1
|
Xu L, Zhao W, He J, Hou S, He J, Zhuang Y, Wang Y, Yang H, Xiao J, Qiu Y. Abdominal perfusion pressure is critical for survival analysis in patients with intra-abdominal hypertension: mortality prediction using incomplete data. Int J Surg 2025; 111:371-381. [PMID: 39166944 PMCID: PMC11745648 DOI: 10.1097/js9.0000000000002026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Abdominal perfusion pressure (APP) is a salient feature in the design of a prognostic model for patients with intra-abdominal hypertension (IAH). However, incomplete data significantly limits the size of the beneficiary patient population in clinical practice. Using advanced artificial intelligence methods, the authors developed a robust mortality prediction model with APP from incomplete data. METHODS The authors retrospectively evaluated the patients with IAH from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Incomplete data were filled in using generative adversarial imputation nets (GAIN). Lastly, demographic, clinical, and laboratory findings were combined to build a 7-day mortality prediction model. RESULTS The authors included 1354 patients in this study, of which 63 features were extracted. Data imputation with GAIN achieved the best performance. Patients with an APP <60 mmHg had significantly higher all-cause mortality within 7-90 days. The difference remained significant in long-term survival even after propensity score matching (PSM) eliminated other mortality risks between groups. Lastly, the built machine learning model for 7-day modality prediction achieved the best results with an AUC of 0.80 in patients with confirmed IAH outperforming the other four traditional clinical scoring systems. CONCLUSIONS APP reduction is an important survival predictor affecting the survival prognosis of patients with IAH. The authors constructed a robust model to predict the 7-day mortality probability of patients with IAH, which is superior to the commonly used clinical scoring systems.
Collapse
Affiliation(s)
- Liang Xu
- Department of General Surgery, The Second Affiliated Hospital of the Army Medical University
- Bio-Med Informatics Research Centre and Clinical Research Centre, The Second Affiliated Hospital of the Army Medical University
| | - Weijie Zhao
- Bioengineering College, Chongqing University
| | - Jiao He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University
| | - Siyu Hou
- Bio-Med Informatics Research Centre and Clinical Research Centre, The Second Affiliated Hospital of the Army Medical University
| | - Jialin He
- Department of Gastroenterology, The Second Affiliated Hospital of the Army Medical University
| | - Yan Zhuang
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ying Wang
- Department of General Surgery, The Second Affiliated Hospital of the Army Medical University
| | - Hua Yang
- Department of General Surgery, Chongqing General Hospital, Chongqing
| | - Jingjing Xiao
- Bio-Med Informatics Research Centre and Clinical Research Centre, The Second Affiliated Hospital of the Army Medical University
| | - Yuan Qiu
- Department of General Surgery, The Second Affiliated Hospital of the Army Medical University
| |
Collapse
|
2
|
Szakmany T, Fitzgerald E, Garlant HN, Whitehouse T, Molnar T, Shah S, Tong D, Hall JE, Ball GR, Kempsell KE. The 'analysis of gene expression and biomarkers for point-of-care decision support in Sepsis' study; temporal clinical parameter analysis and validation of early diagnostic biomarker signatures for severe inflammation andsepsis-SIRS discrimination. Front Immunol 2024; 14:1308530. [PMID: 38332914 PMCID: PMC10850284 DOI: 10.3389/fimmu.2023.1308530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction Early diagnosis of sepsis and discrimination from SIRS is crucial for clinicians to provide appropriate care, management and treatment to critically ill patients. We describe identification of mRNA biomarkers from peripheral blood leukocytes, able to identify severe, systemic inflammation (irrespective of origin) and differentiate Sepsis from SIRS, in adult patients within a multi-center clinical study. Methods Participants were recruited in Intensive Care Units (ICUs) from multiple UK hospitals, including fifty-nine patients with abdominal sepsis, eighty-four patients with pulmonary sepsis, forty-two SIRS patients with Out-of-Hospital Cardiac Arrest (OOHCA), sampled at four time points, in addition to thirty healthy control donors. Multiple clinical parameters were measured, including SOFA score, with many differences observed between SIRS and sepsis groups. Differential gene expression analyses were performed using microarray hybridization and data analyzed using a combination of parametric and non-parametric statistical tools. Results Nineteen high-performance, differentially expressed mRNA biomarkers were identified between control and combined SIRS/Sepsis groups (FC>20.0, p<0.05), termed 'indicators of inflammation' (I°I), including CD177, FAM20A and OLAH. Best-performing minimal signatures e.g. FAM20A/OLAH showed good accuracy for determination of severe, systemic inflammation (AUC>0.99). Twenty entities, termed 'SIRS or Sepsis' (S°S) biomarkers, were differentially expressed between sepsis and SIRS (FC>2·0, p-value<0.05). Discussion The best performing signature for discriminating sepsis from SIRS was CMTM5/CETP/PLA2G7/MIA/MPP3 (AUC=0.9758). The I°I and S°S signatures performed variably in other independent gene expression datasets, this may be due to technical variation in the study/assay platform.
Collapse
Affiliation(s)
- Tamas Szakmany
- Department of Anaesthesia, Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
- Anaesthesia, Critical Care and Theatres Directorate, Cwm Taf Morgannwg University Health Board, Royal Glamorgan Hospital, Llantrisant, United Kingdom
| | | | | | - Tony Whitehouse
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Mindelsohn Way Edgbaston, Birmingham, United Kingdom
| | - Tamas Molnar
- Critical Care Directorate, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Sanjoy Shah
- Critical Care Directorate, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Dong Ling Tong
- Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Judith E. Hall
- Department of Anaesthesia, Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
| | - Graham R. Ball
- Medical Technology Research Facility, Anglia Ruskin University, Essex, United Kingdom
| | | |
Collapse
|
3
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
4
|
Bioinformatics analyses of potential ACLF biological mechanisms and identification of immune-related hub genes and vital miRNAs. Sci Rep 2022; 12:14052. [PMID: 35982134 PMCID: PMC9388648 DOI: 10.1038/s41598-022-18396-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a critical and refractory disease and a hepatic disorder accompanied by immune dysfunction. Thus, it is essential to explore key immune-related genes of ACLF and investigate its mechanisms. We used two public datasets (GSE142255 and GSE168048) to perform various bioinformatics analyses, including WGCNA, CIBERSORT, and GSEA. We also constructed an ACLF immune-related protein-protein interaction (PPI) network to obtain hub differentially expressed genes (DEGs) and predict corresponding miRNAs. Finally, an ACLF rat model was established to verify the results. A total of 388 DEGs were identified in ACLF, including 162 upregulated and 226 downregulated genes. The enrichment analyses revealed that these DEGs were mainly involved in inflammatory-immune responses and biosynthetic metabolic pathways. Twenty-eight gene modules were obtained using WGCNA and the coral1 and darkseagreen4 modules were highly correlated with M1 macrophage polarization. As a result, 10 hub genes and 2 miRNAs were identified to be significantly altered in ACLF. The bioinformatics analyses of the two datasets presented valuable insights into the pathogenesis and screening of hub genes of ACLF. These results might contribute to a better understanding of the potential molecular mechanisms of ACLF. Finally, further studies are required to validate our current findings.
Collapse
|
5
|
Palladini G, Cagna M, Di Pasqua LG, Adorini L, Croce AC, Perlini S, Ferrigno A, Berardo C, Vairetti M. Obeticholic Acid Reduces Kidney Matrix Metalloproteinase Activation following Partial Hepatic Ischemia/Reperfusion Injury in Rats. Pharmaceuticals (Basel) 2022; 15:ph15050524. [PMID: 35631351 PMCID: PMC9145209 DOI: 10.3390/ph15050524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
We have previously demonstrated that the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) protects the liver via downregulation of hepatic matrix metalloproteinases (MMPs) after ischemia/reperfusion (I/R), which can lead to multiorgan dysfunction. The present study investigated the capacity of OCA to modulate MMPs in distant organs such as the kidney. Male Wistar rats were dosed orally with 10 mg/kg/day of OCA (5 days) and were subjected to 60-min partial hepatic ischemia. After 120-min reperfusion, kidney biopsies (cortex and medulla) and blood samples were collected. Serum creatinine, kidney MMP-2, and MMP-9-dimer, tissue inhibitors of MMPs (TIMP-1, TIMP-2), RECK, TNF-alpha, and IL-6 were monitored. MMP-9-dimer activity in the kidney cortex and medulla increased after hepatic I/R and a reduction was detected in OCA-treated I/R rats. Although not significantly, MMP-2 activity decreased in the cortex of OCA-treated I/R rats. TIMPs and RECK levels showed no significant differences among all groups considered. Serum creatinine increased after I/R and a reduction was detected in OCA-treated I/R rats. The same trend occurred for tissue TNF-alpha and IL-6. Although the underlying mechanisms need further investigation, this is the first study showing, in the kidney, beneficial effects of OCA by reducing TNF-alpha-mediated expression of MMPs after liver I/R.
Collapse
Affiliation(s)
- Giuseppina Palladini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
- Internal Medicine Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marta Cagna
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
| | - Laura Giuseppina Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
| | | | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), 27100 Pavia, Italy;
| | - Stefano Perlini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
- Emergency Department Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
| | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
- Correspondence: (C.B.); (M.V.); Tel.: +39-0382-986877 (C.B.); +39-0382-986398 (M.V.)
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.P.); (M.C.); (L.G.D.P.); (S.P.); (A.F.)
- Correspondence: (C.B.); (M.V.); Tel.: +39-0382-986877 (C.B.); +39-0382-986398 (M.V.)
| |
Collapse
|
6
|
Ben Moftah M, Eswayah A. Intricate relationship between SARS-CoV-2-induced shedding and cytokine storm generation: A signaling inflammatory pathway augmenting COVID-19. HEALTH SCIENCES REVIEW (OXFORD, ENGLAND) 2022; 2:100011. [PMID: 35013738 PMCID: PMC8734057 DOI: 10.1016/j.hsr.2021.100011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), through its ability to induce cytokine release syndrome, can set up a generalized inflammatory response together with activating multiple inflammatory pathways, which contributes to a dramatic increase in the number of mortalities and morbidities worldwide. Reportedly, the manipulative nature of coronavirus disease 2019 (COVID-19), which targets the immune system, often focuses on specific inflammation-related pathways, usually confined to interleukins and tumor necrosis factor-α (TNF-α), with a great emphasis on therapeutic approaches targeting the inhibition of these inflammatory mediators. The involvement of a disintegrin and metalloprotease 17 (ADAM-17) and matrix metalloproteinase-9 (MMP-9) in the pathogenesis of COVID-19, through their ability to potentiate the cytokine storm during an episode of SARS-CoV-2 infection, often goes unnoticed. In this review, the intricate relationship between ADAM-17 and MMP-9 together with angiotensin-converting enzyme 2 (ACE-2) as the main target for SARS-CoV-2 is highlighted in detail through a compilation of evidence-based literature; thus, we shed light on a proposed inflammatory pathway that COVID-19 may exploit to provoke an inflammatory response of a complex nature. Conclusively, our proposed mechanism acts as a means to developing a therapeutic approach aimed at modulating the intricate communication between ADAM-17 and MMP-9, where a great emphasis on the role of ACE-2 shedding and subsequent elevation in angiotensin II (Ang-II) levels is crucial to understanding the awry inflammatory response in patients with COVID-19. From this concept, designing a therapeutic strategy targeting multiple inflammatory mediators and enzymes simultaneously is another approach to unravel this global pandemic.
Collapse
Affiliation(s)
- Moayed Ben Moftah
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Asma Eswayah
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| |
Collapse
|
7
|
Cheng Y, Chen H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrients 2021; 13:nu13124456. [PMID: 34960004 PMCID: PMC8707169 DOI: 10.3390/nu13124456] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Zinc, an essential micronutrient in the human body, is a component in over 300 enzymes and participates in regulating enzymatic activity. Zinc metalloenzymes play a crucial role in physiological processes including antioxidant, anti-inflammatory, and immune responses, as well as apoptosis. Aberrant enzyme activity can lead to various human diseases. In this review, we summarize zinc homeostasis, the roles of zinc in zinc metalloenzymes, the physiological processes of zinc metalloenzymes, and aberrant zinc metalloenzymes in human diseases. In addition, potential mechanisms of action are also discussed. This comprehensive understanding of the mechanisms of action of the regulatory functions of zinc in enzyme activity could inform novel zinc-micronutrient-supply strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Yunqi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China;
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
8
|
Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in kidney disease. Adv Clin Chem 2021; 105:141-212. [PMID: 34809827 DOI: 10.1016/bs.acc.2021.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc and calcium endopeptidases which cleave extracellular matrix (ECM) proteins. They are also involved in the degradation of cell surface components and regulate multiple cellular processes, cell to cell interactions, cell proliferation, and cell signaling pathways. MMPs function in close interaction with the endogenous tissue inhibitors of matrix metalloproteinases (TIMPs), both of which regulate cell turnover, modulate various growth factors, and participate in the progression of tissue fibrosis and apoptosis. The multiple roles of MMPs and TIMPs are continuously elucidated in kidney development and repair, as well as in a number of kidney diseases. This chapter focuses on the current findings of the significance of MMPs and TIMPs in a wide range of kidney diseases, whether they result from kidney tissue changes, hemodynamic alterations, tubular epithelial cell apoptosis, inflammation, or fibrosis. In addition, the potential use of these endopeptidases as biomarkers of renal dysfunction and as targets for therapeutic interventions to attenuate kidney disease are also explored in this review.
Collapse
|
9
|
Turunen A, Kuuliala K, Kuuliala A, Tervahartiala T, Mustonen H, Puolakkainen P, Kylänpää L, Sorsa T. Activated matrix metalloproteinase 8 in serum predicts severity of acute pancreatitis. Pancreatology 2021; 21:862-869. [PMID: 33846092 DOI: 10.1016/j.pan.2021.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Severe acute pancreatitis (SAP) has high morbidity and mortality but there are no widely accepted predictive biomarkers in clinical use. Matrix metalloproteinases (MMPs) are active in tissue destruction and inflammatory responses. We studied whether serum levels of activated MMP-8 (aMMP-8), MMP-9 and their regulators tissue inhibitor of matrix metalloproteinases (TIMP)-1, myeloperoxidase (MPO) and human neutrophil elastase (HNE) could predict the development of SAP. METHODS The study comprised 214 AP patients (revised Atlanta classification: 142 mild, MAP; 54 moderately severe, MSAP; 18 SAP) referred to Helsinki University Hospital. A venous blood sample was taken within 72 h from the onset of symptoms. Serum levels of aMMP-8 were determined using immunofluorometric assay, and those of MMP-9, TIMP-1, MPO and HNE using enzyme-linked immunosorbent assay. AP groups were compared using Jonckheere-Terpstra test and predictive value for SAP was analyzed using receiver operating characteristics (ROC) analysis. RESULTS Serum aMMP-8 levels were higher in SAP (median 657 ng/ml, interquartile range 542-738 ng/ml) compared to MSAP (358 ng/ml, 175-564 ng/ml; p < 0.001) and MAP (231 ng/ml, 128-507 ng/ml; p < 0.001). Similar trend was seen with TIMP-1 and MPO. In ROC analysis aMMP-8, MPO and TIMP-1 emerged as potential markers for the development of SAP (areas under ROC curves 0.83, 0.71 and 0.69, respectively). CONCLUSIONS Serum aMMP-8 measured early in the course of AP (within 72 h of symptom onset) predicted the development of SAP.
Collapse
Affiliation(s)
- A Turunen
- Abdominal Center, Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - K Kuuliala
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - A Kuuliala
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - T Tervahartiala
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - H Mustonen
- Abdominal Center, Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - P Puolakkainen
- Abdominal Center, Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - L Kylänpää
- Abdominal Center, Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - T Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Department of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
10
|
Jordakieva G, Budge-Wolfram RM, Budinsky AC, Nikfardjam M, Delle-Karth G, Girard A, Godnic-Cvar J, Crevenna R, Heinz G. Plasma MMP-9 and TIMP-1 levels on ICU admission are associated with 30-day survival. Wien Klin Wochenschr 2020; 133:86-95. [PMID: 31932967 PMCID: PMC7875947 DOI: 10.1007/s00508-019-01592-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023]
Abstract
Background Matrix metalloproteinases (MMPs) are involved in systemic inflammatory responses and organ failure. The aim of this study was to evaluate early circulating plasma levels of MMP‑2, MMP‑9 and their inhibitors TIMP‑1 and TIMP‑2 and their prognostic significance in critically ill patients on admission to the intensive care unit (ICU). Methods In a single center prospective study 120 consecutive patients (72.5% male, mean age 66.8 ± 13.3 years, mean simplified acute physiology score [SAPS II] score 52.9 ± 21.9) were enrolled on transfer to the ICU of a cardiology department. The most common underlying conditions were cardiac diseases (n = 42.5%), respiratory failure (n = 10.8%) and sepsis (n = 6.7%). Blood samples were taken within 12 h of ICU admission. The MMP‑2, MMP‑9, TIMP‑1 and TIMP‑2 levels in plasma were evaluated in terms of 30-day survival, underlying condition and clinical score. Results On ICU admission 30-day survivors had significantly lower plasma MMP‑9 (odds ratio, OR 1.67 per 1 SD; 95% confidence interval, CI 1.10−2.53; p = 0.016) and TIMP‑1 (OR 2.15 per 1 SD; 95% CI 1.27−3.64; p = 0.004) levels than non-survivors; furthermore, MMP‑9 and TIMP‑1 correlated well with SAPS II (both p < 0.01). In patients with underlying cardiac diseases, MMP‑9 (p = 0.002) and TIMP‑1 (p = 0.01) were independent predictors of survival (Cox regression). No significant correlation was found between MMP‑2 and TIMP‑2 levels, MMP/TIMP ratios and 30-day mortality. Conclusion The MMP‑9 and TIMP‑1 levels are significantly elevated in acute critical care settings with increased short-term mortality risk, especially in patients with underlying heart disease. These findings support the value of MMPs and TIMPs as prognostic markers and potential therapeutic targets in conditions leading to systemic inflammation and acute organ failure.
Collapse
Affiliation(s)
- Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Roswitha M Budge-Wolfram
- Division of Angiology; Department of Internal Medicine II, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- International Hospital Development & Hospital Management, Abu Dhabi, United Arab Emirates.
| | - Alexandra C Budinsky
- Department of Laboratory Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Mariam Nikfardjam
- Department of Cardiology and Intensive Care, Wilhelminen Hospital Vienna, Vienna, Austria
| | | | - Angelika Girard
- Department of Laboratory Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Jasminka Godnic-Cvar
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Richard Crevenna
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gottfried Heinz
- Division of Cardiology/Intensive Care Unit 13H3; Department of Internal Medicine II Medical, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
11
|
Abstract
Multiple organ dysfunction syndrome (MODS) is one of the most common syndromes of critical illness and the leading cause of mortality among critically ill patients. Multiple organ dysfunction syndrome is the clinical consequence of a dysregulated inflammatory response, triggered by clinically diverse factors with the main pillar of management being invasive organ support. During the last years, the advances in the clarification of the molecular pathways that trigger, mitigate, and determine the outcome of MODS have led to the increasing recognition of MODS as a distinct disease entity with distinct etiology, pathophysiology, and potential future therapeutic interventions. Given the lack of effective treatment for MODS, its early recognition, the early intensive care unit admission, and the initiation of invasive organ support remain the most effective strategies of preventing its progression and improving outcomes.
Collapse
Affiliation(s)
- Nicholas M Gourd
- Department of Intensive Care Medicine, Derriford Hospital, 6634University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom.,Faculty of Medicine and Dentistry, 6634University of Plymouth, Plymouth, United Kingdom
| | - Nikitas Nikitas
- Department of Intensive Care Medicine, Derriford Hospital, 6634University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| |
Collapse
|
12
|
Gisslen T, Singh G, Georgieff MK. Fetal inflammation is associated with persistent systemic and hippocampal inflammation and dysregulation of hippocampal glutamatergic homeostasis. Pediatr Res 2019; 85:703-710. [PMID: 30745569 PMCID: PMC6435426 DOI: 10.1038/s41390-019-0330-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/29/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inflammation is a major cause of preterm birth and often results in a fetal inflammatory response syndrome (FIRS). Preterm infants with FIRS have a higher childhood incidence of neurodevelopmental disability than preterm infants without FIRS. The mechanisms connecting FIRS to neurodevelopmental disability in formerly preterm infants are not fully understood, but the effect on premature gray matter may have an important role. METHODS Fetal rats were exposed to intra-amniotic (i.a.) LPS 2 days prior to birth to model FIRS. On postnatal day 7, expression of inflammatory mediators was measured in the liver, lung, and brain. Activation of microglia and expression of glutamatergic receptor subunits and transporters were measured in the hippocampus and cortex. RESULTS LPS caused persistent systemic inflammatory mediators gene expression. In the brain, there was corresponding activation of microglia in the hippocampus and cortex. Expression of inflammatory mediators persisted in the hippocampus, but not the cortex, and was associated with altered glutamatergic receptor subunits and transporters. CONCLUSION Hippocampal inflammation and dysregulation of glutamate metabolism persisted well into the postnatal period following i.a. LPS. Poor neurodevelopmental outcomes after FIRS in preterm infants may result in part through glutamatergically driven gray matter injury to the neonatal hippocampus.
Collapse
Affiliation(s)
- Tate Gisslen
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Garima Singh
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Gong H, Sheng X, Xue J, Zhu D. Expression and role of TNIP2 in multiple organ dysfunction syndrome following severe trauma. Mol Med Rep 2019; 19:2906-2912. [PMID: 30720079 DOI: 10.3892/mmr.2019.9893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/30/2018] [Indexed: 11/05/2022] Open
Abstract
Severe trauma can result in secondary multiple organ dysfunction syndrome (MODS) and death. Inflammation response and oxidative stress promote the occurrence and development of MODS. TNFAIP3‑interacting protein 2 (TNIP2), which can repress the activation of nuclear factor‑κB (NF‑κB) and may be involved in MODS progression, has not been studied in regards to MODS. The present study aimed to investigate the expression, role and mechanism of TNIP2 in MODS following severe trauma. The expression level of TNIP2 was initially detected in the blood of patients with MODS using reverse transcription‑quantitative polymerase chain reaction and western blot assay. Then, to investigate the role of TNIP2 in MODS, a MODS rat model was conducted by trauma and the model rats were treated with TNIP2‑plasmid (intraperitoneal injection). Blood levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatine (Cr) and creatine kinase (CK); and tumor necrosis factor α (TNF‑α), high‑mobility group box 1 (HMGB‑1), malondialdehyde (MDA) and total antioxidant capacity (TAC) in the different groups were assessed. In addition, activation of NF‑κB was assessed by detecting the level of phospho‑p65. The results showed that TNIP2 was significantly decreased in the blood of patients with MODS. TNIP2 was also significantly downregulated in the blood and the pulmonary, renal and hepatic tissues of MODS rats. The levels of ALT, AST, LDH, BUN, Cr and CK were markedly increased in the blood of MODS rats, and these increases were inhibited by TNIP2‑plasmid administration. Moreover, blood levels of TNF‑α, HMGB‑1 and MDA were significantly increased in MODS rats, while TAC was notably decreased, and these changes were prevented by TNIP2‑plasmid administration. Furthermore, it was found that activation of NF‑κB induced by MODS was eliminated by TNIP2‑plasmid. In conclusion, the data indicated that TNIP2 is significantly decreased in MODS following severe trauma, and it plays a protective role in MODS development by inhibiting the inflammation response and oxidative stress by preventing NF‑κB activation.
Collapse
Affiliation(s)
- Hui Gong
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaomin Sheng
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianhua Xue
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Dongbo Zhu
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
14
|
Matrix Metalloproteinase-9 and Tissue Inhibitor of Matrix Metalloproteinase-1 in Sepsis after Major Abdominal Surgery. DISEASE MARKERS 2018; 2018:5064684. [PMID: 29861795 PMCID: PMC5976929 DOI: 10.1155/2018/5064684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
Background The role of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in sepsis after major abdominal surgery and sepsis-associated organ dysfunction is unexplored. Materials and Methods Fifty-three patients with sepsis after major abdominal surgery were compared to 50 operated and 50 nonoperated controls. MMP-9, TIMP-1, biomarkers of inflammation, kidney and liver injury, coagulation, and metabolic disorders were measured daily during 96 h following diagnosis of sepsis and once in controls. MMP-9/TIMP-1 ratios and disease severity scores were calculated. Use of vasopressors/inotropes, mechanical ventilation, and survival were recorded. Results Septic patients had lower MMP-9 and MMP-9/TIMP-1 ratios but higher TIMP-1 levels compared to controls. AUC-ROC for diagnosis of sepsis was 0.940 and 0.854 for TIMP-1 and 0.924 and 0.788 for MMP-9/TIMP-1 ratio (sepsis versus nonoperated and sepsis versus operated controls, resp.). Lower MMP-9 and MMP-9/TIMP-1 ratio and higher TIMP-1 levels were associated with shorter survival. MMP-9, TIMP-1, and MMP-9/TIMP-1 ratio correlated with biomarkers of inflammation, kidney and liver injury, coagulation, metabolic disorders, and disease severity scores. Use of vasopressors/inotropes was associated with higher TIMP-1 levels. Conclusions MMP-9, TIMP-1, and MMP-9/TIMP ratio were good diagnostic or prognostic biomarkers of sepsis after major abdominal surgery and were linked to sepsis-associated organ dysfunction.
Collapse
|
15
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
16
|
Abstract
OBJECTIVE To describe new technologies (biomarkers and tests) used to assess and monitor the severity and progression of multiple organ dysfunction syndrome in children as discussed as part of the Eunice Kennedy Shriver National Institute of Child Health and Human Development MODS Workshop (March 26-27, 2015). DATA SOURCES Literature review, research data, and expert opinion. STUDY SELECTION Not applicable. DATA EXTRACTION Moderated by an experienced expert from the field, investigators developing and assessing new technologies to improve the care and understanding of critical illness presented their research and the relevant literature. DATA SYNTHESIS Summary of presentations and discussion supported and supplemented by relevant literature. CONCLUSIONS There are many innovative tools and techniques with the potential application for the assessment and monitoring of severity of multiple organ dysfunction syndrome. If the reliability and added value of these candidate technologies can be established, they hold promise to enhance the understanding, monitoring, and perhaps, treatment of multiple organ dysfunction syndrome in children.
Collapse
|
17
|
Bojic S, Kotur-Stevuljevic J, Kalezic N, Stevanovic P, Jelic-Ivanovic Z, Bilanovic D, Memon L, Damnjanovic M, Kalaba Z, Simic-Ogrizovic S. Diagnostic Value of Matrix Metalloproteinase-9 and Tissue Inhibitor of Matrix Metalloproteinase-1 in Sepsis-Associated Acute Kidney Injury. TOHOKU J EXP MED 2016; 237:103-9. [PMID: 26399271 DOI: 10.1620/tjem.237.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) severely impacts morbidity and mortality in surgical patients with sepsis. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) have an important role in pathophysiology of sepsis but they have been unexplored in SA-AKI. We aimed to investigate the role of MMP-9 and TIMP-1 in septic surgical patients with SA-AKI and to evaluate them as diagnostic biomarkers of SA-AKI. This prospective observational study compared 53 major abdominal surgery patients with sepsis divided into SA-AKI (n = 37) and non-SA-AKI (n =16) group to 50 controls without sepsis matched by age, gender, comorbidities and type of surgery. Blood and urine samples from septic patients were collected on admission to ICU and 24, 48, 72 and 96 h later and once from the controls. The levels of MMP-9, TIMP-1, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1, urea and creatinine were measured. MMP-9/TIMP-1 ratio and disease severity scores, such as Sequential Organ Failure Assessment (SOFA), were calculated. Septic patients with SA-AKI had higher serum TIMP-1 levels and lower serum MMP-9 levels and lower MMP-9/TIMP ratio, compared to septic patients without SA-AKI and controls. The levels of these biomarkers did not change significantly over time. MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio correlated with urea, creatinine, NGAL, and SOFA scores. Moreover, using the area under ROC curve, we showed that TIMP-1 and MMP-9/TIMP-1 ratio, but not MMP-9, were good diagnostic biomarkers of SA-AKI. We report for the first time the potential diagnostic value of TIMP-1 and MMP-9/TIMP-1 ratio in SA-AKI.
Collapse
Affiliation(s)
- Suzana Bojic
- Department of Anaesthesiology, Resuscitation and Intensive Care, Clinical Hospital Center Bezanijska Kosa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Song Z, Zhao X, Liu M, Jin H, Wang L, Hou M, Gao Y. Recombinant human brain natriuretic peptide attenuates trauma-/haemorrhagic shock-induced acute lung injury through inhibiting oxidative stress and the NF-κB-dependent inflammatory/MMP-9 pathway. Int J Exp Pathol 2016; 96:406-13. [PMID: 26852688 DOI: 10.1111/iep.12160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/08/2015] [Indexed: 12/14/2022] Open
Abstract
Acute lung injury (ALI) is one of the most serious complications in traumatic patients and is an important part of multiple organ dysfunction syndrome (MODS). Recombinant human brain natriuretic peptide (rhBNP) is a peptide with a wide range of biological activity. In this study, we investigated local changes in oxidative stress and the NF-κB-dependent matrix metalloproteinase-9 (MMP-9) pathway in rats with trauma/haemorrhagic shock (TH/S)-induced ALI and evaluated the effects of pretreatment with rhBNP. Forty-eight rats were randomly divided into four groups: sham operation group, model group, low-dosage rhBNP group and high-dosage rhBNP group (n = 12 for each group). Oxidative stress and MPO activity were measured by ELISA kits. MMP-9 activity was detected by zymography analysis. NF-κB activity was determined using Western blot assay. With rhBNP pretreatment, TH/S-induced protein leakage, increased MPO activity, lipid peroxidation and metalloproteinase (MMP)-9 activity were inhibited. Activation of antioxidative enzymes was reversed. The phosphorylation of NF-κB and the degradation of its inhibitor IκB were suppressed. The results suggested that the protection mechanism of rhBNP is possibly mediated through upregulation of anti-oxidative enzymes and inhibition of NF-κB activation. More studies are needed to further evaluate whether rhBNP is a suitable candidate as an effective inhaling drug to reduce the incidence of TH/S-induced ALI.
Collapse
Affiliation(s)
- Zhi Song
- Department of Emergency and Critical Care Medicine, The General Hospital of Shenyang Military District, Shenyang, China
| | - Xiu Zhao
- Centralab, School of Stomatology, The Shenyang Medical College, Shenyang, China
| | - Martin Liu
- Pulmonary, Critical Care, Sleep & Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hongxu Jin
- Department of Emergency and Critical Care Medicine, The General Hospital of Shenyang Military District, Shenyang, China
| | - Ling Wang
- Department of Emergency and Critical Care Medicine, The General Hospital of Shenyang Military District, Shenyang, China
| | - Mingxiao Hou
- Department of Emergency and Critical Care Medicine, The General Hospital of Shenyang Military District, Shenyang, China
| | - Yan Gao
- Department of Emergency and Critical Care Medicine, The General Hospital of Shenyang Military District, Shenyang, China
| |
Collapse
|
19
|
Belopolskaya OB, Smelaya TV, Moroz VV, Golubev AM, Salnikova LE. Clinical associations of host genetic variations in the genes of cytokines in critically ill patients. Clin Exp Immunol 2015; 180:531-41. [PMID: 25619315 DOI: 10.1111/cei.12592] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2015] [Indexed: 12/14/2022] Open
Abstract
Host genetic variations may influence a changing profile of biochemical markers and outcome in patients with trauma/injury. The objective of this study was to assess clinical associations of single nucleotide polymorphisms (SNPs) in the genes of cytokines in critically ill patients. A total of 430 patients were genotyped for SNPs in the genes of pro- (IL1B, IL6, IL8) and anti-inflammatory (IL4, IL10, IL13) cytokines. The main end-points were sepsis, mortality and adult respiratory distress syndrome (ARDS). We evaluated the dynamic levels of bilirubin, blood urea nitrogen, creatine kinase, creatinine and lactate dehydrogenase in five points of measurements (between 1 and 14 days after admission) and correlated them with SNPs. High-producing alleles of proinflammatory cytokines protected patients against sepsis (IL1B -511A and IL8 -251A) and mortality (IL1B -511A). High-producing alleles of anti-inflammatory cytokines IL4 -589T and IL13 431A (144Gln) were less frequent in ARDS patients. The carriers of IL6 -174C/C genotypes were prone to the increased levels of biochemical markers and acute kidney and liver insufficiency. Genotype-dependent differences in the levels of biochemical indicators gradually increased to a maximal value on the 14th day after admission. These findings suggest that genetic variability in pro- and anti-inflammatory cytokines may contribute to different clinical phenotypes in patients at high risk of critical illness.
Collapse
Affiliation(s)
- O B Belopolskaya
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - T V Smelaya
- V. A. Negovsky Research Institute of General Reanimatology, Russian Academy of Medical Sciences
| | - V V Moroz
- V. A. Negovsky Research Institute of General Reanimatology, Russian Academy of Medical Sciences
| | - A M Golubev
- V. A. Negovsky Research Institute of General Reanimatology, Russian Academy of Medical Sciences
| | - L E Salnikova
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,V. A. Negovsky Research Institute of General Reanimatology, Russian Academy of Medical Sciences
| |
Collapse
|
20
|
Lingaraju MC, Pathak NN, Begum J, Balaganur V, Ramachandra HD, Bhat RA, Ram M, Singh V, Kandasamy K, Kumar D, Kumar D, Tandan SK. Betulinic acid attenuates renal oxidative stress and inflammation in experimental model of murine polymicrobial sepsis. Eur J Pharm Sci 2015; 70:12-21. [DOI: 10.1016/j.ejps.2015.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/14/2014] [Accepted: 01/05/2015] [Indexed: 01/15/2023]
|
21
|
Stawicki SP, Stoltzfus JC, Aggarwal P, Bhoi S, Bhatt S, Kalra OP, Bhalla A, Hoey BA, Galwankar SC, Paladino L, Papadimos TJ. Academic College of Emergency Experts in India's INDO-US Joint Working Group and OPUS12 Foundation Consensus Statement on Creating A Coordinated, Multi-Disciplinary, Patient-Centered, Global Point-of-Care Biomarker Discovery Network. Int J Crit Illn Inj Sci 2014; 4:200-8. [PMID: 25337481 PMCID: PMC4200545 DOI: 10.4103/2229-5151.141398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biomarker science brings great promise to clinical medicine. This is especially true in the era of technology miniaturization, rapid dissemination of knowledge, and point-of-care (POC) implementation of novel diagnostics. Despite this tremendous progress, the journey from a candidate biomarker to a scientifically validated biomarker continues to be an arduous one. In addition to substantial financial resources, biomarker research requires considerable expertise and a multidisciplinary approach. Investigational designs must also be taken into account, with the randomized controlled trial remaining the “gold standard”. The authors present a condensed overview of biomarker science and associated investigational methods, followed by specific examples from clinical areas where biomarker development and/or implementation resulted in tangible enhancements in patient care. This manuscript also serves as a call to arms for the establishment of a truly global, well-coordinated infrastructure dedicated to biomarker research and development, with focus on delivery of the latest discoveries directly to the patient via point-of-care technology.
Collapse
Affiliation(s)
- Stanislaw P Stawicki
- Department of Research and Innovation, Research Institute, Bethlehem, Pennsylvania ; Department of Research and Innovation, OPUS 12 Foundation Global, Columbus, USA
| | - Jill C Stoltzfus
- Department of Research and Innovation, Research Institute, Bethlehem, Pennsylvania ; Department of Research and Innovation, Research Institute, Bethlehem, Pennsylvania
| | - Praveen Aggarwal
- Department of Emergency Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Bhoi
- Department of Emergency Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Bhatt
- Department of Anesthesiology, University of Toledo, College of Medicine, Toledo, USA
| | - O P Kalra
- Department of Medicine, University College of Medical Sciences, New Delhi, India
| | - Ashish Bhalla
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Brian A Hoey
- Department of Research and Innovation, OPUS 12 Foundation Global, Columbus, USA ; Department of Surgery, St Luke's University Health Network, Bethlehem, Pennsylvania
| | - Sagar C Galwankar
- Department of Research and Innovation, OPUS 12 Foundation Global, Columbus, USA ; Department of Emergency Medicine, University of Florida and Winter Haven Hospital, Florida, USA
| | - Lorenzo Paladino
- Department of Emergency Medicine, SUNY Downstate Medical Center, Long Island College Hospital, New York, USA
| | - Thomas J Papadimos
- Department of Research and Innovation, OPUS 12 Foundation Global, Columbus, USA ; Department of Anesthesiology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
22
|
Rac1 regulates platelet shedding of CD40L in abdominal sepsis. J Transl Med 2014; 94:1054-63. [PMID: 25046439 DOI: 10.1038/labinvest.2014.92] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 01/25/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) regulates platelet shedding of CD40L in abdominal sepsis. However, the signaling mechanisms controlling sepsis-induced shedding of CD40L from activated platelets remain elusive. Rac1 has been reported to regulate diverse functions in platelets; we hypothesized herein that Rac1 might regulate platelet shedding of CD40L in sepsis. The specific Rac1 inhibitor NSC23766 (N6-[2-[[4-(diethylamino)-1-methylbutyl] amino]-6-methyl-4-pyrimidinyl]-2 methyl-4, 6-quinolinediamine trihydrochloride) was administered to mice undergoing cecal ligation and puncture (CLP). Levels of CD40L and MMP-9 in plasma, platelets, and neutrophils were determined by use of ELISA, western blot, and confocal microscopy. Platelet depletion abolished the CLP-induced increase in plasma levels of CD40L. Rac1 activity was significantly increased in platelets from septic animals. Administration of NSC23766 abolished the CLP-induced enhancement of soluble CD40L levels in the plasma. Moreover, Rac1 inhibition completely inhibited proteinase-activated receptor-4-induced surface mobilization and secretion of CD40L in isolated platelets. CLP significantly increased plasma levels of MMP-9 and Rac1 activity in neutrophils. Treatment with NSC23766 markedly attenuated MMP-9 levels in the plasma from septic mice. In addition, Rac1 inhibition abolished chemokine-induced secretion of MMP-9 from isolated neutrophils. Finally, platelet shedding of CD40L was significantly reduced in response to stimulation with supernatants from activated MMP-9-deficient neutrophils compared with supernatants from wild-type neutrophils, indicating a direct role of neutrophil-derived MMP-9 in regulating platelet shedding of CD40L. Our novel data suggest that sepsis-induced platelet shedding of CD40L is dependent on Rac1 signaling. Rac1 controls surface mobilization of CD40L on activated platelets and MMP-9 secretion from neutrophils. Thus, our findings indicate that targeting Rac1 signaling might be a useful way to control pathologic elevations of CD40L in the systemic circulation in abdominal sepsis.
Collapse
|
23
|
Lung matrix metalloproteinase activation following partial hepatic ischemia/reperfusion injury in rats. ScientificWorldJournal 2014; 2014:867548. [PMID: 24592193 PMCID: PMC3921999 DOI: 10.1155/2014/867548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/28/2013] [Indexed: 12/14/2022] Open
Abstract
Purpose. Warm hepatic ischemia-reperfusion (I/R) injury can lead to multiorgan dysfunction. The aim of the present study was to investigate whether acute liver I/R does affect the function and/or structure of remote organs such as lung, kidney, and heart via modulation of extracellular matrix remodelling. Methods. Male Sprague-Dawley rats were subjected to 30 min partial hepatic ischemia by clamping the hepatic artery and the portal vein. After a 60 min reperfusion, liver, lung, kidney, and heart biopsies and blood samples were collected. Serum hepatic enzymes, creatinine, urea, Troponin I and TNF-alpha, and tissue matrix metalloproteinases (MMP-2, MMP-9), myeloperoxidase (MPO), malondialdehyde (MDA), and morphology were monitored. Results. Serum levels of hepatic enzymes and TNF-alpha were concomitantly increased during hepatic I/R. An increase in hepatic MMP-2 and MMP-9 activities was substantiated by tissue morphology alterations. Notably, acute hepatic I/R affect the lung inasmuch as MMP-9 activity and MPO levels were increased. No difference in MMPs and MPO was observed in kidney and heart. Conclusions. Although the underlying mechanism needs further investigation, this is the first study in which the MMP activation in a distant organ is reported; this event is probably TNF-alpha-mediated and the lung appears as the first remote organ to be involved in hepatic I/R injury.
Collapse
|
24
|
|
25
|
Fisher BJ, Kraskauskas D, Martin EJ, Farkas D, Puri P, Massey HD, Idowu MO, Brophy DF, Voelkel NF, Fowler AA, Natarajan R. Attenuation of sepsis-induced organ injury in mice by vitamin C. JPEN J Parenter Enteral Nutr 2013; 38:825-39. [PMID: 23917525 DOI: 10.1177/0148607113497760] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Multiple organ dysfunction syndrome (MODS) is the principal cause of death in patients with sepsis. Recent work supports the notion that parenteral vitamin C (VitC) is protective in sepsis through pleiotropic mechanisms. Whether suboptimal levels of circulating VitC increase susceptibility to sepsis-induced MODS is unknown. MATERIALS AND METHODS Unlike mice, humans lack the ability to synthesize VitC because of loss of L-gulono-γ-lactone oxidase (Gulo), the final enzyme in the biosynthesis of VitC. To examine whether physiological levels of VitC are required for defense against a catastrophic infection, we induced sepsis in VitC sufficient and VitC deficient Gulo(-/-) mice by intraperitoneal infusion of a fecal stem solution (FIP). Some VitC deficient Gulo(-/-) mice received a parenteral infusion of ascorbic acid (AscA, 200 mg/kg) 30 minutes after induction of FIP. We used molecular, histological, and biochemical analyses to assess for MODS as well as abnormalities in the coagulation system and circulating blood cells. RESULTS FIP produced injury to lungs, kidneys and liver (MODS) in VitC deficient Gulo(-/-) mice. MODS was not evident in FIP-exposed VitC sufficient Gulo(-/-) mice and attenuated in VitC deficient Gulo(-/-) mice infused with AscA. Septic VitC deficient Gulo(-/-) mice developed significant abnormalities in the coagulation system and circulating blood cells. These were attenuated by VitC sufficiency/infusion in septic Gulo(-/-) mice. CONCLUSIONS VitC deficient Gulo(-/-) mice were more susceptible to sepsis-induced MODS. VitC sufficiency or parenteral infusion of VitC, following induction of sepsis, normalized physiological functions that attenuated the development of MODS in sepsis.
Collapse
Affiliation(s)
- Bernard J Fisher
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Donatas Kraskauskas
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Erika J Martin
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Daniela Farkas
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Puneet Puri
- Division of Gastroenterology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - H Davis Massey
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael O Idowu
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Donald F Brophy
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Norbert F Voelkel
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Alpha A Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ramesh Natarajan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
26
|
Rahman M, Zhang S, Chew M, Syk I, Jeppsson B, Thorlacius H. Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis. J Thromb Haemost 2013; 11:1385-98. [PMID: 23617547 DOI: 10.1111/jth.12273] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 04/12/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Platelet-derived CD40L is known to regulate neutrophil recruitment and lung damage in sepsis. However, the mechanism regulating shedding of CD40L from activated platelets is not known. We hypothesized that matrix metalloproteinase (MMP)-9 might cleave surface-expressed CD40L and regulate pulmonary accumulation of neutrophils in sepsis. METHODS Abdominal sepsis was induced by cecal ligation and puncture (CLP) in wild-type and MMP-9-deficient mice. Edema formation, CXC chemokine levels, myeloperoxidase levels, neutrophils in the lung and plasma levels of CD40L and MMP-9 were quantified. RESULTS CLP increased plasma levels of MMP-9 but not MMP-2. The CLP-induced decrease in platelet surface CD40L and increase in soluble CD40L levels were significantly attenuated in MMP-9 gene-deficient mice. Moreover, pulmonary myeloperoxidase (MPO) activity and neutrophil infiltration in the alveolar space, as well as edema formation and lung injury, were markedly decreased in septic mice lacking MMP-9. In vitro studies revealed that inhibition of MMP-9 decreased platelet shedding of CD40L. Moreover, recombinant MMP-9 was capable of cleaving surface-expressed CD40L on activated platelets. In human studies, plasma levels of MMP-9 were significantly increased in patients with septic shock as compared with healthy controls, although MMP-9 levels did not correlate with organ injury score. CONCLUSIONS Our novel data propose a role of MMP-9 in regulating platelet-dependent infiltration of neutrophils and tissue damage in septic lung injury by controlling CD40L shedding from platelets. We conclude that targeting MMP-9 may be a useful strategy to limit acute lung injury in abdominal sepsis.
Collapse
Affiliation(s)
- M Rahman
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Storka A, Burian B, Führlinger G, Clive B, Sun T, Crevenna R, Gsur A, Mosgöller W, Wolzt M. VPAC1 receptor expression in peripheral blood mononuclear cells in a human endotoxemia model. J Transl Med 2013; 11:117. [PMID: 23651810 PMCID: PMC3651401 DOI: 10.1186/1479-5876-11-117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/29/2013] [Indexed: 11/17/2022] Open
Abstract
Background Vasoactive intestinal peptide (VIP) exerts immune-modulatory actions mainly via VPAC1 receptor stimulation. VPAC1 may be a treatment target of inflammatory diseases, but little is known about the receptor expression profile in immune-competent cells in vivo. Material and methods 20 male healthy subjects received a single intravenous bolus of 2ng/kg body weight Escherichia coli endotoxin (LPS). Receptor status was evaluated in peripherial blood cells before and 3, 6 and 24 h after LPS by FACS analysis and q-PCR. VIP plasma concentrations were measured by ELISA. Results Granulocytes accounted for 51% of leukocytes at baseline and 58 ± 37% were positive for VPAC1. The granulocyte population increased 2.6 fold after LPS, and a transient down-regulation of VPAC1 to 28 ± 23% was noted at 3 h (p < 0.001), which returned to baseline at 24 hours. Baseline VPAC1 expression was low in lymphocytes (6.3 ± 3.2%) and monocytes (11 ± 9.6%). In these cells, LPS up-regulated VPAC1 at 6 h (13.2 ± 4.9%, p < 0.001) and 24 h (31.6 ± 20.5%, p = 0.001), respectively. Consistent changes were noted for the VIP-receptors VPAC2 and PAC1. VPAC1, VPAC2 and PAC1 mRNA levels were unchanged in peripheral blood mononuclear cells (PBMC). VIP plasma concentration increased from 0.5 ± 0.3 ng/ml to 0.7 ± 0.4 ng/ml at 6 h after LPS (p < 0.05) and returned to baseline within 24 h. Conclusion The time profile of VPAC receptor expression differs in granulocytes, monocytes and lymphocytes after LPS challenge in humans. Changes in circulating VIP concentrations may reflect innate immune responses.
Collapse
Affiliation(s)
- Angela Storka
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|