1
|
Chen C, Li J, Wang J, Zhang M, Zhang L, Lin Z. Oxybutynin ameliorates LPS-induced inflammatory response in human bladder epithelial cells. J Biochem Mol Toxicol 2024; 38:e23584. [PMID: 38009396 DOI: 10.1002/jbt.23584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023]
Abstract
Urinary tract infection (UTI) mainly results from bacterial infections in the urinary tract and markedly impacts the normal lives of millions of patients worldwide. The infection and damage to urethral epithelial cells is the first and key step of UTI development and is a critical target for treating clinical UTI. Oxybutynin, an agent for treating urinary incontinence, is recently claimed with protective effects on bladder ultrastructure. Our study will assess the impact of Oxybutynin on inflammation in lipopolysaccharide (LPS)-stimulated bladder epithelial cells. Bladder epithelial T24 cells were treated with 1 μg/mL LPS with or without 10 and 20 μM Oxybutynin for 24 h. Increased levels of oxidative stress (OS) biomarkers, such as reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, as well as upregulated inducible nitric oxide synthase and promoted release of nitric oxide, were observed in LPS-managed T24 cells, all of which were signally suppressed by Oxybutynin. Furthermore, severe inflammatory responses, including enhanced release of cytokines, upregulated matrix metallopeptidase-2 (MMP-2) and MMP-9, and raised monocyte chemoattractant protein-1 level, were found in LPS-challenged T24 cells, which were markedly reversed by Oxybutynin. Moreover, the activated toll-1ike receptor 4/nuclear factor-κB pathway observed in LPS-managed T24 cells was repressed by Oxybutynin. Collectively, Oxybutynin mitigated LPS-induced inflammatory response in human bladder epithelial cells.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pharmacy, The First People's Hospital of Yibin, Yibin, China
| | - Jiangtao Li
- Department of Rheumatology and Immunology, The First People's Hospital of Yibin, Yibin, China
| | - Juan Wang
- Department of Pharmaceutical Engineering, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Mao Zhang
- Department of Pharmacy, The First People's Hospital of Yibin, Yibin, China
| | - Lei Zhang
- Department of Pharmacy, The First People's Hospital of Yibin, Yibin, China
| | - Zhihua Lin
- Department of Pharmaceutical Engineering, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
2
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Ramar M. Sitosterol-rich Digera muricata against 7-ketocholesterol and lipopolysaccharide-mediated atherogenic responses by modulating NF-ΚB/iNOS signalling pathway in macrophages. 3 Biotech 2023; 13:331. [PMID: 37670802 PMCID: PMC10475456 DOI: 10.1007/s13205-023-03741-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Digera muricata L., commonly known as Tartara, is an edible herb used as traditional medicine in many countries of Africa and Asia. This study aimed to elucidate the effect of a phytosterol-rich extract of D. muricata on 7-ketocholesterol-mediated atherosclerosis in macrophages. The extract was examined by phytochemical analyses, GC-MS, TLC, DPPH scavenging and hRBC membrane stabilization assays. Macrophage polarization was studied with experimental groups framed based on alamar blue cell viability and griess assays. Regulations of arginase enzyme activity, ROS generation, mitochondrial membrane potential, cell membrane integrity, pinocytosis, lipid uptake and peroxidation, as well as, intracellular calcium deposition were determined. In addition, expressions of atherogenic mediators were analysed using PCR, ELISA and immunocytochemistry techniques. Diverse phytochemicals with higher free radical scavenging activity and anti-inflammatory potential have been detected in the D. muricata. Co-treatment with D. muricata markedly reduced the atherogenic responses induced by 7KCh in the presence of LPS such as ROS, especially, NO and O2- along with lipid peroxidation. Furthermore, D. muricata significantly normalized mitochondrial membrane potential, cell membrane integrity, pinocytic activity, intracellular lipid accumulation and calcium deposition. These results provided us with the potentiality of D. muricata in ameliorating atherogenesis. Additionally, it decreased the expression of pro-atherogenic mediators (iNOS, COX-2, MMP9, IL-6, IL-1β, CD36, CD163 and TGFβ1) and increased anti-atherogenic mediators (MRC1 and PPARγ) with high cellular expressions of NF-κB and iNOS. Results showed the potential of sitosterol-rich D. muricata as a versatile biomedical therapeutic agent against abnormal macrophage polarization and its associated pathologies.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600 015 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| |
Collapse
|
3
|
Su Y, Yin X, Huang X, Guo Q, Ma M, Guo L. Astragaloside IV ameliorates sepsis-induced myocardial dysfunction by regulating NOX4/JNK/BAX pathway. Life Sci 2022; 310:121123. [DOI: 10.1016/j.lfs.2022.121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
4
|
Ginsenoside Rb1 from Panax notoginseng Suppressed TNF-α-Induced Matrix Metalloproteinase-9 via the Suppression of Double-Strand RNA-Dependent Protein Kinase (PKR)/NF-κB Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228050. [PMID: 36432152 PMCID: PMC9692425 DOI: 10.3390/molecules27228050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Chronic inflammation is commonly accompanied by the stimulation of matrix metalloproteinases (MMPs) production and the degradation of the extracellular matrix. The overexpression of MMP-9 (Gelatinase B) highly participates in the progression of pathetic cardiac remodeling and liver cancer metastasis. Panax notoginseng (Burkill) F. H. Chen (Sanqi), a widely used traditional Chinese medicinal herb, shows myocardial protective and anti-tumor effects. In this study, we examined the inhibitory effect of different PNG extracts on tumor necrosis factor (TNF)-α-induced MMP-9 expression in cardiac myoblast H9c2 cells. Using a bioassay-guided fractionation scheme, the most active extract was fractionated by silica gel column chromatography and high-performance liquid chromatography until an active compound was obtained. The compound was identified as Ginsenoside Rb1 by nuclear magnetic resonance. Ginsenoside Rb1 inhibited TNF-α-induced MMP-9 production in both H9c2 and liver carcinoma HepG-2 cells. Interestingly, it did not affect the MMP-2 (Gelatinase A) level and the cell proliferation of the two cell lines. The inhibitory effects of Ginsenoside Rb1 may be due to its modulation of double-strand RNA-dependent protein kinase and nuclear factor kappa B signaling pathways. The results reveal the potential use of Ginsenoside Rb1 for the treatment of inflammatory and MMP-9-related cardiac remodeling and metastasis of hepatocellular carcinomas.
Collapse
|
5
|
Wang X, Ma J, Zhang S, Li Z, Hong Z, Jiang L, Duan W, Liu J. G Protein-Coupled Estrogen Receptor 30 Reduces Transverse Aortic Constriction-Induced Myocardial Fibrosis in Aged Female Mice by Inhibiting the ERK1/2 -MMP-9 Signaling Pathway. Front Pharmacol 2021; 12:731609. [PMID: 34803680 PMCID: PMC8603421 DOI: 10.3389/fphar.2021.731609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
The incidence of cardiovascular diseases was significantly increased in postmenopausal women. The protection of estrogen in the cardiovascular system has been further reported for decades. Although menopausal hormone therapy has been used in many clinical trials, the debatable results indicate that the studies for elucidating the precise molecular mechanism are urgently required. G protein-coupled estrogen receptor 30 (GPR30) is a membrane receptor of estrogen and displays protective roles in diverse cardiovascular diseases. Previous studies have revealed that ERK1/2-mediated MMP-9 signaling was involved in ischemic heart diseases. However, the role of ERK1/2-mediated MMP-9 signaling in the protection of GPR30 against cardiac hypertrophy in aged female mice has not been investigated. Our present study demonstrated that GPR30 overexpression and its agonist G1 co-administration reduced transverse aortic constriction-induced myocardial fibrosis and preserved cardiac function in aged female mice. MMP-9 expression was markedly increased via ERK1/2 phosphorylation in transverse aortic constriction-injured myocardium of aged female mice. Further results showed that GPR30/G1 activation decreased MMP-9 expression via ERK1/2 inhibition, which further reduced TGF-β1 expression. Inhibition of the ERK1/2 signaling pathway by its inhibitor PD98059 suppressed the induction of the cardiomyocyte MMP-9 level caused by the GRP30 antagonist G15 and inhibited TGF-β1 expression in cardiac fibroblast in vitro. In summary, our results from in vivo and in vitro studies indicated that GPR30 activation inhibited myocardial fibrosis and preserved cardiac function via inhibiting ERK-mediated MMP-9 expression. Thus, the present study may provide the novel drug targets for prevention and treatment of cardiac pathological hypertrophy in postmenopausal women.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuaishuai Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ziwei Hong
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Staphylococcus aureus on the effect of expression of MMPs/TIMPs and uPA system in bovine mammary fibroblasts. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:411-419. [DOI: 10.1016/j.jmii.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/19/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023]
|
7
|
Chiang CJ, Chao YP, Ali A, Day CH, Ho TJ, Wang PN, Lin SC, Padma VV, Kuo WW, Huang CY. Probiotic Escherichia coli Nissle inhibits IL-6 and MAPK-mediated cardiac hypertrophy during STZ-induced diabetes in rats. Benef Microbes 2021; 12:283-293. [PMID: 34030609 DOI: 10.3920/bm2020.0094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Escherichia coli Nissle (EcN), a probiotic bacterium protects against several disorders. Multiple reports have studied the pathways involved in cardiac hypertrophy. However, the effects of probiotic EcN against diabetes-induced cardiac hypertrophy remain to be understood. We administered five weeks old Wistar male (271±19.4 g body weight) streptozotocin-induced diabetic rats with 109 cfu of EcN via oral gavage every day for 24 days followed by subjecting the rats to echocardiography to analyse the cardiac parameters. Overexpressed interleukin (IL)-6 induced the MEK5/ERK5, JAK2/STAT3, and MAPK signalling cascades in streptozotocin-induced diabetic rats. Further, the upregulation of calcineurin, NFATc3, and p-GATA4 led to the elevation of hypertrophy markers, such as atrial and B-type natriuretic peptides. In contrast, diabetic rats supplemented with probiotic EcN exhibited significant downregulated IL-6. Moreover, the MEK5/ERK5 and JAK2/STAT3 cascades involved during eccentric hypertrophy and MAPK signalling, including phosphorylated MEK, ERK, JNK, and p-38, were significantly attenuated in diabetic rats after supplementation of EcN. Western blotting and immunofluorescence revealed the significant downregulation of NFATc3 and downstream mediators, thereby resulting in the impairment of cardiac hypertrophy. Taken together, the findings demonstrate that supplementing probiotic EcN has the potential to show cardioprotective effects by inhibiting diabetes-induced cardiomyopathies.
Collapse
Affiliation(s)
- C J Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Y P Chao
- Department of Chemical Engineering, Feng Chia University, No. 100 Wenhwa Rd., Seatwen, Taichung 40724, Taiwan
| | - A Ali
- Department of Biological Science and Technology, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - C H Day
- Department of Nursing, MeiHo University, 23, Pingguang Rd., Neipu, Pingtung 912, Taiwan
| | - T J Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, 707 Section 3 Chung-Yang Road, Hualien 97002, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, 701 Jhongyang Road Section 3, Hualien 97004, Taiwan
| | - P N Wang
- Department of Chemical Engineering, Feng Chia University, No. 100 Wenhwa Rd., Seatwen, Taichung 40724, Taiwan
| | - S C Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - V V Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - W W Kuo
- Department of Biological Science and Technology, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| | - C Y Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan.,Department of Biotechnology, Asia University, 500 Liufeng Rd., Wufeng, 41354 Taichung, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|
8
|
Zhan R, Li X, Zang L, Xu K. An Au-Se nanoprobe for the evaluation of the invasive potential of breast cancer cells via imaging the sequential activation of uPA and MMP-2. Analyst 2020; 145:1008-1013. [PMID: 31830149 DOI: 10.1039/c9an01830a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Urokinase-type plasminogen activator (uPA) has been shown to activate matrix metalloproteinase-2 (MMP-2) that leads to the migration and invasion of breast cancer cells. Overexpressed uPA and MMP-2 are regarded as signs of malignant tumors in clinical practice. Therefore, real-time monitoring of the sequential activation of these two signal molecules may have important implications for the evaluation of the invasive potential and tumor progression of breast cancer. However, due to the complicated intracellular environment, visualizing the dynamic changes of protein expression levels in living cells with a noninvasive method is still a great challenge. Here, a novel gold-selenium (Au-Se) fluorescent nanoprobe with excellent selectivity and strong anti-interference capability was designed for the simultaneous in situ imaging of uPA and MMP-2 and real-time monitoring of their changes in living cells. The imaging results demonstrated that the nanoprobe achieved a better prevention of glutathione interference compared to the conventional Au-S nanoprobe, thus it could be applied to actually reflect the expression level of uPA and MMP-2 in different breast cancer cells. Furthermore, the Au-Se nanoprobe could visually present the activation process of the two signal molecules, which play a dual role of insuring the invasiveness evaluation of breast cancer cells. Overall, our work offers a visual biomarker detection method for the judgment of the degree of breast cancer malignancy, and also provides an effective strategy to investigate the relationships among signal molecules of other signaling pathways in the future.
Collapse
Affiliation(s)
- Renhui Zhan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | |
Collapse
|
9
|
Panyathep A, Chewonarin T. Inhibitory effect of a gamma-oryzanol-rich fraction from purple rice extract on lipopolysaccharide-induced metastasis in human colon cancer cells. J Food Biochem 2020; 44:e13487. [PMID: 33029825 DOI: 10.1111/jfbc.13487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/06/2023]
Abstract
The incidence of colon cancer recurrence and metastasis is known to increase as an adverse effect related to postoperative infection. Lipopolysaccharide or LPS, which is derived from gram-negative bacteria, is a key inducer of inflammatory-related tumor metastasis. Although there are numerous known biological effects of purple rice extract (PRE), its protective effect on colon metastasis was unknown. This study first evaluated the effects of hexane soluble fraction (HSF) or γ-oryzanol-rich fraction of PRE on LPS-induced colon cancer adhesion and invasion, which was accomplished using adhesive and invasive assay. Gelatin zymography was also utilized for gelatinase activity and secretion. Its chelating activity was also further analyzed by reverse gelatin zymography with zinc chloride. The study findings support the synergistic effect of HSF in protection against adverse events from LPS-induced colon cancer metastasis, as shown by effects on adhesive and invasive ability as well as matrix metalloproteinase-2 secretion and activity. PRACTICAL APPLICATIONS: Bacterial infection is still one of the main adverse events following abdominal cancer surgery and is associated with an increased incidence of colon cancer metastasis. Lipopolysaccharide (LPS) is a major component of this pathogen-mediated response. This first study investigated the efficiency of a gamma-oryzanol (OR) rich fraction, collected from purple rice extract (PRE), against LPS-induced colon cancer metastasis that occurs via three main steps; adhesion to the extracellular matrix, the secretion, and activity of gelatinase and further tissue invasion. The acquired data supported the role of an OR-rich fraction from PRE as a potential inhibitor to LPS-induced colon cancer progression. This finding, related to PRE, could be further developed to create a new adjunctive treatment to reduce operative complications related to bowel cancer surgery as well as increasing the value of this crop in Thailand.
Collapse
Affiliation(s)
- Atita Panyathep
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Huang PC, Shibu MA, Kuo CH, Han CK, Chen YS, Lo FY, Li H, Viswanadha VP, Lai CH, Li X, Huang CY. Pheretima aspergillum extract attenuates high-KCl-induced mitochondrial injury and pro-fibrotic events in cardiomyoblast cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:921-927. [PMID: 31066208 DOI: 10.1002/tox.22763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Hyperkalemia is often associated with cardiac dysfunction. In this study an earthworm extract (dilong) was prepared from dried Pheretima aspergillum powder and its effect against high-KCl challenge was determined in H9c2 cardiomyoblast cells. H9c2 cells pre-treated with dilong (31.25, 62.5, 125, and 250 mg/mL) for 24 hours, where challenged with different doses of KCl treatment for 3 hours to determine the protective mechanisms of dilong against cardiac fibrosis. High-KCl administration induced mitochondrial injury and elevated the levels of pro-apoptotic proteins. The mediators of fibrosis such as ERK, uPA, SP1, and CTGF were also found to be upregulated in high-KCl condition. However, dilong treatment enhanced IGF1R/PI3k/Akt activation which is associated with cell survival. In addition, dilong also reversed high-KCl induced cardiac fibrosis related events in H9c2 cells and displayed a strong cardio-protective effect. Therefore, dilong is a potential agent to overcome cardiac events associated with high-KCl toxicity.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Feng-Yueh Lo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Heng Li
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | | | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Xudong Li
- Division of Cardiac Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Chih-Yang Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
Chao CN, Lo JF, Khan FB, Day CH, Lai CH, Chen CH, Chen RJ, Viswanadha VP, Kuo CH, Huang CY. Tid1-S attenuates LPS-induced cardiac hypertrophy and apoptosis through ER-a mediated modulation of p-PI3K/p-Akt signaling cascade. J Cell Biochem 2019; 120:16703-16710. [PMID: 31081962 DOI: 10.1002/jcb.28928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/02/2019] [Accepted: 03/15/2019] [Indexed: 11/08/2022]
Abstract
Myocardial dysfunction is clinically relevant? repercussion that follows sepsis. Tid 1 protein has been implicated in many biological process. However, the role of Tid 1 in lipopolysaccharide (LPS)-induced cardiomyocyte hypertrophy and apoptosis remains elusive. In the current research endeavor, we have elucidated the role of Tid1-S on LPS-induced cardiac hypertrophy and apoptosis. Interestingly, we found that overexpression of Tid1-S suppressed TLR-4, NFATc3, and BNP protein expression which eventually led to inhibition of LPS-induced cardiac hypertrophy. Moreover, Tid1-S overexpression attenuated cellular apoptosis and activated survival proteins p-PI3K and pser473 Akt. Besides this, Tid1-S overexpression enhanced ER-a protein expression. Collectively, our data suggest that Tid1-S plausibly enhance ER-a protein and further activate p-PI3K and p ser473 Akt survival protein expression; which thereby led to attenuation of LPS-induced apoptosis in cardiomyoblast cells. Interestingly, our data suggest that Tid1-S is involved in attenuation of cardiomyoblast cells damages induced by LPS.
Collapse
Affiliation(s)
- Chun-Nun Chao
- Department of Biotechnology, Asia University, Taichung, Taiwan.,Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Farheen B Khan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Cecilia H Day
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung, General Hospital, Taichung, Taiwan
| | - Chia-Hua Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan.,Medical Research Center For Exosomes and Mitochondria Related Diseases, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Kawamura N, Ohnuki Y, Matsuo I, Suita K, Ishikawa M, Mototani Y, Shiozawa K, Ito A, Yagisawa Y, Hayakawa Y, Nariyama M, Umeki D, Ujiie Y, Gomi K, Okumura S. Effects of chronic Porphyromonas gingivalis lipopolysaccharide infusion on skeletal muscles in mice. J Physiol Sci 2019; 69:503-511. [PMID: 30848475 PMCID: PMC10717087 DOI: 10.1007/s12576-019-00670-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
Periodontitis, which is caused by various oral organisms, predominantly affects adults, and is one of the main causes of tooth loss, as well as leading to progression of numerous systemic diseases. However, its relationship to sarcopenia (aging-associated degenerative loss of skeletal muscle mass and function) remains unclear. The aim of this study was to investigate the effects of Porphyromonas gingivalis lipopolysaccharide (PG-LPS) on skeletal muscle in mice, and to establish the underlying mechanisms. Mice (C57BL/6) were injected with PG-LPS (0.8 mg/kg/day) for 4 weeks. This treatment significantly decreased the weight of fast-twitch skeletal muscles (masseter and tibialis anterior muscles), but not that of slow-twitch skeletal muscle (soleus muscle). The area of fibrosis was significantly increased in masseter muscle, but remained unchanged in the other two muscles. The number of apoptotic myocytes was significantly increased (approximately eightfold) in masseter muscle. These data suggest that persistent subclinical exposure to PG-LPS might reduce the size of fast-twitch skeletal muscle, but not slow-twitch skeletal muscle. Masseter muscle appears to be especially susceptible to the adverse effects of PG-LPS, because muscle remodeling (muscle fibrosis and myocyte apoptosis) was induced solely in masseter muscle. Thus, periodontitis might be one of the major causes of oral sarcopenia.
Collapse
Affiliation(s)
- Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Ichiro Matsuo
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Aiko Ito
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshio Hayakawa
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 236-8501, Japan
| | - Daisuke Umeki
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yuko Ujiie
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| |
Collapse
|
13
|
León-Flores A, Del Río Estrada PM, Álvarez-García LX, Piten-Isidro E, Reyes-Terán G. Increased levels of soluble co-stimulatory molecule PD-L1 (B7-H1) in the plasma of viraemic HIV-1 + individuals. Immunol Lett 2018; 203:70-79. [PMID: 30236481 DOI: 10.1016/j.imlet.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/27/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Recent evidence has revealed that PD-L1 is expressed in two functional forms, namely, a membrane-bound form (mPD-L1) and a soluble form (sPD-L1). The identification of the soluble form of PD-L1 represents the discovery of a new potential mechanism for the activation of the PD-1 pathway that may mediate a physiological apoptotic mechanism through a cell-cell signalling-independent pathway and may also favour T cell dysfunction during HIV infection. Since the presence of sPD-L1 has not been well established in the scenario of chronic viral infection, we investigated the presence of sPD-L1 in the plasma of viraemic HIV+ individuals and the potential mechanism that promotes its production. We report the following: 1) the level of the soluble form of PD-L1 is increased in the plasma of viraemic HIV+ individuals, 2) the level of the soluble form of PD-L1 in viraemic HIV+ individuals correlates with markers of microbial product translocation and inflammation, 3) the expression of the membrane-bound form of PD-L1 on conventional dendritic cells from viraemic HIV+ individuals correlates with the levels of soluble PD-L1 and MMP-2, and 4) monocyte-derived dendritic cells not only increase their expression of mPD-L1 and MMP-2 but also produce sPD-L1 after LPS and TNF-α stimulation, as demonstrated by functional in vitro experiments, which provides insight into the potential source of sPD-L1 production.
Collapse
Affiliation(s)
- A León-Flores
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de Mexico, Mexico
| | - P M Del Río Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de Mexico, Mexico.
| | - L X Álvarez-García
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de Mexico, Mexico
| | - E Piten-Isidro
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de Mexico, Mexico
| | - G Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de Mexico, Mexico.
| |
Collapse
|
14
|
Hsu HH, Kuo WW, Day CH, Shibu MA, Li SY, Chang SH, Shih HN, Chen RJ, Viswanadha VP, Kuo YH, Huang CY. Taiwanin E inhibits cell migration in human LoVo colon cancer cells by suppressing MMP-2/9 expression via p38 MAPK pathway. ENVIRONMENTAL TOXICOLOGY 2017; 32:2021-2031. [PMID: 27807932 DOI: 10.1002/tox.22379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Taiwanin E is a natural compound which is structurally analogous to estrogen II and is abundantly found in Taiwania cryptomerioides. It has been previously reported for its anticancer effects; however, the pharmaceutical effect of Taiwanin E on Human LoVo colon cancer cells is not clear. In this study, we investigated the effects of Taiwanin E on metastasis and the associated mechanism of action on Human LoVo colon cancer cells with respect to the modulations in their cell migration and signaling pathways associated with migration. The results showed that Taiwanin E inhibited cell migration ability correlated with reduced expression and activity of MMP-2 and MMP-9. In addition, Taiwanin E induced activation of p38 through phosphorylation. Inhibition of p38α/β significantly abolished the effect of Taiwanin E on cell migration and MMP-2/-9 activity. Our results conclude that Taiwanin E inhibited cell migration chiefly via p38α MAPK pathway and in a lesser extend via p38β MAPK. The results elucidate the potential of the phytoestrogen natural compound Taiwanin E as a cancer therapeutic agent in inhibiting the cell migration. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2021-2031, 2017.
Collapse
Affiliation(s)
- Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Nursing Division, Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | | | - Shin-Yi Li
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Sheng-Huang Chang
- Department of Health, Executive Yuan, Tsao-Tun Psychiatric Center, Nantou, Taiwan
| | - Hui-Nung Shih
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Han CK, Tien YC, Jine-Yuan Hsieh D, Ho TJ, Lai CH, Yeh YL, Hsuan Day C, Shen CY, Hsu HH, Lin JY, Huang CY. Attenuation of the LPS-induced, ERK-mediated upregulation of fibrosis-related factors FGF-2, uPA, MMP-2, and MMP-9 by Carthamus tinctorius L in cardiomyoblasts. ENVIRONMENTAL TOXICOLOGY 2017; 32:754-763. [PMID: 27098997 DOI: 10.1002/tox.22275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Severe and potentially fatal hypotension and cardiac contractile dysfunction are common symptoms in patients with sepsis. LPS was previously found to dramatically upregulate expression of fibrosis-related factors FGF-2, uPA, MMP-2, and MMP-9 in primary cardiac fibroblasts. MMPs are capable of denaturing and degrading fibrillar collagens and other components of the extracellular matrix (ECM). Studies have shown that dysregulation of expression of MMPs is associated with development of myocardial extracellular matrix remodeling and cardiac fibrosis, which contribute to progression of heart failure. In this study, H9c2 cells and cardiac fibroblasts were divided into five treatment groups: control, LPS (1 μg/mL) and three concentrations of FCEtOH (Carthami Flos ethanolic extract) (31.25, 62.5, and 125 μg/mL). Phosphorylation of ERK-1/2 was observed to be rapidly induced upon treatment with LPS. In contrast, it was significantly suppressed by the administration of FCEtOH (125 μg/mL). Effects of FCEtOH on LPS-induced MMP-2 and MMP-9 expression in H9c2 cells occurred directly through ERK1/2 were determined. H9c2 cells were therefore pretreated with EGF-R to activate ERK pathway. Both protein levels of MMP-2 and MMP-9 and immunefluorescent signals of MMP-9 were significantly enhanced by EGFR. In contrast, MMP-2 and MMP-9 were significantly reduced after FCEtOH administration. Based on these findings, the authors concluded that FCEtOH elicits a protective effect against LPS-induced cardio-fibrosis through the ERK1/2 pathway. Carthamus tinctorius L may potentially serve as a cardio-protective agent against LPS- induced cardiac fibrosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 754-763, 2017.
Collapse
Affiliation(s)
- Chien-Kuo Han
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Yun-Chen Tien
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taiwan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Tsung-Jung Ho
- Department of Chinese Medicine, China Medical University Beigang Hospital, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | | | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jing-Ying Lin
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chih-Yang Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
16
|
Jiang K, Chen X, Zhao G, Wu H, Mi J, Qiu C, Peng X, Deng G. IFN-τ Plays an Anti-Inflammatory Role in Staphylococcus aureus-Induced Endometritis in Mice Through the Suppression of NF-κB Pathway and MMP9 Expression. J Interferon Cytokine Res 2017; 37:81-89. [DOI: 10.1089/jir.2016.0058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiuying Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Junxian Mi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
17
|
Hsu CC, Huang SF, Wang JS, Chu WK, Nien JE, Chen WS, Chow SE. Interplay of N-Cadherin and matrix metalloproteinase 9 enhances human nasopharyngeal carcinoma cell invasion. BMC Cancer 2016; 16:800. [PMID: 27737648 PMCID: PMC5064931 DOI: 10.1186/s12885-016-2846-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-cadherin is a trans-membrane adhesion molecule associated with advanced carcinoma progression and poor prognosis. The effect of N-cadherin on matrix metalloproteinase 9 (MMP-9) regulation is implicated in human nasopharyngeal carcinoma (NPC) cell invasion. METHODS AND RESULTS Exposure of NPC cells to phorbol-12-myristate-13-acetate (PMA) or macrophage conditioned media (CM) upregulated MMP-9 and N-cadherin cleavage, which resulted in NPC cell invasion. MMP-9 cleaved the extracellular domain of N-cadherin, which was further cleaved by γ-secretase with PMA or macrophage-CM treatment. The extracellular cleavage of N-cadherin was inhibited with treatment with an MMP inhibitor and MMP-9 siRNA, whereas the intracellular cleavage of N-cadherin was inhibited by treatment with a γ-secretase inhibitor (γI), which resulted in enhanced accumulation of N-cadherin C-terminal fragment (CTF1, ~40 kDa). CTF2/N-cad (CTF2), a product of the γ-secretase cleavage of N-cadherin, was released and translocated into the nuclear compartment in PMA-treated cells. Moreover, CTF2 enhanced the effect of PMA-mediated MMP-9 gene expression as assessed by treatment with γI or overexpression with exogenous CTF2. Additionally, siRNA silencing of N-cadherin decreased PMA-mediated MMP-9 expression and cell invasion. The outside-in signaling effect of MMP-9 in macrophage CM- or PMA-treated cell cultures significantly enhanced NPC cell invasion via N-cadherin cleavage. CONCLUSION Extracellular and intracellular cleavage of N-cadherin might be involved in elevated MMP-9 expression enhancing tumor cell invasion. Furthermore, N-cadherin-affected tumor progression might be via enhanced MMP-9 signaling in a cross-talk regulatory mechanism. N-cadherin might contribute to the invasive characteristics of carcinoma cells by upregulating MMP-9, thereby leading to increased aggressive metastasis.
Collapse
Affiliation(s)
- Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shiang-Fu Huang
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Jong-Shyan Wang
- Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Wing-Keung Chu
- Department of Physiology, Chang Gung University, Taoyuan, Taiwan
| | - Ju-En Nien
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Shan Chen
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Er Chow
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Nature Science, Center for General Studies, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Sanfilippo F, Santonocito C, Panarello G, Arcadipane A. The role of speckle tracking echocardiography for prognostication in patients with severe sepsis or septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:284. [PMID: 27616201 PMCID: PMC5018936 DOI: 10.1186/s13054-016-1451-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Filippo Sanfilippo
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via Tricomi 5, 90127, Palermo, Italy.
| | - Cristina Santonocito
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via Tricomi 5, 90127, Palermo, Italy
| | - Giovanna Panarello
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via Tricomi 5, 90127, Palermo, Italy
| | - Antonio Arcadipane
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via Tricomi 5, 90127, Palermo, Italy
| |
Collapse
|
19
|
Zhou JX, Zhou L, Li QJ, Feng W, Wang PM, Li EF, Gong WJ, Kou MW, Gou WT, Yang YL. Association between high levels of Notch3 expression and high invasion and poor overall survival rates in pancreatic ductal adenocarcinoma. Oncol Rep 2016; 36:2893-2901. [PMID: 27633819 DOI: 10.3892/or.2016.5079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/11/2016] [Indexed: 11/06/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a commonly fatal tumour. It is characterized by early metastasis and high mortality. Many patients die as a result of PDAC tumour progression. However, the underlying mechanism of invasion and metastasis in PDAC is still not fully understood. Previous studies showed that the Notch signalling pathway may play an important role in the progression of tumour invasion and metastasis. However, it is not yet known whether the Notch signalling pathway participates in the progression of invasion in PDAC. In the present study, immunohistochemistry showed that a high expression of Notch3 was correlated with tumour grade, metastasis, venous invasion and American Joint Committee on Cancer (AJCC) tumor-node-metastasis (TNM) stage. Kaplan-Meier curves suggested that a high expression of Notch3 was a significant risk factor for shortened survival time. We also showed that inhibition of Notch3 had an anti‑invasion role in PDAC cells. In vitro, the inhibition of Notch3 reduced the migration and invasion capabilities of PDAC cells by regulating the expressions of E-cadherin, CD44v6, MMP-2, MMP-9, VEGF and uPA via regulating the COX-2 and ERK1/2 pathways. These results indicated that downregulation of the Notch signalling pathway may be a novel and useful approach for preventing and treating PDAC invasion.
Collapse
Affiliation(s)
- Jin-Xue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Henan Tumor Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Liang Zhou
- Department of General Surgery, The 155 Central Hospital of PLA, Kaifeng, Henan 471000, P.R. China
| | - Qing-Jun Li
- Department of Hepatobiliary and Pancreatic Surgery, Henan Tumor Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Wen Feng
- Department of Hepatobiliary and Pancreatic Surgery, Henan Tumor Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Pei-Min Wang
- Department of General Surgery, First People's Hospital, Xiang Xin, Henan 453000, P.R. China
| | - Er-Feng Li
- Department of General Surgery, The 155 Central Hospital of PLA, Kaifeng, Henan 471000, P.R. China
| | - Wen-Jing Gong
- Department of General Surgery, The 155 Central Hospital of PLA, Kaifeng, Henan 471000, P.R. China
| | - Ming-Wen Kou
- Department of General Surgery, The 155 Central Hospital of PLA, Kaifeng, Henan 471000, P.R. China
| | - Wei-Ting Gou
- Department of General Surgery, The 155 Central Hospital of PLA, Kaifeng, Henan 471000, P.R. China
| | - Yan-Ling Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710032, P.R. China
| |
Collapse
|
20
|
Identifying disrupted pathways by tracking altered modules in type 2 DM-related heart failure. Herz 2016; 42:98-106. [PMID: 27363418 DOI: 10.1007/s00059-016-4445-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND This study aimed to screen disrupted pathways in type 2 diabetes mellitus (T2DM) heart failure by systematically tracking the altered modules of reweighted protein-protein interaction (PPI) networks. METHODS We implemented systematic identification and comparison of modules across non-T2DM and T2DM heart failure subjects by integrating gene expression data and PPI networks. The PPI networks of non-T2DM heart failure and T2DM heart failure were constructed and reweighted by means of Spearman's correlation coefficient (SCC). Subsequently, a clique-merging algorithm was used to explore the modules in the PPI network, followed by the identification of disrupted modules based on a maximum-weight bipartite matching and sorting in descending order. Finally, pathway enrichment analyses were conducted for genes in disrupted modules to determine the biological pathways in T2DM heart failure. RESULTS By comparing the modules of non-T2DM heart failure and T2DM heart failure, 804 disrupted modules were explored. The genes in disrupted modules were significantly enriched in 39 categories (p < 1.00E-06). Of these, the most significant pathways were the focal adhesion, vascular endothelial growth factor (VEGF) signaling, and mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSION The identified disrupted pathways - focal adhesion, VEGF signaling, and MAPK signaling - might play important roles in the progression of T2DM heart failure.
Collapse
|
21
|
Kanno Y, Ishisaki A, Kawashita E, Kuretake H, Ikeda K, Matsuo O. uPA Attenuated LPS-induced Inflammatory Osteoclastogenesis through the Plasmin/PAR-1/Ca(2+)/CaMKK/AMPK Axis. Int J Biol Sci 2016; 12:63-71. [PMID: 26722218 PMCID: PMC4679399 DOI: 10.7150/ijbs.12690] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/25/2015] [Indexed: 02/03/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis-caused bone destruction, results from an increase of bone-resorbing osteoclasts (OCs) induced by inflammation. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated that the effect of urokinase-type plasminogen activator (uPA) on inflammatory osteoclastogenesis induced by lipopolysaccharide (LPS), which is a potent stimulator of bone resorption in inflammatory diseases. We found that the uPA deficiency promoted inflammatory osteoclastogenesis and bone loss induced by LPS. We also showed that LPS induced the expression of uPA, and the uPA treatment attenuated the LPS-induced inflammatory osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells. Additionally, we showed that the uPA-attenuated inflammatory osteoclastgenesis is associated with the activation of plasmin/protease-activated receptor (PAR)-1 axis by uPA. Moreover, we examined the mechanism underlying the effect of uPA on inflammatory osteoclastogenesis, and found that uPA/plasmin/PAR-1 activated the adenosine monophosphate-activated protein kinase (AMPK) pathway through Ca2+/calmodulin dependent protein kinase kinase (CaMKK) activation, and attenuated inflammatory osteoclastogenesis by inactivation of NF-κB in RAW264.7 cells. These data suggest that uPA attenuated inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Our findings may provide a novel therapeutic approach to bone loss caused by inflammatory diseases.
Collapse
Affiliation(s)
- Yosuke Kanno
- 1. Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan
| | - Akira Ishisaki
- 2. Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Eri Kawashita
- 1. Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan
| | - Hiromi Kuretake
- 1. Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan
| | - Kanako Ikeda
- 1. Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan
| | - Osamu Matsuo
- 3. Kinki University Faculty of Medicine 377-2 Ohnohigashi, Osaka-sayama 589-8511, Japan
| |
Collapse
|
22
|
WANG XING, ZHANG JUAN, ZHOU LIANG, SUN WEI, ZHENG ZHIGANG, LU PENG, GAO YUAN, YANG XISHENG, ZHANG ZHUOCHAO, TAO KAISHAN, DOU KEFENG. Fbxw7 regulates hepatocellular carcinoma migration and invasion via Notch1 signaling pathway. Int J Oncol 2015; 47:231-43. [DOI: 10.3892/ijo.2015.2981] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/09/2015] [Indexed: 11/05/2022] Open
|
23
|
Kurogi R, Kikkawa Y, Matsuo S, Nakamizo A, Mizoguchi M, Sasaki T. Upregulation of tissue inhibitor of metalloproteinase-1 contributes to restoration of the extracellular matrix in the rabbit basilar artery during cerebral vasospasm after subarachnoid hemorrhage. Brain Res 2015; 1616:26-36. [PMID: 25940763 DOI: 10.1016/j.brainres.2015.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/06/2015] [Accepted: 04/23/2015] [Indexed: 11/17/2022]
Abstract
Vascular remodeling caused by extracellular matrix (ECM) metabolism contributes to the development of cerebral vasospasm after subarachnoid hemorrhage (SAH). The balance between tissue inhibitor of metalloproteinases (TIMPs) and matrix metalloproteinases (MMPs) plays an important role in ECM remodeling. We investigated the mechanism of vascular remodeling following cerebral vasospasm in a rabbit double hemorrhage model. Rabbit basilar arteries were harvested on days 3, 5, and 7 after initial hemorrhage. TIMP-1, TIMP-2, MMP-2, and MMP-9 mRNA and protein expression were investigated with microarray analysis, quantitative real-time PCR, immunoblot analysis, and enzyme-linked immunosorbent assay (ELISA). The expression and localization of TIMP-1, TIMP-2, MMP-2, MMP-9, elastin, fibronectin, laminin, and collagens I, III, and IV were investigated with immuohistochemical staining. After SAH, TIMP-1 mRNA and protein expression were significantly increased on day 3 and then decreased to the control level on days 5 and 7. MMP-9 protein expression was significantly increased on day 7. TIMP-2 and MMP-2 mRNA and protein expression were significantly increased on day 7. Elastin, fibronectin, laminin, and collagens I, III, and IV protein expression was decreased on day 3 and then restored to control levels on day 7. Upregulation of TIMP-1 during the early phase of cerebral vasospasm may contribute to the recovery of the ECM during the late phase of cerebral vasospasm, resulting in a protective role of TIMP-1 from cerebral vasospasm. Moreover, the increase in arterial compliance by the decrease in ECM during the early phase of cerebral vasospasm may facilitate vasoconstriction of the cerebral artery.
Collapse
Affiliation(s)
- Ryota Kurogi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan
| | - Yuichiro Kikkawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan; Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka City 350-1298, Saitama, Japan.
| | - Satoshi Matsuo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan; Department of Neurosurgery, Steel Memorial Yawata Hospital, 1-1-1 Harunomachi, Yahatahigashi-ku, Kitakyusyu City 805-8508, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan
| | - Tomio Sasaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City 812-8582, Fukuoka, Japan
| |
Collapse
|
24
|
LI FANGFANG, YUAN YUAN, LIU YUAN, WU QINGQING, JIAO RONG, YANG ZHENG, ZHOU MENGQIAO, TANG QIZHU. Pachymic acid protects H9c2 cardiomyocytes from lipopolysaccharide-induced inflammation and apoptosis by inhibiting the extracellular signal-regulated kinase 1/2 and p38 pathways. Mol Med Rep 2015; 12:2807-13. [DOI: 10.3892/mmr.2015.3712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 02/06/2015] [Indexed: 11/05/2022] Open
|
25
|
Roura S, Cal R, Gálvez-Montón C, Revuelta-Lopez E, Nasarre L, Badimon L, Bayes-Genis A, Llorente-Cortés V. Inverse relationship between raft LRP1 localization and non-raft ERK1,2/MMP9 activation in idiopathic dilated cardiomyopathy: potential impact in ventricular remodeling. Int J Cardiol 2014; 176:805-14. [PMID: 25131918 DOI: 10.1016/j.ijcard.2014.07.270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Idiopathic dilated cardiomyopathy (IDCM) is characterized by adverse ventricular remodeling attributed to altered activity of extracellular matrix metalloproteinase (MMP). MMP overactivation is linked to changes in extracellular signal-regulated kinases (ERK), reportedly modulated by the low-density lipoprotein receptor-related protein 1 (LRP1) receptor. The aim of this work was to compare the levels, membrane distribution and interactions of LRP1, ERK1,2 and MMP2/9 in control and IDCM myocardium. METHODS Left ventricle samples from IDCM patients and control subjects were collected to analyze gene and protein expression by Real-time PCR and Western blot, respectively. Fractions enriched in cholesterol, Flotillin-1 and Caveolin-3 (rafts) were isolated from the remaining membrane (non-rafts) by sucrose gradient ultracentrifugation. We assessed the formation of LRP1-ERK1,2 complexes and MMP activity by immunoprecipitation and zymography, respectively. RESULTS In control myocardium, LRP1 was exclusively found in non-rafts while activation of ERK1,2 was preferentially detected in rafts. LRP1/p-ERK1,2 complexes were almost undetectable in rafts and non-rafts. In contrast, in IDCM myocardium, LRP1 moved to rafts and ERK1,2 activation was found in raft and non-raft fractions. Moreover, LRP1/p-ERK1,2 complexes were also found in both membrane fractions, although the amount was higher in non-rafts where MMP9 overactivation was exclusively detected. CONCLUSIONS The presented findings demonstrate a differential membrane compartmentalisation of ERK signaling in IDCM myocardium. The movement of LRP1 to rafts and the concomitant increase in non-raft-related ERK1,2/MMP9 activation may have crucial clinical implications in the progression of disease.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Roi Cal
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Elena Revuelta-Lopez
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
| | - Laura Nasarre
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain; Cardiology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau-UAB, Barcelona, Spain.
| |
Collapse
|
26
|
Wang HC, Chiang WF, Huang HH, Shen YY, Chiang HC. Src-homology 2 domain-containing tyrosine phosphatase 2 promotes oral cancer invasion and metastasis. BMC Cancer 2014; 14:442. [PMID: 24931737 PMCID: PMC4067087 DOI: 10.1186/1471-2407-14-442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/09/2014] [Indexed: 11/12/2022] Open
Abstract
Background Tumor invasion and metastasis represent a major unsolved problem in cancer pathogenesis. Recent studies have indicated the involvement of Src-homology 2 domain-containing tyrosine phosphatase 2 (SHP2) in multiple malignancies; however, the role of SHP2 in oral cancer progression has yet to be elucidated. We propose that SHP2 is involved in the progression of oral cancer toward metastasis. Methods SHP2 expression was evaluated in paired oral cancer tissues by using immunohistochemical staining and real-time reverse transcription polymerase chain reaction. Isogenic highly invasive oral cancer cell lines from their respective low invasive parental lines were established using a Boyden chamber assay, and changes in the hallmarks of the epithelial-mesenchymal transition (EMT) were assessed to evaluate SHP2 function. SHP2 activity in oral cancer cells was reduced using si-RNA knockdown or enforced expression of a catalytically deficient mutant to analyze migratory and invasive ability in vitro and metastasis toward the lung in mice in vivo. Results We observed the significant upregulation of SHP2 in oral cancer tissues and cell lines. Following SHP2 knockdown, the oral cancer cells markedly attenuated migratory and invasion ability. We observed similar results in phosphatase-dead SHP2 C459S mutant expressing cells. Enhanced invasiveness was associated with significant upregulation of E-cadherin, vimentin, Snail/Twist1, and matrix metalloproteinase-2 in the highly invasive clones. In addition, we determined that SHP2 activity is required for the downregulation of phosphorylated ERK1/2, which modulates the downstream effectors, Snail and Twist1 at a transcript level. In lung tissue sections of mice, we observed that HSC3 tumors with SHP2 deletion exhibited significantly reduced metastatic capacity, compared with tumors administered control si-RNA. Conclusions Our data suggest that SHP2 promotes the invasion and metastasis of oral cancer cells. These results provide a rationale for further investigating the effects of small-molecule SHP2 inhibitors on the progression of oral cancer, and indicate a previously unrecognized SHP2-ERK1/2-Snail/Twist1 pathway that is likely to play a crucial role in oral cancer invasion and metastasis.
Collapse
Affiliation(s)
| | | | | | | | - Hung-Che Chiang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, No,35, Keyan Road, Zhunan, 35053 Miaoli County, Taiwan.
| |
Collapse
|
27
|
Ablation of Akt2 protects against lipopolysaccharide-induced cardiac dysfunction: role of Akt ubiquitination E3 ligase TRAF6. J Mol Cell Cardiol 2014; 74:76-87. [PMID: 24805195 DOI: 10.1016/j.yjmcc.2014.04.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/08/2014] [Accepted: 04/22/2014] [Indexed: 01/03/2023]
Abstract
Lipopolysaccharide (LPS), an essential component of the outer membrane of Gram-negative bacteria, plays a pivotal role in myocardial anomalies in sepsis. Recent evidence has depicted a role of Akt in LPS-induced cardiac sequelae although little information is available with regard to the contribution of Akt isoforms in the endotoxin-induced cardiac dysfunction. This study examined the effect of Akt2 knockout on LPS-induced myocardial contractile dysfunction and the underlying mechanism(s) with a focus on TNF receptor-associated factor 6 (TRAF6). Echocardiographic properties and cardiomyocyte contractile function [peak shortening (PS), maximal velocity of shortening/relengthening, time-to-PS, time-to-90% relengthening] were examined in wild-type and Akt2 knockout mice following LPS challenge (4mg/kg, 4h). LPS challenge enlarged LV end systolic diameter, reduced fractional shortening and cardiomyocyte contractile capacity, prolonged TR90, promoted apoptosis, upregulated caspase-3/-12, ubiquitin, and the ubiquitination E3 ligase TRAF6 as well as decreased mitochondrial membrane potential without affecting the levels of TNF-α, toll-like receptor 4 and the mitochondrial protein ALDH2. Although Akt2 knockout failed to affect myocardial function, apoptosis, and ubiquitination, it significantly attenuated or mitigated LPS-induced changes in cardiac contractile and mitochondrial function, apoptosis and ubiquitination but not TRAF6. LPS facilitated ubiquitination, phosphorylation of Akt, GSK3β and p38, the effect of which with the exception of p38 was ablated by Akt2 knockout. TRAF6 inhibitory peptide or RNA silencing significantly attenuated LPS-induced Akt2 ubiquitination, cardiac contractile anomalies and apoptosis. These data collectively suggested that TRAF6 may play a pivotal role in mediating LPS-induced cardiac injury via Akt2 ubiquitination.
Collapse
|
28
|
Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, Derakhshani Z. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 2014; 22:145-55. [PMID: 24547737 DOI: 10.3109/10717544.2014.887157] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | | | | | | | | | | | | |
Collapse
|
29
|
Villalvilla A, da Silva JA, Largo R, Gualillo O, Vieira PC, Herrero-Beaumont G, Gómez R. 6-Shogaol inhibits chondrocytes' innate immune responses and cathepsin-K activity. Mol Nutr Food Res 2014; 58:256-66. [PMID: 24039109 DOI: 10.1002/mnfr.201200833] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/08/2013] [Accepted: 06/30/2013] [Indexed: 01/27/2023]
Abstract
SCOPE Ginger has long been used in traditional Asian medicine to treat osteoarthritis. Indeed, scientific research has reported that ginger derivatives (GDs) have the potential to control innate immune responses. Given the widespread use and demonstrated properties of GDs, we set out to study their anti-inflammatory and anticatabolic properties in chondrocytes. METHODS AND RESULTS 6-shogaol (6-S), the most active GD, was obtained from ginger. 6-S was not toxic as measured by MTT assay, and inhibited NO production and IL-6 and MCP-1 induced gene expression in LPSbut not in IL-1β-stimulated chondrocytes. 6-S also inhibited LPS-mediated ERK1/2 activation as well as NOS2 and MyD88 induced expression as determined by Western blot. Moreover, zymography revealed that 6-S inhibited matrix metalloproteinases (MMP) 2/9 induction in LPS-treated cells. Hydrated 6-S was modified to obtain a compound (SSi6) without 6-S potential anti-inflammatory properties. Both 6-S and SSi6 inhibited cathepsin-K activity. CONCLUSION 6-S blocked TLR4-mediated innate immune responses and MMP induction in chondrocytes. These results, together with GDs-mediated cathepsin-K inhibition, suggest the potential for GDs use against cartilage and bone degradation. Therefore, considering that clinical trials involving oral administration of ginger achieved relevant nontoxic GDs serum concentrations, we suggest that a ginger-supplemented diet might reduce OA symptoms.
Collapse
Affiliation(s)
- Amanda Villalvilla
- Osteoarticular Pathology Lab, IIS-Fundación Jiménez Díaz, Avda Reyes Católicos, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol (Camb) 2013; 5:96-107. [PMID: 22869005 DOI: 10.1039/c2ib20135f] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanopreparations such as liposomes, micelles, polymeric and inorganic nanoparticles, and small molecule/nucleic acid/protein conjugates have demonstrated various advantages over "naked" therapeutic molecules. These nanopreparations can be further engineered with functional moieties to improve their performance in terms of circulation longevity, targetability, enhanced intracellular penetration, carrier-mediated enhanced visualization, and stimuli-sensitivity. The idea of application of a stimulus-sensitive drug or imaging agent delivery system for tumor targeting is based on the significant abnormalities in the tumor microenvironment and its cells, such as an acidic pH, altered redox potential, up-regulated proteins and hyperthermia. These internal conditions as well as external stimuli, such as magnetic field, ultrasound and light, can be used to modify the behavior of the nanopreparations that control drug release, improve drug internalization, control the intracellular drug fate and even allow for certain physical interactions, resulting in an enhanced tumor targeting and antitumor effect. This article provides a critical view of current stimulus-sensitive drug delivery strategies and possible future directions in tumor targeting with primary focus on the combined use of stimulus-sensitivity with other strategies in the same nanopreparation, including multifunctional nanopreparations and theranostics.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Zhou L, Zhang N, Song W, You N, Li Q, Sun W, Zhang Y, Wang D, Dou K. The significance of Notch1 compared with Notch3 in high metastasis and poor overall survival in hepatocellular carcinoma. PLoS One 2013; 8:e57382. [PMID: 23468978 PMCID: PMC3585338 DOI: 10.1371/journal.pone.0057382] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/21/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prognosis for patients with hepatocellular carcinoma (HCC) is poor, and the mechanisms underlying the development of HCC remain unclear. Notch1 and Notch3 may be involved in malignant transformation, although their roles remain unknown. MATERIALS AND METHODS HCC tissues were stained with anti-Notch1 or -Notch3 antibody. The migration and invasion capacities of the cells were measured with transwell cell culture chambers. RT-PCR was used to measure the expression of Notch1 and Notch3 mRNA. Additionally, western blot analysis was used to assess the protein expression of Notch1, Notch3, CD44v6, E-cadherin, matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-type plasminogen activator (uPA). RNA interference was used to down-regulate the expression of Notch1 and Notch3. Cell viability was assessed using MTT. RESULTS Based on immunohistochemistry, high Notch1 expression was correlated with tumor size, tumor grade, metastasis, venous invasion and AJCC TNM stage. High Notch3 expression was only strongly correlated with metastasis, venous invasion and satellite lesions. Kaplan-Meier curves demonstrated that patients with high Notch1 or Notch3 expression were at a significantly increased risk for shortened survival time. In vitro, the down-regulation of Notch1 decreased the migration and invasion capacities of HCC cells by regulating CD44v6, E-cadherin, MMP-2, MMP-9, and uPA via the COX-2 and ERK1/2 pathways. Down-regulation of Notch3 only decreased the invasion capacity of HCC cells by regulating MMP-2 and MMP-9 via the ERK1/2 pathway. CONCLUSIONS Based on the migration and invasion of HCC, we hypothesize that targeting Notch1 may be more useful than Notch3 for designing novel preventive and therapeutic strategies for HCC in the near future.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shannxi, People’s Republic of China
| | - Ning Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shannxi, People’s Republic of China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shannxi, People’s Republic of China
| | - Nan You
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shannxi, People’s Republic of China
| | - Qingjun Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shannxi, People’s Republic of China
| | - Wei Sun
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shannxi, People’s Republic of China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shannxi, People’s Republic of China
| | - Desheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shannxi, People’s Republic of China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shannxi, People’s Republic of China
| |
Collapse
|
32
|
Hsu HH, Liu CJ, Shen CY, Chen YJ, Chen LM, Kuo WH, Lin YM, Chen RJ, Tsai CH, Tsai FJ, Huang CY. p38α MAPK mediates 17β-estradiol inhibition of MMP-2 and -9 expression and cell migration in human lovo colon cancer cells. J Cell Physiol 2012; 227:3648-60. [PMID: 22377968 DOI: 10.1002/jcp.24072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiological studies demonstrate that the incidence and mortality rates of colorectal cancer in women are lower than in men. However, it is unknown if 17β-estradiol (E(2)) treatment is sufficient to inhibit cell proliferation and cell migration in human colon cancer cells. Up-regulation of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), and matrix metallopeptidases (MMPs) is reported to associate with the development of cancer cell mobility, metastasis, and subsequent malignant tumor. In the present study, we treated human LoVo colon cancer cells with E(2) to explore whether E(2) down-regulates cell proliferation and migration, and to identify the precise molecular and cellular mechanisms behind the down-regulatory responses. Here, we found that E(2) treatment decreased cell proliferation and cell cycle-regulating factors such as cyclin A, cyclin D1 and cyclin E. At the same time, E(2) significantly inhibited cell migration and migration-related factors such as uPA, tPA, MMP-2, and MMP-9. However, E(2) treatment showed no effects on upregulating expression of plasminogen activator inhibitor-1 (PAI-1), tissue inhibitor of metalloproteinase-1, -2, -3, and -4 (TIMP-1, -2, -3, and -4). After administration of inhibitors including QNZ (NFκB inhibitor), LY294002 (Akt activation inhibitor), U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor) or SP600125 (JNK1/2 inhibitor), E(2) -downregulated cell migration and expression of MMP-2 and MMP-9 in LoVo cells is markedly inhibited only by p38 MAPK inhibitors, SB203580. Application of specific target gene siRNA (ERα, ERβ, p38α, and p38β) to LoVo cells further confirmed that p38 MAPK mediates E(2) /ERs inhibition of MMP-2 and -9 expression and cell motility in LoVo cells. Collectively, these results suggest that E(2) treatment down-regulates cell proliferation by modulating the expression of cyclin A, cyclin D1 and cyclin E. E(2) treatment simultaneously impaired cell migration by inhibiting the expression of uPA, tPA, MMP-2, and MMP-9 through E(2) /ERs - p38α MAPK signaling pathway in human LoVo colon cancer cells.
Collapse
Affiliation(s)
- Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
CCDC134 is down-regulated in gastric cancer and its silencing promotes cell migration and invasion of GES-1 and AGS cells via the MAPK pathway. Mol Cell Biochem 2012; 372:1-8. [PMID: 23070808 DOI: 10.1007/s11010-012-1418-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 08/01/2012] [Indexed: 02/06/2023]
Abstract
CCDC134 (coiled coil domain containing 134), a novel secretory protein, acts as an inhibitor of Erk1/2 and JNK/SAPK pathways. However, the role of CCDC134 in cancer development is still lacking. In this study, we found that CCDC134 expression significantly reduced in gastric cancer tissues compared with normal tissues (P < 0.001) and lesion tissues (P < 0.001). But no statistically significant difference was observed between normal and lesion tissues (P = 0.842). In vitro transient transfection of CCDC134-specific siRNA significantly promoted the migration and invasion of both the normal gastric epithelial cell line GES-1 and gastric cancer cell line AGS cells. Further analysis revealed that the attenuated expression of CCDC134 promoted the activation of Erk1/2 and JNK/SAPK, but had no effect on p38. The activation of Erk1/2 and JNK/SAPK was required for CCDC134-mediated migration and invasion. Besides, CCDC134-RNAi could induce the expression of MMP-2 and MMP-9, which are key molecules involved in regulating cell migration and invasion. Therefore, CCDC134 may be a candidate biomarker for malignant transformation. It plays a role in regulation of cell migration and invasion, and could be a therapeutic target of gastric cancer.
Collapse
|
34
|
Hu F, Liang W, Ren Z, Wang G, Ding G. Surfactant protein D inhibits lipopolysaccharide-induced monocyte chemoattractant protein-1 expression in human renal tubular epithelial cells: implication for tubulointerstitial fibrosis. Clin Exp Immunol 2012; 167:514-22. [PMID: 22288595 DOI: 10.1111/j.1365-2249.2011.04521.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Surfactant protein D (SP-D), a member of the C-type lectin (collectin) protein family, plays a critical role in innate host defence against various microbial pathogens and in the modulation of inflammatory responses in the lung. However, little is known about its expression and biological function in the kidney. In this work, we studied SP-D expression in human kidney and cultured human renal proximal tubular epithelial cells (HK-2), and examined the effect of SP-D on proinflammatory cytokine production after lipopolysaccharide (LPS) stimulus. We observed the expression of both SP-D mRNA and protein in human kidney and in-vitro HK-2 cells by immunohistochemistry, Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. To explore the potential role of SP-D in the pathogenesis of tubulointerstitial fibrosis in kidney infection, we examined the production of monocyte chemoattractant protein-1 (MCP-1) in HK-2 cells after LPS treatment. Results showed that the level of MCP-1 in the conditioned medium increased significantly when HK-2 cells were cultured with LPS (>0·1 µg/ml) for 8 h. Of interest, LPS treatment inhibited SP-D expression in HK-2 cells. Furthermore, over-expression of SP-D reduced significantly the LPS-induced expression of MCP-1 in transfected cells. These findings suggest that SP-D in the kidney functions as an anti-inflammatory factor in renal tubular epithelial cells and may modulate tubulointerstitial fibrosis in kidney.
Collapse
Affiliation(s)
- F Hu
- Division of Nephrology, Department of Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
35
|
Chen TH, Wo HT, Wu CC, Wang JL, Wang CC, Hsieh IC, Kuo CY, Liu CT. Exendin-4 attenuates lipopolysaccharides induced inflammatory response but does not protects H9c2 cells from apoptosis. Immunopharmacol Immunotoxicol 2011; 34:484-90. [PMID: 22121853 DOI: 10.3109/08923973.2011.630398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) and its analogues are reported to exert wide-ranging cardiovascular actions in preclinical and clinical studies. We thus investigated whether the GLP-1 receptor agonist, exendin-4, has inhibitory effects on LPS-stimulated inflammatory response in cardiomyoblasts. METHODS H9c2 cardiomyoblasts were exposed to LPS and treated with exendin-4. Expressions of proinflammatory mediators were assessed using quantitative real-time PCR. Nuclear localization of NF-κB was examined using immunoblotting. mRNA expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) production were evaluated by q PCR and NO assay. Furthermore, anti-apoptotic effect of exendin-4 in LPS-stimulated H9c2 cells was determined using qPCR and immunoblot. RESULTS Exposure to LPS increased mRNA expressions of TNF-α, COX-2 and MMP-9 in H9c2 cells. It also caused increases in iNOS mRNA expression and NF-κB nuclear translocation. Exendin-4 dose-dependently downregulated mRNA levels of TNF-α, COX-2 and MMP-9 in LPS-stimulated H9c2 cells. It also reduced NF-κB nuclear translocation. Treatment with exendin-4 showed no effect on LPS-induced apoptosis in H9c2 cells. CONCLUSIONS Exendin-4 exerts an effect on cardiomyoblast exposed to LPS by inhibiting mRNA expression of inflammatory mediators and suppressing NF-κB activation. These effects are consistent with some of the observed anti-inflammatory properties of exendin-4, as well as its beneficial actions on the cardiovascular system.
Collapse
Affiliation(s)
- Tien-Hsing Chen
- Department of Cardiology, Chang-Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Baldi A, Pecorini C, Rebucci R, Saccone F, Cheli F, Miranda-Ribera A, Lecchi C, Ceciliani F. Effect of Escherichia coli lipopolysaccharide on u-PA activity and u-PA and u-PAR RNA expression in a bovine mammary epithelial cell line. Res Vet Sci 2011; 93:758-62. [PMID: 22103977 DOI: 10.1016/j.rvsc.2011.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/29/2011] [Accepted: 10/23/2011] [Indexed: 12/16/2022]
Abstract
It is well known that the plasminogen-activating (PA) system plays a key role in the bovine mammary gland during tissue remodelling. However, the modulation of the PA cascade after bacterial infections needs to be elucidated. This study examined the effects of Escherichia coli lipopolysaccharide (LPS) on cell viability, the modulation of cell-associated u-PA activity, and the regulation of u-PA and u-PA receptor (u-PAR) RNA expression using the BME-UV1 bovine mammary epithelial cell line. LPS did not affect cell viability, but induced an increase in u-PA activity, with the maximum response after 6 h of incubation. Moreover, u-PA and u-PAR mRNA expression were both up-regulated in BME-UV1 cells after 3 h of incubation with LPS. These data indicated that E. coli LPS led to an increase in u-PA activity and RNA expression of u-PA and u-PAR in BME-UV1 cells, thus strengthening the role of the PA system during pathological processes.
Collapse
Affiliation(s)
- Antonella Baldi
- Università degli Studi di Milano, Dipartimento di Scienze e Tecnologie Veterinarie per la Sicurezza Alimentare, via Celoria 10, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kwon KJ, Cho KS, Lee SH, Kim JN, Joo SH, Ryu JH, Ignarro LJ, Han SH, Young Shin C. Regulation of tissue plasminogen activator/plasminogen activator inhibitor-1 by hydrocortisone in rat primary astrocytes. J Neurosci Res 2011; 89:1059-69. [DOI: 10.1002/jnr.22619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/30/2010] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
|
38
|
|
39
|
Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 2010; 59:242-55. [DOI: 10.1002/glia.21094] [Citation(s) in RCA: 341] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Chang SH, Liu CJ, Kuo CH, Chen H, Lin WY, Teng KY, Chang SW, Tsai CH, Tsai FJ, Huang CY, Tzang BS, Kuo WW. Garlic Oil Alleviates MAPKs- and IL-6-mediated Diabetes-related Cardiac Hypertrophy in STZ-induced DM Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011:950150. [PMID: 21792366 PMCID: PMC3137822 DOI: 10.1093/ecam/neq075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 05/25/2010] [Indexed: 01/19/2023]
Abstract
Garlic oil has been reported to protect the cardiovascular system; however, the effects and mechanisms behind the cardioprotection of garlic oil on diabetes-induced cardiaomyopathy are unclear. In this study, we used streptozotocin (STZ)-induced diabetic rats to investigate whether garlic oil could protect the heart from diabetes-induced cardiomyopathy. Wistar STZ-induced diabetic rats received garlic oil (0, 10, 50 or 100 mg kg_1 body weight) by gastric gavage every 2 days for 16 days. Normal rats without diabetes were used as control. Cardiac contractile dysfunction and cardiac pathologic hypertrophy responses were observed in diabetic rat hearts. Cardiac function was examined using echocardiography. In addition to cardiac hypertrophy-related mitogen-activated protein kinases (MAPK) pathways (e.g., p38, c-Jun N-terminal kinases (JNK) and extracellularly responsive kinase (ERK1/2)), the IL-6/MEK5/ERK5 signaling pathway was greatly activated in the diabetic rat hearts, which contributes to the up-regulation of cardiac pathologic hypertrophy markers including atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), and leads to cardiac contractile dysfunction. Garlic oil treatment significantly inhibited the up-regulation in MAPK (e.g., p38, JNK and ERK1/2) and IL-6/MEK5/ERK5 signaling pathways in the diabetic rat hearts, reducing the levels of cardiac pathologic hypertrophy markers such as ANP and BNP, and improving the cardiac contractile function. Collectively, data from these studies demonstrate that garlic oil shows the potential cardioprotective effects for protecting heart from diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sheng-Huang Chang
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sakata K, Hamaoka K, Ozawa S, Niboshi A, Yahata T, Fujii M, Hamaoka A, Toiyama K, Nishida M, Itoi T. Matrix Metalloproteinase-9 in Vascular Lesions and Endothelial Regulation in Kawasaki Disease. Circ J 2010; 74:1670-5. [DOI: 10.1253/circj.cj-09-0980] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Koichi Sakata
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Kenji Hamaoka
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Seiichiro Ozawa
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Ayumi Niboshi
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Tomoyo Yahata
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Maiko Fujii
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Akiko Hamaoka
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Kentarou Toiyama
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Masashi Nishida
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Toshiyuki Itoi
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| |
Collapse
|
42
|
Abstract
Studies of proteinaceous cysteine protease inhibitors originated with the discovery of cystatins in the 1960s. Since that time, a rich and fascinating world of proteins that control and regulate a multitude of important physiological processes, ranging from the basics of protein turnover to development and brain function, has been uncovered. Failures in such important and complex systems inevitably lead to pathologies. Many threatening diseases such as cancer or neurological disorders, to mention only some, are attributed to deregulation of proteaseinhibitor balance. Moreover, important aspects of infection pathology and host defense rely on proteolysis and protease inhibition. Recent advances in the field of protease inhibitors have drawn attention to the possible use of this collected knowledge to control related pathological processes. This review attempts to familiarize the reader with proteinaceous cysteine protease inhibitors by providing an overview of current knowledge. The work primarily highlights biological processes in which the inhibitors are involved and focuses on pathologies resulting from aberrant protease-inhibitor balance, pointing out emerging possibilities for their correction.
Collapse
Affiliation(s)
- G Dubin
- Faculty of Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|