1
|
Kin K, Bhogale S, Zhu L, Thomas D, Bertol J, Zheng WJ, Sinha S, Fakhouri WD. Sequence-to-expression approach to identify etiological non-coding DNA variations in P53 and cMYC-driven diseases. Hum Mol Genet 2024; 33:1697-1710. [PMID: 39017605 PMCID: PMC11413647 DOI: 10.1093/hmg/ddae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
Disease risk prediction based on genomic sequence and transcriptional profile can improve disease screening and prevention. Despite identifying many disease-associated DNA variants, distinguishing deleterious non-coding DNA variations remains poor for most common diseases. In this study, we designed in vitro experiments to uncover the significance of occupancy and competitive binding between P53 and cMYC on common target genes. Analyzing publicly available ChIP-seq data for P53 and cMYC in embryonic stem cells showed that ~344-366 regions are co-occupied, and on average, two cis-overlapping motifs (CisOMs) per region were identified, suggesting that co-occupancy is evolutionarily conserved. Using U2OS and Raji cells untreated and treated with doxorubicin to increase P53 protein level while potentially reducing cMYC level, ChIP-seq analysis illustrated that around 16 to 922 genomic regions were co-occupied by P53 and cMYC, and substitutions of cMYC signals by P53 were detected post doxorubicin treatment. Around 187 expressed genes near co-occupied regions were altered at mRNA level according to RNA-seq data analysis. We utilized a computational motif-matching approach to illustrate that changes in predicted P53 binding affinity in CisOMs of co-occupied elements significantly correlate with alterations in reporter gene expression. We performed a similar analysis using SNPs mapped in CisOMs for P53 and cMYC from ChIP-seq data, and expression of target genes from GTEx portal. We found significant correlation between change in cMYC-motif binding affinity in CisOMs and altered expression. Our study brings us closer to developing a generally applicable approach to filter etiological non-coding variations associated with common diseases.
Collapse
Affiliation(s)
- Katherine Kin
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, 7500 Cambridge St, Houston, TX 77054, United States
| | - Shounak Bhogale
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States
| | - Lisha Zhu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St #600, Houston, TX 77030, United States
| | - Derrick Thomas
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, 7500 Cambridge St, Houston, TX 77054, United States
| | - Jessica Bertol
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, 7500 Cambridge St, Houston, TX 77054, United States
| | - W Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St #600, Houston, TX 77030, United States
| | - Saurabh Sinha
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, North Avenue Atlanta, GA 30332, United States
| | - Walid D Fakhouri
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, 7500 Cambridge St, Houston, TX 77054, United States
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, United States
| |
Collapse
|
2
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
3
|
Shirokikh NE, Jensen KB, Thakor N. Editorial: RNA machines. Front Genet 2023; 14:1290420. [PMID: 37829284 PMCID: PMC10565666 DOI: 10.3389/fgene.2023.1290420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kirk Blomquist Jensen
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
4
|
Kin K, Bhogale S, Zhu L, Thomas D, Bertol J, Zheng WJ, Sinha S, Fakhouri WD. Sequence-to-expression approach to identify etiological non-coding DNA variations in P53 and cMYC-driven diseases. RESEARCH SQUARE 2023:rs.3.rs-3037310. [PMID: 37503250 PMCID: PMC10371153 DOI: 10.21203/rs.3.rs-3037310/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background and methods Disease risk prediction based on DNA sequence and transcriptional profile can improve disease screening, prevention, and potential therapeutic approaches by revealing contributing genetic factors and altered regulatory networks. Despite identifying many disease-associated DNA variants through genome-wide association studies, distinguishing deleterious non-coding DNA variations remains poor for most common diseases. We previously reported that non-coding variations disrupting cis-overlapping motifs (CisOMs) of opposing transcription factors significantly affect enhancer activity. We designed in vitro experiments to uncover the significance of the co-occupancy and competitive binding and inhibition between P53 and cMYC on common target gene expression. Results Analyzing publicly available ChIP-seq data for P53 and cMYC in human embryonic stem cells and mouse embryonic cells showed that ~ 344-366 genomic regions are co-occupied by P53 and cMYC. We identified, on average, two CisOMs per region, suggesting that co-occupancy is evolutionarily conserved in vertebrates. Our data showed that treating U2OS cells with doxorubicin increased P53 protein level while reducing cMYC level. In contrast, no change in protein levels was observed in Raji cells. ChIP-seq analysis illustrated that 16-922 genomic regions were co-occupied by P53 and cMYC before and after treatment, and substitutions of cMYC signals by P53 were detected after doxorubicin treatment in U2OS. Around 187 expressed genes near co-occupied regions were altered at mRNA level according to RNA-seq data. We utilized a computational motif-matching approach to determine that changes in predicted P53 binding affinity by DNA variations in CisOMs of co-occupied elements significantly correlate with alterations in reporter gene expression. We performed a similar analysis using SNPs mapped in CisOMs for P53 and cMYC from ChIP-seq data in U2OS and Raji, and expression of target genes from the GTEx portal. Conclusions We found a significant correlation between change in motif-predicted cMYC binding affinity by SNPs in CisOMs and altered gene expression. Our study brings us closer to developing a generally applicable approach to filter etiological non-coding variations associated with P53 and cMYC-dependent diseases.
Collapse
Affiliation(s)
- Katherine Kin
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston
| | | | - Lisha Zhu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston
| | - Derrick Thomas
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston
| | - Jessica Bertol
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston
| | - W Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston
| | - Saurabh Sinha
- The Wallace H. Coulter Department of Biomedical Engineering
| | - Walid D Fakhouri
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston
| |
Collapse
|
5
|
Huang BX, Jia ZC, Yang X, Cheng CL, Liu XR, Zhang J, Chen MX, Yang JF, Chen YS. Genome-wide comparison and in silico analysis of splicing factor SYF2/NTC31/p29 in eukaryotes: Special focus on vertebrates. Front Genet 2022; 13:873869. [PMID: 36118875 PMCID: PMC9479762 DOI: 10.3389/fgene.2022.873869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
The gene SYF2—an RNA splicing factor—can interact with Cyclin D-type binding protein 1 (GICP) in many biological processes, including splicing regulation, cell cycle regulation, and DNA damage repair. In our previous study we performed genome-wide identification and functional analysis of SYF2 in plant species. The phylogenetic relationships and expression profiles of SYF2 have not been systematically studied in animals, however. To this end, the gene structure, genes, and protein conserved motifs of 102 SYF2 homologous genes from 91 different animal species were systematically analyzed, along with conserved splicing sites in 45 representative vertebrate species. A differential comparative analysis of expression patterns in humans and mice was made. Molecular bioinformatics analysis of SYF2 showed the gene was conserved and functional in different animal species. In addition, expression pattern analysis found that SYF2 was highly expressed in hematopoietic stem cells, T cells, and lymphoid progenitor cells; in ovary, lung, and spleen; and in other cells and organs. This suggests that changes in SYF2 expression may be associated with disease development in these cells, tissues, or organs. In conclusion, our study analyzes the SYF2 disease resistance genes of different animal species through bioinformatics, reveals the relationship between the SYF2 genotype and the occurrence of certain diseases, and provides a theoretical basis for follow-up study of the relationship between the SYF2 gene and animal diseases.
Collapse
Affiliation(s)
- Bao-Xing Huang
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
| | - Zi-Chang Jia
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, China
| | - Chao-Lin Cheng
- Department of Biology, Hong Kong Baptist University, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiao-Rong Liu
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jing-Fang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jing-Fang Yang, ; Yun-Sheng Chen,
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Jing-Fang Yang, ; Yun-Sheng Chen,
| |
Collapse
|
6
|
Tao Y, Zhao Y, Peng Y, Ma X, Sun C, Xu K. MicroRNA-621 inhibits the growth of gastric cancer cells by targeting SYF2. Arch Biochem Biophys 2020; 688:108406. [DOI: 10.1016/j.abb.2020.108406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
|
7
|
Liu B, Li G, Zhang Z, Wu H. Influence of miR-376c-3p/SYF2 Axis on the Progression of Gastric Cancer. Technol Cancer Res Treat 2020; 18:1533033819874808. [PMID: 31522605 PMCID: PMC6747844 DOI: 10.1177/1533033819874808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-376c-3p was previous reported to have a crucial role in the progression of human cancer. This study was aimed to investigate the influence of microRNA-376c-3p on the proliferation and migration of human gastric cancer cells and the associated mechanism. We explored the expression of microRNA-376c-3p in gastric cancer cells using reverse transcription-quantitative polymerase chain reaction. Also, we analyzed the association and biological significance of microRNA-376c-3p and SYF2 pre-mRNA-splicing factor in gastric cancer. MicroRNA-376c-3p expression was found downregulated in gastric cancer cell lines compared to the normal cell line. MicroRNA-376c-3p directly targeted SYF2 and reduced SYF2 expression. Overexpression of microRNA-376c-3p inhibits gastric cancer cell proliferation and migration. Besides that, overexpression of SYF2 abrogates the inhibitory influences on gastric cancer cell behaviors caused by microRNA-376c-3p mimic. These results showed that microRNA-376c-3p inhibits the proliferation and migration of gastric cancer cells via targeting SYF2.
Collapse
Affiliation(s)
- Bin Liu
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| | - Guangchun Li
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| | - Zhen Zhang
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| | - Honglei Wu
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Shi C, Xu L, Tang Z, Zhang W, Wei Y, Ni J, Zhang S, Feng J. Knockdown of Nemo‑like kinase promotes metastasis in non‑small‑cell lung cancer. Oncol Rep 2019; 42:1090-1100. [PMID: 31322229 PMCID: PMC6667924 DOI: 10.3892/or.2019.7226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved serine/threonine kinase Nemo-like kinase (NLK) serves an important role in cell proliferation, migration, invasion and apoptosis by regulating transcription factors among various cancers. In the present study, the function of NLK in human non-small cell lung cancer (NSCLC) was investigated. Immunohistochemical analysis and western blotting demonstrated that NLK expression was significantly reduced in NSCLC tissues compared with corresponding peritumoral tissues. Statistical analysis revealed that decreased NLK expression was associated with the presence of primary tumors, tumor node metastasis (TNM) staging, differentiation, lymph node metastasis, and E-cadherin and vimentin expression. Univariate analysis indicated that NLK expression, differentiation, lymph node metastasis, TNM stage, and E-cadherin and vimentin expression affected the prognosis of NSCLC. Cox regression analyses revealed NLK expression and TNM as independent factors that affected prognosis. Kaplan-Meier survival analysis revealed that patients with NSCLC and low NLK expression had relatively shorter durations of overall survival. In vitro, NLK overexpression inhibited A549 ncell migration and invasion as determined by wound healing and Transwell migration assays, respectively. Additionally, immunofluorescence staining indicated that downregulation of NLK expression could induce epithelial-mesenchymal transition in NSCLC. NLK knockdown significantly decreased the expression of the epithelial marker E-cadherin, and markedly increased that of β-catenin and the mesenchymal marker vimentin. Furthermore, NLK was reported to directly interact with β-catenin as determined by a co-immunoprecipitation assay. Collectively, the results of the present study indicated that decreased NLK expression could promote tumor metastasis in NSCLC.
Collapse
Affiliation(s)
- Cui Shi
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liqin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weishuai Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yulin Wei
- Department of Respiratory Medicine, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226001, P.R. China
| | - Jun Ni
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuwen Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
9
|
Tian Y, Chen MX, Yang JF, Achala HHK, Gao B, Hao GF, Yang GF, Dian ZY, Hu QJ, Zhang D, Zhang J, Liu YG. Genome-wide identification and functional analysis of the splicing component SYF2/NTC31/p29 across different plant species. PLANTA 2019; 249:583-600. [PMID: 30317439 DOI: 10.1007/s00425-018-3026-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
This study systematically identifies plant SYF2/NTC31/p29 genes from 62 plant species by a combinatory bioinformatics approach, revealing the importance of this gene family in phylogenetics, duplication, transcriptional, and post-transcriptional regulation. Alternative splicing is a post-transcriptional regulatory mechanism, which is critical for plant development and stress responses. The entire process is strictly attenuated by a complex of splicing-related proteins, designated splicing factors. Human p29, also referred to as synthetic lethal with cdc forty 2 (SYF2) or the NineTeen complex 31 (NTC31), is a core protein found in the NTC complex of humans and yeast. This splicing factor participates in a variety of biological processes, including DNA damage repair, control of the cell cycle, splicing, and tumorigenesis. However, its function in plants has been seldom reported. Thus, we have systematically identified 89 putative plant SYF2s from 62 plant species among the deposited entries in the Phytozome database. The phylogenetic relationships and evolutionary history among these plant SYF2s were carefully examined. The results revealed that plant SYF2s exhibited distinct patterns regarding their gene structure, promoter sequences, and expression levels, suggesting their functional diversity in response to developmental cues or stress treatments. Although local duplication events, such as tandem duplication and retrotransposition, were found among several plant species, most of the plant species contained only one copy of SYF2, suggesting the existence of additional mechanisms to confer duplication resistance. Further investigation using the model dicot and monocot representatives Arabidopsis and rice SYF2s indicated that the splicing pattern and resulting protein isoforms might play an alternative role in the functional diversity.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Mo-Xian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing-Fang Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - H H K Achala
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ge-Fei Hao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | | | - Qi-Juan Hu
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Di Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
10
|
Retinoblastoma Binding Protein 5 Correlates with the Progression in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1073432. [PMID: 30533424 PMCID: PMC6247687 DOI: 10.1155/2018/1073432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/16/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancy tumors with insidious onset, rapid development and metastasis, and poor prognosis. Therefore, it is necessary to understand molecular mechanisms of HCC and identify clinically useful biomarkers for it. This study aimed to investigate the role of retinoblastoma binding protein 5 (RBBP5) in HCC. The expression level of RBBP5 was examined by immunohistochemistry and western blot. The effect of RBBP5 on cell cycle, proliferation, apoptosis, and drug sensitivity was analyzed. RBBP5 was significantly upregulated in HCC tissues and cells. High RBBP5 expression was significantly associated with elevated level of AFP, advanced TNM stage, high Ki-67 expression, larger tumor size, and poor prognosis. Knockdown of RBBP5 significantly inhibited proliferation of HCC cells through cell cycle arrest. In addition, inhibition of RBBP5 increased the sensitivity of HCC cells to doxorubicin. In conclusion, our findings suggest that RBBP5 plays an important role in the progression of HCC and may serve as a novel biomarker and potential therapeutic target for HCC.
Collapse
|
11
|
Wang D, Zhang S, Chen Y, Hu B, Lu C. Low expression of NKD2 is associated with enhanced cell proliferation and poor prognosis in human hepatocellular carcinoma. Hum Pathol 2018; 72:80-90. [DOI: 10.1016/j.humpath.2017.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
|
12
|
Shi F, Cai FF, Cai L, Lin XY, Zhang W, Wang QQ, Zhao YJ, Ni QC, Wang H, He ZX. Overexpression of SYF2 promotes cell proliferation and correlates with poor prognosis in human breast cancer. Oncotarget 2017; 8:88453-88463. [PMID: 29179448 PMCID: PMC5687618 DOI: 10.18632/oncotarget.18188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
SYF2, a known cell cycle regulator, is reported to be involved in cell cycle arrest by interacting with cyclin-D-type binding protein 1. In the present study, we investigated the role of SYF2 in human breast cancer (BC) progression. SYF2 was highly upregulated in BC tissues and cell lines, as per Western blot and immunohistochemistry analysis. The SYF2 expression level had a significant correlation with the tumor grade and Ki-67 expression. In vitro starvation-refeeding experiment and SYF2-siRNA transfection assay demonstrated that SYF2 could promote proliferation of BC cells, while SYF2 knockdown resulted in cells cycle arrest at G1/S phase, reducing the cell growth rate of BC cells. These results indicated that SYF2 promotes human BC progression by accelerating the BC cells’ proliferation. SYF2 could be a novel therapeutic target in human BC therapies.
Collapse
Affiliation(s)
- Feng Shi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, PR China
| | - Feng-Feng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Lu Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiao-Yan Lin
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Wei Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, PR China
| | - Qin-Qin Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, PR China
| | - Yu-Jie Zhao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, PR China
| | - Qi-Chao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, PR China
| | - Hua Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, PR China
| | - Zhi-Xian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, PR China
| |
Collapse
|
13
|
Li C, Wu M, Zong G, Wan C, Liu Q, Zhou H, Hua L, Chen Y, Chen X, Lu C. Overexpression of Protein Phosphatase 1γ (PP1γ) Is Associated with Enhanced Cell Proliferation and Poor Prognosis in Hepatocellular Carcinoma. Dig Dis Sci 2017; 62:133-142. [PMID: 27921263 DOI: 10.1007/s10620-016-4365-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Protein phosphatase 1γ (PP1γ), as a member of the protein phosphatase 1 family, may be involved in regulation of multiple cellular processes, such as mitosis, cell survival, and apoptosis. However, little is known about the underlying mechanisms by which PP1γ regulates hepatocellular carcinoma development. AIM We investigated the expression profile of PP1γ in hepatocellular carcinoma (HCC) cell lines and human HCC specimens, as well as its potential prognostic significance in HCC. METHODS PP1γ expression profile was detected in 94 HCC specimens using immunohistochemistry. PP1γ levels in HCC cells were downregulated by small interfering RNA (siRNA) transfection. Cell cycle progression and proliferation status of HCC cells and the effectiveness of doxorubicin were evaluated by flow cytometry and CCK-8 assay. The levels of PP1γ, CyclinD1, PCNA, Mdmx, p53, p21, and active caspase-3 were evaluated by Western blot analysis. RESULTS PP1γ was upregulated in tumorous specimens, compared with adjacent nontumorous tissues. Univariate and multivariate survival analyses were conducted to determine the prognostic significance of PP1γ in HCC. The expression pattern of PP1γ was positively correlated with tumor size, histological grade, Ki-67 expression, and poor prognosis in HCC. In addition, depletion of PP1γ by siRNA could inhibit cell proliferation, resulted in G1 phase arrest, and attenuated resistance to doxorubicin in Huh7 cells. CONCLUSIONS PP1γ is upregulated in HCC cell lines and HCC specimens, promotes cancer cell proliferation through regulation of p53, and may be a potential target for treatment of HCC.
Collapse
Affiliation(s)
- Chunsun Li
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu Province, China
| | - Miaomiao Wu
- Department of Digestion, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Guijuan Zong
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu Province, China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Qingqing Liu
- Department of Digestion, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Huiling Zhou
- Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Lu Hua
- Department of Oncology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Yuyan Chen
- Class 2 Grade 13, Clinical Medicine, Medical college, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Xudong Chen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, 226361, Jiangsu Province, China.
| | - Cuihua Lu
- Department of Digestion, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
14
|
Liu Q, Tao T, Liu F, Ni R, Lu C, Shen A. Hyper-O-GlcNAcylation of YB-1 affects Ser102 phosphorylation and promotes cell proliferation in hepatocellular carcinoma. Exp Cell Res 2016; 349:230-238. [PMID: 27751836 DOI: 10.1016/j.yexcr.2016.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 11/16/2022]
Abstract
As an essential post-translational modification, O-GlcNAcylation has been thought to be able to modulate various nuclear and cytoplasmic proteins and is emerging as a key regulator of multiple biological processes, such as transcription, cell growth, signal transduction, and cell motility. Recently, authoritative glycomics analyses have reported extensive crosstalk between O-GlcNAcylation and phosphorylation, which always dynamically interplay with each other and regulate signaling, transcription, and other cellular processes. Also, plentiful studies have shown close correlation between YB-1 phosphorylation and tumorigenesis. Therefore, our study aimed to determine whether YB-1 was O-GlcNAc modified and whether such modification could interact with its phosphorylation during the process of HCC development. Western blot and immunohistochemistry were firstly conducted to reveal obvious up-regulation of YB-1, OGT and O-GlcNAc modification in HCC tissues. What is more, not only YB-1 was identified to be O-GlcNAcylated but hyper-O-GlcNAcylation was demonstrated to facilitate HCC cell proliferation in a YB-1 dependent manner. Moreover, we detected four specific O-GlcNAc sites and confirmed T126A to be the most effective mutant in HCC cell proliferation via close O-GlcNAcylation-phosphorylation interaction. Even more interestingly, we discovered that T126A-induced HCC cell retardation and subdued transcriptional activity of YB-1 could be partially reversed by T126A/S102E mutant. From all above, it is not difficult to find that glycosylated-YB-1 mainly enhanced cell proliferation through congenerous actions with YB-1 phosphorylation and thus played indispensable roles in fine-tuning cell proliferation and procession of HCC.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Fang Liu
- Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| | - Aiguo Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province, People's Republic of China; Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
15
|
Zhu X, Wu Y, Miao X, Li C, Yin H, Yang S, Lu X, Liu Y, Chen Y, Shen R, Chen X, He S. High expression of TRIM44 is associated with enhanced cell proliferation, migration, invasion, and resistance to doxorubicin in hepatocellular carcinoma. Tumour Biol 2016; 37:14615-14628. [PMID: 27619678 DOI: 10.1007/s13277-016-5316-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 01/09/2023] Open
Abstract
Dysregulation of TRIM44 has been reported to be involved in tumorigenesis, but its role in hepatocellular carcinoma (HCC) remains unclear. In the present study, we investigated the clinicopathological and biological significance of TRIM44 in HCC. We found that TRIM44 mRNA and protein expression was upregulated in HCC compared with matched normal tissues. Intriguingly, we also found that TRIM44 expression was significantly correlated with tumor size (P < 0.001), vascular invasion (P < 0.001), intrahepatic metastasis (P < 0.001), distant metastasis (P < 0.001), and Ki-67 expression (P < 0.001). Kaplan-Meier analysis showed that high TRIM44 staining was significantly correlated with shorter overall survival (P < 0.001). TRIM44 was an independent predictor of overall survival in patients with HCC. Furthermore, we found that ectopic expression of TRIM44 could promote cell proliferation via accelerating the G1/S-phase transition in HCC. Moreover, overexpression of TRIM44 could enhance the invasive and migratory capacity of HCC cells. Meanwhile, we found that high expression of TRIM44 could enhance resistance of HCC cells to doxorubicin via accelerating NF-κB activation. In conclusion, our results suggest that TRIM44 may be a novel prognostic indicator and potential therapeutic target of HCC.
Collapse
Affiliation(s)
- Xinghua Zhu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Chunsun Li
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Haibing Yin
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Shuyun Yang
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Xiaoyun Lu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Yushan Liu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Yali Chen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Rong Shen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China
| | - Xudong Chen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China.
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong, Jiangsu, 226361, China.
| |
Collapse
|
16
|
Liu J, Ni W, Qu L, Cui X, Lin Z, Liu Q, Zhou H, Ni R. Decreased Expression of EHD2 Promotes Tumor Metastasis and Indicates Poor Prognosis in Hepatocellular Carcinoma. Dig Dis Sci 2016; 61:2554-2567. [PMID: 27221498 DOI: 10.1007/s10620-016-4202-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/12/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metastasis remains the most common cause of lethal outcomes in hepatocellular carcinoma (HCC) after curative resection. Understanding molecular mechanisms that regulate metastasis process is crucial for improving treatment of hepatocellular carcinoma. AIMS In this article, we examined whether Eps15 homology domain-containing 2 (EHD2) played a critical role in hepatocellular carcinoma metastasis and explored the possible mechanism. METHODS EHD2 and E-cadherin expression levels in hepatocellular carcinoma patients were examined using Western blotting and immunohistochemistry. The cell migration and invasion were evaluated by wound-healing assay and trans-well assay. Epithelial-mesenchymal transition was analyzed by immunofluorescence, and the vital markers were detected by Western blotting. The correlation of EHD2 and E-cadherin was confirmed by co-immunoprecipitation. RESULTS EHD2 expression, along with the epithelial marker E-cadherin, was markedly reduced in tumor tissues than in adjacent noncancerous tissues. Moreover, EHD2 was positively correlated with E-cadherin, histological grade, tumor metastasis, and microvascular invasion. Kaplan-Meier survival analysis showed that hepatocellular carcinoma patients with decreased EHD2 expression had shorter overall survival times than those with higher EHD2 expression. Knockdown of EHD2 induced an increase in cell invasion and changes characteristic of epithelial-mesenchymal transition, while overexpression of EHD2 inhibited these processes. CONCLUSIONS Molecular data indicated that EHD2 inhibited migration and invasion of hepatocellular carcinoma probably by interacting with E-cadherin and it might be an independent, significant risk factor for survival after curative resection.
Collapse
Affiliation(s)
- Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaopeng Cui
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zhipeng Lin
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qingqing Liu
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Huiling Zhou
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Chen Y, Liu Q, Wu M, Li M, Ding H, Shan X, Liu J, Tao T, Ni R, Chen X. GAB2 promotes cell proliferation by activating the ERK signaling pathway in hepatocellular carcinoma. Tumour Biol 2016; 37:11763-11773. [PMID: 27026230 DOI: 10.1007/s13277-016-5019-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
Grb2-associated binding protein 2 (GAB2), a key member of the family of Gab scaffolding adaptors, is important in the phospoinositide3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) signaling pathways, and is closely associated with cell proliferation, cell transformation, and tumor progression. But its role in hepatocellular carcinoma (HCC) is still unknown. In this study, we investigated the expression of GAB2 and its potential clinical and biological significances in HCC. Western bolt and immunohistochemistrical analyses revealed that GAB2 was obviously upregulated in HCC tissues. Meanwhile, GAB2 was significantly associated with histological grade, tumor size, and the proliferation marker Ki-67 through our further analysis. The Kaplan-Meier survival curves also showed that increased GAB2 expression was directly correlated with poor prognosis in HCC patients and served as an independent prognostic marker of overall survival. Moreover, serum starvation-refeeding, RNA interference, CCK-8, EDU, colony formation, and flow-cytometry analyses were all performed with the purpose of investigating GAB2's regulation of HCC cell proliferation. Our results indicated that GAB2 progressively accumulated when cells entered into S phase. Consistently, cell proliferation was distinctly hindered by small interfering RNA. More interestingly, we discovered that GAB2 promoted cell proliferation by enhancing ERK signaling and GAB2-induced cell proliferation was inhibited by the inhibition of ERK activation. Finally, GAB2 was verified to be able to confer doxorubicin resistance in HCC cells. In summary, these data demonstrated that GAB2 might promote HCC cell proliferation by enhancing ERK signaling, and all above findings provided a potential therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yuyan Chen
- Class 2, Grade 13, Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Qingqing Liu
- Department of Digestion, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Miaomiao Wu
- Department of Digestion, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Manhua Li
- Department of Digestion, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Haifang Ding
- Department of Digestion, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiaohang Shan
- Department of Digestion, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jinxia Liu
- Department of Digestion, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Runzhou Ni
- Department of Digestion, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Xudong Chen
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu Province, People's Republic of China.
| |
Collapse
|
18
|
Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/29/2023]
|