1
|
Sousa AAPD, Chaves LDS, Tarso Facundo H. Mitochondrial electron transport chain disruption and oxidative stress in lipopolysaccharide-induced cardiac dysfunction in rats and mice. Free Radic Res 2025:1-15. [PMID: 40337855 DOI: 10.1080/10715762.2025.2503844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Sepsis, characterized by severe systemic inflammation and an excessive immune response to infection, is frequently triggered by bacterial endotoxins like lipopolysaccharide (LPS) from Gram-negative bacteria. Moreover, sepsis-induced cardiac dysfunction remains a leading cause of mortality. This study aims to elucidate the effects of LPS-induced cardiac injury on mitochondrial damage, oxidative stress, and subsequent cardiac dysfunction. LPS injections (in rats and mice) for three days (1.5 mg/kg) impacted the body weight and increased cardiac TNF-α. Additionally, it decreased mitochondrial complexes I and II activities while complexes III and IV remained unaffected. Disturbed in mitochondrial electron transport chain leads to an increase in reactive oxygen species (ROS). Indeed, LPS treatment significantly increased mitochondrial hydrogen peroxide production, reduced the activity of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase activity. This was accompanied by decreased mitochondrial and cytosolic sulfhydryl proteins and parallel increased cellular lipid peroxidation in the presence or absence of Fe2+. LPS-treated samples had increased glutathione s-transferase activity, which may be an attempt of the cell to remove toxic lipid peroxidation products. In a more acute Langendorff-perfused rat hearts, LPS infusion (0.5 μg/mL) induced a significant elevation in left ventricular end-diastolic pressure and a decrease in left ventricular developed pressure. These findings elucidate the harmful mitochondrial and oxidative effects of LPS in cardiac tissue and could help the development of targeted therapies to mitigate the adverse effects of sepsis-induced cardiac dysfunction.
Collapse
|
2
|
Lazarević M, Kostić M, Džopalić T, Sokolović D, Lazarević Z, Milovanović J, Ničković V, Sokolović D. Melatonin Mediates Cardiac Tissue Damage under Septic Conditions Induced by Lipopolysaccharide. Int J Mol Sci 2024; 25:11088. [PMID: 39456869 PMCID: PMC11508384 DOI: 10.3390/ijms252011088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Lipopolysaccharide (LPS) is known to induce oxidative stress and inflammation, leading to significant damage in cardiac tissues. This study investigates the protective effects of melatonin (MLT) against LPS-induced oxidative damage, inflammation, and apoptosis in rat heart tissue. Rats were divided into four groups (n = 6 per group): control, melatonin-treated, LPS-treated, and LPS + melatonin-treated. Oxidative stress markers, including thiobarbituric acid-reactive substances (TBARSs) and advanced oxidation protein products (AOPPs), were measured. Additionally, inflammatory markers, such as interleukin-6 (IL-6) levels, inducible nitric oxide synthase (iNOS) and nitric oxide (NO) content, and apoptotic markers, caspase-3, caspase-9, and acidic DNase activity, were evaluated. LPS treatment significantly increased TBARS, AOPP, and IL-6 levels, as well as the activity of caspase-3, acidic DNase and iNOS and NO content compared to the control group. Co-treatment with melatonin significantly reduced the levels of TBARS and AOPP levels, and caspase-3 and acidic DNase activities nearly matched those of the control group, while caspse-9 was still slightly increased. Interestingly, IL-6, iNOS and NO levels were significantly decreased but did not fully match the values in the control group. Melatonin mitigates LPS-induced oxidative stress, inflammation, and apoptosis in rat heart tissue by affecting all studied parameters, demonstrating its potential as a therapeutic agent for conditions characterized by oxidative stress and inflammation. Further research is warranted to explore the clinical applications of melatonin in cardiovascular diseases.
Collapse
Affiliation(s)
- Milan Lazarević
- Department of Immunology, Medical Faculty of Niš, University of Nis, 18000 Niš, Serbia; (M.L.); (M.K.); (T.D.)
- Clinic for Cardiovascular and Transplant Surgery, University Clinical Centre of Nis, 18000 Niš, Serbia;
| | - Miloš Kostić
- Department of Immunology, Medical Faculty of Niš, University of Nis, 18000 Niš, Serbia; (M.L.); (M.K.); (T.D.)
| | - Tanja Džopalić
- Department of Immunology, Medical Faculty of Niš, University of Nis, 18000 Niš, Serbia; (M.L.); (M.K.); (T.D.)
| | | | - Zorica Lazarević
- Clinic for Cardiovascular and Transplant Surgery, University Clinical Centre of Nis, 18000 Niš, Serbia;
| | - Jelena Milovanović
- Faculty of Medicine, Unisversity of Priština, 38220 Kosovska Mitrovica, Serbia;
| | - Vanja Ničković
- Clinic of Gastroenterohepatology, University Clinical Centre of Niš, 18000 Niš, Serbia;
| | - Dušan Sokolović
- Institute for Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| |
Collapse
|
3
|
Sun Y, Song J, Liu H, Li L, Xiao K, Mao W, Jiang C. Calcium-sensing receptor alleviates gut damage caused by endotoxemia by regulating gut microbiota. Transl Pediatr 2023; 12:2179-2190. [PMID: 38197097 PMCID: PMC10772839 DOI: 10.21037/tp-23-327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/02/2023] [Indexed: 01/11/2024] Open
Abstract
Background Growing evidence points to an association between the gut microbiota and neonatal diseases. Calcium-sensing receptor (CaSR) is a major modulator of tissue responses associated with calcium homeostasis and is highly expressed in the mammalian gut. CaSR may affect the composition and balance of the intestinal microenvironment. Methods Neonatal rats were randomized to the control, lipopolysaccharide (LPS), CaSR agonist, and CaSR inhibitor groups. The intestinal contents of neonatal rats were collected within 24 hours or 7 days after intervention. Then, 16S rRNA short amplicon sequencing was used to analyze biological information and the richness and diversity of individual taxa. Results LPS aggravated intestinal injury. The CaSR agonist alleviated injury, and the inhibitor further enhance intestinal injury. Activation of CaSR enhanced the diversity of the gut microbiota and the abundance of Lactobacillus. The lowest abundance of Firmicutes and the highest abundance of Bacteroidetes were found in the agonist group. CaSR impacted the bacterial species in rats with endotoxemia, and Akkermansia had the greatest effect on the differences among groups. Conclusions Activation of CaSRs could enhance the species richness and β-diversity of the gut microbiota and alter the abundance of many taxa. This could attenuate LPS-induced gut injury by modulating the gut microbiota.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiayu Song
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai, China
| | - Huiying Liu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Li
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaihao Xiao
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai, China
| | - Wei Mao
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunming Jiang
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai, China
| |
Collapse
|
4
|
Ni L, Lin B, Shen M, Li C, Hu L, Fu F, Chen L, Yang J, Shi D. PKM2 deficiency exacerbates gram-negative sepsis-induced cardiomyopathy via disrupting cardiac calcium homeostasis. Cell Death Discov 2022; 8:496. [PMID: 36564378 PMCID: PMC9789059 DOI: 10.1038/s41420-022-01287-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sepsis is a life-threatening syndrome with multi-organ dysfunction in critical care medicine. With the occurrence of sepsis-induced cardiomyopathy (SIC), characterized by reduced ventricular contractility, the mortality of sepsis is boosted to 70-90%. Pyruvate kinase M2 (PKM2) functions in a variety of biological processes and diseases other than glycolysis, and has been documented as a cardioprotective factor in several heart diseases. It is currently unknown whether PKM2 influences the development of SIC. Here, we found that PKM2 was upregulated in cardiomyocytes treated with LPS both in vitro and in vivo. Pkm2 inhibition exacerbated the LPS-induced cardiac damage to neonatal rat cardiomyocytes (NRCMs). Furthermore, cardiomyocytes lacking PKM2 aggravated LPS-induced cardiomyopathy, including myocardial damage and impaired contractility, whereas PKM2 overexpression and activation mitigated SIC. Mechanism investigation revealed that PKM2 interacted with sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), a key regulator of the excitation-contraction coupling, to maintain calcium homeostasis, and PKM2 deficiency exacerbated LPS-induced cardiac systolic dysfunction by impairing SERCA2a expression. In conclusion, these findings highlight that PKM2 plays an essential role in gram-negative sepsis-induced cardiomyopathy, which provides an attractive target for the prevention and treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Le Ni
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Meiting Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Can Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Jinzhou Medical University, Liaoning, 121000, China
| | - Lingjie Hu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fengmei Fu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Jinzhou Medical University, Liaoning, 121000, China
| | - Lei Chen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jian Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Dan Shi
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
5
|
Iamartino L, Brandi ML. The calcium-sensing receptor in inflammation: Recent updates. Front Physiol 2022; 13:1059369. [PMID: 36467702 PMCID: PMC9716066 DOI: 10.3389/fphys.2022.1059369] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
The Calcium-Sensing Receptor (CaSR) is a member of the class C of G-proteins coupled receptors (GPCRs), it plays a pivotal role in calcium homeostasis by directly controlling calcium excretion in the kidneys and indirectly by regulating parathyroid hormone (PTH) release from the parathyroid glands. The CaSR is found to be ubiquitously expressed in the body, playing a plethora of additional functions spanning from fluid secretion, insulin release, neuronal development, vessel tone to cell proliferation and apoptosis, to name but a few. The present review aims to elucidate and clarify the emerging regulatory effects that the CaSR plays in inflammation in several tissues, where it mostly promotes pro-inflammatory responses, with the exception of the large intestine, where contradictory roles have been recently reported. The CaSR has been found to be expressed even in immune cells, where it stimulates immune response and chemokinesis. On the other hand, CaSR expression seems to be boosted under inflammatory stimulus, in particular, by pro-inflammatory cytokines. Because of this, the CaSR has been addressed as a key factor responsible for hypocalcemia and low levels of PTH that are commonly found in critically ill patients under sepsis or after burn injury. Moreover, the CaSR has been found to be implicated in autoimmune-hypoparathyroidism, recently found also in patients treated with immune-checkpoint inhibitors. Given the tight bound between the CaSR, calcium and vitamin D metabolism, we also speculate about their roles in the pathogenesis of severe acute respiratory syndrome coronavirus-19 (SARS-COVID-19) infection and their impact on patients' prognosis. We will further explore the therapeutic potential of pharmacological targeting of the CaSR for the treatment and management of aberrant inflammatory responses.
Collapse
Affiliation(s)
- Luca Iamartino
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O. (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| |
Collapse
|
6
|
Nehme A, Ghahramanpouri M, Ahmed I, Golsorkhi M, Thomas N, Munoz K, Abdipour A, Tang X, Wilson SM, Wasnik S, Baylink DJ. Combination therapy of insulin-like growth factor I and BTP-2 markedly improves lipopolysaccharide-induced liver injury in mice. FASEB J 2022; 36:e22444. [PMID: 35839071 DOI: 10.1096/fj.202200227rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023]
Abstract
Acute liver injury is a common disease without effective therapy in humans. We sought to evaluate a combination therapy of insulin-like growth factor 1 (IGF-I) and BTP-2 in a mouse liver injury model induced by lipopolysaccharide (LPS). We chose this model because LPS is known to increase the expression of the transcription factors related to systemic inflammation (i.e., NFκB, CREB, AP1, IRF 3, and NFAT), which depends on calcium signaling. Notably, these transcription factors all have pleiotropic effects and account for the other observed changes in tissue damage parameters. Additionally, LPS is also known to increase the genes associated with a tissue injury (e.g., NGAL, SOD, caspase 3, and type 1 collagen) and systemic expression of pro-inflammatory cytokines. Finally, LPS compromises vascular integrity. Accordingly, IGF-I was selected because its serum levels were shown to decrease during systemic inflammation. BTP-2 was chosen because it was known to decrease cytosolic calcium, which is increased by LPS. This current study showed that IGF-I, BTP-2, or a combination therapy significantly altered and normalized all of the aforementioned LPS-induced gene changes. Additionally, our therapies reduced the vascular leakage caused by LPS, as evidenced by the Evans blue dye technique. Furthermore, histopathologic studies showed that IGF-I decreased the proportion of hepatocytes with ballooning degeneration. Finally, IGF-I also increased the expression of the hepatic growth factor (HGF) and the receptor for the epidermal growth factor (EGFR), markers of liver regeneration. Collectively, our data suggest that a combination of IGF-I and BTP-2 is a promising therapy for acute liver injury.
Collapse
Affiliation(s)
- Antoine Nehme
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Mahdis Ghahramanpouri
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Iqbal Ahmed
- Pathology and Laboratory Medicine, Loma Linda University, Loma Linda, California, USA
| | - Mohadese Golsorkhi
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | | | - Kevin Munoz
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Amir Abdipour
- Division of Nephrology, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Xiaolei Tang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA.,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - Sean M Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
7
|
An S, Chen Y, Yang T, Huang Y, Liu Y. A role for the calcium-sensing receptor in the expression of inflammatory mediators in LPS-treated human dental pulp cells. Mol Cell Biochem 2022; 477:2871-2881. [PMID: 35699827 DOI: 10.1007/s11010-022-04486-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
The aim of this study is to investigate the role of calcium-sensing receptor (CaSR) in the expression of inflammatory mediators of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). The expression profile of CaSR in LPS-simulated hDPCs was detected using immunofluorescence, real time quantitative PCR (RT-qPCR), and Western blot analyses. Then, its regulatory effects on the expression of specific inflammatory mediators such as interleukin (IL)-1β, IL-6, cyclooxygenase 2 (COX2)-derived prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, and IL-10 were determined by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). LPS significantly downregulated the gene expression of CaSR, but upregulated its protein expression level in hDPCs. Treatments by CaSR agonist R568 or its antagonist Calhex231, and their combinations with protein kinase B (AKT) inhibitor LY294002 showed obvious effects on the expression of selected inflammatory mediators in a time-dependent manner. Meanwhile, an opposite direction was found between the action of R568 and Calhex231, as well as the expression of the pro- (IL-1β, IL-6, COX2-derived PGE2, and TNF-α) and anti-inflammatory (IL-10) mediators. The results provide the first evidence that CaSR-phosphatidylinositol-3 kinase (PI3K)-AKT-signaling pathway is involved in the release of inflammatory mediators in LPS-treated hDPCs, suggesting that the activation or blockade of CaSR may provide a novel therapeutic strategy for the treatment of pulp inflammatory diseases.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Yanhuo Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ting Yang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yiwei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Sood A, Singh G, Singh TG, Gupta K. Pathological role of the calcium-sensing receptor in sepsis-induced hypotensive shock: Therapeutic possibilities and unanswered questions. Drug Dev Res 2022; 83:1241-1245. [PMID: 35689439 DOI: 10.1002/ddr.21959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Sepsis is a life-threatening disease involving multiorgan dysfunction, prompted by an unregulated host response to infection. Shock is a complication of sepsis in which the circulatory and cellular metabolism anomalies are significant enough to raise the risk of death. Calcium dyshomeostasis occurs during sepsis condition due to imbalance between calcium uptake and excessive release induced by inflammatory cytokines. This calcium imbalance can cause activation of calcium-sensing receptors (CaSRs) located on the surface of T cells and thereby promote release of reactive oxygen species (ROS). The elevated ROS and inflammatory cytokines during sepsis condition have been reported to directly damage the endothelial cells, disrupt the barrier functions that might result in leakage of fluids, and inflammatory cells in tissues Moreover, several evidence have revealed that the calcium mediated activation of CaSR could produce systemic vasodilatory response by stimulating the nitric oxide production and opening of calcium-activated potassium channels, while infusion of its antagonist elevated the blood pressure. These evidence indicate that activation of CaSR during sepsis conditions results in release of ROS and inflammatory cytokines, which could produce an endothelial barrier damage, cardiomyocyte apoptosis. These pathological events could produce loss of fluid in tissues and cardiac dysfunction. Further the direct vasodilatory effects of CaSR activation might add to the shock-like condition. Thus, we hereby propose that inhibition of CaSR could suppress the release of ROS, inflammatory mediators, and thereby prevent the endothelial damage, cardiac dysfunction, and maintain systemic vascular tone.
Collapse
Affiliation(s)
- Ankita Sood
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaaminepreet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Thakur G Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Kirti Gupta
- Department of Pharmacology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India
| |
Collapse
|
9
|
Zhu XX, Zhang WW, Wu CH, Wang SS, Smith FG, Jin SW, Zhang PH. The Novel Role of Metabolism-Associated Molecular Patterns in Sepsis. Front Cell Infect Microbiol 2022; 12:915099. [PMID: 35719361 PMCID: PMC9202891 DOI: 10.3389/fcimb.2022.915099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction, is not caused by direct damage of pathogens and their toxins but by the host’s severe immune and metabolic dysfunction caused by the damage when the host confronts infection. Previous views focused on the damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), including metabolic proinflammatory factors in sepsis. Recently, new concepts have been proposed to group free fatty acids (FFAs), glucose, advanced glycation end products (AGEs), cholesterol, mitochondrial DNA (mtDNA), oxidized phospholipids (OxPLs), ceramides, and uric acid into metabolism-associated molecular patterns (MAMPs). The concept of MAMPs will bring new guidance to the research and potential treatments of sepsis. Nowadays, sepsis is regarded as closely related to metabolic disorders, and MAMPs play an important role in the pathogenesis and development of sepsis. According to this view, we have explained MAMPs and their possible roles in the pathogenesis of sepsis. Next, we have further explained the specific functions of different types of MAMPs in the metabolic process and their interactional relationship with sepsis. Finally, the therapeutic prospects of MAMPs in sepsis have been summarized.
Collapse
Affiliation(s)
- Xin-xu Zhu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Wen-wu Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Cheng-hua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shun-shun Wang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao Smith
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Academic Department of Anesthesia, Critical Care, Resuscitation and Pain, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
| | - Sheng-wei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- *Correspondence: Sheng-wei Jin, ; Pu-hong Zhang,
| | - Pu-hong Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- *Correspondence: Sheng-wei Jin, ; Pu-hong Zhang,
| |
Collapse
|
10
|
Ahn JH, Song EJ, Jung DH, Kim YJ, Seo IS, Park SC, Jung YS, Cho ES, Mo SH, Hong JJ, Cho JY, Park JH. The sesquiterpene lactone estafiatin exerts anti-inflammatory effects on macrophages and protects mice from sepsis induced by LPS and cecal ligation puncture. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153934. [PMID: 35172258 DOI: 10.1016/j.phymed.2022.153934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previously, we found that the water extract of Artermisia scoparia Waldst. & Kit suppressed the cytokine production of lipopolysaccharide (LPS)-stimulated macrophages and alleviated carrageenan-induced acute inflammation in mice. Artemisia contains various sesquiterpene lactones and most of them exert immunomodulatory activity. PURPOSE In the present study, we investigated the immunomodulatory effect of estafiatin (EST), a sesquiterpene lactone derived from A. scoparia, on LPS-induced inflammation in macrophages and mouse sepsis model. STUDY DESIGN AND METHODS Murine bone marrow-derived macrophages (BMDMs) and THP-1 cells, a human monocytic leukemia cell line, were pretreated with different doses of EST for 2 h, followed by LPS treatment. The gene and protein expression of pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis. The activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) was also evaluated at the level of phosphorylation. The effect of EST on inflammatory cytokine production, lung histopathology, and survival rate was assessed in an LPS-induced mice model of septic shock. The effect of EST on the production of cytokines in LPS-stimulated peritoneal macrophages was evaluated by in vitro and ex vivo experiments and protective effect of EST on cecal ligation and puncture (CLP) mice was also assessed. RESULTS The LPS-induced expression of IL-6, TNF-α, and iNOS was suppressed at the mRNA and protein levels in BMDMs and THP-1 cells, respectively, by pretreatment with EST. The half-maximal inhibitory concentration (IC50) of EST on IL-6 and TNF-α production were determined as 3.2 μM and 3.1 μM in BMDMs, 3 μM and 3.4 μM in THP1 cells, respectively. In addition, pretreatment with EST significantly reduced the LPS-induced phosphorylation p65, p38, JNK, and ERK in both cell types. In the LPS-induced mice model of septic shock, serum levels of IL-6, TNF-α, IL-1β, CXCL1, and CXCL2 were lower in EST-treated mice than in the control animals. Histopathology analysis revealed that EST treatment ameliorated LPS-induced lung damage. Moreover, while 1 of 7 control mice given lethal dose of LPS survived, 3 of 7 EST-treated (1.25 mg/kg) mice and 5 of 7 EST-treated (2.5 mg/kg) mice were survived. Pretreatment of EST dose-dependently suppressed the LPS-induced production of IL-6, TNF-α and CXCL1 in peritoneal macrophages. In CLP-induced mice sepsis model, while all 6 control mice was dead at 48 h, 1 of 6 EST-treated (1.25 mg/kg) mice and 3 of 6 EST-treated (2.5 mg/kg) mice survived for 96 h. CONCLUSION These results demonstrated that EST exerts anti-inflammatory effects on LPS-stimulated macrophages and protects mice from sepsis. Our study suggests that EST could be developed as a new therapeutic agent for sepsis and various inflammatory diseases.
Collapse
Affiliation(s)
- Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eun-Jung Song
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - In-Su Seo
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Seong-Chan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - You-Seok Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eun-Seo Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Sang Hyun Mo
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk 28116, Republic of Korea.
| | - Jeong-Yong Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
11
|
Modification of Ischemia/Reperfusion-Induced Alterations in Subcellular Organelles by Ischemic Preconditioning. Int J Mol Sci 2022; 23:ijms23073425. [PMID: 35408783 PMCID: PMC8998910 DOI: 10.3390/ijms23073425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
It is now well established that ischemia/reperfusion (I/R) injury is associated with the compromised recovery of cardiac contractile function. Such an adverse effect of I/R injury in the heart is attributed to the development of oxidative stress and intracellular Ca2+-overload, which are known to induce remodeling of subcellular organelles such as sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils. However, repeated episodes of brief periods of ischemia followed by reperfusion or ischemic preconditioning (IP) have been shown to improve cardiac function and exert cardioprotective actions against the adverse effects of prolonged I/R injury. This protective action of IP in attenuating myocardial damage and subcellular remodeling is likely to be due to marked reductions in the occurrence of oxidative stress and intracellular Ca2+-overload in cardiomyocytes. In addition, the beneficial actions of IP have been attributed to the depression of proteolytic activities and inflammatory levels of cytokines as well as the activation of the nuclear factor erythroid factor 2-mediated signal transduction pathway. Accordingly, this review is intended to describe some of the changes in subcellular organelles, which are induced in cardiomyocytes by I/R for the occurrence of oxidative stress and intracellular Ca2+-overload and highlight some of the mechanisms for explaining the cardioprotective effects of IP.
Collapse
|
12
|
Yan W, Feng Y, Lei Z, Kuang W, Long C. MicroRNA-214-3p Ameliorates LPS-Induced Cardiomyocyte Injury by Inhibiting Cathepsin B. Folia Biol (Praha) 2022; 68:78-85. [PMID: 36384265 DOI: 10.14712/fb2022068020078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Myocardial injury is a common complication of sepsis. MicroRNA (miRNA) miR-214-3p is protective against myocardial injury caused by sepsis, but its mechanism in lipopolysaccharide (LPS)- induced cardiomyocyte injury is still unclear. An AC16 cell injury model was induced by LPS treatment. Cell Counting Kit-8 and flow cytometry assay showed decreased cell viability and increased apoptosis in LPS-treated AC16 cells. The levels of caspase- 3, Bax, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), myosin 6 (Myh6), myosin 7 (Myh7), reactive oxygen species (ROS), and malondialdehyde (MDA) were increased in LPS-treated AC16 cells, but the levels of Bcl-2 and superoxide dismutase (SOD) were decreased. MiR-214-3p was down-regulated and cathepsin B (CTSB) was upregulated in LPS-treated AC16 cells. At the same time, miR-214-3p could target CTSB and reduce its expression. We also found that a miR-214-3p mimic or CTSB silencing could significantly reduce LPSinduced apoptosis, decrease ROS, MDA, caspase-3, and Bax and increase SOD and Bcl-2. CTSB silencing could significantly reduce ANP, BNP, Myh6, and Myh7 in LPS-treated AC16 cells. The effects of CTSB silencing were reversed by a miR-214-3p inhibitor. In summary, miR-214-3p could inhibit LPSinduced myocardial injury by targeting CTSB, which provides a new idea for myocardial damage caused by sepsis.
Collapse
Affiliation(s)
- W Yan
- The First Affiliated Hospital, Department of Cardiovascular Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Y Feng
- The First Affiliated Hospital, Department of Cardiovascular Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Z Lei
- The First Affiliated Hospital, Department of Cardiovascular Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - W Kuang
- The First Affiliated Hospital, Department of Cardiovascular Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - C Long
- The First Affiliated Hospital, Department of Cardiovascular Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
13
|
Guo H, Zuo Z, Wang F, Gao C, Chen K, Fang J, Cui H, Ouyang P, Geng Y, Chen Z, Huang C, Zhu Y, Deng H. Attenuated Cardiac oxidative stress, inflammation and apoptosis in Obese Mice with nonfatal infection of Escherichia coli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112760. [PMID: 34509165 DOI: 10.1016/j.ecoenv.2021.112760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Obesity is a risk factor of many diseases, but could be beneficial to the individuals with bacterial infection. The present study was conducted to investigate the relationship between obesity and heart during nonfatal bacterial infection. Male normal (lean) and diet-induced obesity mice (DIO, fed with high-fat diet) were chosen to perform nasal instillation with E. coli to establish a nonfatal acute mouse model. The cardiac histopathology, inflammation and oxidative damage, as well as apoptosis were detected post-infection. The results revealed that the Escherichia coli (E.coli)-infected mice exhibited increased cardiac index, contents of IL-1β, IL-6, IL-8, TNF-α, leptin and resistin, levels of apoptotic proteins (caspase-3 and caspase-9, and bax/bcl-2 ratio), cardiac pathological changes and oxidative stress. Furthermore, these parameters were more serious in the lean mice than those in the DIO mice. In summary, our findings gave a new sight that E.coli infection impaired heart via histopathological lesions, inflammation and oxidative stress and excessive apoptosis of cardiomyocytes. Interestingly, obesity exerted attenuated effects on the heart of mice with non-fatal infection of E.coli through decreased inflammation, oxidative stress and apoptosis of cardiac tissue.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fengyuan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Caixia Gao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
14
|
Yadav S, Gupta K, Deshmukh K, Bhardwaj L, Dahiya A, Krishan P, Singh G. Calcium sensing receptor as a novel target for treatment of sepsis induced cardio-renal syndrome: Need for exploring mechanisms. Drug Dev Res 2021; 82:305-308. [PMID: 33527497 DOI: 10.1002/ddr.21797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
Calcium sensing receptor (CaSR) is localized in various organs and plays diverse physiological and pathological roles. Several scientific contributions have suggested the involvement of this cell surface receptor in cardiac and renal diseases. Sepsis is considered to be one of the major causes of ICU admissions. Cardiac dysfunction and acute kidney injury are major manifestations of sepsis and associated with reduced survival. Presently, the treatment approaches for management of sepsis induced cardiac depression and kidney injury are not satisfactory. Activation of CaSR has been demonstrated to induce cardiomyocyte damage upon lipopolysaccaharde (LPS) exposure by enhancing calcium ion levels, ROS (reactive oxygen species) production, promotion of inflammation and apoptosis. In addition, CaSR seems to be a critical regulator of intracellular calcium ion levels, which is directly implicated in induction of mitochondrial dysfunction and release of various pro-apoptotic pathways during sepsis. Certain evidences have also documented the expression of CaSR on neutrophils and T lymphocytes, where it is involved in activation of neutrophils and induces apoptosis of immune cells. Moreover, the expression of CaSR has been confirmed in podocytes, mesangial cells, proximal tubular cells and its activation is responsible for podocyte effacement, mesangial cell proliferation and proximal tubular cell apoptosis. We have analyzed the existing evidences, and critically discussed the possible mechanisms underlying CaSR activation mediated cardiac and renal dysfunction in sepsis condition.
Collapse
Affiliation(s)
- Shubham Yadav
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Kirti Gupta
- Department of Pharmacy, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India
| | - Khalid Deshmukh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Loveinder Bhardwaj
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ashish Dahiya
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Gaaminepreet Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
15
|
Ibrahim N‘I, Naina Mohamed I. Interdependence of Anti-Inflammatory and Antioxidant Properties of Squalene-Implication for Cardiovascular Health. Life (Basel) 2021; 11:103. [PMID: 33573041 PMCID: PMC7911491 DOI: 10.3390/life11020103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) have been recognized as the leading cause of mortality worldwide, accounting for 31% of global mortality. Among the risk factors of CVD, hyperlipidemia has been established as the most potent risk factor. Statins, a class of drug that reduces lower-density lipoprotein cholesterol (LDL-C), are the preferred medical treatment. However, due to the development of statin-associated muscle symptoms, statins are associated with patients' discontinuation and nonadherence. Other statin-induced side effects, such as hepatotoxicity and gastrointestinal upset, all contribute to patients choosing alternative medicines. Squalene (SQ), an unsaturated hydrocarbon naturally synthesized in plants and animals, could become the alternative treatment or supplementary agent for cardiovascular health. SQ has been shown to exert cardioprotective effect via its antioxidant activity. Oxidative stress and inflammatory responses are closely related to each other, which proposes an interdependence relation between antioxidant and anti-inflammatory. Therefore, this review explores the interdependence between the antioxidant and anti-inflammatory effects of SQ implicated on cardiovascular health.
Collapse
Affiliation(s)
| | - Isa Naina Mohamed
- Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
16
|
Yuan H, Yang G, Li S, Li L, Wei T, Song G, Luan H, Meng J, Wang Q, Yu Y, Sun J. Calcium sensing receptor involving in therapy of embryonic stem cell transplantation alleviates acute myocardial infarction by inhibiting apoptosis and oxidative stress in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1353-1359. [PMID: 33149870 PMCID: PMC7585542 DOI: 10.22038/ijbms.2020.47436.10916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Objective(s): The aims of the present study were to investigate the expression of calcium sensing receptor (CaSR) at different times in acute myocardial infarction (AMI) rat myocardial tissue after mouse embryonic stem cells (mESCs) transplantation treatment and to assess its effects on apoptosis and oxidative stress of cardiomyocytes. Materials and Methods: The AMI rats were treated with mESCs, Calindol (a CaSR agonist) and Calhex231 (a CaSR inhibitor). Serum measurements, Echocardiographic analysis and TUNEL assay were performed. Myocardial ultrastructure changes were viewed by electron microscopy. Additionally, western blotting was used to detect the protein expressions. Results: Compared to the sham group, it was found that the expression levels of CaSR, caspase-3, cytoplasmic cytochrome C (cyt-C) and Bcl2-associated x (Bax), and the levels of Malondialdehyde (MDA) were significantly increased in both AMI and AMI + mESCs + Calindol groups with the development of myocardial infarction. Furthermore, the ultra-microstructure of cardiomyocyte was highly damaged, the expression levels of mitochondrial cyt-C and B-cell lymphoma 2 (Bcl-2) were significantly decreased, and there was decreased activity of superoxide dismutase (SOD). However, the combination of Calhex231 and mESCs transplantation could inhibit these changes. Conclusion: Our results suggested that CaSR expression in myocardial tissue of AMI rats was increased over time, and that Calhex231 could enhance the efficacy of ESCs transplantation for the treatment of AMI, which would be a new therapeutic strategy for the treatment of AMI.
Collapse
Affiliation(s)
- Hui Yuan
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Guohong Yang
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Shu Li
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Li Li
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Tao Wei
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Gaochen Song
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Hairong Luan
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jin Meng
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Qi Wang
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yaquan Yu
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jian Sun
- Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
17
|
|
18
|
Qin FJ, Hu XH, Chen Z, Chen X, Shen YM. Protective effects of tiopronin against oxidative stress in severely burned patients. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2827-2832. [PMID: 31496659 PMCID: PMC6698164 DOI: 10.2147/dddt.s215927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 11/26/2022]
Abstract
Objective Tiopronin is an antioxidant. This study investigated the protective effect of tiopronin on oxidative stress in patients with severe burns. Method Patients aged between 16 and 65 years old with >30% body surface area burns admitted to our burn unit from July 2011 to September 2016 were randomly divided into 3 groups: group A treated with tiopronin (15 mg/kg. 24 hrs), group B with vitamin C (792 mg/kg. 24 hrs), the other group with standard treatment (group C). All 3 groups also received standard treatment. Blood superoxide dismutase (SOD), malondialdehyde (MDA), and the biochemical indexes of liver, kidney, and heart were determined before treatment and 24 and 48 hrs after treatment. Samples from 8 normal healthy adult volunteers were also measured. The resuscitation fluid volume requirement for the first 24 hrs was calculated for 3 groups. Results The serum levels of MDA and the biochemical indexes in severely burned patients were higher than those in healthy volunteers (P<0.01). The serum SOD level of burn patients was lower (P<0.01). After treatment, the levels of SOD increased, the levels of MDA decreased, and the biochemical indexes of heart, liver, and kidney improved; these changes were more obvious in group A and group B compared to group C (P<0.05), and these changes were more obvious in group A compared to group B (P<0.05) at 48 hrs after treatment. There is less resuscitation fluid volume requirement to maintain adequate stable hemodynamic and urine output in the first 24 hrs in group A and group B compared to group C (P<0.05). Conclusion Treatment with tiopronin could exert protective effects against burn-induced oxidative tissue damage and multiple-organ dysfunction, and also could reduce the volume of required fluid resuscitation in severely burned patients.
Collapse
Affiliation(s)
- Feng-Jun Qin
- Department of Burns, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Xiao-Hua Hu
- Department of Burns, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Zhong Chen
- Department of Burns, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Xu Chen
- Department of Burns, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Yu-Ming Shen
- Department of Burns, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| |
Collapse
|
19
|
Kuo FY, Lee SP, Cheng JT, Wu MC. The direct effect of lipopolysaccharide on an isolated heart is different from the effect on cardiac myocytes in vitro. Arch Med Sci 2019; 19:216-228. [PMID: 36817673 PMCID: PMC9897085 DOI: 10.5114/aoms.2019.86976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/04/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Lipopolysaccharide (LPS) is widely used to induce experimental animals. However, its effects on cardiac contraction is controversial. Although LPS probably induces its influence in vivo both directly and indirectly, we focused on the direct effects of LPS in this report. MATERIAL AND METHODS Isolated ventricular myocytes mounted on a Langendorff apparatus were perfused with LPS. The changes in cultured H9c2 cells incubated with LPS over a 3-h exposure were compared with the changes after a 24-h incubation. Apoptosis was identified using flow cytometry and Western blotting. The mRNA levels were also determined. RESULTS LPS directly stimulated cardiac contractility at low doses, although it produced inhibition at higher doses. The TLR4-coupled JAK2/STAT3 pathway was identified in H9c2 cells after LPS treatment, with an increase in intracellular calcium levels. LPS dose-dependently activated hypertrophic signals in H9c2 cells and induced apoptosis at the high dose. However, apoptosis was observed in H9c2 cells after a 24-h exposure to LPS, even at low doses. This observation appears to be associated with the level of paracrine cytokines. Changes in H9c2 cells by LPS were diminished by NPS2390, an inhibitor of the calcium-sensing receptor (CaSR). LPS also promoted CaSR mRNA expression in H9c2 cells, which may be unrelated to the changes in cytokine expression influenced by an inflammasome inhibitor. CONCLUSIONS In contrast to the isolated hearts, LPS activated hypertrophic signals prior to apoptotic signals in cardiac cells. Thus, LPS injury appears to be associated with CaSR, which was not markedly influenced by an inflammasome inhibitor.
Collapse
Affiliation(s)
- Feng Yu Kuo
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Cardiovascular Centre, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shu Ping Lee
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Centre, Tainan, Taiwan
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
20
|
Roesel CL, Vollmer SV. Differential gene expression analysis of symbiotic and aposymbiotic Exaiptasia anemones under immune challenge with Vibrio coralliilyticus. Ecol Evol 2019; 9:8279-8293. [PMID: 31380089 PMCID: PMC6662555 DOI: 10.1002/ece3.5403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Anthozoans are a class of Cnidarians that includes scleractinian corals, anemones, and their relatives. Despite a global rise in disease epizootics impacting scleractinian corals, little is known about the immune response of this key group of invertebrates. To better characterize the anthozoan immune response, we used the model anemone Exaiptasia pallida to explore the genetic links between the anthozoan-algal symbioses and immunity in a two-factor RNA-Seq experiment using both symbiotic and aposymbiotic (menthol-bleached) Exaiptasia pallida exposed to the bacterial pathogen Vibrio coralliilyticus. Multivariate and univariate analyses of Exaiptasia gene expression demonstrated that exposure to live Vibrio coralliilyticus had strong and significant impacts on transcriptome-wide gene expression for both symbiotic and aposymbiotic anemones, but we did not observe strong interactions between symbiotic state and Vibrio exposure. There were 4,164 significantly differentially expressed (DE) genes for Vibrio exposure, 1,114 DE genes for aposymbiosis, and 472 DE genes for the additive combinations of Vibrio and aposymbiosis. KEGG enrichment analyses identified 11 pathways-involved in immunity (5), transport and catabolism (4), and cell growth and death (2)-that were enriched due to both Vibrio and/or aposymbiosis. Immune pathways showing strongest differential expression included complement, coagulation, nucleotide-binding, and oligomerization domain (NOD), and Toll for Vibrio exposure and coagulation and apoptosis for aposymbiosis.
Collapse
|
21
|
Upregulation of UCP2 Expression Protects against LPS-Induced Oxidative Stress and Apoptosis in Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2758262. [PMID: 31182990 PMCID: PMC6512061 DOI: 10.1155/2019/2758262] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
Abstract
Uncoupling protein 2 (UCP2) has a cardioprotective role under septic conditions, but the underlying mechanism remains unclear. This study aimed at investigating the effects of UCP2 on the oxidative stress and apoptosis of cardiomyocytes induced by lipopolysaccharide (LPS). First, LPS increased UCP2 expression in cardiomyocytes in a time-dependent manner. LPS increased the production of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and malondialdehyde (MDA) and decreased the level of superoxide dismutase (SOD). However, UCP2 knockdown increased the LPS-induced cardiac injury and oxidative stress. In addition, LPS damaged the mitochondrial ultrastructure and led to the disruption of mitochondrial membrane potential (MMP), as well as the release of mitochondrial cytochrome c. UCP2 knockdown aggravated mitochondrial injury and the release of mitochondrial cytochrome c. LPS increased the protein levels of Bax and cleaved-caspase-3, decreased the protein level of Bcl-2, and upregulated the protein level of mitogen-activated protein kinase. However, upon UCP2 knockdown, the protein levels of Bax and cleaved-caspase-3 increased even further, and the protein level of Bcl-2 was further decreased. The protein level of phosphorylated p38 was also further enhanced. Thus, UCP2 protects against LPS-induced oxidative stress and apoptosis in cardiomyocytes.
Collapse
|
22
|
Qiu Z, He Y, Ming H, Lei S, Leng Y, Xia ZY. Lipopolysaccharide (LPS) Aggravates High Glucose- and Hypoxia/Reoxygenation-Induced Injury through Activating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis in H9C2 Cardiomyocytes. J Diabetes Res 2019; 2019:8151836. [PMID: 30911553 PMCID: PMC6398034 DOI: 10.1155/2019/8151836] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes aggravates myocardial ischemia-reperfusion (I/R) injury because of the combination effects of changes in glucose and lipid energy metabolism, oxidative stress, and systemic inflammatory response. Studies have indicated that myocardial I/R may coincide and interact with sepsis and inflammation. However, the role of LPS in hypoxia/reoxygenation (H/R) injury in cardiomyocytes under high glucose conditions is still unclear. Our objective was to examine whether lipopolysaccharide (LPS) could aggravate high glucose- (HG-) and hypoxia/reoxygenation- (H/R-) induced injury by upregulating ROS production to activate NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. H9C2 cardiomyocytes were exposed to HG (30 mM) condition with or without LPS, along with caspase-1 inhibitor (Ac-YVAD-CMK), inflammasome inhibitor (BAY11-7082), ROS scavenger N-acetylcysteine (NAC), or not for 24 h, then subjected to 4 h of hypoxia followed by 2 h of reoxygenation (H/R). The cell viability, lactate dehydrogenase (LDH) release, caspase-1 activity, and intracellular ROS production were detected by using assay kits. The incidence of pyroptosis was detected by calcein-AM/propidium iodide (PI) double staining kit. The concentrations of IL-1β and IL-18 in the supernatants were assessed by ELISA. The mRNA levels of NLRP3, ASC, and caspase-1 were detected by qRT-PCR. The protein levels of NF-κB p65, NLRP3, ASC, cleaved caspase-1 (p10), IL-1β, and IL-18 were detected by western blot. The results indicated that pretreatment LPS with 1 μg/ml not 0.1 μg/ml could efficiently aggravate HG and H/R injury by activating NLRP3 inflammasome to mediate pyroptosis in H9C2 cells, as evidenced by increased LDH release and decreased cell viability in the cells, and increased expression of NLRP3, ASC, cleaved caspase-1 (p10), IL-1β, and IL-18. Meanwhile, Ac-YVAD-CMK, BAY11-7082, or NAC attenuated HG- and H/R-induced H9C2 cell injury with LPS stimulated by reversing the activation of NLRP3 inflammasome-mediated pyroptosis. In conclusion, LPS could increase the sensitivity of H9C2 cells to HG and H/R and aggravated HG- and H/R-induced H9C2 cell injury by promoting ROS production to induce NLRP3 inflammasome-mediated pyroptosis.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yuhong He
- Office of Infection Control, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hao Ming
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhong-yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
23
|
Wang G, Sun G, Wang Y, Yu P, Wang X, Zhou B, Zhu H. Glabridin attenuates endothelial dysfunction and permeability, possibly via the MLCK/p-MLC signaling pathway. Exp Ther Med 2018; 17:107-114. [PMID: 30651770 PMCID: PMC6307408 DOI: 10.3892/etm.2018.6903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis is caused by various factors, and Glabridin may have protective effects on the cardiovascular system. The purpose of the present study was to evaluate the effects of Glabridin on atherosclerosis and evaluate whether Glabridin attenuates arteriosclerosis and endothelial permeability by suppressing the myosin light chain (MLC) kinase (MLCK)/phosphorylated (p)-MLC system via the mitogen activated protein kinase (MAPK) signaling pathway. Male New Zealand rabbits were randomly divided into 3 groups: The control group was administered an ordinary diet, whereas the high fat group and the Glabridin (2 mg/kg/d) intervention group were administered a high fat diet. Following 12 weeks, the blood lipid levels of rabbits, the morphological structure of the arterial wall, the arterial intimal permeability, the endothelial function and the mRNA levels of MLCK were measured. Western blot analysis was used to detect the levels of MLCK, p-c-Jun N-terminal kinase (JNK), p-extracellular signal regulated kinase (ERK), and p-p38. The high-fat diet group exhibited significantly increased total cholesterol and triglycerides, and endothelial dysfunction, which were attenuated by Glabridin treatment. Notably, the aortic endothelial permeability was increased in the high-fat diet group but was ameliorated in the Glabridin treatment group. Hyperlipidemia enhanced the expression of p-MLC and MLCK, which were associated with the increased phosphorylation of ERK, p38 and JNK. These changes were also ameliorated by Glabridin. In conclusion, the results of the present study suggested that atherosclerosis may be associated with upregulated MLCK expression and activity, which was downregulated by Glabridin. The mechanism of action of Glabridin was thought to proceed through modulating MAPK pathway signal transduction. However, further studies are required to adequately illuminate the exact regulatory mechanisms involved.
Collapse
Affiliation(s)
- Ganxian Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Guangcheng Sun
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yi Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Pei Yu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xue Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Birong Zhou
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
24
|
Han G, Wang HY, Han ZW, Xu CL, Chen GP, Jiang CM. Relationship between CaSRs and LPS-injured cardiomyocytes. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1965-1971. [PMID: 31938302 PMCID: PMC6958229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/05/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Calcium-sensing receptors (CaSRs) regulate systemic calcium homeostasis. Intracellular calcium concentration changes are initiating factors of endoplasmic reticulum stress and cell autophagy. Recent research has revealed that CaSRs play an important role in myocardial ischemia/reperfusion injury and other cardiovascular diseases. However, it remains unclear whether CaSRs are involved in lipopolysaccharide (LPS)-induced cardiomyocyte injury. METHODS Cultured neonatal rat cardiomyocytes were treated with LPS, with or without pretreatment by a CaSR specific agonist SC-211006 or CaSR specific antagonist SC-207394. The ultrastructure of cardiomyocytes was observed using a transmission electron microscope, and the expression of CaSR, GRP78, LC3B, CytC and Bcl-2 proteins were detected by western blot. RESULTS Compared with the control group, LPS increased cardiomyocyte injury and the expression of CaSR, GRP78, LC3B and CytC proteins, but decreased the expression of Bcl-2. Compared with the LPS group, pretreatment with SC-211006 further enhanced cardiomyocyte damage and the expression of CaSR, GRP78, LC3B and CytC, but reduced the expression of Bcl-2. Conversely, pretreatment with SC-207394 decreased cardiomyocyte injury and the protein expression of CaSR, GRP78, LC3B and CytC, but increased the expression of Bcl-2. CONCLUSION Our results suggest that CaSRs are involved in LPS-induced rat cardiomyocyte injury via the activation of endoplasmic reticulum stress and autophagy.
Collapse
Affiliation(s)
- Gang Han
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| | - Hong-Yu Wang
- Department of Neonatology, Children’s Hospital of Zhejiang University School of MedicineHangzhou 310052, China
| | - Zi-Wei Han
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| | - Chun-Lan Xu
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| | - Guo-Ping Chen
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| | - Chun-Ming Jiang
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, China
| |
Collapse
|
25
|
Gerbino A, Colella M. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Int J Mol Sci 2018; 19:E999. [PMID: 29584660 PMCID: PMC5979557 DOI: 10.3390/ijms19040999] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The current interest of the scientific community for research in the field of calcium sensing in general and on the calcium-sensing Receptor (CaR) in particular is demonstrated by the still increasing number of papers published on this topic. The extracellular calcium-sensing receptor is the best-known G-protein-coupled receptor (GPCR) able to sense external Ca2+ changes. Widely recognized as a fundamental player in systemic Ca2+ homeostasis, the CaR is ubiquitously expressed in the human body where it activates multiple signalling pathways. In this review, old and new notions regarding the mechanisms by which extracellular Ca2+ microdomains are created and the tools available to measure them are analyzed. After a survey of the main signalling pathways triggered by the CaR, a special attention is reserved for the emerging concepts regarding CaR function in the heart, CaR trafficking and pharmacology. Finally, an overview on other Ca2+ sensors is provided.
Collapse
Affiliation(s)
- Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| |
Collapse
|
26
|
NPS 2143, a selective calcium-sensing receptor antagonist inhibits lipopolysaccharide-induced pulmonary inflammation. Mol Immunol 2017; 90:150-157. [PMID: 28800474 DOI: 10.1016/j.molimm.2017.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/22/2017] [Accepted: 07/22/2017] [Indexed: 12/27/2022]
Abstract
NPS 2143, a novel and selective antagonist of calcium-sensing receptor (CaSR) has been reported to possess anti-inflammatory activity. In the present study, we examined the protective effect of NPS 2143 on lipopolysaccharide (LPS)-induced acute lung injury (ALI). NPS 2143 pretreatment significantly inhibited the influx of inflammatory cells and the expression of monocyte chemoattractant protein-1 (MCP-1) in the lung of mice with LPS-induced ALI. NPS 2143 decreased the levels of neutrophil elastase (NE) and protein concentration in the bronchoalveolar lavage fluid (BALF). NPS 2143 also reduced the production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF and serum. In addition, NPS 2143 attenuated the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and increased the activation of AMP-activated protein kinase (AMPK) in the lung. NPS 2143 also downregulated the activation of nuclear factor-kappa B (NF-κB) in the lung. In LPS-stimulated H292 airway epithelial cells, NPS 2143 attenuated the releases of IL-6 and MCP-1. Furthermore, NPS 2143 upregulated the activation of AMPK and downregulated the activation of NF-κB. These results suggest that NPS 2143 could be potential agent for the treatment of inflammatory diseases including ALI.
Collapse
|
27
|
Hu B, Li Y, Gao L, Guo Y, Zhang Y, Chai X, Xu M, Yan J, Lu P, Ren S, Zeng S, Liu Y, Xie W, Huang M. Hepatic Induction of Fatty Acid Binding Protein 4 Plays a Pathogenic Role in Sepsis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1059-1067. [PMID: 28279656 PMCID: PMC5417005 DOI: 10.1016/j.ajpath.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/04/2016] [Accepted: 01/05/2017] [Indexed: 01/15/2023]
Abstract
Sepsis is defined as the host's deleterious systemic inflammatory response to microbial infections. Herein, we report an essential role of the fatty acid binding protein 4 (FABP4; alias adipocyte protein 2 or aP2), a lipid-binding chaperone, in sepsis response. Bioinformatic analysis of the Gene Expression Omnibus data sets showed the level of FABP4 was higher in the nonsurvival sepsis patients' whole blood compared to the survival cohorts. The expression of Fabp4 was induced in a liver-specific manner in cecal ligation and puncture (CLP) and lipopolysaccharide treatment models of sepsis. The induction of Fabp4 may have played a pathogenic role, because ectopic expression of Fabp4 in the liver sensitized mice to CLP-induced inflammatory response and worsened the animal's survival. In contrast, pharmacological inhibition of Fabp4 markedly alleviated the CLP responsive inflammation and tissue damage and improved survival. We conclude that FABP4 is an important mediator of the sepsis response. Early intervention by pharmacological inhibition of FABP4 may help to manage sepsis in the clinic.
Collapse
Affiliation(s)
- Bingfang Hu
- Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China; Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yujin Li
- Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China
| | - Li Gao
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Yan Guo
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Zhang
- Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojuan Chai
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meishu Xu
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jiong Yan
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peipei Lu
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Su Zeng
- Department of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yulan Liu
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Wen Xie
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Min Huang
- Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
28
|
Lee JW, Park JW, Kwon OK, Lee HJ, Jeong HG, Kim JH, Oh SR, Ahn KS. NPS2143 Inhibits MUC5AC and Proinflammatory Mediators in Cigarette Smoke Extract (CSE)-Stimulated Human Airway Epithelial Cells. Inflammation 2017; 40:184-194. [PMID: 27866297 DOI: 10.1007/s10753-016-0468-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucus overproduction is a fundamental hallmark of COPD that is caused by exposure to cigarette smoke. MUC5AC is one of the main mucin genes expressed in the respiratory epithelium, and its transcriptional upregulation often correlates with increased mucus secretion. Calcium-sensing receptor (CaSR) antagonists have been reported to possess anti-inflammatory effects. The purpose of the present study was to investigate the protective role of NPS2143, a selective CaSR antagonist on cigarette smoke extract (CSE)-stimulated NCI-H292 mucoepidermoid human lung cells. Treatment of NPS2143 significantly inhibited the expression of MUC5AC in CSE-stimulated H292 cells. NPS2143 reduced the expression of MMP-9 in CSE-stimulated H292 cells. NPS2143 also decreased the release of proinflammatory cytokines such as IL-6 and TNF-α in CSE-stimulated H292 cells. Furthermore, NPS2143 attenuated the activation of MAPKs (JNK, p38, and ERK) and inhibited the nuclear translocation of NF-κB in CSE-stimulated H292 cells. These results indicate that NPS2143 had a therapeutic potential in COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon, 200-701, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Jae-Hong Kim
- Department of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 136-701, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea.
| | - Kyoung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea.
| |
Collapse
|
29
|
Hernández-Bedolla MA, González-Domínguez E, Zavala-Barrera C, Gutiérrez-López TY, Hidalgo-Moyle JJ, Vázquez-Prado J, Sánchez-Torres C, Reyes-Cruz G. Calcium-sensing-receptor (CaSR) controls IL-6 secretion in metastatic breast cancer MDA-MB-231 cells by a dual mechanism revealed by agonist and inverse-agonist modulators. Mol Cell Endocrinol 2016; 436:159-68. [PMID: 27477783 DOI: 10.1016/j.mce.2016.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 01/25/2023]
Abstract
IL-6 is a tightly controlled pleiotropic cytokine with hormone-like properties whose levels are frequently altered in cancer and inflammatory diseases. In highly invasive MDA-MB-231 breast cancer cells, basal activity of endogenously expressed calcium sensing receptor (CaSR) promotes IL-6 secretion. Interestingly, upon agonist stimulation, CaSR reduces IL-6 levels whereas it promotes secretion of various other cytokines and growth factors, raising intriguing questions about how CaSR signaling modulates IL-6 secretion. Here, using NPS-2143, which acted as an inverse agonist, we show that IL-6 secretion promoted by constitutive activity of CaSR is mechanistically linked to Gαs/PKC, MEK1/2 and mTORC1 signaling pathways, integrated by transactivated EGFR. On the other hand, agonist-stimulated CaSR engages in a Rab11a-dependent trafficking pathway critical to inhibit constitutive IL-6 secretion via the PI3K/AKT and PKC signaling pathways. These results support the emerging potential of CaSR as a therapeutic target in metastatic breast cancer whose pharmacological modulation would reduce IL-6.
Collapse
Affiliation(s)
- Marco Antonio Hernández-Bedolla
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Erika González-Domínguez
- Department of Molecular Biomedicine, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Cesar Zavala-Barrera
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Tania Yareli Gutiérrez-López
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Joseline Janai Hidalgo-Moyle
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Carmen Sánchez-Torres
- Department of Molecular Biomedicine, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico.
| |
Collapse
|
30
|
Calcium Oxalate Induces Renal Injury through Calcium-Sensing Receptor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5203801. [PMID: 27965733 PMCID: PMC5124692 DOI: 10.1155/2016/5203801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 10/05/2016] [Indexed: 01/24/2023]
Abstract
Objective. To investigate whether calcium-sensing receptor (CaSR) plays a role in calcium-oxalate-induced renal injury. Materials and Methods. HK-2 cells and rats were treated with calcium oxalate (CaOx) crystals with or without pretreatment with the CaSR-specific agonist gadolinium chloride (GdCl3) or the CaSR-specific antagonist NPS2390. Changes in oxidative stress (OS) in HK-2 cells and rat kidneys were assessed. In addition, CaSR, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal protein kinase (JNK), and p38 expression was determined. Further, crystal adhesion assay was performed in vitro, and the serum urea and creatinine levels and crystal deposition in the kidneys were also examined. Results. CaOx increased CaSR, ERK, JNK, and p38 protein expression and OS in vitro and in vivo. These deleterious changes were further enhanced upon pretreatment with the CaSR agonist GdCl3 but were attenuated by the specific CaSR inhibitor NPS2390 compared with CaOx treatment alone. Pretreatment with GdCl3 further increased in vitro and in vivo crystal adhesion and renal hypofunction. In contrast, pretreatment with NPS2390 decreased in vitro and in vivo crystal adhesion and renal hypofunction. Conclusions. CaOx-induced renal injury is related to CaSR-mediated OS and increased mitogen-activated protein kinase (MAPK) signaling, which subsequently leads to CaOx crystal adhesion.
Collapse
|
31
|
Yuan G, Yu Y, Ji L, Jie X, Yue L, Kang Y, Jianping G, Zuojin L. Down-Regulated Receptor Interacting Protein 140 Is Involved in Lipopolysaccharide-Preconditioning-Induced Inactivation of Kupffer Cells and Attenuation of Hepatic Ischemia Reperfusion Injury. PLoS One 2016; 11:e0164217. [PMID: 27723769 PMCID: PMC5056758 DOI: 10.1371/journal.pone.0164217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023] Open
Abstract
Background Lipopolysaccharide (LPS) preconditioning is known to attenuate hepatic ischemia/reperfusion injury (I/RI); however, the precise mechanism remains unclear. This study investigated the role of receptor-interacting protein 140 (RIP140) on the protective effect of LPS preconditioning in hepatic I/RI involving Kupffer cells (KCs). Methods Sprague—Dawley rats underwent 70% hepatic ischemia for 90 minutes. LPS (100 μg/kg) was injected intraperitoneally 24 hours before ischemia. Hepatic injury was observed using serum and liver samples. The LPS/NF-κB (nuclear factor-κB) pathway and hepatic RIP140 expression in isolated KCs were investigated. Results LPS preconditioning significantly inhibited hepatic RIP140 expression, NF-κB activation, and serum proinflammatory cytokine expression after I/RI, with an observation of remarkably reduced serum enzyme levels and histopathologic scores. Our experiments showed that protection effects could be effectively induced in KCs by LPS preconditioning, but couldn’t when RIP140 was overexpressed in KCs. Conversely, even without LPS preconditioning, protective effects were found in KCs if RIP140 expression was suppressed with siRNA. Conclusions Down-regulated RIP140 is involved in LPS-induced inactivation of KCs and hepatic I/RI attenuation.
Collapse
Affiliation(s)
- Guo Yuan
- Department of Infection, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - You Yu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li Ji
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xu Jie
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li Yue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yang Kang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Gong Jianping
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Liu Zuojin
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- * E-mail:
| |
Collapse
|
32
|
Fielden MR, Dean C, Black K, Sawant SG, Subramanian R, Tomlinson JE, Walter S, Zimmermann C, Griggs MW, McKeon ME, Lewis EM, Beevers C, Pyrah I. Nonclinical Safety Profile of Etelcalcetide, a Novel Peptide Calcimimetic for the Treatment of Secondary Hyperparathyroidism. Int J Toxicol 2016; 35:294-308. [DOI: 10.1177/1091581816633407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Etelcalcetide is a novel d-amino acid peptide that functions as an allosteric activator of the calcium-sensing receptor and is being developed as an intravenous calcimimetic for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease on hemodialysis. To support clinical development and marketing authorization, a comprehensive nonclinical safety package was generated. Primary adverse effects included hypocalcemia, tremoring, and convulsions. Other adverse effects were considered sequelae of stress associated with hypocalcemia. Cardiovascular safety evaluations in the dog revealed an anticipated prolongation of the corrected QT interval that was related to reductions in serum calcium. Etelcalcetide did not affect the human ether-a-go-go gene ion channel current. Etelcalcetide was mutagenic in some strains of Salmonella, however, based on the negative results in 2 in vitro and 2 in vivo mammalian genotoxicity assays, including a 28-day Muta mouse study, etelcalcetide is considered nongenotoxic. Further support for a lack of genotoxicity was provided due to the fact that etelcalcetide was not carcinogenic in a 6-month transgenic rasH2 mouse model or a 2-year study in rats. There were no effects on fertility, embryo–fetal development, and prenatal and postnatal development. All of the adverse effects observed in both rat and dog were considered directly or secondarily related to the pharmacologic activity of etelcalcetide and the expected sequelae associated with dose-related reductions in serum calcium due to suppression of parathyroid hormone secretion. These nonclinical data indicate no safety signal of concern for human risk beyond that associated with hypocalcemia and associated QT prolongation.
Collapse
Affiliation(s)
- Mark R. Fielden
- Comparative Biology and Safety Sciences, Amgen Inc, Thousand Oaks, CA, USA
| | - Charles Dean
- Comparative Biology and Safety Sciences, Amgen Inc, Thousand Oaks, CA, USA
| | - Kurt Black
- Comparative Biology and Safety Sciences, Amgen Inc, Thousand Oaks, CA, USA
| | - Satin G. Sawant
- Comparative Biology and Safety Sciences, Amgen Inc, Thousand Oaks, CA, USA
| | - Raju Subramanian
- Pharmacokinetics and Drug Metabolism, Amgen Inc, Thousand Oaks, CA, USA
| | | | - Sarah Walter
- Cardiometabolic Disorders, Amgen Inc, Thousand Oaks, CA, USA
| | - Cameron Zimmermann
- Comparative Biology and Safety Sciences, Amgen Inc, Thousand Oaks, CA, USA
| | | | | | | | | | - Ian Pyrah
- Comparative Biology and Safety Sciences, Amgen Inc, Thousand Oaks, CA, USA
| |
Collapse
|
33
|
Xue HC, Li ZX, Zheng WW, Guo YZ, Feng DY, Liu JW. Injuries of myocardial cells and changes of myocardial enzymes after firearm wound-induced intestinal perforation in porcine abdomen. Int J Clin Exp Med 2015; 8:2273-2278. [PMID: 25932162 PMCID: PMC4402809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
This study aims to observe the changes of myocardial injuries after the firearm wound-induced intestinal perforation in porcine abdomen. 42 healthy Landrace piglets were randomly divided into the control group and the injury group, which was then subdivided into the post-injury 1 h, 2 h, 4 h, 8 h, 12 h and 24 h subgroup. the LDH, CK and CK-MB levels of each group, as well as the plasma endotoxin, were determined and compared. The plasma endotoxin levels of the experimental groups were significantly higher than the control group, and the light microscope observation revealed that the 8 h, 12 h and 24 h subgroup appeared the gradually-aggravated myocardial cell edema and degeneration; the electron microscope revealed that the 4 h, 8 h, 12 h and 24 h subgroup appeared the mitochondrial swelling and dissolution gradually; the serum levels of LDH, CK and CK-MB of each experimental group were higher than the control group. The abdominal firearm wound-induced intestinal perforation would lead to the damaged changes of myocardial morphology and enzymes, which would aggravate as time went along.
Collapse
Affiliation(s)
- Hui-Chao Xue
- First Division, Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Ze-Xin Li
- First Division, Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Wei-Wei Zheng
- First Division, Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Yun-Zhen Guo
- First Division, Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - De-Yuan Feng
- Department of Hepatobiliary Surgery, Urumqi General Hospital of Lanzhou Military RegionUrumqi 830000, China
| | - Jiang-Wei Liu
- Department of Hepatobiliary Surgery, Urumqi General Hospital of Lanzhou Military RegionUrumqi 830000, China
| |
Collapse
|
34
|
Wang J, Tergel T, Chen J, Yang J, Kang Y, Qi Z. Arabidopsis transcriptional response to extracellular Ca2+ depletion involves a transient rise in cytosolic Ca2+. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:138-150. [PMID: 24850424 DOI: 10.1111/jipb.12218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Ecological evidence indicates a worldwide trend of dramatically decreased soil Ca(2+) levels caused by increased acid deposition and massive timber harvesting. Little is known about the genetic and cellular mechanism of plants' responses to Ca(2+) depletion. In this study, transcriptional profiling analysis helped identify multiple extracellular Ca(2+) ([Ca(2+) ]ext ) depletion-responsive genes in Arabidopsis thaliana L., many of which are involved in response to other environmental stresses. Interestingly, a group of genes encoding putative cytosolic Ca(2+) ([Ca(2+) ]cyt ) sensors were significantly upregulated, implying that [Ca(2+) ]cyt has a role in sensing [Ca(2+) ]ext depletion. Consistent with this observation, [Ca(2+) ]ext depletion stimulated a transient rise in [Ca(2+) ]cyt that was negatively influenced by [K(+) ]ext , suggesting the involvement of a membrane potential-sensitive component. The [Ca(2+) ]cyt response to [Ca(2+) ]ext depletion was significantly desensitized after the initial treatment, which is typical of a receptor-mediated signaling event. The response was insensitive to an animal Ca(2+) sensor antagonist, but was suppressed by neomycin, an inhibitor of phospholipase C. Gd(3+) , an inhibitor of Ca(2+) channels, suppressed the [Ca(2+) ]ext -triggered rise in [Ca(2+) ]cyt and downstream changes in gene expression. Taken together, this study demonstrates that [Ca(2+) ]cyt plays an important role in the putative receptor-mediated cellular and transcriptional response to [Ca(2+) ]ext depletion of plant cells.
Collapse
Affiliation(s)
- Jing Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | | | | | | | | | | |
Collapse
|
35
|
Luo X, Chae M, Krishnakumar R, Danko CG, Kraus WL. Dynamic reorganization of the AC16 cardiomyocyte transcriptome in response to TNFα signaling revealed by integrated genomic analyses. BMC Genomics 2014; 15:155. [PMID: 24564208 PMCID: PMC3945043 DOI: 10.1186/1471-2164-15-155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/05/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Defining cell type-specific transcriptomes in mammals can be challenging, especially for unannotated regions of the genome. We have developed an analytical pipeline called groHMM for annotating primary transcripts using global nuclear run-on sequencing (GRO-seq) data. Herein, we use this pipeline to characterize the transcriptome of an immortalized adult human ventricular cardiomyocyte cell line (AC16) in response to signaling by tumor necrosis factor alpha (TNFα), which is controlled in part by NF-κB, a key transcriptional regulator of inflammation. A unique aspect of this work is the use of the RNA polymerase II (Pol II) inhibitor α-amanitin, which we used to define a set of RNA polymerase I and III (Pol I and Pol III) transcripts. RESULTS Using groHMM, we identified ~30,000 coding and non-coding transcribed regions in AC16 cells, which includes a set of unique Pol I and Pol III primary transcripts. Many of these transcripts have not been annotated previously, including enhancer RNAs originating from NF-κB binding sites. In addition, we observed that AC16 cells rapidly and dynamically reorganize their transcriptomes in response to TNFα stimulation in an NF-κB-dependent manner, switching from a basal state to a proinflammatory state affecting a spectrum of cardiac-associated protein-coding and non-coding genes. Moreover, we observed distinct Pol II dynamics for up- and downregulated genes, with a rapid release of Pol II into productive elongation for TNFα-stimulated genes. As expected, the TNFα-induced changes in the AC16 transcriptome resulted in corresponding changes in cognate mRNA and protein levels in a similar manner, but with delayed kinetics. CONCLUSIONS Our studies illustrate how computational genomics can be used to characterize the signal-regulated transcriptome in biologically relevant cell types, providing new information about how the human genome is organized, transcribed and regulated. In addition, they show how α-amanitin can be used to reveal the Pol I and Pol III transcriptome. Furthermore, they shed new light on the regulation of the cardiomyocyte transcriptome in response to a proinflammatory signal and help to clarify the link between inflammation and cardiomyocyte function at the transcriptional level.
Collapse
Affiliation(s)
- Xin Luo
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Graduate School of Biomedical Sciences, Program in Genetics and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Minho Chae
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Raga Krishnakumar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
- Current address: Institute for Regenerative Medicine, University of California, San Francisco 94143, USA
| | - Charles G Danko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Graduate School of Biomedical Sciences, Program in Genetics and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|