitor, ALLN, in both proliferating and differentiated cells. Inhibition of calpain 1 by calpastatin peptide also prevented Tat cleavage. In vitro calpain digestion and mass spectrometry analysis further demonstrated that the sequence of Tat sensitive to calpain cleavage was located in the C-terminus of this viral protein, between amino acids 68 and 69. Moreover, cleavage of Tat101 by calpain 1 increased neurotoxic effect of this viral protein and presence of the calpain inhibitor protected neuronal cells from Tat-mediated toxicity.
Collapse
Affiliation(s)
- Giovanni Passiatore
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|
19
|
Brenner M, Hearing VJ. Modifying skin pigmentation - approaches through intrinsic biochemistry and exogenous agents. ACTA ACUST UNITED AC 2008; 5:e189-e199. [PMID: 19578486 DOI: 10.1016/j.ddmec.2008.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rates of skin cancer continue to increase despite the improved use of traditional sunscreens to minimize damage from ultraviolet radiation. The public perception of tanned skin as being healthy and desirable, combined with the rising demand for treatments to repair irregular skin pigmentation and the desire to increase or decrease constitutive skin pigmentation, arouses great interest pharmaceutically as well as cosmeceutically. This review discusses the intrinsic biochemistry of pigmentation, details mechanisms that lead to increased or decreased skin pigmentation, and summarizes established and potential hyper- and hypo-pigmenting agents and their modes of action.
Collapse
Affiliation(s)
- Michaela Brenner
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, USA
| | | |
Collapse
|
20
|
Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. ACTA ACUST UNITED AC 2007; 19:550-71. [PMID: 17083484 DOI: 10.1111/j.1600-0749.2006.00334.x] [Citation(s) in RCA: 459] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An overview of agents causing hypopigmentation in human skin is presented. The review is organized to put forward groups of biological and chemical agents. Their mechanisms of action cover (i) tyrosinase inhibition, maturation and enhancement of its degradation; (ii) Mitf inhibition; (iii) downregulation of MC1R activity; (iv) interference with melanosome maturation and transfer; (v) melanocyte loss, desquamation and chemical peeling. Tyrosinase inhibition is the most common approach to achieve skin hypopigmentation as this enzyme catalyses the rate-limiting step of pigmentation. Despite the large number of tyrosinase inhibitors in vitro, only a few are able to induce effects in clinical trials. The gap between in-vitro and in-vivo studies suggests that innovative strategies are needed for validating their efficacy and safety. Successful treatments need the combination of two or more agents acting on different mechanisms to achieve a synergistic effect. In addition to tyrosinase inhibition, other parameters related to cytotoxicity, solubility, cutaneous absorption, penetration and stability of the agents should be considered. The screening test system is also very important as keratinocytes play an active role in modulating melanogenesis within melanocytes. Mammalian skin or at least keratinocytes/melanocytes co-cultures should be preferred rather than pure melanocyte cultures or soluble tyrosinase.
Collapse
Affiliation(s)
- Francisco Solano
- Department of Biochemistry and Molecular Biology B, University of Murcia, Murcia, Spain.
| | | | | | | |
Collapse
|