1
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
2
|
Li J, Xu J, Zhang W, Li P, Zhang W, Wang H, Tang B. Detection and Imaging of Active Substances in Early Atherosclerotic Lesions Using Fluorescent Probes. Chembiochem 2023; 24:e202300105. [PMID: 36898970 DOI: 10.1002/cbic.202300105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Atherosclerosis (AS) is a vascular disease caused by chronic inflammation and lipids that is the main cause of myocardial infarction, stroke and other cardiovascular diseases. Atherosclerosis is often difficult to detect in its early stages due to the absence of clinically significant vascular stenosis. This is not conducive to early intervention or treatment of the disease. Over the past decade, researchers have developed various imaging methods for the detection and imaging of atherosclerosis. At the same time, more and more biomarkers are being found that can be used as targets for detecting atherosclerosis. Therefore, the development of a variety of imaging methods and a variety of targeted imaging probes is an important project to achieve early assessment and treatment of atherosclerosis. This paper provides a comprehensive review of the optical probes used to detect and target atherosclerosis imaging in recent years, and describes the current challenges and future development directions.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jiheng Xu
- School of Materials Science and Engineering, Shandong University, Jinan, 250014, P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
3
|
Napolitano G, Fasciolo G, Tomajoli MTM, Carlucci A, Ascione E, Salvatore A. Effects of superoxide anion attack on the lipoprotein HDL. Mol Cell Biochem 2022; 478:1059-1066. [PMID: 36219354 PMCID: PMC10126046 DOI: 10.1007/s11010-022-04563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
High-density lipoprotein (HDL) is an anti-atherosclerotic lipoprotein. Thanks to the activity of apolipoprotein ApoA1, the principal protein component of HDL, this last is responsible for converting cholesterol into ester form and transporting excessive cholesterol to the liver ("reverse cholesterol transport" RCT). When HDL undergoes oxidation, it becomes dysfunctional and proatherogenic. ApoA1 is a target of oxidation, and its alteration affects RCT and contributes to atherosclerosis development. Until now, the mechanism of HDL oxidation is not fully understood and only hydroxyl radicals seem to induce direct oxidation of protein and lipidic components of lipoproteins. Here we demonstrate that superoxide radical, widely produced in early atherosclerosis, directly oxidizes HDL, and as a consequence, ApoA1 undergoes structural alterations impairing its anti-atherosclerotic functions. Our results highlight in an in vitro system the potential mechanism by which O2·- triggers atherosclerotic pathogenesis in vivo. Our study gets the basis for therapeutic approaches focused on the management of superoxide generation in early atherosclerosis onset.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, via Acton n. 38-I, 80133, Naples, Italy.
- International PhD Programme/UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Naples, Italy.
| | - Gianluca Fasciolo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126, Naples, Italy
| | - Maria Teresa Muscari Tomajoli
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, via Acton n. 38-I, 80133, Naples, Italy
- International PhD Programme/UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - Alessandro Carlucci
- S. Antimo Industrial Development Department, Kedrion Biopharma, Strada Statale 7 Bis 19, Sant'Antimo, 80029, Napoli, Italia
| | - Ester Ascione
- S. Antimo Industrial Development Department, Kedrion Biopharma, Strada Statale 7 Bis 19, Sant'Antimo, 80029, Napoli, Italia
| | - Alfonso Salvatore
- S. Antimo Industrial Development Department, Kedrion Biopharma, Strada Statale 7 Bis 19, Sant'Antimo, 80029, Napoli, Italia
| |
Collapse
|
4
|
Fouda MA, Leffler KE, Abdel-Rahman AA. Estrogen-dependent hypersensitivity to diabetes-evoked cardiac autonomic dysregulation: Role of hypothalamic neuroinflammation. Life Sci 2020; 250:117598. [PMID: 32243927 PMCID: PMC7202046 DOI: 10.1016/j.lfs.2020.117598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
AIMS To investigate if autonomic dysregulation is exacerbated in female rats, subjected to diabetes mellitus (DM), via a paradoxical estrogen (E2)-evoked provocation of neuroinflammation/injury of the hypothalamic paraventricular nucleus (PVN). MAIN METHODS We measured cardiac autonomic function and conducted subsequent PVN neurochemical studies, in DM rats, and their respective controls, divided as follows: male, sham operated (SO), ovariectomized (OVX), and OVX with E2 supplementation (OVX/E2). KEY FINDINGS Autonomic dysregulation, expressed as sympathetic dominance (higher low frequency, LF, band), only occurred in DM E2-replete (SO and OVX/E2) rats, and was associated with higher neuronal activity (c-Fos) and higher levels of TNFα and phosphorylated death associated protein kinase-3 (p-DAPK3) in the PVN. These proinflammatory molecules likely contributed to the heightened PVN oxidative stress, injury and apoptosis. The PVN of these E2-replete DM rats also exhibited upregulations of estrogen receptors, ERα and ERβ, and proinflammatory adenosine A1 and A2a receptors. SIGNIFICANCE The E2-dependent autonomic dysregulation likely predisposes DM female rats and women to hypersensitivity to cardiac dysfunction. Further, upregulations of proinflammatory mediators including adenosine A1 and A2 receptors, TNFα and DAPK3, conceivably explain the paradoxical hypersensitivity of DM females to PVN inflammation/injury and the subsequent autonomic dysregulation in the presence of E2.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Pharmacology and Toxicology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Korin E Leffler
- Department of Pharmacology and Toxicology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America.
| |
Collapse
|
5
|
Fouda MA, El-Sayed SS, Abdel-Rahman AA. Restoration of Rostral Ventrolateral Medulla Cystathionine- γ Lyase Activity Underlies Moxonidine-Evoked Neuroprotection and Sympathoinhibition in Diabetic Rats. J Pharmacol Exp Ther 2018; 364:170-178. [PMID: 29133386 PMCID: PMC5771313 DOI: 10.1124/jpet.117.243865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
We recently demonstrated a fundamental role for cystathionine-γ lyase (CSE)-derived hydrogen sulfide (H2S) in the cardioprotective effect of the centrally acting drug moxonidine in diabetic rats. Whether a downregulated CSE/H2S system in the rostral ventrolateral medulla (RVLM) underlies neuronal oxidative stress and sympathoexcitation in diabetes has not been investigated. Along with addressing this question, we tested the hypothesis that moxonidine prevents the diabetes-evoked neurochemical effects by restoring CSE/H2S function within its major site of action, the RVLM. Ex vivo studies were performed on RVLM tissues of streptozotocin (55 mg/kg, i.p.) diabetic rats treated daily for 3 weeks with moxonidine (2 or 6 mg/kg; gavage), H2S donor sodium hydrosulfide (NaHS) (3.4 mg/kg, i.p.), CSE inhibitor DL-propargylglycine (DLP) (37.5 mg/kg, i.p.), a combination of DLP with moxonidine, or their vehicle. Moxonidine alleviated RVLM oxidative stress, neuronal injury, and increased tyrosine hydroxylase immunoreactivity (sympathoexcitation) by restoring CSE expression/activity as well as heme oxygenase-1 (HO-1) expression. A pivotal role for H2S in moxonidine-evoked neuroprotection is supported by the following: 1) NaHS replicated the moxonidine-evoked neuroprotection, and the restoration of RVLM HO-1 expression in diabetic rats; and 2) DLP abolished moxonidine-evoked neuroprotection in diabetic rats, and caused RVLM neurotoxicity, reminiscent of a diabetes-evoked neuronal phenotype, in healthy rats. These findings suggest a novel role for RVLM CSE/H2S/HO-1 in moxonidine-evoked neuroprotection and sympathoinhibition, and as a therapeutic target for developing new drugs for alleviating diabetes-evoked RVLM neurotoxicity and cardiovascular anomalies.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Shaimaa S El-Sayed
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Abdel A Abdel-Rahman
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
6
|
Prasad AK, Mishra P. Scavenging of superoxide radical anion and hydroxyl radical by urea, thiourea, selenourea and their derivatives without any catalyst: A theoretical study. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Steagall RJ, Yao F, Shaikh SR, Abdel-Rahman AA. Estrogen receptor α activation enhances its cell surface localization and improves myocardial redox status in ovariectomized rats. Life Sci 2017; 182:41-49. [PMID: 28599865 PMCID: PMC5535783 DOI: 10.1016/j.lfs.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/19/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
AIMS Little is known about the role of subcellular trafficking of estrogen receptor (ER) subtypes in the acute estrogen (E2)-mediated alleviation of oxidative stress. We tested the hypothesis that ERα migration to the cardiac myocyte membrane mediates the acute E2-dependent improvement of cellular redox status. MAIN METHODS Myocardial distribution of subcellular ERα, ERβ and G-protein coupled estrogen receptor (GPER) was determined in proestrus sham-operated (SO) and in ovariectomized (OVX) rats, acutely treated with E2 (1μg/kg) or a selective ERα (PPT), ERβ (DPN) or GPER (G1) agonist (10μg/kg), by immunofluorescence and Western blot. We measured ROS and malondialdehyde (MDA) levels, and catalase and superoxide dismutase (SOD) activities to evaluate myocardial antioxidant/redox status. KEY FINDINGS Compared with SO, OVX rats exhibited higher myocardial ROS and MDA levels, reduced catalase and SOD activities, along with diminished ERα, and enhanced ERβ and GPER, localization at cardiomyocyte membrane. Acute E2 or an ERα (PPT), but not ERβ (DPN) or GPER (G1), agonist reversed these responses in OVX rats and resulted in higher ERα/ERβ and ERα/GPER ratios at the cardiomyocytes membrane. PPT or DPN enhanced myocardial Akt phosphorylation. We present the first evidence that preferential aggregation of ERα at the cardiomyocytes plasma membrane is ERα-dependent, and underlies E2-mediated reduction in oxidative stress, at least partly, via the enhancements of myocardial catalase and SOD activities in OVX rats. SIGNIFICANCE The findings highlight ERα agonists as potential therapeutics for restoring the myocardial redox status following E2 depletion in postmenopausal women.
Collapse
Affiliation(s)
- Rebecca J Steagall
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Fanrong Yao
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
8
|
Fouda MA, Abdel-Rahman AA. Endothelin Confers Protection against High Glucose-Induced Neurotoxicity via Alleviation of Oxidative Stress. J Pharmacol Exp Ther 2017; 361:130-139. [PMID: 28179472 PMCID: PMC5363775 DOI: 10.1124/jpet.116.238659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
Recent findings linked the inhibition in the neuromodulator peptide endothelin-1 (ET-1) level to the high glucose-evoked neurotoxicity. However, definitive neuroprotective role for ET-1 and the major neuronal ET (ET-3) against high glucose-evoked toxicity and the implicated neurochemical responses triggered by their ET-A and ET-B receptors remain unknown. Here, we tested the hypothesis that ET-B activation alleviates high glucose-evoked oxidative stress and cell death. High glucose (100 mM for 48 hours)-evoked cell death was associated with elevation in reactive oxygen species, inhibition of catalase activity, and a paradoxical upregulation of hemeoxygenase-1 expression along with ET-A and ET-B receptors were downregulated and upregulated, respectively. ET-1 or ET-3, in concentrations that had no effect on PC12 cell viability in normal glucose medium, alleviated all high glucose-evoked neurochemical responses, except for the reduction in ET-A receptor expression. Prior (4 hours) incubation with a selective ET-A (BQ123) or ET-B (BQ788) receptor blocker abrogated the neuroprotection conferred by ET-1 or ET-3. However, the ET-B receptor played a greater role because BQ788 abrogated the favorable ET-1- or ET-3-mediated reversal of the ERK1/2 phosphorylation and the inhibition in catalase activity caused by high glucose. These findings suggest that endothelin exerts ET-B receptor-dependent favorable redox and neuroprotective effects against high glucose-evoked oxidative damage and neurotoxicity.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Pharmacology, Brody School of Medicine, East Carolina University, North Carolina
| | - Abdel A Abdel-Rahman
- Department of Pharmacology, Brody School of Medicine, East Carolina University, North Carolina
| |
Collapse
|
9
|
Andreadou I, Iliodromitis EK, Lazou A, Görbe A, Giricz Z, Schulz R, Ferdinandy P. Effect of hypercholesterolaemia on myocardial function, ischaemia-reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 2017; 174:1555-1569. [PMID: 28060997 DOI: 10.1111/bph.13704] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
Hypercholesterolaemia is considered to be a principle risk factor for cardiovascular disease, having direct negative effects on the myocardium itself, in addition to the development of atherosclerosis. Since hypercholesterolaemia affects the global cardiac gene expression profile, among many other factors, it results in increased myocardial oxidative stress, mitochondrial dysfunction and inflammation triggered apoptosis, all of which may account for myocardial dysfunction and increased susceptibility of the myocardium to infarction. In addition, numerous experimental and clinical studies have revealed that hyperlcholesterolaemia may interfere with the cardioprotective potential of conditioning mechanisms. Although not fully elucidated, the underlying mechanisms for the lost cardioprotection in hypercholesterolaemic animals have been reported to involve dysregulation of the endothelial NOS-cGMP, reperfusion injury salvage kinase, peroxynitrite-MMP2 signalling pathways, modulation of ATP-sensitive potassium channels and apoptotic pathways. In this review article, we summarize the current knowledge on the effect of hypercholesterolaemia on the non-ischaemic and ischaemic heart as well as on the cardioprotection induced by drugs or ischaemic preconditioning, postconditioning and remote conditioning. Future perspectives concerning the mechanisms and the design of preclinical and clinical trials are highlighted. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios K Iliodromitis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary.,Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Rainer Schulz
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary.,Department of Physiology, Justus-Liebig-University, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary.,Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Beckman JA, Goldfine AB, Leopold JA, Creager MA. Ebselen does not improve oxidative stress and vascular function in patients with diabetes: a randomized, crossover trial. Am J Physiol Heart Circ Physiol 2016; 311:H1431-H1436. [PMID: 27765750 DOI: 10.1152/ajpheart.00504.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/05/2016] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a key driver of vascular dysfunction in diabetes mellitus. Ebselen is a glutathione peroxidase mimetic. A single-site, randomized, double-masked, placebo-controlled, crossover trial was carried out in 26 patients with type 1 or type 2 diabetes to evaluate effects of high-dose ebselen (150 mg po twice daily) administration on oxidative stress and endothelium-dependent vasodilation. Treatment periods were in random order of 4 wk duration, with a 4-wk washout between treatments. Measures of oxidative stress included nitrotyrosine, plasma 8-isoprostanes, and the ratio of reduced to oxidized glutathione. Vascular ultrasound of the brachial artery and plethysmographic measurement of blood flow were used to assess flow-mediated and methacholine-induced endothelium-dependent vasodilation of conduit and resistance vessels, respectively. Ebselen administration did not affect parameters of oxidative stress or conduit artery or forearm arteriolar vascular function compared with placebo treatment. There was no difference in outcome by diabetes type. Ebselen, at the dose and duration evaluated, does not improve the oxidative stress profile, nor does it affect endothelium-dependent vasodilation in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Joshua A Beckman
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Allison B Goldfine
- Clinical, Behavioral and Outcomes Research, Joslin Diabetes Center, Boston, Massachusetts
| | - Jane A Leopold
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts; and
| | - Mark A Creager
- Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
11
|
Gudjoncik A, Guenancia C, Zeller M, Cottin Y, Vergely C, Rochette L. Iron, oxidative stress, and redox signaling in the cardiovascular system. Mol Nutr Food Res 2014; 58:1721-38. [PMID: 24888568 DOI: 10.1002/mnfr.201400036] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
Abstract
The redox state of the cell is predominantly dependent on an iron redox couple and is maintained within strict physiological limits. Iron is an essential metal for hemoglobin synthesis in erythrocytes, for oxidation-reduction reactions, and for cellular proliferation. The maintenance of stable iron concentrations requires the coordinated regulation of iron transport into plasma from dietary sources in the duodenum, from recycled senescent red cells in macrophages, and from storage in hepatocytes. The absorption of dietary iron, which is present in heme or nonheme form, is carried out by mature villus enterocytes of the duodenum and proximal jejunum. Multiple physiological processes are involved in maintaining iron homeostasis. These include its storage at the intracellular and extracellular level. Control of iron balance in the whole organism requires communication between sites of uptake, utilization, and storage. Key protein transporters and the molecules that regulate their activities have been identified. In this field, ferritins and hepcidin are the major regulator proteins. A variety of transcription factors may be activated depending on the level of oxidative stress, leading to the expression of different genes. Major preclinical and clinical trials have shown advances in iron-chelation therapy for the treatment of iron-overload disease as well as cardiovascular and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Aurélie Gudjoncik
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM) Inserm UMR866, Facultés de Médecine et de Pharmacie, Université de Bourgogne, Dijon, France; Service de Cardiologie CHU Bocage, Dijon, France
| | | | | | | | | | | |
Collapse
|
12
|
Penumarti A, Abdel-Rahman AA. The novel endocannabinoid receptor GPR18 is expressed in the rostral ventrolateral medulla and exerts tonic restraining influence on blood pressure. J Pharmacol Exp Ther 2014; 349:29-38. [PMID: 24431468 PMCID: PMC3965889 DOI: 10.1124/jpet.113.209213] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/15/2014] [Indexed: 11/22/2022] Open
Abstract
Systemic administration of the G-protein-coupled receptor 18 (GPR18) agonist abnormal cannabidiol (Abn CBD) lowers blood pressure (BP). Whether GPR18 is expressed in the central nervous system (CNS) and plays a role in BP control is not known despite the abundance of the GPR18 ligand N-arachidonoyl glycine (NAGly) in the CNS. Therefore, we first determined whether GPR18 is expressed in the presympathetic tyrosine hydroxylase (TH) immunoreactive (ir) neurons of the brainstem cardiovascular regulatory nuclei. Second, we investigated the impact of GPR18 activation and blockade on BP and heart rate (HR) and neurochemical modulators of sympathetic activity and BP. Immunofluorescence findings revealed GPR18 expression in TH-ir neurons in the rostral ventrolateral medulla (RVLM). Intra-RVLM GPR18 activation (Abn CBD) and blockade (O-1918, 1,3-dimethoxy-5-methyl-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-,cyclohexen-1-yl]benzene) elicited dose-dependent reductions and elevations in BP, respectively, along with respective increases and decreases in HR in conscious male Sprague-Dawley rats. RVLM GPR18 activation increased neuronal adiponectin (ADN) and NO and reduced reactive oxygen species (ROS) levels, and GPR18 blockade reduced neuronal ADN and increased oxidative stress (i.e., ROS) in the RVLM. Finally, we hypothesized that the negligible hypotensive effect caused by the endogenous GPR18 ligand NAGly could be due to concurrent activation of CB(1)R in the RVLM. Our findings support this hypothesis because NAGly-evoked hypotension was doubled after RVLM CB(1)R blockade (SR141716, rimonabant). These findings are the first to demonstrate GPR18 expression in the RVLM and to suggest a sympathoinhibitory role for this receptor. The findings yield new insight into the role of a novel cannabinoid receptor (GPR18) in central BP control.
Collapse
Affiliation(s)
- Anusha Penumarti
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | |
Collapse
|
13
|
Cannizzo B, Quesada I, Militello R, Amaya C, Miatello R, Cruzado M, Castro C. Tempol attenuates atherosclerosis associated with metabolic syndrome via decreased vascular inflammation and NADPH-2 oxidase expression. Free Radic Res 2014; 48:526-33. [PMID: 24490696 DOI: 10.3109/10715762.2014.889295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative stress is an important factor in the generation of vascular injury in atherosclerosis. Chronic administration of fructose in rodents is able to facilitate oxidative damage. In the present study we evaluated the role of Tempol, a superoxide dismutase mimetic, on the effect of high fructose intake in apolipoprotein E-deficient (ApoE-KO) mice. Rodents were fed with fructose overload (FF, 10% w/v) for 8 weeks and treated with Tempol 1 mg/kg/day the latest 4 weeks. Tempol revert the pro-oxidant effects caused by FF, diminished lipid peroxidation and impaired vascular NADPH oxidase system through the downregulation of p47phox expression in the vascular wall. Tempol inhibited the expression of vascular adhesion molecule 1 (VCAM-1) in aorta and reduced the development of atheroma plaques. Our results indicate that tempol attenuates oxidative stress by interfering with the correct assembly of Nox2 oxidase complex in the vascular wall and is able to reduce atherosclerosis. Thus tempol represents a potential therapeutic target for preventing risk factors associated with metabolic syndrome.
Collapse
Affiliation(s)
- B Cannizzo
- Vascular Biology Lab, Institute of Medicine and Experimental Biology of Cuyo (IMBECU) CONICET, School of Medical Sciences, National University of Cuyo , Mendoza , Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Cholesterol and copper affect learning and memory in the rabbit. Int J Alzheimers Dis 2013; 2013:518780. [PMID: 24073355 PMCID: PMC3773440 DOI: 10.1155/2013/518780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022] Open
Abstract
A rabbit model of Alzheimer's disease based on feeding a cholesterol diet for eight weeks shows sixteen hallmarks of the disease including beta amyloid accumulation and learning and memory changes. Although we have shown that feeding 2% cholesterol and adding copper to the drinking water can retard learning, other studies have shown that feeding dietary cholesterol before learning can improve acquisition and feeding cholesterol after learning can degrade long-term memory. We explore the development of this model, the issues surrounding the role of copper, and the particular contributions of the late D. Larry Sparks.
Collapse
|
15
|
Javanmard SH, Nematbakhsh M, Feghhi A, Dana N. Hyperinsulinemia may have a protective role in the early stages of atherosclerosis in rabbit model of hypercholesterolemia. J Diabetes Metab Disord 2012; 11:5. [PMID: 23497719 PMCID: PMC3581106 DOI: 10.1186/2251-6581-11-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/02/2012] [Indexed: 11/18/2022]
Abstract
Background Hypercholesterolemia causes inflammation and insulin resistance in the vasculature. Previous data suggest that vascular endothelium is a physiological target of insulin. Dyslipidemia and atherosclerosis are disorders with endothelial dysfunction that are associated with an increased production of superoxide anion, and early deficit of nitric oxide (NO) production. We examined alteration of plasma levels of insulin, C-reactive protein (CRP) and total NO metabolites (NOx), as well as fatty streak formation in the rabbit model of hypercholesterolemia. Methods White male rabbits were fed either a high-cholesterol diet (HC; 1% cholesterol, n = 6) or control diet (c, n = 6) for one month. The serum levels of Cholesterol, LDL, HDL, NOx, insulin and CRP were measured before and after study. By the end of study, rabbits' aorta was explored for fatty streak formation. Results The cholesterol-rich diet induced a significant increase in total cholesterol, LDL, and HDL as well as fatty streak lesions in HC group while there were no significant changes of these parameters in control group (p <0.05). There was significant difference in plasma levels of CRP, insulin and total NO metabolite between two groups of experiment. Negative significant correlation of CRP and insulin also was observed in HC rabbits (r = −0.99, p <0.05). Conclusion Parallel NOx and insulin increment and negative correlation of CRP and insulin in HC rabbits may be suggestive a protective role of hyperinsulinemia in early atherosclerosis.
Collapse
|
16
|
Schreurs BG, Wang D, Smith-Bell CA, Burhans LB, Bell R, Gonzalez-Joekes J. Dietary Cholesterol Concentration and Duration Degrade Long-Term Memory of Classical Conditioning of the Rabbit's Nictitating Membrane Response. Int J Alzheimers Dis 2012; 2012:732634. [PMID: 22567532 PMCID: PMC3332174 DOI: 10.1155/2012/732634] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/07/2012] [Indexed: 12/17/2022] Open
Abstract
A rabbit model of Alzheimer's disease based on feeding a cholesterol diet for eight weeks shows sixteen hallmarks of the disease, including learning and memory changes. Although we have shown 2% cholesterol and copper in water can retard learning, other studies show feeding dietary cholesterol before learning can improve acquisition whereas feeding cholesterol after learning can degrade long-term memory. We explored this issue by manipulating cholesterol concentration and duration following classical trace conditioning of the rabbit's nictitating membrane response and assessed conditioned responding after eight weeks on cholesterol. First, rabbits given trace classical conditioning followed by 0.5%, 1%, or 2% cholesterol for eight weeks showed body weight and serum cholesterol levels that were a function of dietary cholesterol. Although all concentrations of cholesterol showed some sign of retarding long-term memory, the level of memory retardation was correlated with serum cholesterol levels. Second, rabbits given trace conditioning followed by different durations of a 2% cholesterol diet combined with different durations of a 0% control diet for 8 weeks showed duration and timing of a 2% cholesterol diet were important in affecting recall. The data support the idea that dietary cholesterol may retard long-term memory.
Collapse
Affiliation(s)
- Bernard G. Schreurs
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9302, Morgantown, WV 26506, USA
| | - Desheng Wang
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9302, Morgantown, WV 26506, USA
| | - Carrie A. Smith-Bell
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9302, Morgantown, WV 26506, USA
| | - Lauren B. Burhans
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9302, Morgantown, WV 26506, USA
| | - Roger Bell
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9302, Morgantown, WV 26506, USA
| | - Jimena Gonzalez-Joekes
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
17
|
Insulin resistance promotes early atherosclerosis via increased proinflammatory proteins and oxidative stress in fructose-fed ApoE-KO mice. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:941304. [PMID: 22474431 PMCID: PMC3310147 DOI: 10.1155/2012/941304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/13/2011] [Indexed: 01/28/2023]
Abstract
High fructose intake induces an insulin resistance state associated with metabolic syndrome (MS). The effect of vascular inflammation in this model is not completely addressed. The aim of this study was to evaluate vascular remodeling, inflammatory and oxidative stress markers, and atheroma development in high-fructose diet-induced insulin resistance of ApoE-deficient mice (ApoE-KO).
Mice were fed with either a normal chow or a 10% w/v fructose (HF) in drinking water over a period of 8 weeks. Thereafter, plasma metabolic parameters, vascular remodeling, atheroma lesion size, inflammatory markers, and NAD(P)H oxidase activity in the arteries were determined. HF diet induced a marked increase in plasma glucose, insulin, and triglycerides in ApoE-KO mice, provoked vascular remodeling, enhanced expression of vascular cell-adhesion molecule-1 (VCAM-1) and matrix metalloprotease 9 (MMP-9) and enlarged atherosclerotic lesion in aortic and carotid arteries. NAD(P)H oxidase activity was enhanced by fructose intake, and this effect was attenuated by tempol, a superoxide dismutase mimetic, and losartan, an Angiotensin II receptor antagonist. Our study results show that high-fructose-induced insulin resistance promotes a proinflammatory and prooxidant state which accelerates atherosclerotic plaque formation in ApoE-KO mice.
Collapse
|
18
|
Gomes SZ, Lorenzon AR, Vieira JS, Rocha CR, Bandeira C, Hoshida MS, Lopes LR, Bevilacqua E. Expression of NADPH Oxidase by Trophoblast Cells: Potential Implications for the Postimplanting Mouse Embryo1. Biol Reprod 2012; 86:56. [DOI: 10.1095/biolreprod.111.094748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
19
|
Zielonka J, Kalyanaraman B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 2010; 48:983-1001. [PMID: 20116425 PMCID: PMC3587154 DOI: 10.1016/j.freeradbiomed.2010.01.028] [Citation(s) in RCA: 403] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 12/15/2022]
Abstract
Hydroethidine (HE; or dihydroethidium) is the most popular fluorogenic probe used for detecting intracellular superoxide radical anion. The reaction between superoxide and HE generates a highly specific red fluorescent product, 2-hydroxyethidium (2-OH-E(+)). In biological systems, another red fluorescent product, ethidium, is also formed, usually at a much higher concentration than 2-OH-E(+). In this article, we review the methods to selectively detect the superoxide-specific product (2-OH-E(+)) and the factors affecting its levels in cellular and biological systems. The most important conclusion of this review is that it is nearly impossible to assess the intracellular levels of the superoxide-specific product, 2-OH-E(+), using confocal microscopy or other fluorescence-based microscopic assays and that it is essential to measure by HPLC the intracellular HE and other oxidation products of HE, in addition to 2-OH-E(+), to fully understand the origin of red fluorescence. The chemical reactivity of mitochondria-targeted hydroethidine (Mito-HE, MitoSOX red) with superoxide is similar to the reactivity of HE with superoxide, and therefore, all of the limitations attributed to the HE assay are applicable to Mito-HE (or MitoSOX) as well.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
20
|
Deletion of the FHL2 gene attenuates the formation of atherosclerotic lesions after a cholesterol-enriched diet. Life Sci 2010; 86:365-71. [PMID: 20096293 DOI: 10.1016/j.lfs.2010.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/07/2010] [Accepted: 01/13/2010] [Indexed: 11/20/2022]
Abstract
AIMS FHL2, a member of the four and a half LIM domain (FHL) family of proteins, may play an important role in the circulatory system and in particular atherosclerosis. MAIN METHODS To investigate the role of FHL2 in atherogenesis, FHL2-null and wild-type control male mice were fed either a normal chow (NC) or a cholesterol-enriched diet (CED). KEY FINDINGS At 3 months post CED, aortic atherosclerotic plaques were observed in both control and FHL2-null mice. Lesions in control mice increased dramatically by 6 months of CED. In contrast, lesion size did not increase during this time in CED-fed FHL2-null mice. Relative to control mice on a normal chow of diet (NCD), control mice on a CED exhibited lower circulating nitric oxide (NO) levels, and decreased expression of connexin37 (Cx37) and Cx40 in aortic endothelium. In contrast, FHL2-null mice on a CED maintained similar levels of circulating NO as FHL2-null mice fed a NCD. Cxs levels in aortic endothelium of FHL2-null mutants on a NCD were lower relative to control mice on a NCD, and did not decrease with CED. SIGNIFICANCE Our data demonstrate a role for FHL2 in atherogenesis, the regulation of circular NO release, and expression of gap junctions within aortic endothelium.
Collapse
|
21
|
Lassègue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 2009; 30:653-61. [PMID: 19910640 DOI: 10.1161/atvbaha.108.181610] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species are ubiquitous signaling molecules in biological systems. Four members of the NADPH oxidase (Nox) enzyme family are important sources of reactive oxygen species in the vasculature: Nox1, Nox2, Nox4, and Nox5. Signaling cascades triggered by stresses, hormones, vasoactive agents, and cytokines control the expression and activity of these enzymes and of their regulatory subunits, among which p22phox, p47phox, Noxa1, and p67phox are present in blood vessels. Vascular Nox enzymes are also regulated by Rac, ClC-3, Poldip2, and protein disulfide isomerase. Multiple Nox subtypes, simultaneously present in different subcellular compartments, produce specific amounts of superoxide, some of which is rapidly converted to hydrogen peroxide. The identity and location of these reactive oxygen species, and of the enzymes that degrade them, determine their downstream signaling pathways. Nox enzymes participate in a broad array of cellular functions, including differentiation, fibrosis, growth, proliferation, apoptosis, cytoskeletal regulation, migration, and contraction. They are involved in vascular pathologies such as hypertension, restenosis, inflammation, atherosclerosis, and diabetes. As our understanding of the regulation of these oxidases progresses, so will our ability to alter their functions and associated pathologies.
Collapse
Affiliation(s)
- Bernard Lassègue
- Emory University School of Medicine, Division of Cardiology, 1639 Pierce Drive, WMB 319, Atlanta, GA 30322, USA
| | | |
Collapse
|
22
|
Seshadri G, Sy JC, Brown M, Dikalov S, Yang SC, Murthy N, Davis ME. The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury. Biomaterials 2009; 31:1372-9. [PMID: 19889454 DOI: 10.1016/j.biomaterials.2009.10.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/20/2009] [Indexed: 12/28/2022]
Abstract
Oxidative stress is increased in the myocardium following infarction and plays a significant role in death of cardiac myocytes, leading to cardiac dysfunction. Levels of the endogenous antioxidant Cu/Zn-superoxide dismutase (SOD1) decrease following myocardial infarction. While SOD1 gene therapy studies show promise, trials with SOD1 protein have had little success due to poor pharmacokinetics and thus new delivery vehicles are needed. In this work, polyketal particles, a recently developed delivery vehicle, were used to make SOD1-encapsulated-microparticles (PKSOD). Our studies with cultured macrophages demonstrated that PKSOD treatment scavenges both intracellular and extracellular superoxide, suggesting efficient delivery of SOD1 protein to the inside of cells. In a rat model of ischemia/reperfusion (IR) injury, injection of PKSOD, and not free SOD1 or empty particles was able to scavenge IR-induced excess superoxide 3 days following infarction. In addition, only PKSOD treatment significantly reduced myocyte apoptosis. Further, PKSOD treatment was able to improve cardiac function as measured by acute changes in fractional shortening from baseline echocardiography, suggesting that sustained delivery of SOD1 is critical during the early phase of cardiac repair. These data demonstrate that delivery of SOD1 with polyketals is superior to free SOD1 protein therapy and may have potential clinical implications.
Collapse
Affiliation(s)
- Gokulakrishnan Seshadri
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lauzier B, Delemasure S, Pesant M, Collin B, Duvillard L, Vergely C, Connat JL, Rochette L. A Cholesterol-Rich Diet Improves Resistance to Ischemic Insult in Mouse Hearts but Suppresses the Beneficial Effect of Post-Conditioning. J Heart Lung Transplant 2009; 28:821-6. [DOI: 10.1016/j.healun.2009.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 03/05/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022] Open
|
24
|
Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 2009; 55:1-23. [PMID: 19548119 DOI: 10.1007/s12013-009-9054-7] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/03/2009] [Indexed: 02/07/2023]
Abstract
It is well known that oxidation caused by reactive oxygen species (ROS) is a major cause of cellular damage and death and has been implicated in cancer, neurodegenerative, and cardiovascular diseases. Small-molecule antioxidants containing sulfur and selenium can ameliorate oxidative damage, and cells employ multiple antioxidant mechanisms to prevent this cellular damage. However, current research has focused mainly on clinical, epidemiological, and in vivo studies with little emphasis on the antioxidant mechanisms responsible for observed sulfur and selenium antioxidant activities. In addition, the antioxidant properties of sulfur compounds are commonly compared to selenium antioxidant properties; however, sulfur and selenium antioxidant activities can be quite distinct, with each utilizing different antioxidant mechanisms to prevent oxidative cellular damage. In the present review, we discuss the antioxidant activities of sulfur and selenium compounds, focusing on several antioxidant mechanisms, including ROS scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Findings of several recent clinical, epidemiological, and in vivo studies highlight the need for future studies that specifically focus on the chemical mechanisms of sulfur and selenium antioxidant behavior.
Collapse
|
25
|
Javanmard SH, Nematbakhsh M, Mahmoodi F, Mohajeri MR. l-Arginine supplementation enhances eNOS expression in experimental model of hypercholesterolemic rabbits aorta. PATHOPHYSIOLOGY 2009; 16:9-13. [DOI: 10.1016/j.pathophys.2008.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/14/2008] [Accepted: 11/29/2008] [Indexed: 10/21/2022] Open
|
26
|
Abstract
Plasma levels of HDL (high-density lipoprotein)-cholesterol are strongly and inversely correlated with atherosclerotic cardiovascular disease. Both clinical and epidemiological studies have reported an inverse and independent association between serum HDL-cholesterol levels and CHD (coronary heart disease) risk. The cardioprotective effects of HDLs have been attributed to several mechanisms, including their involvement in the reverse cholesterol transport pathway. HDLs also have antioxidant, anti-inflammatory and antithrombotic properties and promote endothelial repair, all of which are likely to contribute to their ability to prevent CHD. The first part of this review summarizes what is known about the origins and metabolism of HDL. We then focus on the anti-inflammatory and antioxidant properties of HDL and discuss why these characteristics are cardioprotective.
Collapse
|
27
|
Sterol superlattice affects antioxidant potency and can be used to assess adverse effects of antioxidants. Anal Biochem 2008; 382:1-8. [DOI: 10.1016/j.ab.2008.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 12/14/2022]
|
28
|
Prado CM, Rossi MA. Aorta remodeling responses to distinct atherogenic stimuli: hypertension, hypercholesterolemia and turbulent flow/low wall shear stress. Open Cardiovasc Med J 2008; 2:41-8. [PMID: 18949098 PMCID: PMC2570580 DOI: 10.2174/1874192400802010041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 05/28/2008] [Accepted: 06/02/2008] [Indexed: 11/22/2022] Open
Abstract
This review is based on recently published data from our laboratory. We investigated the role of hypertension and laminar flow, hypercholesterolemia and laminar flow and turbulent blood flow/low wall shear stress, and turbulent blood flow/low wall shear stress associated with hypercholesterolemia on aorta remodeling of rats feeding normal diet or hypercholesterolemic diet. Our findings suggest that increased circumferential wall tension due to hypertension plays a key role in the remodeling through biomechanical effects on oxidative stress and increased TGF-beta expression; the remodeling observed in the presence of hypercholesterolemia could be initiated by oxidative stress that is involved in several processes of atherogenesis and this remodeling is more pronounced in the presence of turbulent blood flow/low wall shear stress.
Collapse
Affiliation(s)
- Cibele M Prado
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, S.P., Brazil
| | | |
Collapse
|
29
|
After Four Hours of Cold Ischemia and Cardioplegic Protocol, the Heart Can Still Be Rescued With Postconditioning. Transplantation 2007; 84:1474-82. [DOI: 10.1097/01.tp.0000288637.18796.0e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|