1
|
Herrera-Uribe J, Convery O, ALmohammadi D, Weinberg FI, Stevenson NJ. The Neglected Suppressor of Cytokine Signalling (SOCS): SOCS4-7. Inflammation 2024:10.1007/s10753-024-02163-7. [PMID: 39460806 DOI: 10.1007/s10753-024-02163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
SOCS proteins are essential for the regulation of oncogenic, anti-pathogenic, and proinflammatory signalling cascades, including the JAK/STAT and NF-kB pathways, where they act as negative feedback regulators. Given their powerful role in a broad spectrum of biological processes, it is surprising that the functions of many SOCS proteins have not been widely explored. While the mechanisms of action of CIS, SOCS1-3 are well-documented, information regarding SOCS4-7 remains limited. However, recent studies have begun to elucidate the regulatory functions of these proteins during infection and disease, such as influenza infection, cancer and diabetes. Therefore, this review aims to describe and discuss studies detailing our current understanding of SOCS4-7, painting a clearer picture of the biological processes these regulatory proteins maintain. Indeed, our review highlights important evidence proving that all SOCS play a role in biological processes that are essential for normal immunological homeostasis, clearance of infection and avoidance of disease. Understanding how SOCS proteins interact with other proteins or how they are dysregulated in disease is likely to provide valuable insights for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Convery
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniah ALmohammadi
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabienne Ingrid Weinberg
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Jafarzadeh A, Jafarzadeh Z, Nemati M, Yoshimura A. The Interplay Between Helicobacter pylori and Suppressors of Cytokine Signaling (SOCS) Molecules in the Development of Gastric Cancer and Induction of Immune Response. Helicobacter 2024; 29:e13105. [PMID: 38924222 DOI: 10.1111/hel.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Sun L, Ke M, Yin M, Zeng Y, Ji Y, Hu Y, Fu S, Zhang C. Extracellular vesicle-encapsulated microRNA-296-3p from cancer-associated fibroblasts promotes ovarian cancer development through regulation of the PTEN/AKT and SOCS6/STAT3 pathways. Cancer Sci 2024; 115:155-169. [PMID: 37972389 PMCID: PMC10823290 DOI: 10.1111/cas.16014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), as important components of the tumor microenvironment, can regulate intercellular communication and tumor development by secreting extracellular vesicles (EVs). However, the role of CAF-derived EVs in ovarian cancer has not been fully elucidated. Here, using an EV-microRNA sequencing analysis, we reveal specific overexpression of microRNA (miR)-296-3p in activated CAF-derived EVs, which can be transferred to tumor cells to regulate the malignant phenotypes of ovarian cancer cells. Moreover, overexpression of miR-296-3p significantly promotes the proliferation, migration, invasion, and drug resistance of ovarian cancer cells in vitro, as well as tumor growth in vivo, while its inhibition has the opposite effects. Further mechanistic studies reveal that miR-296-3p promotes ovarian cancer progression by directly targeting PTEN and SOCS6 and activating AKT and STAT3 signaling pathways. Importantly, increased expression of miR-296-3p encapsulated in plasma EVs is closely correlated with tumorigenesis and chemoresistance in patients with ovarian cancer. Our results highlight the cancer-promoting role of CAF-derived EVs carrying miR-296-3p in ovarian cancer progression for the first time, and suggest that miR-296-3p encapsulated in CAF-derived EVs could be a diagnostic biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Luyao Sun
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
- Department of BiologyHainan Medical UniversityHaikouChina
| | - Miaola Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Mengyuan Yin
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ying Zeng
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yutong Ji
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yiming Hu
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of EducationHarbinChina
| | - Chunyu Zhang
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of EducationHarbinChina
| |
Collapse
|
4
|
Lv Y, Xie X, Zou G, Kong M, Yang J, Chen J, Xiang B. SOCS2 inhibits hepatoblastoma metastasis via downregulation of the JAK2/STAT5 signal pathway. Sci Rep 2023; 13:21814. [PMID: 38071211 PMCID: PMC10710468 DOI: 10.1038/s41598-023-48591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Metastasis of hepatoblastoma (HB) is a key factor that impairs the prognosis and treatment of children. The suppressor of cytokine signaling 2 (SOCS2) is a classical negative feedback protein that regulates cytokine signal transduction and has been known to be downregulated in several tumor, but the molecular mechanisms of its involvement in HB metastasis are unknown. We found that SOCS2 was a gene down-regulated in hepatoblastoma and associated with HB metastasis through bioinformatics. The qRT-PCR, Western blot and IHC showed that SOCS2 was significantly lower in HB tissues. Clinicopathological correlation analysis revealed that low expression of SOCS2 was significantly correlated with tumor metastasis (P = 0.046) and vascular invasion (P = 0.028), associated with poor prognosis. Overexpression of SOCS2 inhibited the migration and invasion of hepatoblastoma cells, while knockdown of SOCS2 expression promoted these malignant phenotypes. In vivo studies revealed overexpression of SOCS2 inhibited the formation of lung metastasis. Up-regulation of SOCS2 in HB cell inhibited EMT and JAK2/STAT5. Conversely, down-regulation of SOCS2 promoted EMT and JAK2/STAT5. The addition of the JAK2 inhibitor Fedratinib partially reversed the effects of si-SOCS2 on HB cells. SOCS2 may inhibit the migration and invasion of HB cells by inhibiting the JAK2/STAT5 signaling pathway. These results may provide guiding significance for the clinical treatment of HB.
Collapse
Affiliation(s)
- Yong Lv
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolong Xie
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guoyou Zou
- Department of General Surgery, People's Hospital of Tibet Autonomous Region, Tibet, 850000, China
| | - Meng Kong
- Department of Pediatric Surgery, Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
| | - Jiayin Yang
- Liver Transplantation Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Xiang
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Coley AK, Lu C, Pankaj A, Emmett MJ, Lang ER, Song Y, Xu KH, Xu N, Patel BK, Chougule A, Nieman LT, Aryee MJ, Ferrone CR, Deshpande V, Franses JW, Ting DT. Dysregulated Repeat Element Viral-like Immune Response in Hepatocellular Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.570014. [PMID: 38105940 PMCID: PMC10723373 DOI: 10.1101/2023.12.04.570014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Purpose Dysregulation of viral-like repeat RNAs are a common feature across many malignancies that are linked with immunological response, but the characterization of these in hepatocellular carcinoma (HCC) is understudied. In this study, we performed RNA in situ hybridization (RNA-ISH) of different repeat RNAs, immunohistochemistry (IHC) for immune cell subpopulations, and spatial transcriptomics to understand the relationship of HCC repeat expression, immune response, and clinical outcomes. Experimental Design RNA-ISH for LINE1, HERV-K, HERV-H, and HSATII repeats and IHC for T-cell, Treg, B-cell, macrophage, and immune checkpoint markers were performed on 43 resected HCC specimens. Spatial transcriptomics on tumor and vessel regions of interest was performed on 28 specimens from the same cohort. Results High HERV-K and high LINE1 expression were both associated with worse overall survival. There was a positive correlation between LINE1 expression and FOXP3 T-regulatory cells (r = 0.51 p < 0.001) as well as expression of the TIM3 immune checkpoint (r = 0.34, p = 0.03). Spatial transcriptomic profiling of HERV-K high and LINE-1 high tumors identified elevated expression of multiple genes previously associated with epithelial mesenchymal transition, cellular proliferation, and worse overall prognosis in HCC including SSX1, MAGEC2, and SPINK1. Conclusion Repeat RNAs may serve as useful prognostic biomarkers in HCC and may also serve as novel therapeutic targets. Additional study is needed to understand the mechanisms by which repeat RNAs impact HCC tumorigenesis.
Collapse
Affiliation(s)
- Avril K. Coley
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital Harvard Medical School; Boston, MA, USA
| | - Chenyue Lu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Health Sciences and Technology Program; Cambridge, MA, USA
| | - Amaya Pankaj
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Matthew J. Emmett
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Evan R. Lang
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Yuhui Song
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Katherine H. Xu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Nova Xu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Bidish K. Patel
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Abhijit Chougule
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Linda T. Nieman
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Martin J. Aryee
- Department of Biostatistics, Harvard T.H. Chan School of Public Health; Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute; Boston, MA, USA
- Broad Institute of Harvard and MIT; Cambridge, MA, USA
| | | | - Vikram Deshpande
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School; Boston, MA, USA
| | - Joseph W. Franses
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
- Health Sciences and Technology Program; Cambridge, MA, USA
- Section of Hematology-Oncology, Department of Medicine, University of Chicago; Chicago, IL, USA
| | - David T. Ting
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
- Health Sciences and Technology Program; Cambridge, MA, USA
| |
Collapse
|
6
|
Ma G, Zeng Y, Zhong W, Zhao X, Wang G, Bie F, Du J. Comprehensive analysis of suppressor of cytokine signaling 2 protein in the malignant transformation of NSCLC. Exp Ther Med 2023; 26:370. [PMID: 37415839 PMCID: PMC10320659 DOI: 10.3892/etm.2023.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/02/2023] [Indexed: 07/08/2023] Open
Abstract
Suppressor of cytokine signaling 2 (SOCS2) plays an essential role in a number of physiological phenomena and functions as a tumor suppressor. Understanding the predictive effects of SOCS2 on non-small cell lung cancer (NSCLC) is urgently needed. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to assess SOCS2 gene expression levels in NSCLC. The clinical significance of SOCS2 was evaluated through Kaplan-Meier curve analysis and the analysis of related clinical factors. Gene Set Enrichment Analysis (GSEA) was used to identify the biological functions of SOCS2. Subsequently proliferation, wound-healing, colony formation and Transwell assays, and carboplatin drug experiments were used for verification. The results revealed that SOCS2 expression was low in the NSCLC tissues of patients in TCGA and GEO database analyses. Downregulated SOCS2 was associated with poor prognosis, as determined by Kaplan-Meier survival analysis (HR 0.61, 95% CI 0.52-0.73; P<0.001). GSEA showed that SOCS2 was involved in intracellular reactions, including epithelial-mesenchymal transition (EMT). Cell experiments indicated that knockdown of SOCS2 caused the malignant progression of NSCLC cell lines. Furthermore, the drug experiment showed that silencing of SOCS2 promoted the resistance of NSCLC cells to carboplatin. In conclusion, low expression of SOCS2 was associated with poor clinical prognosis by effecting EMT and causing drug resistance in NSCLC cell lines. Furthermore, SOCS2 could act as a predictive indicator for NSCLC.
Collapse
Affiliation(s)
- Guoyuan Ma
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yukai Zeng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Weiqing Zhong
- Department of Radiology, The Third Affiliated Hospital of Shandong First Medical University (The Fourth People's Hospital of Jinan), Jinan, Shandong 250031, P.R. China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fenglong Bie
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
7
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Moghbeli M. Molecular mechanisms of microRNA-301a during tumor progression and metastasis. Pathol Res Pract 2023; 247:154538. [PMID: 37209575 DOI: 10.1016/j.prp.2023.154538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cancer is known as one of the leading causes of human deaths globally. Late diagnosis is considered as one of the main reasons for the high mortality rate among cancer patients. Therefore, the introduction of early diagnostic tumor markers can improve the efficiency of therapeutic modalities. MicroRNAs (miRNAs) have a key role in regulation of cell proliferation and apoptosis. MiRNAs deregulation has been frequently reported during tumor progressions. Since, miRNAs have a high stability in body fluids; they can be used as the reliable non-invasive tumor markers. Here, we discussed the role of miR-301a during tumor progressions. MiR-301a mainly functions as an oncogene via the modulation of transcription factors, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. This review paves the way to suggest miR-301a as a non-invasive marker for the early tumor diagnosis. MiR-301a can also be suggested as an effective target in cancer therapy.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Sarraf G, Chhabra R. Emerging role of mRNA methylation in regulating the hallmarks of cancer. Biochimie 2023; 206:61-72. [PMID: 36244577 DOI: 10.1016/j.biochi.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
Abstract
The dynamic chemical modifications of DNA, RNA, and proteins can transform normal cells into malignant ones. While the DNA and protein modifications in cancer have been described extensively in the literature, there are fewer reports about the role of RNA modifications in cancer. There are over 100 forms of RNA modifications and one of these, mRNA methylation, plays a critical role in the malignant properties of the cells. mRNA methylation is a reversible modification responsible for regulating protein expression at the post-transcriptional level. Despite being discovered in the 1970s, a complete understanding of the different proteins involved and the mechanism behind mRNA methylation remains largely unknown. However, these mRNA methylations have been shown to foster cancer hallmarks via specific cellular targets inside the cell. In this review, we provide a brief overview of mRNA methylation and its emerging role in regulating the various hallmarks of cancer.
Collapse
Affiliation(s)
- Gargi Sarraf
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
9
|
Cabrera-Galván JJ, Araujo E, de Mirecki-Garrido M, Pérez-Rodríguez D, Guerra B, Aranda-Tavío H, Guerra-Rodríguez M, Brito-Casillas Y, Melián C, Martínez-Martín MS, Fernández-Pérez L, Recio C. SOCS2 protects against chemical-induced hepatocellular carcinoma progression by modulating inflammation and cell proliferation in the liver. Biomed Pharmacother 2023; 157:114060. [PMID: 36455458 DOI: 10.1016/j.biopha.2022.114060] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/03/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide, but the precise intracellular mechanisms underlying the progression of this inflammation associated cancer are not well established. SOCS2 protein plays an important role in the carcinogenesis of different tumors by regulating cytokine signalling through the JAK/STAT axis. However, its role in HCC is unclear. Here, we investigate the role of SOCS2 in HCC progression and its potential as HCC biomarker. The effects of SOCS2 in HCC progression were evaluated in an experimental model of diethylnitrosamine (DEN)-induced HCC in C57BL/6 and SOCS2 deficient mice, in cultured hepatic cells, and in liver samples from HCC patients. Mice lacking SOCS2 showed higher liver tumor burden with increased malignancy grade, inflammation, fibrosis, and proliferation than their controls. Protein and gene expression analysis reported higher pSTAT5 and pSTAT3 activation, upregulation of different proteins involved in survival and proliferation, and increased levels of proinflammatory and pro-tumoral mediators in the absence of SOCS2. Clinically relevant, downregulated expression of SOCS2 was found in neoplasia from HCC patients compared to healthy liver tissue, correlating with the malignancy grade. In summary, our data show that lack of SOCS2 increases susceptibility to chemical-induced HCC and suggest the tumor suppressor role of this protein by regulating the oncogenic and inflammatory responses mediated by STAT5 and STAT3 in the liver. Hence, SOCS2 emerges as an attractive target molecule and potential biomarker to deepen in the study of HCC treatment.
Collapse
Affiliation(s)
- Juan José Cabrera-Galván
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain; Departamento Morfología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Eduardo Araujo
- Departamento Morfología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Mercedes de Mirecki-Garrido
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - David Pérez-Rodríguez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Borja Guerra
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain and Instituto de Investigaciones Biomédicas "Alberto Sols" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Haidée Aranda-Tavío
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Miguel Guerra-Rodríguez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Carlos Melián
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - María Soledad Martínez-Martín
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain; Departamento Morfología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain; Servicio Anatomía Patológica, Complejo Hospitalario Universitario Insular - Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain and Instituto de Investigaciones Biomédicas "Alberto Sols" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
10
|
SOCS2 regulation of growth hormone signaling requires a canonical interaction with phosphotyrosine. Biosci Rep 2022; 42:232115. [PMID: 36398696 DOI: 10.1042/bsr20221683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS) 2 is the critical negative regulator of growth hormone (GH) and prolactin signaling. Mice lacking SOCS2 display gigantism with increased body weight and length, and an enhanced response to GH treatment. Here, we characterized mice carrying a germ-line R96C mutation within the SOCS2-SH2 domain, which disrupts the ability of SOCS2 to interact with tyrosine-phosphorylated targets. Socs2R96C/R96C mice displayed a similar increase in growth as previously observed in SOCS2 null (Socs2-/-) mice, with a proportional increase in body and organ weight, and bone length. Embryonic fibroblasts isolated from Socs2R96C/R96C and Socs2-/- mice also showed a comparable increase in phosphorylation of STAT5 following GH stimulation, indicating the critical role of phosphotyrosine binding in SOCS2 function.
Collapse
|
11
|
Drobna‐Śledzińska M, Maćkowska‐Maślak N, Jaksik R, Kosmalska M, Szarzyńska B, Lejman M, Sędek Ł, Szczepański T, Taghon T, Van Vlierberghe P, Witt M, Dawidowska M. Multiomics to investigate the mechanisms contributing to repression of PTPRC and SOCS2 in pediatric T-ALL: Focus on miR-363-3p and promoter methylation. Genes Chromosomes Cancer 2022; 61:720-733. [PMID: 35778917 PMCID: PMC9796420 DOI: 10.1002/gcc.23085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous and aggressive malignancy arising from T-cell precursors. MiRNAs are implicated in negative regulation of gene expression and when aberrantly expressed contribute to various cancer types, including T-ALL. Previously we demonstrated the oncogenic potential of miR-363-3p overexpression in a subgroup of T-ALL patients. Here, using combined proteomic and transcriptomic approaches, we show that miR-363-3p enhances cell growth of T-ALL in vitro via inhibition of PTPRC and SOCS2, which are implicated in repression of the JAK-STAT pathway. We propose that overexpression of miR-363-3p is a novel mechanism potentially contributing to overactivation of JAK-STAT pathway. Additionally, by combining the transcriptomic and methylation data of T-ALL patients, we show that promoter methylation may also contribute to downregulation of SOCS2 expression and thus potentially to JAK-STAT activation. In conclusion, we highlight aberrant miRNA expression and aberrant promoter methylation as mechanisms, alternative to mutations of JAK-STAT-related genes, which might lead to the upregulation of JAK-dependent signaling in T-ALL.
Collapse
Affiliation(s)
| | | | - Roman Jaksik
- Department of Systems Biology and EngineeringSilesian University of TechnologyGliwicePoland
| | - Maria Kosmalska
- Institute of Human Genetics Polish Academy of SciencesPoznańPoland
| | - Bronisława Szarzyńska
- Institute of Human Genetics Polish Academy of SciencesPoznańPoland,Polish Stem Cells BankWarsawPoland
| | - Monika Lejman
- Laboratory of Genetic DiagnosticsMedical University of LublinLublinPoland
| | - Łukasz Sędek
- Department of Microbiology and ImmunologyZabrze, Medical University of Silesia in KatowiceZabrzePoland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and OncologyMedical University of Silesia in KatowiceZabrzePoland
| | - Tom Taghon
- Department of Diagnostic SciencesGhent UniversityGhentBelgium,Cancer Research Institute GhentGhentBelgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute GhentGhentBelgium,Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Michał Witt
- Institute of Human Genetics Polish Academy of SciencesPoznańPoland
| | | |
Collapse
|
12
|
A comprehensive analysis of avian lymphoid leukosis-like lymphoma transcriptomes including identification of LncRNAs and the expression profiles. PLoS One 2022; 17:e0272557. [PMID: 35939448 PMCID: PMC9359530 DOI: 10.1371/journal.pone.0272557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Avian lymphoid leukosis-like (LL-like) lymphoma has been observed in some experimental and commercial lines of chickens that are free of exogenous avian leukosis virus. Reported cases of avian lymphoid leukosis-like lymphoma incidences in the susceptible chickens are relatively low, but the apathogenic subgroup E avian leukosis virus (ALV-E) and the Marek’s disease vaccine, SB-1, significantly escalate the disease incidence in the susceptible chickens. However, the underlying mechanism of tumorigenesis is poorly understood. In this study, we bioinformatically analyzed the deep RNA sequences of 6 lymphoid leukosis-like lymphoma samples, collected from susceptible chickens post both ALV-E and SB-1 inoculation, and identified a total of 1,692 novel long non-coding RNAs (lncRNAs). Thirty-nine of those novel lncRNAs were detected with altered expression in the LL-like tumors. In addition, 13 lncRNAs whose neighboring genes also showed differentially expression and 2 conserved novel lncRNAs, XLOC_001407 and XLOC_022595, may have previously un-appreciated roles in tumor development in human. Furthermore, 14 lncRNAs, especially XLOC_004542, exhibited strong potential as competing endogenous RNAs via sponging miRNAs. The analysis also showed that ALV subgroup E viral gene Gag/Gag-pol and the MD vaccine SB-1 viral gene R-LORF1 and ORF413 were particularly detectable in the LL-like tumor samples. In addition, we discovered 982 novel lncRNAs that were absent in the current annotation of chicken genome and 39 of them were aberrantly expressed in the tumors. This is the first time that lncRNA signature is identified in avian lymphoid leukosis-like lymphoma and suggests the epigenetic factor, lncRNA, is involved with the avian lymphoid leukosis-like lymphoma formation and development in susceptible chickens. Further studies to elucidate the genetic and epigenetic mechanisms underlying the avian lymphoid leukosis-like lymphoma is indeed warranted.
Collapse
|
13
|
Masuzaki R, Kanda T, Sasaki R, Matsumoto N, Nirei K, Ogawa M, Karp SJ, Moriyama M, Kogure H. Suppressors of Cytokine Signaling and Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:2549. [PMID: 35626153 PMCID: PMC9139988 DOI: 10.3390/cancers14102549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022] Open
Abstract
Cytokines are secreted soluble glycoproteins that regulate cellular growth, proliferation, and differentiation. Suppressors of cytokine signaling (SOCS) proteins negatively regulate cytokine signaling and form a classical negative feedback loop in the signaling pathways. There are eight members of the SOCS family. The SOCS proteins are all comprised of a loosely conserved N-terminal domain, a central Src homology 2 (SH2) domain, and a highly conserved SOCS box at the C-terminus. The role of SOCS proteins has been implicated in the regulation of cytokines and growth factors in liver diseases. The SOCS1 and SOCS3 proteins are involved in immune response and inhibit protective interferon signaling in viral hepatitis. A decreased expression of SOCS3 is associated with advanced stage and poor prognosis of patients with hepatocellular carcinoma (HCC). DNA methylations of SOCS1 and SOCS3 are found in HCC. Precise regulation of liver regeneration is influenced by stimulatory and inhibitory factors after partial hepatectomy (PH), in particular, SOCS2 and SOCS3 are induced at an early time point after PH. Evidence supporting the important role of SOCS signaling during liver regeneration also supports a role of SOCS signaling in HCC. Immuno-oncology drugs are now the first-line therapy for advanced HCC. The SOCS can be potential targets for HCC in terms of cell proliferation, cell differentiation, and immune response. In this literature review, we summarize recent findings of the SOCS family proteins related to HCC and liver diseases.
Collapse
Affiliation(s)
- Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Reina Sasaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Naoki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Kazushige Nirei
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Seth J. Karp
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| | - Hirofumi Kogure
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (K.N.); (M.O.); (M.M.); (H.K.)
| |
Collapse
|
14
|
Zhang L, Zhao Y, Guan H, Zhang D. HnRNPU-AS1 inhibits the proliferation, migration and invasion of HCC cells and induces autophagy through miR-556-3p/ miR-580-3p/SOCS6 axis. Cancer Biomark 2022; 34:443-457. [PMID: 35275521 DOI: 10.3233/cbm-210261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Long non-coding RNAs have drawn increasing research interest in cancer biology. This study aims to investigate the function roles and the underlying mechanism of HnRNPU-AS1 in Hepatocellular carcinoma (HCC). METHODS qRT-PCR was performed to detect the expression levels of HnRNPU-AS1, miR-556-3p, miR-580-3p in HCC tissues and cell lines. Western blot was used to determine protein levels of LC3-II, LC3-I, Beclin-1, P62, and SOCS6. Functional assays including CCK8 assay, colony formation assay, wound healing assay, Transwell assay were performed to evaluate the role of HnRNPU-AS1 in regulating the malignant phenotype of HCC cells. Dual luciferase reporter assay and RNA pull-down experiment were used to examined the RNA-RNA interaction. RESULTS HnRNPU-AS1 expression was decreased in HCC tissues and cell lines, which was associated with poor prognosis in HCC patients. Overexpression of HnRNPU-AS1 could inhibit the proliferation, migration, invasion but promote autophagy in HCC cells. Two miRNAs (miR-556-3p and miR-580-3p) were identified as potential targets of HnRNPU-AS1 in lncBASE database, which were significantly upregulated in HCC tissues and cell lines. Cell experiments demonstrated the effects of HnRNPU-AS1 overexpression could be attenuated by miR-556-3p or miR-580-3p overexpression. We further revealed that SOX6 was the downstream target of HnRNPU-AS1/miR-556-3p or miR-580-3p axis. Xenograft mouse model validated the tumor-suppressor role of HnRNPU-AS1 overexpression in vivo. CONCLUSIONS This study demonstrated the tumor suppressor function of HnRNPU-AS1 in HCC and identified the downstream molecules underlying its tumor suppressor function. Our results suggest that HnRNPU-AS1 suppresses HCC by targeting miR-556-3p and miR-580-3p/SOXS6 axis.
Collapse
|
15
|
Zhi Y, Huang S, Lina Z. Suppressor of Cytokine Signaling 6 in cancer development and therapy: deciphering its emerging and suppressive roles. Cytokine Growth Factor Rev 2022; 64:21-32. [DOI: 10.1016/j.cytogfr.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
|
16
|
Li D, Zhou T, Li Y, Xu Y, Cheng X, Chen J, Zheng WV. LINC02362 attenuates hepatocellular carcinoma progression through the miR-516b-5p/ SOSC2 axis. Aging (Albany NY) 2022; 14:368-388. [PMID: 34990401 PMCID: PMC8791201 DOI: 10.18632/aging.203813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most death-related cancers worldwide. Identifying cancer-associated genes and uncovering the vital molecular mechanisms of HCC progression contribute greatly to the prognosis and novel therapeutic strategies for HCC patients. Although lncRNAs have been proved to be critical modulators of various cellular processes, the functions of lncRNAs in HCC progression are just emerging. Here, we found that a long non-coding RNA (lncRNA) named LINC02362, whose biological effects have yet been unveiled in cancers, was associated with a better prognosis in patients with HCC. Gain-of-function analyses showed that LINC02362 inhibited the survival, migration, invasion and epithelial-to-mesenchymal transition (EMT) of HCC cells. Moreover, miR-516b-5p was enriched as a target of LINC02362, which functioned as a sponge to regulate the endogenous levels of miR-516b-5p. Furthermore, we confirmed that SOSC2 served as a downstream target gene which was negatively controlled by miR-516b-5p. Importantly, a series of rescue experiments indicated that the tumor-suppressive effects of LINC02362 were achieved through the modulation of the miR-516b-5p/SOSC2 axis. In summary, we identified LINC02362 as a candidate tumor-inhibitory lncRNA that might serve as a biomarker for the prognosis of HCC and a promising therapeutic agent for patients with HCC.
Collapse
Affiliation(s)
- Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China.,Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Wei V Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| |
Collapse
|
17
|
Ouyang J, An T, Wang Y, Lu X, Zhang Y, Wang X, Zhang X, Zhang C. Down-regulation of SOCS6: an unfavorable prognostic factor for gastrointestinal stromal tumor proven by survival analysis. Diagn Pathol 2021; 16:113. [PMID: 34895274 PMCID: PMC8667422 DOI: 10.1186/s13000-021-01172-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/20/2021] [Indexed: 12/21/2022] Open
Abstract
Background Many studies reporting that down-regulation of SOCS6 plays vital roles in promoting progression of malignant tumors have been published. The present study was performed to evaluate whether SOCS6 was significantly associated with prognosis of GIST patients. Methods Immunohistochemical staining was accomplished to evaluate the expression levels of SOCS6 among GIST patients. The impacts of SOCS6 expression on overall survival (OS) and recurrence-free survival (RFS) of GIST patients were assessed by Cox proportional hazard regression model analysis and Kaplan-Meier curve analysis. Results It was demonstrated that the expression level of SOCS6 was significantly associated with tumor size (P=0.001). Then according to Kaplan-Meier curve analysis, low expression of SOCS6 was significantly correlated with worse OS and RFS of GIST patients. Ultimately, it was revealed by Cox proportional regression model analysis that low expression of SOCS6 was an independent predictive factor for OS and RFS. Conclusions Low expression of SOCS6 was an independent prognostic factor for GIST, suggesting its potential as a novel biomarker predicting survival of GIST patients.
Collapse
Affiliation(s)
- Jun Ouyang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China
| | - Tailai An
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Guangdong, Shenzhen, China
| | - Yan Wang
- Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yawei Zhang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China
| | - Xiaokun Wang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China.
| | - Changhua Zhang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.
| |
Collapse
|
18
|
Linossi EM, Li K, Veggiani G, Tan C, Dehkhoda F, Hockings C, Calleja DJ, Keating N, Feltham R, Brooks AJ, Li SS, Sidhu SS, Babon JJ, Kershaw NJ, Nicholson SE. Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands. Nat Commun 2021; 12:7032. [PMID: 34857742 PMCID: PMC8640019 DOI: 10.1038/s41467-021-26983-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS)2 protein is a key negative regulator of the growth hormone (GH) and Janus kinase (JAK)-Signal Transducers and Activators of Transcription (STAT) signaling cascade. The central SOCS2-Src homology 2 (SH2) domain is characteristic of the SOCS family proteins and is an important module that facilitates recognition of targets bearing phosphorylated tyrosine (pTyr) residues. Here we identify an exosite on the SOCS2-SH2 domain which, when bound to a non-phosphorylated peptide (F3), enhances SH2 affinity for canonical phosphorylated ligands. Solution of the SOCS2/F3 crystal structure reveals F3 as an α-helix which binds on the opposite side of the SH2 domain to the phosphopeptide binding site. F3:exosite binding appears to stabilise the SOCS2-SH2 domain, resulting in slower dissociation of phosphorylated ligands and consequently, enhances binding affinity. This biophysical enhancement of SH2:pTyr binding affinity translates to increase SOCS2 inhibition of GH signaling.
Collapse
Affiliation(s)
- Edmond M Linossi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Cyrus Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Farhad Dehkhoda
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Colin Hockings
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Dale J Calleja
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, Woolloongabba, QLD, 4102, Australia
| | - Shawn S Li
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Sachdev S Sidhu
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Keewan E, Matlawska-Wasowska K. The Emerging Role of Suppressors of Cytokine Signaling (SOCS) in the Development and Progression of Leukemia. Cancers (Basel) 2021; 13:4000. [PMID: 34439155 PMCID: PMC8393695 DOI: 10.3390/cancers13164000] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are pleiotropic signaling molecules that execute an essential role in cell-to-cell communication through binding to cell surface receptors. Receptor binding activates intracellular signaling cascades in the target cell that bring about a wide range of cellular responses, including induction of cell proliferation, migration, differentiation, and apoptosis. The Janus kinase and transducers and activators of transcription (JAK/STAT) signaling pathways are activated upon cytokines and growth factors binding with their corresponding receptors. The SOCS family of proteins has emerged as a key regulator of cytokine signaling, and SOCS insufficiency leads to constitutive activation of JAK/STAT signaling and oncogenic transformation. Dysregulation of SOCS expression is linked to various solid tumors with invasive properties. However, the roles of SOCS in hematological malignancies, such as leukemia, are less clear. In this review, we discuss the recent advances pertaining to SOCS dysregulation in leukemia development and progression. We also highlight the roles of specific SOCS in immune cells within the tumor microenvironment and their possible involvement in anti-tumor immunity. Finally, we discuss the epigenetic, genetic, and post-transcriptional modifications of SOCS genes during tumorigenesis, with an emphasis on leukemia.
Collapse
Affiliation(s)
- Esra’a Keewan
- Department of Pediatrics, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ksenia Matlawska-Wasowska
- Department of Pediatrics, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
20
|
Sun M, Tang C, Liu J, Jiang W, Yu H, Dong F, Huang C, Rixiati Y. Comprehensive analysis of suppressor of cytokine signaling proteins in human breast Cancer. BMC Cancer 2021; 21:696. [PMID: 34120621 PMCID: PMC8201682 DOI: 10.1186/s12885-021-08434-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background Abnormal expression of suppressor of cytokine signaling (SOCS) proteins regulates tumor angiogenesis and development in cancers. In this study, we aimed to perform a comprehensive bioinformatic analysis of SOCS proteins in breast invasive carcinoma (BRCA). Methods The gene expression, methylation level, copy number, protein expression and patient survival data related to SOCS family members in BRCA patients were obtained from the following databases: Oncomine, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA), PCViz, cBioPortal and Kaplan-Meier plotter. Correlation analyses, identification of interacting genes and construction of regulatory networks were performed by functional and pathway enrichment analyses, weighted gene coexpression network analysis (WGCNA) and gene set enrichment analysis (GSEA). Results Data related to 1109 BRCA tissues and 113 normal breast tissue samples were extracted from the TCGA database. SOCS2 and SOCS3 exhibited significantly lower mRNA expression levels in BRCA tissues than in normal tissues. BRCA patients with high mRNA levels of SOCS3 (p < 0.01) and SOCS4 (p < 0.05) were predicted to have significantly longer overall survival (OS) times. Multivariate analysis showed that SOCS3 was an independent prognostic factor for OS. High mRNA expression levels of SOCS2 (p < 0.001), SOCS3 (p < 0.001), and SOCS4 (p < 0.01), and a low expression level of SOCS5 (p < 0.001) were predicted to be significantly associated with better recurrence-free survival (RFS). Multivariate analysis showed that SOCS2 was an independent prognostic factor for RFS. Lower expression levels of SOCS2 and SOCS3 were observed in patients with tumors of more advanced clinical stage (p < 0.05). Functional and pathway enrichment analyses, together with WGCNA and GSEA, showed that SOCS3 and its interacting genes were significantly involved in the JAK-STAT signaling pathway, suggesting that JAK-STAT signaling might play a critical role in BRCA angiogenesis and development. Western blot results showed that overexpression of SOCS3 inhibited the activity of the JAK-STAT signaling pathway in vitro. Conclusions SOCS family proteins play a very important role in BRCA. SOCS3 may be a prognostic factor and SOCS2 may be a potential therapeutic target in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08434-y.
Collapse
Affiliation(s)
- Mingyu Sun
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Chuangang Tang
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Jun Liu
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, 200433, China
| | - Haifeng Yu
- Department of General Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Fang Dong
- Department of Vascular Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, 200433, China
| | - Youlutuziayi Rixiati
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, China.
| |
Collapse
|
21
|
HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development. Cancers (Basel) 2021; 13:cancers13102485. [PMID: 34069740 PMCID: PMC8161081 DOI: 10.3390/cancers13102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary According to the last estimate by the World Health Organization (WHO), more than 71 million individuals have chronic hepatitis C worldwide. The persistence of HCV infection leads to chronic hepatitis, which can evolve into liver cirrhosis and ultimately into hepatocellular carcinoma (HCC). Although the pathogenic mechanisms are not fully understood, it is well established that an interplay between host cell factors, including microRNAs (miRNA), and viral components exist in all the phases of the viral infection and replication. Those interactions establish a complex equilibrium between host cells and HCV and participate in multiple mechanisms characterizing hepatitis C pathogenesis. The present review aims to describe the role of HCV structural and non-structural proteins in the modulation of cellular miRNA during HCV infection and pathogenesis. Abstract Hepatitis C virus (HCV) genome encodes for one long polyprotein that is processed by cellular and viral proteases to generate 10 polypeptides. The viral structural proteins include the core protein, and the envelope glycoproteins E1 and E2, present at the surface of HCV particles. Non-structural (NS) proteins consist of NS1, NS2, NS3, NS4A, NS4B, NS5a, and NS5b and have a variable function in HCV RNA replication and particle assembly. Recent findings evidenced the capacity of HCV virus to modulate host cell factors to create a favorable environment for replication. Indeed, increasing evidence has indicated that the presence of HCV is significantly associated with aberrant miRNA expression in host cells, and HCV structural and non-structural proteins may be responsible for these alterations. In this review, we summarize the recent findings on the role of HCV structural and non-structural proteins in the modulation of host cell miRNAs, with a focus on the molecular mechanisms responsible for the cell re-programming involved in viral replication, immune system escape, as well as the oncogenic process. In this regard, structural and non-structural proteins have been shown to modulate the expression of several onco-miRNAs or tumor suppressor miRNAs.
Collapse
|
22
|
Sivasudhan E, Blake N, Lu ZL, Meng J, Rong R. Dynamics of m6A RNA Methylome on the Hallmarks of Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:642443. [PMID: 33869193 PMCID: PMC8047153 DOI: 10.3389/fcell.2021.642443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Epidemiological data consistently rank hepatocellular carcinoma (HCC) as one of the leading causes of cancer-related deaths worldwide, often posing severe economic burden on health care. While the molecular etiopathogenesis associated with genetic and epigenetic modifications has been extensively explored, the biological influence of the emerging field of epitranscriptomics and its associated aberrant RNA modifications on tumorigenesis is a largely unexplored territory with immense potential for discovering new therapeutic approaches. In particular, the underlying cellular mechanisms of different hallmarks of hepatocarcinogenesis that are governed by the complex dynamics of m6A RNA methylation demand further investigation. In this review, we reveal the up-to-date knowledge on the mechanistic and functional link between m6A RNA methylation and pathogenesis of HCC.
Collapse
Affiliation(s)
- Enakshi Sivasudhan
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil Blake
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zhi-Liang Lu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rong Rong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
23
|
Li M, Zha X, Wang S. The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021; 1875:188522. [PMID: 33545295 DOI: 10.1016/j.bbcan.2021.188522] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/25/2022]
Abstract
In recent years, the most widely distributed eukaryotic messenger RNA (mRNA) modification, N6-methyladenosine (m6A), has received a large amount of interest, in part due to the development and advances of high-throughput RNA sequencing. The effects of m6A mRNA on tumor progression have been the most widely studied, and large amounts of conflicting data have been reported due to differences in tumor contexts, cell types or cell states. The majority of these studies were related to the significance of m6A mRNA on tumor cells, including on proliferation, stemness, invasion capability, etc. However, it has been noted that tumorigenesis and tumor progression cannot occur without support from the tumor microenvironment (TME), which contains multiple types of stromal cells, such as infiltrating immune cells (IICs), vascular cells, mesenchymal stem cells (MSCs), cancer-associated fibroblasts (CAFs), and various environmental factors. Here, we summarized the contributions of abnormal m6A mRNA in stromal cells within the TME and described the effects of m6A mRNA on TME remodeling.
Collapse
Affiliation(s)
- Min Li
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuan Zha
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
24
|
Bai Q, Liu H, Guo H, Lin H, Song X, Jin Y, Liu Y, Guo H, Liang S, Song R, Wang J, Qu Z, Guo H, Jiang H, Liu L, Yang H. Identification of Hub Genes Associated With Development and Microenvironment of Hepatocellular Carcinoma by Weighted Gene Co-expression Network Analysis and Differential Gene Expression Analysis. Front Genet 2020; 11:615308. [PMID: 33414813 PMCID: PMC7783465 DOI: 10.3389/fgene.2020.615308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
A further understanding of the molecular mechanism of hepatocellular carcinoma (HCC) is necessary to predict a patient's prognosis and develop new targeted gene drugs. This study aims to identify essential genes related to HCC. We used the Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene expression analysis to analyze the gene expression profile of GSE45114 in the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas database (TCGA). A total of 37 overlapping genes were extracted from four groups of results. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses were performed on the 37 overlapping genes. Then, we used the STRING database to map the protein interaction (PPI) network of 37 overlapping genes. Ten hub genes were screened according to the Maximal Clique Centrality (MCC) score using the Cytohubba plugin of Cytoscape (including FOS, EGR1, EPHA2, DUSP1, IGFBP3, SOCS2, ID1, DUSP6, MT1G, and MT1H). Most hub genes show a significant association with immune infiltration types and tumor stemness of microenvironment in HCC. According to Univariate Cox regression analysis and Kaplan-Meier survival estimation, SOCS2 was positively correlated with overall survival (OS), and IGFBP3 was negatively correlated with OS. Moreover, the expression of IGFBP3 increased with the increase of the clinical stage, while the expression of SOCS2 decreased with the increase of the clinical stage. In conclusion, our findings suggest that SOCS2 and IGFBP3 may play an essential role in the development of HCC and may serve as a potential biomarker for future diagnosis and treatment.
Collapse
Affiliation(s)
- Qingquan Bai
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoling Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Guo
- Department of Medical Administration, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Lin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuan Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ye Jin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongrui Guo
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuhang Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruipeng Song
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhibo Qu
- Department of Pediatric Surgery, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huaxin Guo
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiyan Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Zhou A, Liu H, Tang B. Comprehensive Evaluation of Endocytosis-Associated Protein SCAMP3 in Hepatocellular Carcinoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:415-426. [PMID: 33116758 PMCID: PMC7548866 DOI: 10.2147/pgpm.s270062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Background Secretory carrier membrane proteins 3 (SCAMP3) is an endocytosis-associated protein involved in regulating endosomal pathways and the trafficking of vital signaling receptors. This study aimed to comprehensively assess the role of SCAMP3 in hepatocellular carcinoma (HCC) by integrated bioinformatics analysis. Methods In this study, bioinformatics databases were used to explore the differential expression status and prognostic value of SCAMP3 gene in HCC, and bioinformatics analyses of survival data and interactors of SCAMP3 were conducted to predict the prognostic value of SCAMP3 in HCC. Results Using the TCGA data, our data shows that SCAMP3 mRNA expression is most significantly different between liver and hepatocellular carcinoma tissues and higher expression of SCAMP3 has unfavorable prognostic significance in HCC. Tumor grade, stage, and gender also showed a significant relevance with SCAMP3 expression. High SCAMP3 expression of males revealed significantly poorer survival and progression compared with low SCAMP3 expression of males. BioGRID statistics explores 79 unique interactions with SCAMP3 and multiple post translational modifications. Further analysis finds that SOCS2 may negatively correlate with SCAMP3, while GBA, MX1, and DDOST positively correlate with SCAMP3. Moreover, ncRNA analysis shows that SCAMP3 gene expression is positively associated with lncRNA SBF2-AS1 and negatively related with Has-miR-145. The expressions of SBF2-AS1 and Has-miR-145 are also significantly related with survival in HCC. Discussion SCAMP3 expression can be affected by multiple genes or ncRNAs expression that are associated with survival, thus suggesting that SCAMP3 can be used as a clinical diagnosis and prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Ao Zhou
- Basic Medical College, Southwest Medical University, Luzhou 646100, People's Republic of China
| | - Hongjing Liu
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646100, People's Republic of China
| | - Bin Tang
- Basic Medical College, Southwest Medical University, Luzhou 646100, People's Republic of China.,Key Laboratory of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin 644000, People's Republic of China
| |
Collapse
|
26
|
Shi L, Shang X, Nie K, Lin Z, Zheng M, Wang M, Yuan H, Zhu Z. Identification of potential crucial genes associated with the pathogenesis and prognosis of liver hepatocellular carcinoma. J Clin Pathol 2020; 74:504-512. [PMID: 33004423 DOI: 10.1136/jclinpath-2020-206979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
AIMS Liver hepatocellular carcinoma (LIHC) is the main manifestation of primary liver cancer, with low survival rate and poor prognosis. Medical decision-making process of LIHC is so complex that new biomarkers for diagnosis and prognosis have yet to be explored, this study aimed to identify the genes involved in the pathophysiology of LIHC and biomarkers that can be used to predict the prognosis of LIHC. METHODS Six Gene Expression Omnibus (GEO) datasets selected from GEO were screened and integrated to find out the differential expression genes (DEGs) obtained from LIHC and normal hepatic tissues. The Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis of DEGs was implemented by DAVID. The Protein-protein interaction network was performed via STRING. In addition, Cox regression model was used to construct a gene prognostic signature. RESULTS We ascertained 10 hub genes, nine of them (CDK1, CDC20, CCNB1, Thymidylate synthetase, Nuclear division cycle80, NUF2, MAD2L1, CCNA2 and BIRC5) as biomarkers of progression in LIHC patients. We also build a six gene prognosis signature (SOCS2, GAS2L3, NLRP5, TAF3, UTP11 and GAGE2A), which can be implemented to predict over survival effectively. CONCLUSIONS We revealed promising genes that may participate in the pathophysiology of LIHC, and found available biomarkers for LIHC prognosis prediction, which were significant for researchers to further understand the molecular basis of LIHC and direct the synthesis medicine of LIHC.
Collapse
Affiliation(s)
- Laner Shi
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Shang
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kechao Nie
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiqin Lin
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Meisi Zheng
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Miao Wang
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haoyu Yuan
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhangzhi Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Zhang Q, Guan F, Fan T, Li S, Ma S, Zhang Y, Guo W, Liu H. LncRNA WDFY3-AS2 suppresses proliferation and invasion in oesophageal squamous cell carcinoma by regulating miR-2355-5p/SOCS2 axis. J Cell Mol Med 2020; 24:8206-8220. [PMID: 32536038 PMCID: PMC7348145 DOI: 10.1111/jcmm.15488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/09/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) widely participate in ESCC development and progression; however, the prognostic factors and therapeutic strategies implicated in ESCC development and progression remain to be under investigation. The purpose of the current study was to explore whether WDFY3‐AS2 may be a potential prognostic factor and investigate its biological functions in ESCC. Here, WDFY3‐AS2 was frequently down‐regulated in ESCC tissues and cells, and its expression was correlated with TNM stage, lymph node metastasis and poor prognosis of ESCC patients. Moreover, WDFY3‐AS2 down‐regulation significantly promoted cell proliferation and invasion, whereas WDFY3‐AS2 up‐regulation markedly suppressed cell proliferation and invasion in ESCC EC9706 and TE1 cells, coupled with EMT phenotype alterations. WDFY3‐AS2 functioned as a competing endogenous RNA (ceRNA) for sponging miR‐2355‐5p, further resulted in the up‐regulation of its target gene SOCS2, followed by suppression of JAK2/Stat5 signalling pathway, to suppress ESCC cell proliferation and invasion in EC9706 and TE1 cells. These findings suggest that WDFY3‐AS2 may participate in ESCC development and progression, and may be a novel prognostic factor for ESCC patients, and thus targeting WDFY3‐AS2/miR‐2355‐5p/SOCS2 signalling axis may be a novel therapeutic strategy for ESCC patients.
Collapse
Affiliation(s)
- Qing Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Shenglei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Lei Z, Tang X, Si A, Yang P, Wang L, Luo T, Guo G, Zhang Q, Cheng Z. microRNA-454 promotes liver tumor-initiating cell expansion by regulating SOCS6. Exp Cell Res 2020; 390:111955. [PMID: 32165166 DOI: 10.1016/j.yexcr.2020.111955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/26/2020] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
Abstract
Tumor-initiating cells (T-ICs) are involved in the tumorigenesis, progression, drug resistance and recurrence of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liver T-ICs remains unclear. Herein, we find that miR-454 is upregulated in liver T-ICs and has an important function in liver T-ICs. Functional studies have revealed that knockdown of miR-454 inhibits liver T-IC self-renewal and tumorigenesis. Conversely, forced miR-454 expression promotes liver T-IC self-renewal and tumorigenesis. Mechanistically, we found that miR-454 downregulates SOCS6 expression in liver T-ICs. The correlation between miR-454 and SOCS6 is validated in human HCC tissues. Furthermore, HCC cells that overexpress miR-454 are resistant to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrates that miR-454 may predict sorafenib benefits in HCC patients. In conclusion, our findings reveal the crucial role of miR-454 in liver T-IC expansion and sorafenib response.
Collapse
Affiliation(s)
- Zhengqing Lei
- Hepato-pancreato-biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuewu Tang
- Hepato-pancreato-biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Anfeng Si
- Department of Surgical Oncology, The Bayi Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pinghua Yang
- Department of Minimally Invasive Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lihong Wang
- Institute of Pathology and Southwest Hospital, Third Military Medical University (Army Medical University), And Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tao Luo
- Institute of Pathology and Southwest Hospital, Third Military Medical University (Army Medical University), And Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Guangmeng Guo
- Hepato-pancreato-biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhangjun Cheng
- Hepato-pancreato-biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
29
|
Li Z, Li F, Peng Y, Fang J, Zhou J. Identification of three m6A-related mRNAs signature and risk score for the prognostication of hepatocellular carcinoma. Cancer Med 2020; 9:1877-1889. [PMID: 31943856 PMCID: PMC7050095 DOI: 10.1002/cam4.2833] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is extremely harmful to human health. In recent years, N6‐methyladenosine (m6A) RNA methylation in eukaryotic mRNA has been increasingly implicated in cancer pathogenesis and prognosis. In this study, we downloaded the expression profile and clinical information of 307 patients from The Cancer Genome Atlas database and 64 patients from the Gene Expression Omnibus (GEO) database, and univariate Cox analysis revealed that METTL14 was a prognostic m6A RNA methylation regulator. For further study on the related genes of METTL14, weighted gene co‐expression network analysis was used to find the relationship between METTL14 and gene expression, and univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) methods were used to identify hub genes that may be associated with HCC prognosis. The results indicated that cysteine sulfinic acid decarboxylase, glutamic‐oxaloacetic transaminase 2, and suppressor of cytokine signaling 2 were key genes affecting the prognosis of HCC patients, and m6A methylation of these mRNAs may be regulated by METTL14. Finally, a nomogram was constructed based on the hub gene expression levels, and its prediction accuracy and discriminative ability were measured by the C‐index and a calibration curve. In conclusion, METTL14, an m6A RNA methylation regulator, may participate in the malignant progression of HCC by adjusting the m6A of cysteine sulfinic acid decarboxylase, glutamic‐oxaloacetic transaminase 2, and suppressor of cytokine signaling 2, and these genes are useful for prognostic stratification and treatment strategy development.
Collapse
Affiliation(s)
- Zedong Li
- Department of Minimally Invasive SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fazhan Li
- Department of GastroenterologyThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yu Peng
- Department of Minimally Invasive SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jianyu Fang
- Department of NursingThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jun Zhou
- Department of Minimally Invasive SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
30
|
Structural insights into substrate recognition by the SOCS2 E3 ubiquitin ligase. Nat Commun 2019; 10:2534. [PMID: 31182716 PMCID: PMC6557900 DOI: 10.1038/s41467-019-10190-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
The suppressor of cytokine signaling 2 (SOCS2) acts as substrate recognition subunit of a Cullin5 E3 ubiquitin ligase complex. SOCS2 binds to phosphotyrosine-modified epitopes as degrons for ubiquitination and proteasomal degradation, yet the molecular basis of substrate recognition has remained elusive. Here, we report co-crystal structures of SOCS2-ElonginB-ElonginC in complex with phosphorylated peptides from substrates growth hormone receptor (GHR-pY595) and erythropoietin receptor (EpoR-pY426) at 1.98 Å and 2.69 Å, respectively. Both peptides bind in an extended conformation recapitulating the canonical SH2 domain-pY pose, but capture different conformations of the EF loop via specific hydrophobic interactions. The flexible BG loop is fully defined in the electron density, and does not contact the substrate degron directly. Cancer-associated SNPs located around the pY pocket weaken substrate-binding affinity in biophysical assays. Our findings reveal insights into substrate recognition and specificity by SOCS2, and provide a blueprint for small molecule ligand design. The suppressor of cytokine signaling 2 (SOCS2) is a component of the Cullin5 E3 ubiquitin ligase complex. Here the authors provide insights into substrate recognition and specificity of SOCS2 by determining the crystal structures of the SOCS2-ElonginB-ElonginC in complex with phosphorylated peptides from two of its substrates the growth hormone receptor and erythropoietin receptor.
Collapse
|
31
|
Wu M, Song D, Li H, Yang Y, Ma X, Deng S, Ren C, Shu X. Negative regulators of STAT3 signaling pathway in cancers. Cancer Manag Res 2019; 11:4957-4969. [PMID: 31213912 PMCID: PMC6549392 DOI: 10.2147/cmar.s206175] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
STAT3 is the most ubiquitous member of the STAT family and involved in many biological processes, such as cell proliferation, differentiation, and apoptosis. Mounting evidence has revealed that STAT3 is aberrantly activated in many malignant tumors and plays a critical role in cancer progression. STAT3 is usually regarded as an effective molecular target for cancer treatment, and abolishing the STAT3 activity may diminish tumor growth and metastasis. Recent studies have shown that negative regulators of STAT3 signaling such as PIAS, SOCS, and PTP, can effectively retard tumor progression. However, PIAS, SOCS, and PTP have also been reported to correlate with tumor malignancy, and their biological function in tumorigenesis and antitumor therapy are somewhat controversial. In this review, we summarize actual knowledge on the negative regulators of STAT3 in tumors, and focus on the potential role of PIAS, SOCS, and PTP in cancer treatment. Furthermore, we also outline the STAT3 inhibitors that have entered clinical trials. Targeting STAT3 seems to be a promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Moli Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Danyang Song
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hui Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yang Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Changle Ren
- Surgery Department of Dalian Municipal Central Hospital, Dalian Medical University, Dalian 116033, People's Republic of China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| |
Collapse
|
32
|
Shi YM, Li YY, Lin JY, Zheng L, Zhu YM, Huang J. The discovery of a novel eight-mRNA-lncRNA signature predicting survival of hepatocellular carcinoma patients. J Cell Biochem 2019; 120:7539-7550. [PMID: 30485492 DOI: 10.1002/jcb.28028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that the expressions of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) undergo a frequent and aberrant change in carcinogenesis and cancer development. But some research was carried out on mRNA-lncRNA signatures for prediction of hepatocellular carcinoma (HCC) prognosis. We aimed to establish an mRNA-lncRNA signature to improve the ability to predict HCC patients' survival. The subjects from the cancer genome atlas (TCGA) data set were randomly divided into two parts: training data set (n = 246) and testing data set (n = 124). Using computational methods, we selected eight gene signatures (five mRNAs and three lncRNAs) to generate the risk score model, which were significantly correlated with overall survival of patients with HCC in both training and testing data set. The signature had the ability to classify the patients in training data set into a high-risk group and low-risk group with significantly different overall survival (hazard ratio = 4.157, 95% confidence interval = 2.648-6.526, P < 0.001). The prognostic value was further validated in testing data set and the entire data set. Further analysis revealed that this signature was independent of tumor stage. In addition, Gene Set Enrichment Analysis suggested that high risk score group was associated with cell proliferation and division related pathways. Finally, we developed a well-performed nomogram integrating the prognostic signature and other clinical information to predict 3- and 5-year overall survival. In conclusion, the prognostic mRNAs and lncRNAs identified in our study indicate their potential role in HCC biogenesis. The risk score model based on the mRNA-lncRNA may be an efficient classification tool to evaluate the prognosis of patients' with HCC.
Collapse
Affiliation(s)
- Ye-Min Shi
- Department of Infections, Yuyao People's Hospital, Medical School of Ningbo University, Ningbo, China
| | - Yan-Yan Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia-Yun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yi-Ming Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jian Huang
- Department of Gastroenterology, Yuyao People's Hospital, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
33
|
MicroRNA-196a/-196b regulate the progression of hepatocellular carcinoma through modulating the JAK/STAT pathway via targeting SOCS2. Cell Death Dis 2019; 10:333. [PMID: 30988277 PMCID: PMC6465376 DOI: 10.1038/s41419-019-1530-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
microRNAs (miRNAs) play essential roles in progression of hepatocellular carcinoma (HCC). However, the roles of miR-196a and miR-196b as well as mechanism in HCC progression remain poorly understood. The expressions of miR-196a, miR-196b and suppressor of cytokine signaling 2 (SOCS2) were measured in HCC tissues and cells by quantitative real-time polymerase chain reaction or immunohistochemistry. HCC progression was investigated by cell proliferation, glycolysis, cycle, clones, apoptosis, and necrosis. The interaction between SOCS2 and miR-196a or miR-196b was explored by luciferase activity and RNA immunoprecipitation analyses. The expressions of proteins in Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway were measured by western blot. A xenograft model was established to investigate the roles of miR-196a or miR-196b in vivo. We found that miR-196a and miR-196b were highly expressed in HCC tissues and cells. High expression of miR-196a or miR-196b was correlated with tumor size, tumor-node-metastasis stage, lymph node metastasis, albumin–bilirubin grade and poor 5-year survival. Knockdown of miR-196a or miR-196b suppressed cell proliferation, glycolysis, cell cycle process, colony formation but induced apoptosis or necrosis in HCC cells. SOCS2 was targeted by miR-196a and miR-196b and its interference ablated abrogation of miR-196a or miR-196b-mediated inhibitory effect on HCC progression. SOCS2 was negatively associated with activation of the JAK/STAT pathway. Besides, knockdown of miR-196a or miR-196b limited xenograft tumor growth by blocking the JAK/STAT pathway. We concluded that downregulation of miR-196a or miR-196b inhibited HCC progression through regulating the JAK/STAT pathway via targeting SOCS2, providing novel targets for prognosis and therapeutics of HCC.
Collapse
|
34
|
Kido T, Lau YFC. The Y-linked proto-oncogene TSPY contributes to poor prognosis of the male hepatocellular carcinoma patients by promoting the pro-oncogenic and suppressing the anti-oncogenic gene expression. Cell Biosci 2019; 9:22. [PMID: 30867900 PMCID: PMC6399826 DOI: 10.1186/s13578-019-0287-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Background Liver cancer is one of the major causes of cancer death worldwide, with significantly higher incidence and mortality among the male patients. Although sex hormones and their receptors could contribute to such sex differences, the story is incomplete. Genes on the male-specific region of the Y chromosome could play a role(s) in this cancer. TSPY is the putative gene for the gonadoblastoma locus on the Y chromosome (GBY) that is ectopically expressed in a subset of male hepatocellular carcinomas (HCCs). Although various studies showed that TSPY expression is associated with poor prognosis in the patients and its overexpression promotes cell proliferation of various cancer cell lines, it remains unclear how TSPY contributes to the clinical outcomes of the HCC patients. Identifying the downstream genes and pathways of TSPY actions would provide novel insights on its contribution(s) to male predominance in this deadly cancer. Results To determine the effects of TSPY on HCC, a TSPY transgene was introduced to the HCC cell line, HuH-7, and studied with RNA-Seq transcriptome analysis. The results showed that TSPY upregulates various genes associated with cell-cycle and cell-viability, and suppresses cell-death related genes. To correlate the experimental observations with those of clinical specimens, transcriptomes of male HCCs with high TSPY expression were analyzed with reference to those with silent TSPY expression from the Cancer Genome Atlas (TCGA). The comparative analysis identified 49 genes, which showed parallel expression patterns between HuH-7 cells overexpressing TSPY and clinical specimens with high TSPY expression. Among these 49 genes, 16 likely downstream genes could be associated with survival rates in HCC patients. The major upregulated targets were cell-cycle related genes and growth factor receptor genes, including CDC25B and HMMR, whose expression levels are negatively correlated with the patient survival rates. In contrast, PPARGC1A, SLC25A25 and SOCS2 were downregulated with TSPY expression, and possess favorable prognoses for HCC patients. Conclusion We demonstrate that TSPY could exacerbate the oncogenesis of HCC by differentially upregulate the expression of pro-oncogenic genes and downregulate those of anti-oncogenic genes in male HCC patients, thereby contributing to the male predominance in this deadly cancer. Electronic supplementary material The online version of this article (10.1186/s13578-019-0287-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tatsuo Kido
- 1Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, 4150 Clement Street, San Francisco, CA 94121 USA.,2Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA
| | - Yun-Fai Chris Lau
- 1Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, 4150 Clement Street, San Francisco, CA 94121 USA.,2Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA
| |
Collapse
|
35
|
Meng C, Shen X, Jiang W. Potential biomarkers of HCC based on gene expression and DNA methylation profiles. Oncol Lett 2018; 16:3183-3192. [PMID: 30127913 PMCID: PMC6096098 DOI: 10.3892/ol.2018.9020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/19/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to identify potential biomarkers of hepatocellular carcinoma (HCC). Three gene expression profiles of GSE95698, GSE49515 and GSE76427 and a DNA methylation profile of GSE73003 were downloaded from the Gene Expression Omnibus (GEO) database, each comprising data regarding HCC and control tissue samples. The differentially expressed genes (DEGs) between the HCC group and the control group were identified using the limma software package. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the overlapping DEGs. The PPI network of the overlapping DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins. A total of 41 DEGs were identified in HCC the group compared with control group. The overlapping DEGs were enriched in 11 GO terms and 3 KEGG pathways. A total of 6,349 DMSs were identified, and 6 of the differentially expressed genes were also differentially methylated [Denticleless protein homolog (DTL), Dual specificity phosphatase 1 (DUSP1), Eomesodermin, Endothelial cell specific molecule 1, Nuclear factor κ-light-chain gene enhancer of activated B cells inhibitor, α (NFKBIA) and suppressor of cytokine signaling 2 (SOCS2)]. The present study suggested that DTL, DUSP1, NFKBIA and SOCS2 may be potential biomarkers of HCC, and the tumor protein 'p53 signaling', 'forkhead box O1' signaling and 'metabolic' pathways may serve roles in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Chao Meng
- Department of Clinical Laboratory, Tianjin Second People's Hospital, Tianjin 300192, P.R. China
- Tianjin Institute of Hepatology, Tianjin 300192, P.R. China
| | - Xiaomin Shen
- Department of Liver Transplantation, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Wentao Jiang
- Department of Liver Transplantation, Tianjin First Center Hospital, Tianjin 300192, P.R. China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, P.R. China
| |
Collapse
|
36
|
Hu T, Kumar Y, Shazia I, Duan SJ, Li Y, Chen L, Chen JF, Yin R, Kwong A, Leung GKK, Mat WK, Wu Z, Long X, Chan CH, Chen S, Lee P, Ng SK, Ho TYC, Yang J, Ding X, Tsang SY, Zhou X, Zhang DH, Zhou EX, Xu L, Poon WS, Wang HY, Xue H. Forward and reverse mutations in stages of cancer development. Hum Genomics 2018; 12:40. [PMID: 30134973 PMCID: PMC6104001 DOI: 10.1186/s40246-018-0170-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/26/2018] [Indexed: 11/15/2022] Open
Abstract
Background Massive occurrences of interstitial loss of heterozygosity (LOH) likely resulting from gene conversions were found by us in different cancers as a type of single-nucleotide variations (SNVs), comparable in abundance to the commonly investigated gain of heterozygosity (GOH) type of SNVs, raising the question of the relationships between these two opposing types of cancer mutations. Methods In the present study, SNVs in 12 tetra sample and 17 trio sample sets from four cancer types along with copy number variations (CNVs) were analyzed by AluScan sequencing, comparing tumor with white blood cells as well as tissues vicinal to the tumor. Four published “nontumor”-tumor metastasis trios and 246 pan-cancer pairs analyzed by whole-genome sequencing (WGS) and 67 trios by whole-exome sequencing (WES) were also examined. Results Widespread GOHs enriched with CG-to-TG changes and associated with nearby CNVs and LOHs enriched with TG-to-CG changes were observed. Occurrences of GOH were 1.9-fold higher than LOH in “nontumor” tissues more than 2 cm away from the tumors, and a majority of these GOHs and LOHs were reversed in “paratumor” tissues within 2 cm of the tumors, forming forward-reverse mutation cycles where the revertant LOHs displayed strong lineage effects that pointed to a sequential instead of parallel development from “nontumor” to “paratumor” and onto tumor cells, which was also supported by the relative frequencies of 26 distinct classes of CNVs between these three types of cell populations. Conclusions These findings suggest that developing cancer cells undergo sequential changes that enable the “nontumor” cells to acquire a wide range of forward mutations including ones that are essential for oncogenicity, followed by revertant mutations in the “paratumor” cells to avoid growth retardation by excessive mutation load. Such utilization of forward-reverse mutation cycles as an adaptive mechanism was also observed in cultured HeLa cells upon successive replatings. An understanding of forward-reverse mutation cycles in cancer development could provide a genomic basis for improved early diagnosis, staging, and treatment of cancers. Electronic supplementary material The online version of this article (10.1186/s40246-018-0170-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taobo Hu
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yogesh Kumar
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Iram Shazia
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shen-Jia Duan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lei Chen
- Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Jin-Fei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rong Yin
- Jiangsu Key Laboratory of Cancer Molecular Biology and Translational Medicine, Jiangsu Cancer Hospital, Nanjing, China
| | - Ava Kwong
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Gilberto Ka-Kit Leung
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Wai-Kin Mat
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenggang Wu
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xi Long
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheuk-Hin Chan
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Si Chen
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Peggy Lee
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Siu-Kin Ng
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Timothy Y C Ho
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianfeng Yang
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaofan Ding
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shui-Ying Tsang
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuqing Zhou
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dan-Hua Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - En-Xiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Xu
- Jiangsu Key Laboratory of Cancer Molecular Biology and Translational Medicine, Jiangsu Cancer Hospital, Nanjing, China
| | - Wai-Sang Poon
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hong-Yang Wang
- Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Hong Xue
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. .,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
37
|
Alterations in the p53-SOCS2 axis contribute to tumor growth in colon cancer. Exp Mol Med 2018; 50:1-10. [PMID: 29622769 PMCID: PMC5940812 DOI: 10.1038/s12276-017-0001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 12/28/2022] Open
Abstract
Altered expression of suppressor of cytokine signaling (SOCS) is found in various tumors. However, regulation of SOCS2 by upstream molecules has yet to be clearly elucidated, particularly in tumor cells. SCOCS2 expression was examined in tumor cells transfected with an inducible p53 expression system. The impact of SOCS2 on cell proliferation was measured with in vitro assays. Inhibition of tumorigenicity by SOCS2 knockdown was assessed via a mouse model. Expression profiles were compared and genes differentially expressed were identified using four types of p53-null cells (Saos, HLK3, PC3, and H1299) and the same cells stably expressing p53. Twelve kinds of target genes were simultaneously upregulated or downregulated by p53 in three or more sets of p53-null cells. SOCS2 expression was reciprocally inhibited by inducible p53 expression in p53-null cells, even colon cancer cells. SOCS2 promoter activity was inhibited by wild type but not mutant p53. SOCS2 knockdown inhibited tumor growth in vitro and in an animal xenograph model. SOCS2 overexpression was detected in a murine model of azoxymethane/dextran sulfate sodium-induced colitis-associated colon cancer compared to mock-treated controls. SOCS2 expression was heterogeneously upregulated in some human colon cancers. Thus, SOCS2 was upregulated by p53 dysfunction and seemed to be associated with the tumorigenic potential of colon cancer. Insights into a signaling protein’s role in cell growth could inform new therapeutic strategies for treating colon cancer. SOCS-2 acts as an ‘off switch’ for cell signaling pathways. It has been identified as possibly protective against many cancers, although some cancers are associated with elevated SOCS-2 levels. Researchers led by Daeghon Kim at Chonbuk National University Hospital in South Korea have now shown that the effects of SOCS-2 are apparently dependent on how much of it is present. Moderate levels of SOCS-2 can suppress growth in colon cancer cells, but Kim’s team showed that excessive SOCS-2 has the opposite effect, promoting proliferation. The researchers also identified a gene commonly mutated in cancer cells that can drive overproduction of SOCS-2. Drugs that inhibit SOCS-2 or block its production may therefore offer useful treatments for colorectal cancer.
Collapse
|
38
|
Zhou Y, Zhang Z, Wang N, Chen J, Zhang X, Guo M, John Zhong L, Wang Q. Suppressor of cytokine signalling-2 limits IGF1R-mediated regulation of epithelial-mesenchymal transition in lung adenocarcinoma. Cell Death Dis 2018; 9:429. [PMID: 29559623 PMCID: PMC5861121 DOI: 10.1038/s41419-018-0457-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 01/30/2023]
Abstract
Non-small cell lung cancer (NSCLC), including adenocarcinoma and squamous cell carcinoma, is the leading cause of death from lung malignancies and has a poor prognosis due to metastasis. Suppressor of cytokine signalling-2 (SOCS2), a feedback inhibitor of cytokine signalling, has been shown to be involved in growth control. Here, we show that SOCS2 were significantly downregulated in tumour foci in NSCLC patients. The expression levels of SOCS2 significantly correlated with clinical stage, lymph node metastasis, histological subtype and survival time. In particular, the decreased expression of SOCS2 significantly associated with advanced pathological stage, lymph node metastasis and shorter overall survival in lung adenocarcinoma patients. In vivo animal results showed that overexpressed SOCS2 attenuated the metastatic characteristics of lung adenocarcinoma, including by inhibiting the epithelial-mesenchymal transition (EMT). Further functional studies indicated that insulin-like growth factor 1 (IGF1)-driven migratory and invasive behaviours of lung adenocarcinoma cells can be partially suppressed by exogenous SOCS2 expression. Investigations into the mechanism of action revealed that SOCS2 inhibits EMT by inactivating signal transducer and activator of transcription 3 (STAT3) and STAT5 via the competitive binding of SOCS2 to the STAT binding sites on IGF1R. Altogether, our results reveal an important role for SOCS2 dysregulation in the pathogenicity of lung adenocarcinoma, suggest its potential use as a biomarker for diagnosing lung adenocarcinoma, and paves the way to develop novel therapy targets as the axis of SOCS2-IGF1R-STAT in lung adenocarcinoma.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhilei Zhang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Ning Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Jizheng Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xu Zhang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Li John Zhong
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Qian Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
39
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
40
|
Sun Z, Liu Q, Hong H, Zhang H, Zhang T. miR-19 promotes osteosarcoma progression by targeting SOCS6. Biochem Biophys Res Commun 2017; 495:1363-1369. [PMID: 28986253 DOI: 10.1016/j.bbrc.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) play critical roles in cancer development and progression. This study investigated the effects of miR-19 in human osteosarcoma (OS) development. Here, we showed that miR-19 was frequently upregulated in OS tissues and cell lines. Moreover the expression of miR-19 was associated with TNM stage, metastasis, size and poor overall survival. Mechanistically, miR-19 dramatically suppressed OS growth in vitro and in vivo. Bioinformatics analyses predicted that SOCS6 is a potential target gene of miR-19 in OS, which was confirmed by luciferase-reporter assay. We also found that SOCS6 expression was downregulated and negatively correlated with miR-19 expression in OS tissues clinically. Moreover, ectopic SOCS6 could reverse miR-19 induced OS growth. Finally, JAK2/STAT3 signaling pathway involves miR-19/SOCS6-mediated OS progression. Together, our data provide important evidence for miR-19 mediated SOCS6 in OS growth and revealed miR-19/SOCS6/JAK2/STAT3 pathway as a potential therapeutic strategy for OS patients.
Collapse
Affiliation(s)
- Zhengwen Sun
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Qingxia Liu
- Maternity and Child Care Centers, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Huanyu Hong
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Haiguang Zhang
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Tongqing Zhang
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China.
| |
Collapse
|
41
|
Li B, Feng W, Luo O, Xu T, Cao Y, Wu H, Yu D, Ding Y. Development and Validation of a Three-gene Prognostic Signature for Patients with Hepatocellular Carcinoma. Sci Rep 2017; 7:5517. [PMID: 28717245 PMCID: PMC5514049 DOI: 10.1038/s41598-017-04811-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/19/2017] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide, because recurrence often occurs in most HCC patients undergoing hepatectomy. It is necessary to identify patients with high risk for recurrence and adopt effective therapies. An obstacle to monitor patients at high risk for poor prognosis has been the lack of useful predictive biomarkers. Fortunately, recent progress in system biology allows to screen the biomarkers for HCC prognosis in a high-throughput manner. In this study, we performed systematic Kaplan-Meier survival analysis of the whole mRNA transcriptomics based on the Cancer Genome Atlas project (TCGA) and developed a three-gene prognostic signature composing of three genes UPB1, SOCS2 and RTN3. The model was validated in two independent microarray data sets retrieved from Gene Expression Omnibus (GEO) and the expression pattern of these three predictive genes in HCC was confirmed by western blot and immunohistochemistry with our HCC samples. In conclusion, our results showed that this three-gene signature has prognostic value for HCC patients.
Collapse
Affiliation(s)
- Binghua Li
- Department of Hepatobiliary Surgery, the Affliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Wendu Feng
- Department of Hepatobiliary Surgery, the Affliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Ouyang Luo
- Department of Hepatobiliary Surgery, the Affliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Tiancheng Xu
- Department of Hepatobiliary Surgery, the Affliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Yajuan Cao
- Department of Hepatobiliary Surgery, the Affliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Hongyan Wu
- Department of Pathology, the Affliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Decai Yu
- Department of Hepatobiliary Surgery, the Affliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Yitao Ding
- Department of Hepatobiliary Surgery, the Affliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
42
|
Genomics of human fatty liver disease reveal mechanistically linked lipid droplet-associated gene regulations in bland steatosis and nonalcoholic steatohepatitis. Transl Res 2016; 177:41-69. [PMID: 27376874 DOI: 10.1016/j.trsl.2016.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disorder hallmarked by excessive lipid deposits. Based on our recent research on lipid droplet (LD) formation in hepatocytes, we investigated LD-associated gene regulations in NAFLD of different grades, that is, steatosis vs steatohepatitis by comparing liver biopsies from healthy controls (N = 13) and NAFLD patients (N = 102). On average, more than 700 differentially expressed genes (DEGs) were identified of which 146 are mechanistically linked to LD formation. We identified 51 LD-associated DEGs frequently regulated in patient samples (range ≥5 to ≤102) with the liver-receptor homolog-1(NR5A2), that is, a key regulator of cholesterol metabolism being commonly repressed among 100 patients examined. With bland steatosis, notable regulations involved hypoxia-inducible lipid droplet-associated-protein and diacylglycerol-O-acyltransferase-2 renowned for their role in LD-growth. Conversely, nonalcoholic steatohepatitis-associated DEGs coded for epidermal growth factor receptor and TLR4 signaling with decreased expression of the GTPase Rab5 and the lipid phosphohydrolase PPAP2B thus highlighting adaptive responses to inflammation, LDL-mediated endocytosis and lipogenesis, respectively. Studies with steatotic primary human hepatocyte cultures demonstrated induction of LD-associated PLIN2, CIDEC, DNAAF1, whereas repressed expression of CPT1A, ANGPTL4, and PKLR informed on burdened mitochondrial metabolism. Equally, repressed expression of the B-lymphocyte chemoattractant CXCL13 and STAT4 as well as induced FGF21 evidenced amelioration of steatosis-related inflammation. In-vitro/in-vivo patient sample comparisons confirmed C-reactive protein, SOCS3, NR5A2, and SOD2 as commonly regulated. Lastly, STRING network analysis highlighted potential "druggable" targets with PLIN2, CIDEC, and hypoxia-inducible lipid droplet-associated-protein being confirmed by immunofluorescence microscopy. In conclusion, steatosis and steatohepatitis specific gene regulations informed on the pathogenesis of NAFLD to broaden the perspective of targeted therapies.
Collapse
|
43
|
The suppressor of cytokine signaling 2 (SOCS2) inhibits tumor metastasis in hepatocellular carcinoma. Tumour Biol 2016; 37:13521-13531. [PMID: 27465557 DOI: 10.1007/s13277-016-5215-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related death worldwide, and its incidence continues to increase. However, the mechanism underlying the development and progression of HCC remains unknown. The suppressor of cytokine signaling 2 (SOCS2) is a member of the SOCS family and influences the carcinogenesis of multiple types of tumors, but the biological roles of SOCS2 in HCC remain unclear. In this study, we found that SOCS2 expression was reduced in HCC tissues compared with matched noncancerous liver tissues. Moreover, decreased SOCS2 expression was significantly associated with the presence of intrahepatic metastasis and high histological grade in HCC patients. Colony formation assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays demonstrated that overexpression of SOCS2 or knockdown of endogenous SOCS2 did not significantly affect cell proliferation and tumorigenicity in HCC cells in vitro and in vivo. However, SOCS2 overexpression significantly inhibited the migration and invasion of HCC cells in vitro and inhibited metastasis in vivo. Consistent with these findings, the knockdown of endogenous SOCS2 enhanced migration and invasion in HCC cells in vitro. Our study demonstrated that SOCS2 inhibited human HCC metastasis, and SOCS2 might provide a new potential therapeutic strategy for treating HCC.
Collapse
|
44
|
Lee H, Hwang SJ, Kim HR, Shin CH, Choi KH, Joung JG, Kim HH. Neurofibromatosis 2 (NF2) controls the invasiveness of glioblastoma through YAP-dependent expression of CYR61/CCN1 and miR-296-3p. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:599-611. [DOI: 10.1016/j.bbagrm.2016.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 01/07/2023]
|
45
|
Ravo M, Cordella A, Rinaldi A, Bruno G, Alexandrova E, Saggese P, Nassa G, Giurato G, Tarallo R, Marchese G, Rizzo F, Stellato C, Biancardi R, Troisi J, Di Spiezio Sardo A, Zullo F, Weisz A, Guida M. Small non-coding RNA deregulation in endometrial carcinogenesis. Oncotarget 2016; 6:4677-91. [PMID: 25686835 PMCID: PMC4467107 DOI: 10.18632/oncotarget.2911] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022] Open
Abstract
Small non-coding RNAs (sncRNAs) represent a heterogeneous group of <200nt-long transcripts comprising microRNAs, PIWI-interacting RNAs (piRNAs) and small-nucleolar-RNAs (snoRNAs) involved in physiological and pathological processes such as carcinogenesis and tumor progression. Aberrant sncRNA expression in cancer has been associated with specific clinical phenotypes, grading, staging, metastases development and resistance to therapy.Aim of the present work is to study the role of sncRNAs in endometrial carcinogenesis. Changes in sncRNA expression were identified by high-throughput genomic analysis of paired normal, hyperplastic and cancerous endometrial tissues obtained by endometrial biopsies (n = 10). Using smallRNA sequencing and microarrays we identified significant differences in sncRNA expression pattern between normal, hyperplastic and neoplastic endometrium. This led to the definition of a sncRNA signature (129 microRNAs, 2 of which not previously described, 10 piRNAs and 3 snoRNAs) of neoplastic transformation. Functional bioinformatics analysis identified as downstream targets multiple signaling pathways potentially involved in the hyperplastic and neoplastic tissue responses, including Wnt/β-catenin, and ERK/MAPK and TGF-β-Signaling.Considering the regulatory role of sncRNAs, this newly identified sncRNA signature is likely to reflect the events leading to endometrial cancer, which can be exploited to dissect the carcinogenic process including novel biomarkers for early and non-invasive diagnosis of these tumors.
Collapse
Affiliation(s)
- Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | | | - Antonio Rinaldi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy.,Genomix4Life Srl, Spin-Off of the Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
| | - Pasquale Saggese
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Giovanna Marchese
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy.,Genomix4Life Srl, Spin-Off of the Laboratory of Molecular Medicine and Genomics, University of Salerno, Baronissi, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Claudia Stellato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Rossella Biancardi
- Department of Medicine and Surgery and Division of Gynecology and Obstetrics, "SS. Giovanni di Dio e Ruggi d'Aragona - Schola Medica Salernitana", University of Salerno Hospital, Salerno, Italy
| | - Jacopo Troisi
- Department of Medicine and Surgery and Division of Gynecology and Obstetrics, "SS. Giovanni di Dio e Ruggi d'Aragona - Schola Medica Salernitana", University of Salerno Hospital, Salerno, Italy
| | - Attilio Di Spiezio Sardo
- Department of Gynecology and Obstetrics and Pathophysiology of Human Reproduction, University of Naples "Federico II", Napoli, Italy
| | - Fulvio Zullo
- Department of Gynecology and Obstetrics and Pathophysiology of Human Reproduction, University of Naples "Federico II", Napoli, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy.,Division of Molecular Pathology and Medical Genomics, "SS. Giovanni di Dio e Ruggi d'Aragona - Schola Medica Salernitana", University of Salerno Hospital, Salerno, Italy
| | - Maurizio Guida
- Department of Medicine and Surgery and Division of Gynecology and Obstetrics, "SS. Giovanni di Dio e Ruggi d'Aragona - Schola Medica Salernitana", University of Salerno Hospital, Salerno, Italy
| |
Collapse
|
46
|
Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene 2015; 35:939-51. [DOI: 10.1038/onc.2015.150] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
|
47
|
Abstract
Three classes of E3 ubiquitin ligases, members of the Cbl, Hakai, and SOCS-Cul5-RING ligase families, stimulate the ubiquitination of phosphotyrosine-containing proteins, including receptor and nonreceptor tyrosine kinases and their phosphorylated substrates. Because ubiquitination frequently routes proteins for degradation by the lysosome or proteasome, these E3 ligases are able to potently inhibit tyrosine kinase signaling. Their loss or mutational inactivation can contribute to cancer, autoimmunity, or endocrine disorders, such as diabetes. However, these ligases also have biological functions that are independent of their ubiquitination activity. Here we review relevant literature and then focus on more-recent developments in understanding the structures, substrates, and pathways through which the phosphotyrosine-specific ubiquitin ligases regulate diverse aspects of cell biology.
Collapse
|
48
|
Hong X, Nguyen HT, Chen Q, Zhang R, Hagman Z, Voorhoeve PM, Cohen SM. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J 2014; 33:2447-57. [PMID: 25180228 PMCID: PMC4283404 DOI: 10.15252/embj.201489385] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor of tumorigenesis in vivo. Here, we provide evidence that the Hippo tumor suppressor pathway is a key barrier to Ras-mediated cellular transformation. The Hippo pathway targets YAP1 for degradation via the βTrCP-SCF ubiquitin ligase complex. In contrast, the Ras pathway acts oppositely, to promote YAP1 stability through downregulation of the ubiquitin ligase complex substrate recognition factors SOCS5/6. Depletion of SOCS5/6 or upregulation of YAP1 can bypass the requirement for oncogenic Ras in anchorage independent growth in vitro and tumor formation in vivo. Through the YAP1 target, Amphiregulin, Ras activates the endogenous EGFR pathway, which is required for transformation. Thus, the oncogenic activity of RasV12 depends on its ability to counteract Hippo pathway activity, creating a positive feedback loop, which depends on stabilization of YAP1.
Collapse
Affiliation(s)
- Xin Hong
- Institute of Molecular and Cell Biology, Singapore City, Singapore Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | | | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Singapore City, Singapore Singapore-MIT Alliance for Research, and Technology, Singapore City, Singapore
| | - Rui Zhang
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | - Zandra Hagman
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephen M Cohen
- Institute of Molecular and Cell Biology, Singapore City, Singapore Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
49
|
Kazi JU, Kabir NN, Flores-Morales A, Rönnstrand L. SOCS proteins in regulation of receptor tyrosine kinase signaling. Cell Mol Life Sci 2014; 71:3297-310. [PMID: 24705897 PMCID: PMC11113172 DOI: 10.1007/s00018-014-1619-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 12/17/2022]
Abstract
Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment. The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar proteins, SOCS1-7, and cytokine-inducible SH2-containing protein (CIS). A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS-encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion, SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also evident that RTKs can sometimes bypass SOCS regulation and SOCS proteins can even potentiate RTKs-mediated mitogenic signaling. Thus, apart from negative regulation of receptor signaling, SOCS proteins may also influence signaling in other ways.
Collapse
Affiliation(s)
- Julhash U. Kazi
- Division of Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Nuzhat N. Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Amilcar Flores-Morales
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
50
|
Kabir NN, Sun J, Rönnstrand L, Kazi JU. SOCS6 is a selective suppressor of receptor tyrosine kinase signaling. Tumour Biol 2014; 35:10581-9. [PMID: 25172101 DOI: 10.1007/s13277-014-2542-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/21/2014] [Indexed: 01/17/2023] Open
Abstract
The suppressors of cytokine signaling (SOCS) are well-known negative regulators of cytokine receptor signaling. SOCS6 is one of eight members of the SOCS family of proteins. Similar to other SOCS proteins, SOCS6 consists of an uncharacterized extended N-terminal region followed by an SH2 domain and a SOCS box. Unlike other SOCS proteins, SOCS6 is mainly involved in negative regulation of receptor tyrosine kinase signaling. SOCS6 is widely expressed in many tissues and is found to be downregulated in many cancers including colorectal cancer, gastric cancer, lung cancer, ovarian cancer, stomach cancer, thyroid cancer, hepatocellular carcinoma, and pancreatic cancer. SOCS6 is involved in negative regulation of receptor signaling by increasing degradation mediated by ubiquitination of receptors or substrate proteins and induces apoptosis by targeting mitochondrial proteins. Therefore, SOCS6 turns out as an important regulator of survival signaling and its activity is required for controlling receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Nuzhat N Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | | | | | | |
Collapse
|