1
|
Duda T, Sharma RK. Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder. Front Mol Neurosci 2023; 15:1022771. [PMID: 36683846 PMCID: PMC9849996 DOI: 10.3389/fnmol.2022.1022771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/07/2023] Open
Abstract
One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so via its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca2+-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca2+ sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.
Collapse
|
2
|
Brochet M, Balestra AC, Brusini L. cGMP homeostasis in malaria parasites-The key to perceiving and integrating environmental changes during transmission to the mosquito. Mol Microbiol 2020; 115:829-838. [PMID: 33112460 DOI: 10.1111/mmi.14633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Malaria-causing parasites are transmitted from humans to mosquitoes when developmentally arrested gametocytes are taken up by a female Anopheles during a blood meal. The changes in environment from human to mosquito activate gametogenesis, including a drop in temperature, a rise in pH, and a mosquito-derived molecule, xanthurenic acid. Signaling receptors have not been identified in malaria parasites but mounting evidence indicates that cGMP homeostasis is key to sensing extracellular cues in gametocytes. Low levels of cGMP maintained by phosphodiesterases prevent precocious activation of gametocytes in the human blood. Upon ingestion, initiation of gametogenesis depends on the activation of a hybrid guanylyl cyclase/P4-ATPase. Elevated cGMP levels lead to the rapid mobilization of intracellular calcium that relies upon the activation of both cGMP-dependent protein kinase and phosphoinositide phospholipase C. Once calcium is released, a cascade of phosphorylation events mediated by calcium-dependent protein kinases and phosphatases regulates the cellular processes required for gamete formation. cGMP signaling also triggers timely egress from the host cell at other life cycle stages of malaria parasites and in Toxoplasma gondii, a related apicomplexan parasite. This suggests that cGMP signaling is a versatile platform transducing external cues into calcium signals at important decision points in the life cycle of apicomplexan parasites.
Collapse
Affiliation(s)
- Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélia C Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Sharma RK, Duda T, Makino CL. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology. Front Mol Neurosci 2016; 9:83. [PMID: 27695398 PMCID: PMC5023690 DOI: 10.3389/fnmol.2016.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Physiology and Biophysics, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
4
|
Brochet M, Collins MO, Smith TK, Thompson E, Sebastian S, Volkmann K, Schwach F, Chappell L, Gomes AR, Berriman M, Rayner JC, Baker DA, Choudhary J, Billker O. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca²⁺ signals at key decision points in the life cycle of malaria parasites. PLoS Biol 2014; 12:e1001806. [PMID: 24594931 PMCID: PMC3942320 DOI: 10.1371/journal.pbio.1001806] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/23/2014] [Indexed: 12/04/2022] Open
Abstract
Many critical events in the Plasmodium life cycle rely on the controlled release of Ca²⁺ from intracellular stores to activate stage-specific Ca²⁺-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP)-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca²⁺ required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca²⁺ signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5)-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca²⁺ effectors, PKG emerges as a unifying factor to control multiple cellular Ca²⁺ signals essential for malaria parasite development and transmission.
Collapse
Affiliation(s)
- Mathieu Brochet
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Mark O. Collins
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Terry K. Smith
- Schools of Biology and Chemistry, Biomedical Sciences Research Complex, The North Haugh, The University of Saint Andrews, St. Andrews, Fife United Kingdom
| | - Eloise Thompson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sarah Sebastian
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Katrin Volkmann
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Frank Schwach
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Lia Chappell
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ana Rita Gomes
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Julian C. Rayner
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jyoti Choudhary
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
5
|
Dason JS, Romero-Pozuelo J, Atwood HL, Ferrús A. Multiple roles for frequenin/NCS-1 in synaptic function and development. Mol Neurobiol 2012; 45:388-402. [PMID: 22396213 DOI: 10.1007/s12035-012-8250-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/20/2012] [Indexed: 11/26/2022]
Abstract
The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila, and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.
Collapse
Affiliation(s)
- Jeffrey S Dason
- Department of Physiology, University of Toronto, Toronto, ON, Canada, M5S 1A8.
| | | | | | | |
Collapse
|
6
|
Jankowska A, Burczyńska B, Duda T, Warchol JB. Rod outer segment membrane guanylate cyclase type 1 (ROS-GC1) calcium-modulated transduction system in the sperm. Fertil Steril 2010; 93:904-12. [PMID: 19111294 PMCID: PMC3062625 DOI: 10.1016/j.fertnstert.2008.10.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Evaluation of the presence of a Ca(2+)-regulated membrane guanylate cyclase signal transudation system in the spermatozoa. DESIGN Experimental study. SETTING Research university laboratory. PATIENT(S) Human sperm obtained from healthy donors who met the criteria of the World Health Organization for normozoospermia and bovine semen collected from bulls of proven fertility. INTERVENTION(S) Radioimmunoassay and immunohistochemistry of human and bovine spermatozoa. MAIN OUTCOME MEASURE(S) The membrane guanylate cyclase activity and the presence of membrane guanylate cyclase transduction machinery components in the spermatozoa. RESULT(S) The identity of a Ca(2+)-modulated membrane guanylate cyclase transduction machinery in human and bovine spermatozoa has been documented. The machinery is both inhibited and stimulated within nanomolar to semimicromolar range of free Ca(2+). The transduction component of this machinery is the rod outer segment membrane guanylate cyclase type 1 (ROS-GC1). The enzyme coexists with three Ca(2+)-dependent modulators: guanylate cyclase activating protein type 1 (GCAP1), S100B and neurocalcin delta. ROS-GC1 and its modulators are present in the heads and tails of both species' spermatozoa. CONCLUSION(S) The coexpression of ROS-GC1 and its activators in spermatozoa suggests that the Ca(2+)-modulated ROS-GC1 transduction system may be a part of the fertilization machinery.
Collapse
Affiliation(s)
- Anna Jankowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland.
| | | | | | | |
Collapse
|
7
|
Sharma RK. Membrane guanylate cyclase is a beautiful signal transduction machine: overview. Mol Cell Biochem 2009; 334:3-36. [PMID: 19957201 DOI: 10.1007/s11010-009-0336-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/09/2009] [Indexed: 01/08/2023]
Abstract
This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3-30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969-984, 2005); and of the Ca(2+)-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429-473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). This article contains three parts. The first part is "Historical"; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3-30, 2002; Duda et al. in Peptides 26:969-984, 2005). The second part focuses on the "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily". It is divided into two sections. Section "Historical" and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). Section "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily" covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
| |
Collapse
|
8
|
ROS-GC subfamily membrane guanylate cyclase-linked transduction systems: taste, pineal gland and hippocampus. Mol Cell Biochem 2009; 334:199-206. [PMID: 19953306 DOI: 10.1007/s11010-009-0334-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
In the continuous efforts to test the validity of the theme that the Ca(2+)-modulated ROS-GC subfamily system is a universal transduction component of the sensory and sensory-linked network of neurons, this article focuses on the presence and variant biochemical forms of this transduction system in the gustatory epithelium, the site of gustatory transduction; in the pineal, a light-sensitive gland; and in the hippocampus neurons, linked with the perception of all SENSES.
Collapse
|
9
|
Odorant-linked ROS-GC subfamily membrane guanylate cyclase transduction system. Mol Cell Biochem 2009; 334:181-9. [PMID: 19937091 DOI: 10.1007/s11010-009-0333-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 11/04/2009] [Indexed: 01/07/2023]
Abstract
This review focuses on the principles of the Ca(2+)-modulated ROS-GC subfamily transduction system linked with the mammalian olfactory transduction field, its historical development, and the present day status on its constitution and operational mechanisms controlling the process of olfactory-transduction. Beginning parts of this article are freely borrowed from the earlier reviews of the authors (Sharma RK, Duda T, Venkataraman V, Koch KW, Curr Topics Biochem Res 6:111-144, 2004; Duda T, Venkataraman V, Sharma RK, Neuronal calcium sensor proteins, pp 91-113, Nova Science Publishers, Inc., 2007).
Collapse
|
10
|
A unique phosphatidylinositol 4-phosphate 5-kinase is activated by ADP-ribosylation factor in Plasmodium falciparum. Int J Parasitol 2009; 39:645-53. [DOI: 10.1016/j.ijpara.2008.11.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/09/2008] [Accepted: 11/13/2008] [Indexed: 11/20/2022]
|
11
|
Krishnan A, Duda T, Pertzev A, Kobayashi M, Takamatsu K, Sharma RK. Hippocalcin, new Ca(2+) sensor of a ROS-GC subfamily member, ONE-GC, membrane guanylate cyclase transduction system. Mol Cell Biochem 2009; 325:1-14. [PMID: 19165577 PMCID: PMC2850279 DOI: 10.1007/s11010-008-0015-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
Abstract
Hippocalcin is a member of the neuronal Ca(2+) sensor protein family. Among its many biochemical functions, its established physiological function is that via neuronal apoptosis inhibitory protein it protects the neurons from Ca(2+)-induced cell death. The precise biochemical mechanism/s, through which hippocalcin functions, is not clear. In the present study, a new mechanism by which it functions is defined. The bovine form of hippocalcin (BovHpca) native to the hippocampus has been purified, sequenced, cloned, and studied. The findings show that there is the evolutionary conservation of its structure. It is a Ca(2+)-sensor of a variant form of the ROS-GC subfamily of membrane guanylate cyclases, ONE-GC. It senses physiological increments of Ca(2+) with a K(1/2) of 0.5 microM and stimulates ONE-GC or ONE-GC-like membrane guanylate cyclase. The Hpca-modulated ONE-GC-like transduction system exists in the hippocampal neurons. And hippocalcin-modulated ONE-GC transduction system exists in the olfactory receptor neuroepithelium. The Hpca-gene knock out studies demonstrate that the portion of this is about 30% of the total membrane guanylate cyclase transduction system. The findings establish Hpca as a new Ca(2+) sensor modulator of the ROS-GC membrane guanylate cyclase transduction subfamily. They support the concept on universality of the presence and operation of the ROS-GC transduction system in the sensory and sensory-linked neurons. They validate that the ROS-GC transduction system exists in multiple forms. And they provide an additional mechanism by which ROS-GC subfamily acts as a transducer of the Ca(2+) signals originating in the neurons.
Collapse
Affiliation(s)
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Division of Biochemistry and Molecular Biology, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexandre Pertzev
- The Unit of Regulatory and Molecular Biology, Division of Biochemistry and Molecular Biology, Salus University, Elkins Park, Pennsylvania 19027
| | - Masaaki Kobayashi
- Department of Physiology, Toho University School of Medicine, 5-12-16 Ohmori-nishi, Ohta-ku, Tokyo, 143-8540, Japan
| | - Ken Takamatsu
- Department of Physiology, Toho University School of Medicine, 5-12-16 Ohmori-nishi, Ohta-ku, Tokyo, 143-8540, Japan
| | - Rameshwar K. Sharma
- The Unit of Regulatory and Molecular Biology, Division of Biochemistry and Molecular Biology, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
12
|
Venkataraman V, Duda T, Ravichandran S, Sharma RK. Neurocalcin delta modulation of ROS-GC1, a new model of Ca(2+) signaling. Biochemistry 2008; 47:6590-601. [PMID: 18500817 PMCID: PMC2844899 DOI: 10.1021/bi800394s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ROS-GC1 membrane guanylate cyclase is a Ca(2+) bimodal signal transduction switch. It is turned "off" by a rise in free Ca(2+) from nanomolar to the semicromolar range in the photoreceptor outer segments and the olfactory bulb neurons; by a similar rise in the bipolar and ganglion retinal neurons it is turned "on". These opposite operational modes of the switch are specified by its Ca(2+) sensing devices, respectively termed GCAPs and CD-GCAPs. Neurocalcin delta is a CD-GCAP. In the present study, the neurocalcin delta-modulated site, V(837)-L(858), in ROS-GC1 has been mapped. The location and properties of this site are unique. It resides within the core domain of the catalytic module and does not require the alpha-helical dimerization domain structural element (amino acids 767-811) for activating the catalytic module. Contrary to the current beliefs, the catalytic module is intrinsically active; it is directly regulated by the neurocalcin delta-modulated Ca(2+) signal and is dimeric in nature. A fold recognition based model of the catalytic domain of ROS-GC1 was built, and neurocalcin delta docking simulations were carried out to define the three-dimensional features of the interacting domains of the two molecules. These findings define a new transduction model for the Ca(2+) signaling of ROS-GC1.
Collapse
Affiliation(s)
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Division of Biochemistry and Molecular Biology, Pennsylvania College of Optometry, Elkins Park, Pennsylvania 19027
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, National Cancer Institute, SAIC/Frederick, Frederick, Maryland 21702
| | - Rameshwar K. Sharma
- The Unit of Regulatory and Molecular Biology, Division of Biochemistry and Molecular Biology, Pennsylvania College of Optometry, Elkins Park, Pennsylvania 19027
| |
Collapse
|
13
|
Hilgemann DW. Local PIP(2) signals: when, where, and how? Pflugers Arch 2007; 455:55-67. [PMID: 17534652 DOI: 10.1007/s00424-007-0280-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 10/24/2022]
Abstract
PIP(2) is a minor phospholipid that modulates multiple cellular processes. However, its abundance by mass, like diacylglycerol, is still 20 to 100 times greater than the master phospholipid second messenger, PIP(3). Therefore, it is a case-by-case question whether PIP(2) is acting more like GTP, in being a cofactor in regulatory processes, or whether it is being used as a true second messenger. Analysis of signaling mechanisms in primary cells is essential to answer this question, as overexpression studies will naturally generate false positives. In connection with the possible messenger function of PIP(2), a second question arises as to how and if PIP(2) metabolism and signaling may be limited in space. This review summarizes succinctly the notable cases in which PIP(2) is proposed to function in a localized way and the different mechanistic models that may allow it to function locally. In general, drastic restrictions of PIP(2) diffusion are required. It is speculated that molecular PIP(2) signaling may be possible in the absence of PIP(2) gradients via ternary complexes between PIP(2) and two protein partners. That PIP(2) synthesis and hydrolysis might be locally dependent on protein-protein interactions, and direct lipid "hand-off" is suggested by multiple results.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9040, USA.
| |
Collapse
|