1
|
Gutierrez-Sandoval R, Gutiérrez-Castro F, Muñoz-Godoy N, Rivadeneira I, Sobarzo A, Iturra J, Krakowiak F, Alarcón L, Dorado W, Lagos A, Montenegro D, Muñoz I, Aguilera R, Toledo A. Beyond Exosomes: An Ultrapurified Phospholipoproteic Complex (PLPC) as a Scalable Immunomodulatory Platform for Reprogramming Immune Suppression in Metastatic Cancer. Cancers (Basel) 2025; 17:1658. [PMID: 40427155 PMCID: PMC12110133 DOI: 10.3390/cancers17101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Dendritic-cell-derived exosomes (DEXs) have demonstrated immunostimulatory potential in cancer immunotherapy, yet their clinical application remains constrained by their cryodependence, compositional heterogeneity, and limited scalability. To address these limitations, we developed an ultrapurified phospholipoproteic complex (PLPC), a dendritic-secretome-derived formulation stabilized through ultracentrifugation and lyophilization that has been engineered to preserve its immunological function and structural integrity. Methods: Secretomes were processed under four conditions (fresh, concentrated, cryopreserved, and lyophilized PLPC) and compared through proteomic and functional profiling. Mass spectrometry (LC-MS/MS) analysis revealed that the PLPC retained a significantly enriched set of immunoregulatory proteins-including QSOX1, CCL22, and SDCBP-and exhibited superior preservation of post-translational modifications. Results: Ex vivo co-culture assays with human peripheral blood mononuclear cells (PBMCs) demonstrated that the PLPC induced robust secretion of IFN-γ, TNF-α, and IL-6 while concurrently suppressing IL-10, achieving an IFN-γ/IL-10 ratio exceeding 3.5. Flow cytometry confirmed the substantial activation of both CD4⁺ and CD8⁺ T cells, while apoptosis assays showed selective tumor cytotoxicity (>55% tumor apoptosis) with minimal impact on non-malignant cells (>92% viability). Conclusions: These findings establish the PLPC as a reproducible, Th1-polarizing immunomodulator with selective antitumor activity, ambient-temperature stability, and compatibility with non-invasive administration. Overall, the PLPC emerges as a scalable, cell-free immunotherapeutic platform with translational potential to reprogram immune suppression in metastatic therapy-resistant cancer settings.
Collapse
Affiliation(s)
| | - Francisco Gutiérrez-Castro
- Department of Cancer Research, Flowinmunocell-Bioexocell Group, 08028 Barcelona, Spain; (F.G.-C.); (N.M.-G.)
| | - Natalia Muñoz-Godoy
- Department of Cancer Research, Flowinmunocell-Bioexocell Group, 08028 Barcelona, Spain; (F.G.-C.); (N.M.-G.)
| | - Ider Rivadeneira
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Adolay Sobarzo
- Department of Biological and Chemistry Sciences, Faculty of Medicine and Science, San Sebastian University, Concepción 4080871, Chile;
| | - Jordan Iturra
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Francisco Krakowiak
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
- Department of Molecular Oncopathology, Bioclas, Concepción 4030000, Chile
| | - Luis Alarcón
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Wilson Dorado
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Andy Lagos
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Diego Montenegro
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Ignacio Muñoz
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Rodrigo Aguilera
- Department of Outreach and Engagement Programs, OGRD Consortium, Charlestown KN0802, Saint Kitts and Nevis; (I.R.); (J.I.); (F.K.); (L.A.); (W.D.); (A.L.); (D.M.); (I.M.); (R.A.)
| | - Andres Toledo
- Department of Oncopathology, OGRD Alliance, Lewes, DE 19958, USA;
| |
Collapse
|
2
|
Liu X, Bian H, Zhou T, Zhao C. Protective Effects of Rat Bone Marrow Mesenchymal Stem Cells-Derived Fusogenic Plasma Membrane Vesicles Containing VSVG Protein Mediated Mitochondrial Transfer on Myocardial Injury In Vitro. FASEB Bioadv 2025; 7:e70010. [PMID: 40330432 PMCID: PMC12050952 DOI: 10.1096/fba.2024-00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Overexpression of spike glycoprotein G of vesicular stomatitis virus (VSVG) can induce the release of fusogenic plasma membrane vesicles (fPMVs), which can transport cytoplasmic, nuclear, and surface proteins directly to target cells. This study aimed to investigate the roles of rat bone marrow mesenchymal stem cells (rBMSCs)-derived fPMVs containing VSVG protein in myocardial injury and their related mechanisms. The plasmids of pLP-VSVG were used to transfect rBMSCs, and then fPMVs were obtained by mechanical extrusion. After that, H9c2 cells were first treated with hypoxia reoxygenation (HR) to establish a cardiomyocyte injury model, and then were treated with fPMVs to evaluate the rescue of rBMSCs-derived fPMVs on HR-induced cardiomyocyte injury. FPMVs containing VSVG protein were successfully prepared from rBMSCs with VSVG overexpression. Compared with control fPMVs, ACTB, HDAC1, VSVG, CD81, MTCO1, and TOMM20 were significantly up-regulated (p < 0.05), while eEF2 was significantly down-regulated (p < 0.05) in the fPMVs containing VSVG protein. Additionally, it was obvious fPMVs could carry mitochondria into H9c2 cells, and HR treatment significantly inhibited viability and induced apoptosis of H9c2 cells, as well as significantly increased the contents of TNF-α and IL-1β, and ROS levels both in cells and cellular mitochondria, while evidently reducing the levels of ATP, MRCC IV, and MT-ND1 (p < 0.05). However, fPVMs could remarkably reverse the changes in these indexes caused by HR (p < 0.05). RBMSCs-derived fPMVs containing VSVG protein may have protective effects on myocardial injury by mediating mitochondrial transfer and regulating mitochondrial functions.
Collapse
Affiliation(s)
- Xin Liu
- Biochemistry and Molecular BiologyBasic Medical Institute of Ningxia Medical UniversityYinchunNingxiaChina
| | - Hong Bian
- Cardiothoracic SurgerySouthern University of Science and Technology HospitalShenzhen and GuangzhouGuangdongChina
| | - Tingyuan Zhou
- Biochemistry and Molecular BiologyBasic Medical Institute of Ningxia Medical UniversityYinchunNingxiaChina
| | - Chunjuan Zhao
- Rehabilitation MedicineGeneral Hospital of Ningxia Medical UniversityYinchunNingxiaChina
| |
Collapse
|
3
|
Hoang VT, Nguyen QT, Phan TTK, Pham TH, Dinh NTH, Anh LPH, Dao LTM, Bui VD, Dao H, Le DS, Ngo ATL, Le Q, Nguyen Thanh L. Tissue Engineering and Regenerative Medicine: Perspectives and Challenges. MedComm (Beijing) 2025; 6:e70192. [PMID: 40290901 PMCID: PMC12022429 DOI: 10.1002/mco2.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
From the pioneering days of cell therapy to the achievement of bioprinting organs, tissue engineering, and regenerative medicine have seen tremendous technological advancements, offering solutions for restoring damaged tissues and organs. However, only a few products and technologies have received United States Food and Drug Administration approval. This review highlights significant progress in cell therapy, extracellular vesicle-based therapy, and tissue engineering. Hematopoietic stem cell transplantation is a powerful tool for treating many diseases, especially hematological malignancies. Mesenchymal stem cells have been extensively studied. The discovery of induced pluripotent stem cells has revolutionized disease modeling and regenerative applications, paving the way for personalized medicine. Gene therapy represents an innovative approach to the treatment of genetic disorders. Additionally, extracellular vesicle-based therapies have emerged as rising stars, offering promising solutions in diagnostics, cell-free therapeutics, drug delivery, and targeted therapy. Advances in tissue engineering enable complex tissue constructs, further transforming the field. Despite these advancements, many technical, ethical, and regulatory challenges remain. This review addresses the current bottlenecks, emphasizing novel technologies and interdisciplinary research to overcome these hurdles. Standardizing practices and conducting clinical trials will balance innovation and regulation, improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang H. Pham
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Nhung Thi Hong Dinh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Le Phuong Hoang Anh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Lan Thi Mai Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Van Dat Bui
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Hong‐Nhung Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Anh Thi Lan Ngo
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quang‐Duong Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| |
Collapse
|
4
|
Eyileten C, Czajka P, Domitrz I, Wierzchowska-Ciok A, Gasecka A, Mirowska-Guzel D, Członkowska A, Postula M. Extracellular Vesicle-Derived miRNAs in Ischemic Stroke: Roles in Neuroprotection, Tissue Regeneration, and Biomarker Potential. Cell Mol Neurobiol 2025; 45:31. [PMID: 40164816 PMCID: PMC11958879 DOI: 10.1007/s10571-025-01551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Ischemic stroke (IS) is one of the most common causes of death and disability worldwide. Despite its prevalence, knowledge about pathophysiology and diagnostic methods remains limited. Extracellular vesicles (EVs) that are released from cellular membranes constitutively, as well as after activation or damage, may contain various intracellular particles, including microRNAs (miRNAs/miR). miRNAs acting as mRNA transcription regulators are secreted in EVs and may be internalized by other cells. This cellular cross-talk is important for the regeneration of the nervous tissue after ischemic injury. Moreover, miRNAs related to stroke pathophysiology were shown to be differentially expressed after an IS episode. miRNAs associated with various types of stem cell-derived EVs were shown to be involved in post-ischemic neuroprotection and tissue regeneration and may be potential therapeutic agents. Therefore, considering their stability in plasma, they are worth investigating also as potential diagnostic/prognostic biomarkers. The present review summarizes the current knowledge about EV-derived miRNAs in the neuronal injury mechanism and their potential in neuroprotection in IS, and discusses the possibilities of further investigation of their use in preclinical research.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland.
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-089, Warsaw, Poland.
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| | - Izabela Domitrz
- Department of Neurology Faculty of Medicine and Dentistry, Medical University of Warsaw Bielanski Hospital, Warsaw, Poland
| | - Agata Wierzchowska-Ciok
- Department of Neurology Faculty of Medicine and Dentistry, Medical University of Warsaw Bielanski Hospital, Warsaw, Poland
| | - Aleksandra Gasecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| | - Anna Członkowska
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, 02-957, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| |
Collapse
|
5
|
Ji W, Gong G, Liu Y, Liu Y, Zhang J, Li Q. Icariin promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by activating PI3K-AKT-UTX/EZH2 signaling in steroid-induced femoral head osteonecrosis. J Orthop Surg Res 2025; 20:290. [PMID: 40098175 PMCID: PMC11917108 DOI: 10.1186/s13018-025-05697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Differentiation of bone marrow mesenchymal stem cells (BMSCs) is pivotal in the pathogenesis of steroid-induced femoral head osteonecrosis. Icariin, an active ingredient in Epimedii herba, has the potential to regulate osteogenic differentiation of BMSCs. Nevertheless, the related mechanism is still unclear. The study aimed to explore whether icariin can affect osteogenic differentiation by activating PI3K/AKT signaling to alter UTX and EZH2 expression and thus regulating osteogenesis-related genes in BMSCs. METHODS BMSCs were collected from Sprague Dawley rats and identified by measuring the positive ratios of cell markers using flow cytometry. Cells were treated with 1 μmol/L dexamethasone (DEX) for 24 h with or without 0.1-10 μM of icariin treatment. Cell counting Kit-8 (CCK-8) assays and flow cytometry analyses were performed to measure cell viability and apoptosis. Western blotting was conducted for measurement of apoptotic markers, factors involved in the PI3K/AKT-UTX/EZH2 pathway, osteogenic markers, and adipogenesis-related factors. Alizarin red S staining and Oil-red O staining were performed to measure the effect of DEX, icariin, UTX overexpression, or EZH2 knockdown on osteogenic and adipogenic differentiation of BMSCs. RESULTS Icariin ameliorated DEX-induced rat BMSC injury. Icariin activated the PI3K/AKT signaling, thereby upregulating UTX and phosphorylated EZH2 levels while inhibiting EZH2 and H3K27me3 expression. Additionally, icariin promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Importantly, overexpressing UTX or silencing EZH2 exerted similar effects on BMSC differentiation as icariin did. CONCLUSIONS Icariin promotes osteogenic differentiation of DEX-treated BMSCs by activating PI3K/AKT signaling to upregulate UTX and inhibit EZH2, finally inducing H3K27me3 depletion.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Guoqing Gong
- Department of Otolaryngology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, 430060, China
| | - Yuanhang Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Yan Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Jie Zhang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Qiang Li
- Department of Foot and Ankle, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No.264 Minde Road, Donghu District, Nanchang, 330000, China.
| |
Collapse
|
6
|
Alhasaniah AH, Alissa M, Elsaid FG, Alsugoor MH, AlQahtani MS, Alessa A, Jambi K, Albakri GS, Albaqami FMK, Bennett E. The enigmatic role of SIRT2 in the cardiovascular system: Deciphering its protective and detrimental actions to unlock new avenues for therapeutic intervention. Curr Probl Cardiol 2025; 50:102929. [PMID: 39566866 DOI: 10.1016/j.cpcardiol.2024.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cardiovascular diseases (CVDs) are leading causes of mortality throughout the world, and hence, there is a critical need to elucidate their molecular mechanisms. The Sirtuin (SIRT) family of NAD+-dependent enzymes has recently been shown to play a critical role in cardiovascular health and disease, and several SIRT isoforms, especially SIRT1 and SIRT3, have been amply investigated. However, the precise function of SIRT2 is only partially explored. Here, we review the current understanding of the involvement of SIRT2 in various cardiovascular pathologies, such as cardiac hypertrophy, ischemia-reperfusion injury, diabetic cardiomyopathy, and vascular dysfunction, with emphasis placed on the context-dependent protective or deleterious actions of SIRT2, including its wide array of catalytic activities which span beyond deacetylation. Furthermore, the review uncovers several unresolved research gaps for SIRT2 mechanisms by which SIRT2 modulates cardiac and vascular function during development and aging, thereby paving the way for the discovery of novel therapeutic targets as well as SIRT2-targeted interventions in the prevention and treatment of various cardiovascular diseases.
Collapse
Affiliation(s)
- Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Fahmy Gad Elsaid
- Department of Biology, College of Science, King Khalid University, PO Box 960, Asir, Abha, 61421, Saudi Arabia
| | - Mahdi H Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Mohammed S AlQahtani
- Department of Medical Laboratory, Prince Sultan Air Base Hospital, Al-kharj, Saudi Arabia
| | - Anwer Alessa
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | - Khalid Jambi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ghadah Shukri Albakri
- Department of Teching and Learning, College of Education and Human development, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Faisal Miqad K Albaqami
- Department of Biology, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Elizabeth Bennett
- Queen Elizabeth Hospital Birmingham (QEHB), Nuffield House, 3rd Floor Room 17/E, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB, Dudley Road, Birmingham, West Midlands, B18 7QH
| |
Collapse
|
7
|
Zangiabadi I, Askaripour M, Rajizadeh MA, Badreh F, Bagheri MM, Jafari E, Shamsara A, Shafiei G, Rajabi S. Conditioned medium from human adipose-derived mesenchymal stem cells attenuates cardiac injury induced by Movento in male rats: role of oxidative stress and inflammation. BMC Pharmacol Toxicol 2025; 26:13. [PMID: 39844289 PMCID: PMC11753139 DOI: 10.1186/s40360-025-00847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Movento an insecticide containing spirotetramat, has been shown to cause severe toxicity in humans and rats. Due to the widespread use of the Movento in agriculture, and since the cardiac effects of this toxin have not been investigated in any study so far, in this study, for the first time, the effect of movento on the structure and function of the heart in rats was investigated. 24 adults' male Wistar rats randomly divided to 4 experimental groups: 1- control (CTL), 2- Movento (M) 3- M + Basal media (BM) 4- M + Conditioned medium (CM). Animals were subjected to deep anesthesia to record the ECG and blood pressure. H&E staining was performed to determine the degree of damage. Oxidative stress markers and inflammatory factors were investigated with related kits. In rats that received Movento's insecticide, mean arterial pressure (MAP), amplitude of the P wave and total antioxidant capacity (TAC) decreased compared to the control group and treatment with CM increased them significantly compared to M and M + BM group. Also, Movento increased histological score, MDA, TNF-α and IL-6 compared to the control group and CM significantly decreased them compared to M and M + BM groups. CM derived from mesenchymal stem cells (MSC) can be used as a therapy for heart disorders caused by movento toxin in the heart of rats. Also, it seems that this treatment could be a promising way to improve heart complications in farmers exposed to this toxin in the future.
Collapse
Affiliation(s)
- Iman Zangiabadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
- Department of anatomy, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mohammad Amin Rajizadeh
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Jehad Blvd, Ebn Sina Avenue, Kerman, 76198-13159, Iran
| | | | - Mohammad Mehdi Bagheri
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Shamsara
- Department of anatomy, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Golnaz Shafiei
- Department of anatomy, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Soodeh Rajabi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Jehad Blvd, Ebn Sina Avenue, Kerman, 76198-13159, Iran.
| |
Collapse
|
8
|
Yuan L, Yin L, Lin X, Li J, Liang P, Jiang B. Revealing the Complex Interaction of Noncoding RNAs, Sirtuin Family, and Mitochondrial Function. J Gene Med 2025; 27:e70007. [PMID: 39842441 DOI: 10.1002/jgm.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Mitochondria are key organelles that perform and coordinate various metabolic processes in the cell, and their homeostasis is essential for the maintenance of eukaryotic life. To maintain mitochondrial homeostasis and cellular health, close communication between noncoding RNAs (ncRNAs) and proteins is required. For example, there are numerous crosstalk between ncRNAs and the sirtuin (SIRT1-7) family, which is a group of nicotinamide adenine dinucleotides (NAD(+))-dependent Type III deacetylases. NcRNAs are involved in the regulation of gene expression of sirtuin family members, and deacetylation of sirtuin family members can also influence the generation of ncRNAs. This review focuses on the relationship between the two mentioned above and summarizes the impact of their interactions on mitochondrial metabolism, oxidative stress, mitochondrial apoptotic pathways, mitochondrial biogenesis, mitochondrial dynamics, and other mitochondria-related pathophysiological processes. Finally, the review also describes targeted and appropriate treatment strategies. In conclusion, we provide an overview of the ncRNA-sirtuins/mitochondria relationship that could provide a reference for related research in the mitochondrial field and help the future development of new biomedical applications in this area.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Zhuang B, Zhong C, Ma Y, Wang A, Quan H, Hong L. Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells. Int J Mol Sci 2024; 26:231. [PMID: 39796085 PMCID: PMC11720039 DOI: 10.3390/ijms26010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium. Currently, stem cells commonly used in medicine, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), can differentiate into various human cell types without ethical concerns. When combined with ncRNAs, these stem cells can more effectively induce directed differentiation, promote angiogenesis in the infarcted heart, and replenish normal cardiac cells. Additionally, stem cell-derived exosomes, which contain various ncRNAs, can improve myocardial damage in the infarcted region through paracrine mechanisms. However, our understanding of the specific roles and mechanisms of ncRNAs, stem cells, and exosomes secreted by stem cells during different stages of MI remains limited. Therefore, this review systematically categorizes the different stages of MI, aiming to summarize the direct regulatory effects of ncRNAs on an infarcted myocardium at different points of disease progression. Moreover, it explores the specific roles and mechanisms of stem cell therapy and exosome therapy in this complex pathological evolution process. The objective of this review was to provide novel insights into therapeutic strategies for different stages of MI and open new research directions for the application of stem cells and ncRNAs in the field of MI repair.
Collapse
Affiliation(s)
- Bingqi Zhuang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Chongning Zhong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Yuting Ma
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Ao Wang
- Experimental Teaching Center, College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Hailian Quan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (B.Z.); (C.Z.); (Y.M.)
| |
Collapse
|
10
|
Sun J, Li Y, Meng M, Zeng X, Wang Q, Li W, Luo Y, Chen H, Dong Q. SIRT7 inhibits the aging and inflammatory damage of hPDLFs by suppressing the AKT/mTOR. Int Immunopharmacol 2024; 143:113300. [PMID: 39378651 DOI: 10.1016/j.intimp.2024.113300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Periodontitis seriously affects oral health worldwide. Despite extensive efforts in prevention and treatment methods over the years, the prevalence of periodontitis in the population has not decreased. DNA damage-induced cellular senescence may be one of the mechanisms underlying periodontitis.Sirtuin7 (SIRT7) has deacetylase activity and regulates a variety of biological processes, including cell proliferation, death, and DNA damage repair.Increasing evidence confirms the crucial role of SIRT7 in age-related and inflammatory diseases. However, the mechanism of action of SIRT7 in periodontitis remains unclear. Our study demonstrates that SIRT7 is downregulated in human periodontal ligament fibroblasts induced by Porphyromonas gingivalis lipopolysaccharide (Pg-LPS). Overexpression of the SIRT7 gene significantly reduces the production of senescence-related molecules P53, P21, P16, as well as inflammatory cytokines IL-1β and TNF-α stimulated by Pg-LPS. Furthermore, overexpression of the SIRT7 gene significantly decreases the phosphorylation levels of AKT and mTOR in Pg-LPS-treated hPDLFs. Conversely, SIRT7 gene knockdown exhibits opposite effects compared to overexpression in Pg-LPS-treated hPDLFs. In conclusion, our findings indicate that SIRT7 can inhibit Pg-LPS-induced senescence and consequently suppress the secretion of inflammatory cytokines through the AKT/mTOR pathway. As a result, SIRT7 could be regarded a viable pharmaceutical target for clinical periodontitis treatment.
Collapse
Affiliation(s)
- Jinyi Sun
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Ying Li
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Maohua Meng
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Xiao Zeng
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Qinying Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong Province, PR China
| | - Wenjie Li
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Yuncai Luo
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Helin Chen
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Qiang Dong
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China.
| |
Collapse
|
11
|
Wu H, Liu Y, Liu C. The interregulatory circuit between non-coding RNA and apoptotic signaling in diabetic cardiomyopathy. Noncoding RNA Res 2024; 9:1080-1097. [PMID: 39022683 PMCID: PMC11254508 DOI: 10.1016/j.ncrna.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetes mellitus has surged in prevalence, emerging as a prominent epidemic and assuming a foremost position among prevalent medical disorders. Diabetes constitutes a pivotal risk element for cardiovascular maladies, with diabetic cardiomyopathy (DCM) standing out as a substantial complication encountered by individuals with diabetes. Apoptosis represents a physiological phenomenon observed throughout the aging and developmental stages, giving rise to the programmed cell death, which is implicated in DCM. Non-coding RNAs assume significant functions in modulation of gene expression. Their deviant expression of ncRNAs is implicated in overseeing diverse cellular attributes such as proliferation, apoptosis, and has been postulated to play a role in the progression of DCM. Notably, ncRNAs and the process of apoptosis can mutually influence and cooperate in shaping the destiny of human cardiac tissues. Therefore, the exploration of the interplay between apoptosis and non-coding RNAs holds paramount importance in the formulation of efficacious therapeutic and preventive approaches for managing DCM. In this review, we provide a comprehensive overview of the apoptotic signaling pathways relevant to DCM and subsequently delve into the reciprocal regulation between apoptosis and ncRNAs in DCM. These insights contribute to an enhanced comprehension of DCM and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hao Wu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| | - Yan Liu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| | - Chunli Liu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| |
Collapse
|
12
|
Wu H, Qian X, Liang G. The Role of Small Extracellular Vesicles Derived from Mesenchymal Stromal Cells on Myocardial Protection: a Review of Current Advances and Future Perspectives. Cardiovasc Drugs Ther 2024; 38:1111-1122. [PMID: 37227567 PMCID: PMC10209575 DOI: 10.1007/s10557-023-07472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Small extracellular vesicles (SEVs) secreted by mesenchymal stromal cells (MSCs) are considered one of the most promising biological therapies in recent years. The protective effect of MSCs-derived SEVs on myocardium is mainly related to their ability to deliver cargo, anti-inflammatory properties, promotion of angiogenesis, immunoregulation, and other factors. Herein, this review focuses on the biological properties, isolation methods, and functions of SEVs. Then, the roles and potential mechanisms of SEVs and engineered SEVs in myocardial protection are summarized. Finally, the current situation of clinical research on SEVs, the difficulties encountered, and the future fore-ground of SEVs are discussed. In conclusion, although there are some technical difficulties and conceptual contradictions in the research of SEVs, the unique biological functions of SEVs provide a new direction for the development of regenerative medicine. Further exploration is warranted to establish a solid experimental and theoretical basis for future clinical application of SEVs.
Collapse
Affiliation(s)
- Hongkun Wu
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou China
- Department of Cardiac Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou China
| | - Xingkai Qian
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Guiyou Liang
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| |
Collapse
|
13
|
Li H, Yuan Z, Wu J, Lu J, Wang Y, Zhang L. Unraveling the multifaceted role of SIRT7 and its therapeutic potential in human diseases. Int J Biol Macromol 2024; 279:135210. [PMID: 39218192 DOI: 10.1016/j.ijbiomac.2024.135210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Sirtuins, as NAD+-dependent deacetylases, are widely found in eubacteria, archaea, and eukaryotes, and they play key roles in regulating cellular functions. Among these, SIRT7 stands out as a member discovered relatively late and studied less extensively. It is localized within the nucleus and displays enzymatic activity as an NAD+-dependent deacetylase, targeting a diverse array of acyl groups. The role of SIRT7 in important cellular processes like gene transcription, cellular metabolism, cellular stress responses, and DNA damage repair has been documented in a number of studies conducted recently. These studies have also highlighted SIRT7's strong correlation with human diseases like aging, cancer, neurological disorders, and cardiovascular diseases. In addition, a variety of inhibitors against SIRT7 have been reported, indicating that targeting SIRT7 may be a promising strategy for inhibiting tumor growth. The purpose of this review is to thoroughly look into the structure and function of SIRT7 and to explore its potential value in clinical applications, offering an essential reference for research in related domains.
Collapse
Affiliation(s)
- Han Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinjia Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yibei Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
14
|
Yan H, Ding H, Xie RX, Liu ZQ, Yang XQ, Xie LL, Liu CX, Liu XD, Chen LY, Huang XP. Research progress of exosomes from different sources in myocardial ischemia. Front Cardiovasc Med 2024; 11:1436764. [PMID: 39350967 PMCID: PMC11440518 DOI: 10.3389/fcvm.2024.1436764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
Ischemic heart disease refers to the imbalance between the supply and demand of myocardial blood; it has various causes and results in a class of clinical diseases characterized by myocardial ischemia (MI). In recent years, the incidence of cardiovascular disease has become higher and higher, and the number of patients with ischemic heart disease has also increased year by year. Traditional treatment methods include drug therapy and surgical treatment, both of which have limitations. The former maybe develop risks of drug resistance and has more significant side effects, while the latter may damage blood vessels and risk infection. At this stage, a new cell-free treatment method needs to be explored. Many research results have shown that exosomes from different cell sources can protect the ischemic myocardium via intercellular action methods, such as promoting angiogenesis, inhibiting myocardial fibrosis, apoptosis and pyroptosis, and providing a new basis for the treatment of MI. In this review, we briefly introduce the formation and consequences of myocardial ischemia and the biology of exosomes, and then focus on the role and mechanism of exosomes from different sources in MI. We also discuss the role and mechanism of exosomes pretreated with Chinese and Western medicines on myocardial ischemia. We also discuss the potential of exosomes as diagnostic markers and therapeutic drug for MI.
Collapse
Affiliation(s)
- Huan Yan
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ruo-Xi Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi-Qing Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Qian Yang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ling-Li Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Cai-Xia Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Dan Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Yuan Chen
- Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Xiao-Ping Huang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
15
|
Orhan A, Çiçek ÖF, Öztürk B, Akbayrak H, Ünlükal N, Vatansev H, Solmaz M, Büyükateş M, Aniç S, Ovalı F, Almaghrebi E, Akat F, Vatansev H. The Effects of Colchicum Dispert and Bone Marrow-Derived Mesenchymal Stem Cell Therapy on Skeletal Muscle Injury in a Rat Aortic Ischemia-Reperfusion Model. J Cardiovasc Dev Dis 2024; 11:251. [PMID: 39195159 DOI: 10.3390/jcdd11080251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysms and peripheral artery disease pose significant health risks, ranking third after heart attacks and cerebral strokes. Surgical interventions often involve temporary aortic clamping, leading to ischemia-reperfusion injury and tissue damage. Colchicine and mesenchymal stem cells have shown promise, individually, in mitigating ischemia-reperfusion injury, but their combined effects remain understudied. METHODS This study utilized 42 male Wistar rats, divided into six groups: Control, Sham, Ischemia-Reperfusion, Colchicine, Mesenchymal stem cell, and Mix (colchicine and mesenchymal stem cell). The ischemia-reperfusion model involved clamping the abdominal aorta for 60 min, followed by 120 min of reperfusion. Colchicine and mesenchymal stem cell treatments were administered as pre- and post-ischemia interventions, respectively. Mesenchymal stem cells were cultured, characterized by flow cytometry, and verified for specific surface antigens. Blood and tissue samples were analyzed for oxidative stress markers, nitric oxide metabolites, and apoptosis using TUNEL. RESULTS There were significant differences between the groups in terms of the serum total antioxidant capacity (p < 0.001) and inflammation markers (ischemia-modified albumin, p = 0.020). The combined therapy group (Mix) exhibited the lowest inflammation levels. Arginine levels also showed significant variation (p = 0.028), confirming the ischemia-reperfusion injury model. In muscle tissues, the total antioxidant capacity (p = 0.022), symmetric dimethylarginine, and citrulline levels (p < 0.05) indicated nitric oxide metabolism. Apoptosis was notably high in the ischemia-reperfusion injury group as anticipated. It appeared to be reduced by colchicine, mesenchymal stem cells, and their combination, with the most significant decrease observed in the Mix group (p < 0.001). CONCLUSIONS This study highlights the potential of using combined colchicine and mesenchymal stem cell therapy to reduce muscle damage caused by ischemia-reperfusion injury. Further research is needed to understand the underlying mechanisms and confirm the clinical significance of this approach in treating extremity ischemia-reperfusion injuries.
Collapse
Affiliation(s)
- Atilla Orhan
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Ömer Faruk Çiçek
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Bahadır Öztürk
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hakan Akbayrak
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Nejat Ünlükal
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hakan Vatansev
- Department of Food Processing, Meram Vocational School, Necmettin Erbakan University, Konya 42092, Turkey
| | - Merve Solmaz
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Mustafa Büyükateş
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Seda Aniç
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Fadime Ovalı
- Department of Medical Biochemistry, Institute of Health Sciences, Selçuk University, Konya 42250, Turkey
| | - Eissa Almaghrebi
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Fatma Akat
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hüsamettin Vatansev
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| |
Collapse
|
16
|
Dong K, Chen F, Wang L, Lin C, Ying M, Li B, Huang T, Wang S. iMSC exosome delivers hsa-mir-125b-5p and strengthens acidosis resilience through suppression of ASIC1 protein in cerebral ischemia-reperfusion. J Biol Chem 2024; 300:107568. [PMID: 39019215 PMCID: PMC11363484 DOI: 10.1016/j.jbc.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/01/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024] Open
Abstract
Acid-sensing ion channel 1 (ASIC1) is critical in acidotoxicity and significantly contributes to neuronal death in cerebral stroke. Pharmacological inhibition of ASIC1 has been shown to reduce neuronal death. However, the potential of utilizing exosomes derived from pluripotent stem cells to achieve inhibition of Asic1 remains to be explored. Developing qualified exosome products with precise and potent active ingredients suitable for clinical application is also ongoing. Here, we adopt small RNA-seq to interrogate the miRNA contents in exosomes of pluripotent stem cell induced mesenchymal stem cell (iMSC). RNA-seq was used to compare the oxygen-glucose deprivation-damaged neurons before and after the delivery of exosomes. We used Western blot to quantify the Asic1 protein abundance in neurons before and after exosome treatment. An in vivo test on rats validated the neuroprotective effect of iMSC-derived exosome and its active potent miRNA hsa-mir-125b-5p. We demonstrate that pluripotent stem cell-derived iMSCs produce exosomes with consistent miRNA contents and sustained expression. These exosomes efficiently rescue injured neurons, alleviate the pathological burden, and restore neuron function in rats under oxygen-glucose deprivation stress. Furthermore, we identify hsa-mir-125b-5p as the active component responsible for inhibiting the Asic1a protein and protecting neurons. We validated a novel therapeutic strategy to enhance acidosis resilience in cerebral stroke by utilizing exosomes derived from pluripotent stem cells with specific miRNA content. This holds promise for cerebral stroke treatment with the potential to reduce neuronal damage and improve clinical patient outcomes.
Collapse
Affiliation(s)
- Kai Dong
- Department of Neurology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Fangyan Chen
- Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Liang Wang
- Department of Quality Control, Guidon Pharmaceutics, Beijing, China
| | - Chengyu Lin
- Department of Quality Control, Guidon Pharmaceutics, Beijing, China
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bingnan Li
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| | - Tao Huang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Shuyan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Du J, Dong Y, Song J, Shui H, Xiao C, Hu Y, Zhou S, Wang S. BMSC‑derived exosome‑mediated miR‑25‑3p delivery protects against myocardial ischemia/reperfusion injury by constraining M1‑like macrophage polarization. Mol Med Rep 2024; 30:142. [PMID: 38904206 PMCID: PMC11208993 DOI: 10.3892/mmr.2024.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a significant challenge in the management of myocardial ischemic disease. Extensive evidence suggests that the macrophage‑mediated inflammatory response may play a vital role in MIRI. Mesenchymal stem cells and, in particular, exosomes derived from these cells, may be key mediators of myocardial injury and repair. However, whether exosomes protect the heart by regulating the polarization of macrophages and the exact mechanisms involved are poorly understood. The present study aimed to determine whether exosomes secreted by bone marrow mesenchymal stem cells (BMSC‑Exo) harboring miR‑25‑3p can alter the phenotype of macrophages by affecting the JAK2/STAT3 signaling pathway, which reduces the inflammatory response and protects against MIRI. An in vivo MIRI model was established in rats by ligating the anterior descending region of the left coronary artery for 30 min followed by reperfusion for 120 min, and BMSC‑Exo carrying miR‑25‑3p (BMSC‑Exo‑25‑3p) were administered through tail vein injection. A hypoxia‑reoxygenation model of H9C2 cells was established, and the cells were cocultured with BMSC‑Exo‑25‑3p in vitro. The results of the present study demonstrated that BMSC‑Exo or BMSC‑Exo‑25‑3p could be taken up by cardiomyocytes in vivo and H9C2 cells in vitro. BMSC‑Exo‑25‑3p demonstrated powerful cardioprotective effects by decreasing the cardiac infarct size, reducing the incidence of malignant arrhythmias and attenuating myocardial enzyme activity, as indicated by lactate dehydrogenase and creatine kinase levels. It induced M1‑like macrophage polarization after myocardial ischemia/reperfusion (I/R), as evidenced by the increase in iNOS expression through immunofluorescence staining and upregulation of proinflammatory cytokines through RT‑qPCR, such as interleukin‑1β (IL‑1β) and interleukin‑6 (IL‑6). As hypothesized, BMSC‑Exo‑25‑3p inhibited M1‑like macrophage polarization and proinflammatory cytokine expression while promoting M2‑like macrophage polarization. Mechanistically, the JAK2/STAT3 signaling pathway was activated after I/R in vivo and in LPS‑stimulated macrophages in vitro, and BMSC‑Exo‑25‑3p pretreatment inhibited this activation. The results of the present study indicate that the attenuation of MIRI by BMSC‑Exo‑25‑3p may be related to JAK2/STAT3 signaling pathway inactivation and subsequent inhibition of M1‑like macrophage polarization.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Jingjing Song
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Shiyao Zhou
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Shanshan Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| |
Collapse
|
18
|
Gasecka A, Błażejowska E, Pluta K, Gajewska M, Rogula S, Filipiak KJ, Kochman J, Siller-Matula JM, Postuła M, Eyileten C. Ticagrelor downregulates the expression of proatherogenic and proinflammatory miR125-b compared to clopidogrel: A randomized, controlled trial. Int J Cardiol 2024; 406:132073. [PMID: 38643804 DOI: 10.1016/j.ijcard.2024.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Platelet P2Y12 antagonist ticagrelor reduces cardiovascular mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets release proatherogenic and proinflammatory microRNAs, including miR-125a, miR-125b and miR-223, we hypothesized that the expression of these miRNAs is lower on ticagrelor, compared to clopidogrel. OBJECTIVES We compared miR-125a, miR-125b and miR-223 expression in plasma of patients after AMI treated with ticagrelor or clopidogrel. METHODS After percutaneous coronary intervention on acetylsalicylic acid and clopidogrel, 60 patients with first AMI were randomized to switch to ticagrelor or to continue with clopidogrel. Plasma expression of miR-223, miR-125a-5p, miR-125b was measured using quantitative polymerase chain reaction at baseline and after 72 h and 6 months of treatment with ticagrelor or clopidogrel in patients and one in 30 healthy volunteers. Multiple electrode aggregometry using ADP test was used to determine platelet reactivity in response to P2Y12 inhibitors. RESULTS Expression of miR-125b was higher in patients with AMI 72 h and 6 months, compared to healthy volunteers (p = 0.001), whereas expression of miR-125a-5p and miR-223 were comparable. In patients randomized to ticagrelor, expression of miR-125b decreased at 72 h (p = 0.007) and increased back to baseline at 6 months (p = 0.005). Expression of miR-125a-5p and miR-223 was not affected by the switch from clopidogrel to ticagrelor. CONCLUSIONS Ticagrelor treatment leads to lower plasma expression of miR-125b after AMI, compared to clopidogrel. Higher expression of miR-125b might explain recurrent thrombotic events and worse clinical outcomes in patients treated with clopidogrel, compared to ticagrelor.
Collapse
Affiliation(s)
- Aleksandra Gasecka
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland.
| | - Ewelina Błażejowska
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Kinga Pluta
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Gajewska
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Sylwester Rogula
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof J Filipiak
- Maria Sklodowska-Curie Medical Academy in Warsaw, Warsaw, Poland; Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz Kochman
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Postuła
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Song L, Jia K, Yang F, Wang J. Advanced Nanomedicine Approaches for Myocardial Infarction Treatment. Int J Nanomedicine 2024; 19:6399-6425. [PMID: 38952676 PMCID: PMC11215519 DOI: 10.2147/ijn.s467219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Myocardial infarction, usually caused by the rupture of atherosclerotic plaque, leads to irreversible ischemic cardiomyocyte death within hours followed by impaired cardiac performance or even heart failure. Current interventional reperfusion strategies for myocardial infarction still face high mortality with the development of heart failure. Nanomaterial-based therapy has made great progress in reducing infarct size and promoting cardiac repair after MI, although most studies are preclinical trials. This review focuses primarily on recent progress (2016-now) in the development of various nanomedicines in the treatment of myocardial infarction. We summarize these applications with the strategy of mechanism including anti-cardiomyocyte death strategy, activation of neovascularization, antioxidants strategy, immunomodulation, anti-cardiac remodeling, and cardiac repair.
Collapse
Affiliation(s)
- Lin Song
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Kangwei Jia
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fuqing Yang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
21
|
Menjivar NG, Oropallo J, Gebremedhn S, Souza LA, Gad A, Puttlitz CM, Tesfaye D. MicroRNA Nano-Shuttles: Engineering Extracellular Vesicles as a Cutting-Edge Biotechnology Platform for Clinical Use in Therapeutics. Biol Proced Online 2024; 26:14. [PMID: 38773366 PMCID: PMC11106895 DOI: 10.1186/s12575-024-00241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a potential targeted 'treatment' or 'therapy'. Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs; summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting benchtop studies to propel potential clinical translation on the forefront of nanomedicine.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaiden Oropallo
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Orthopaedic Research Center (ORC), Translational Medicine Institute (TMI), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- J.R. Simplot Company, 1099 W. Front St, Boise, ID, 83702, USA
| | - Luca A Souza
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, 225 Av. Duque de Caxias Norte, Pirassununga, SP, 13635-900, Brazil
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
22
|
Zhang N, Luo Y, Shao J, Sun H, Ma K, Gao X. Exosomal long non-coding RNA AU020206 alleviates macrophage pyroptosis in atherosclerosis by suppressing CEBPB-mediated NLRP3 transcription. Exp Cell Res 2024; 438:114054. [PMID: 38657723 DOI: 10.1016/j.yexcr.2024.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Recent studies have suggested exosomes (EXO) as potential therapeutic tools for cardiovascular diseases, including atherosclerosis (AS). This study investigates the function of bone marrow stem cell (BMSC)-derived exosomes (EXO) on macrophage pyroptosis in AS and explores the associated mechanism. BMSC-EXO were isolated from healthy mice and identified. RAW264.7 cells (mouse macrophages) were exposed to oxLDL to simulate an AS condition. BMSC-EXO treatment enhanced viability and reduced lactate dehydrogenase release of macrophages. An animal model of AS was established using ApoE-/- mice. BMSC-EXO treatment suppressed plaque formation as well as macrophage and lipid infiltration in mouse aortic tissues. Moreover, BMSC-EXO decreased concentrations of pyroptosis-related markers interleukin (IL)-1β, IL-18, cleaved-caspase-1 and gasdermin D in vitro and in vivo. Long non-coding RNA AU020206 was carried by the BMSC-EXO, and it bound to CCAAT enhancer binding protein beta (CEBPB) to block CEBPB-mediated transcriptional activation of NLR family pyrin domain containing 3 (NLRP3). Functional assays revealed that silencing of AU020206 aggravated macrophage pyroptosis and exacerbated AS symptoms in mice. These exacerbations were blocked upon CEBPB silencing but then restored after NLRP3 overexpression. In conclusion, this study demonstrates that AU020206 delivered by BMSC-EXO alleviates macrophage pyroptosis in AS by blocking CEBPB-mediated transcriptional activation of NLRP3.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China
| | - Yuxin Luo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China
| | - Jiawei Shao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China
| | - Kai Ma
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, PR China.
| |
Collapse
|
23
|
Gil-Cabrerizo P, Simon-Yarza T, Garbayo E, Blanco-Prieto MJ. Navigating the landscape of RNA delivery systems in cardiovascular disease therapeutics. Adv Drug Deliv Rev 2024; 208:115302. [PMID: 38574952 DOI: 10.1016/j.addr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Cardiovascular diseases (CVDs) stand as the leading cause of death worldwide, posing a significant global health challenge. Consequently, the development of innovative therapeutic strategies to enhance CVDs treatment is imperative. RNA-based therapies, encompassing non-coding RNAs, mRNA, aptamers, and CRISPR/Cas9 technology, have emerged as promising tools for addressing CVDs. However, inherent challenges associated with RNA, such as poor cellular uptake, susceptibility to RNase degradation, and capture by the reticuloendothelial system, underscore the necessity of combining these therapies with effective drug delivery systems. Various non-viral delivery systems, including extracellular vesicles, lipid-based carriers, polymeric and inorganic nanoparticles, as well as hydrogels, have shown promise in enhancing the efficacy of RNA therapeutics. In this review, we offer an overview of the most relevant RNA-based therapeutic strategies explored for addressing CVDs and emphasize the pivotal role of delivery systems in augmenting their effectiveness. Additionally, we discuss the current status of these therapies and the challenges that hinder their clinical translation.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Elisa Garbayo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
24
|
Fallah A, Hosseinzadeh Colagar A, Khosravi A, Saeidi M. Exosomes from SHED-MSC regulate polarization and stress oxidative indexes in THP-1 derived M1 macrophages. Arch Biochem Biophys 2024; 755:109987. [PMID: 38579956 DOI: 10.1016/j.abb.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE The inhibition of M1 macrophages may be interesting for targeted therapy with mesenchymal stem cell-derived Exosomes (MSC-EXOs). This study aimed to investigate the stem cells of human exfoliated deciduous teeth-derived EXOs (SHED-MSC-EXOs) effect on regulating the pro- and anti-oxidant indexes and inhibiting M1 macrophage polarization. Besides, an in-silico analysis of SHED-MSC-EXO miRNAs as the highest frequency of small RNAs in the exosomes was performed to discover the possible mechanism. METHODS The flow cytometry analysis of CD80 and CD86 as M1-specific markers confirmed the polarization of macrophages derived from THP-1 cells. After exosome isolation, characterization, and internalization, THP-1-derived M1 macrophages were treated with SHED-MSC-EXOs. M1-specific markers and pro- and anti-oxidant indexes were evaluated. For in-silico analysis of SHED-MSC-EXOs miRNAs, initial miRNA array data of SHED-EXOs is collected from GEO, and the interaction of the miRNAs in M1 macrophage polarization (M1P), mitochondrial oxidative stress (MOS) and LPS-induced oxidative stress (LOS) were analyzed by miRWalk 3.0 server. Outcomes were filtered by 75th percentile signal intensity, score cut-off ≥0.95, minimum free energy (MEF)≤ -20 kcal/mol, and seed = 1. RESULTS It shows a decrease in the expression of CD80 and CD81, a reduction in pro-oxidant indicators, and an increase in the anti-oxidant indexes (P < 0.05). Computational analysis showed that eight microRNAs of SHED-MSC-EXO miRNAs can bind to and interfere with the expression of candidate genes in the M1P, MOS, and LOS pathways simultaneously. CONCLUSION SHED-MSCs-EXOs can be utilized to treat conditions related to M1 macrophage-induced diseases (M1IDs) due to their unique physical properties and ability to penetrate target cells easily.
Collapse
Affiliation(s)
- Ali Fallah
- Molecular and Cell Biology Department, Faculty of Basic Science, University of Mazandaran, Babolsar, 47416-95447, Iran.
| | - Abasalt Hosseinzadeh Colagar
- Molecular and Cell Biology Department, Faculty of Basic Science, University of Mazandaran, Babolsar, 47416-95447, Iran.
| | - Ayyoob Khosravi
- Stem Cell Research Centre, Golestan University of Medical Sciences, Gorgan, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran.
| | - Mohsen Saeidi
- Stem Cell Research Centre, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran.
| |
Collapse
|
25
|
Jiao YR, Chen KX, Tang X, Tang YL, Yang HL, Yin YL, Li CJ. Exosomes derived from mesenchymal stem cells in diabetes and diabetic complications. Cell Death Dis 2024; 15:271. [PMID: 38632264 PMCID: PMC11024187 DOI: 10.1038/s41419-024-06659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.
Collapse
Affiliation(s)
- Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kai-Xuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiang Tang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yu-Long Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Hai-Lin Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Fuyang Normal University, Fuyang, Anhui, 236000, China
| | - Yu-Long Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
26
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
27
|
Gu J, You J, Liang H, Zhan J, Gu X, Zhu Y. Engineered bone marrow mesenchymal stem cell-derived exosomes loaded with miR302 through the cardiomyocyte specific peptide can reduce myocardial ischemia and reperfusion (I/R) injury. J Transl Med 2024; 22:168. [PMID: 38368334 PMCID: PMC10874538 DOI: 10.1186/s12967-024-04981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND MicroRNA (miRNA)-based therapies have shown great potential in myocardial repair following myocardial infarction (MI). MicroRNA-302 (miR302) has been reported to exert a protective effect on MI. However, miRNAs are easily degraded and ineffective in penetrating cells, which limit their clinical applications. Exosomes, which are small bioactive molecules, have been considered as an ideal vehicle for miRNAs delivery due to their cell penetration, low immunogenicity and excellent stability potential. Herein, we explored cardiomyocyte-targeting exosomes as vehicles for delivery of miR302 into cardiomyocyte to potentially treat MI. METHODS To generate an efficient exosomal delivery system that can target cardiomyocytes, we engineered exosomes with cardiomyocyte specific peptide (CMP, WLSEAGPVVTVRALRGTGSW). Afterwards, the engineered exosomes were characterized and identified using transmission electron microscope (TEM) and Nanoparticle Tracking Analysis (NTA). Later on, the miR302 mimics were loaded into the engineered exosomes via electroporation technique. Subsequently, the effect of the engineered exosomes on myocardial ischemia and reperfusion (I/R) injury was evaluated in vitro and in vivo, including MTT, ELISA, real-time quantitative polymerase chain reaction (PCR), western blot, TUNNEL staining, echocardiogram and hematoxylin and eosin (HE) staining. RESULTS Results of in vitro experimentation showed that DSPE-PEG-CMP-EXO could be more efficiently internalized by H9C2 cells than unmodified exosomes (blank-exosomes). Importantly, compared with the DSPE-PEG-CMP-EXO group, DSPE-PEG-CMP-miR302-EXO significantly upregulated the expression of miR302, while exosomes loaded with miR302 could enhance proliferation of H9C2 cells. Western blot results showed that the DSPE-PEG-CMP-miR302-EXO significantly increased the protein level of Ki67 and Yap, which suggests that DSPE-PEG-CMP-miR302-EXO enhanced the activity of Yap, the principal downstream effector of Hippo pathway. In vivo, DSPE-PEG-CMP-miR302-EXO improved cardiac function, attenuated myocardial apoptosis and inflammatory response, as well as reduced infarct size significantly. CONCLUSION In conclusion, our findings suggest that CMP-engineered exosomes loaded with miR302 was internalized by H9C2 cells, an in vitro model for cardiomyocytes coupled with potential enhancement of the therapeutic effects on myocardial I/R injury.
Collapse
Affiliation(s)
- Jianjun Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Jia You
- Department of Internal Medicine, Yangzhou Maternal and Child Health Care Hospital, Yangzhou, 225001, Jiangsu, China
| | - Hao Liang
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Jiacai Zhan
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Xiang Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Ye Zhu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China.
| |
Collapse
|
28
|
Sipos F, Műzes G. Sirtuins Affect Cancer Stem Cells via Epigenetic Regulation of Autophagy. Biomedicines 2024; 12:386. [PMID: 38397988 PMCID: PMC10886574 DOI: 10.3390/biomedicines12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) are stress-responsive proteins that regulate several post-translational modifications, partly by acetylation, deacetylation, and affecting DNA methylation. As a result, they significantly regulate several cellular processes. In essence, they prolong lifespan and control the occurrence of spontaneous tumor growth. Members of the SIRT family have the ability to govern embryonic, hematopoietic, and other adult stem cells in certain tissues and cell types in distinct ways. Likewise, they can have both pro-tumor and anti-tumor effects on cancer stem cells, contingent upon the specific tissue from which they originate. The impact of autophagy on cancer stem cells, which varies depending on the specific circumstances, is a very intricate phenomenon that has significant significance for clinical and therapeutic purposes. SIRTs exert an impact on the autophagy process, whereas autophagy reciprocally affects the activity of certain SIRTs. The mechanism behind this connection in cancer stem cells remains poorly understood. This review presents the latest findings that position SIRTs at the point where cancer cells and autophagy interact. Our objective is to highlight the various roles of distinct SIRTs in cancer stem cell-related functions through autophagy. This would demonstrate their significance in the genesis and recurrence of cancer and offer a more precise understanding of their treatment possibilities in relation to autophagy.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | | |
Collapse
|
29
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
30
|
Tan T, Tu L, Yu Y, He M, Zhou X, Yang L. Mechanisms by which silencing long-stranded noncoding RNA KCNQ1OT1 alleviates myocardial ischemia/reperfusion injury (MI/RI)-induced cardiac injury via miR-377-3p/HMOX1. BMC Cardiovasc Disord 2024; 24:19. [PMID: 38172743 PMCID: PMC10765944 DOI: 10.1186/s12872-023-03693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The key complication of myocardial infarction therapy is myocardial ischemia/reperfusion injury (MI/RI), and there is no effective treatment. The present study elucidates the mechanism of action of lncRNA KCNQ1OT1 in alleviating MI/RI and provides new perspectives and therapeutic targets for cardiac injury-related diseases. METHODS An ischemia/reperfusion (I/R) injury model of human adult cardiac myocytes (HACMs) was constructed, and the expression of KCNQ1OT1 and miR-377-3p was determined by RT‒qPCR. The levels of related proteins were detected by western blot analysis. Cell proliferation was detected by a CCK-8 assay, and cell apoptosis and ROS content were determined by flow cytometry. SOD and MDA expression as well as Fe2+ changes were detected by related analysis kits. The target binding relationships between lncRNA KCNQ1OT1 and miR-377-3p as well as between miR-377-3p and heme oxygenase 1 (HMOX1) were verified by a dual-luciferase reporter gene assay. RESULTS Myocardial ischemia‒reperfusion caused oxidative stress in HACMs, resulting in elevated ROS levels, increased Fe2+ levels, decreased cell viability, and increased LDH release (a marker of myocardial injury), and apoptosis. KCNQ1OT1 and HMOX1 were upregulated in I/R-induced myocardial injury, but the level of miR-377-3p was decreased. A dual-luciferase reporter gene assay indicated that lncRNA KCNQ1OT1 targets miR-377-3p and that miR-377-3p targets HMOX1. Inhibition of HMOX1 alleviated miR-377-3p downregulation-induced myocardial injury. Furthermore, lncRNA KCNQ1OT1 promoted the level of HMOX1 by binding to miR-377-3p and aggravated myocardial injury. CONCLUSION LncRNA KCNQ1OT1 aggravates ischemia‒reperfusion-induced cardiac injury via miR-377-3P/HMOX1.
Collapse
Affiliation(s)
- Tongcai Tan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Liang Tu
- Medical Experimental Center, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College (The 6th People Hospital of Chongqing), Chongqing, 400060, China
| | - Yanmei Yu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - MinJie He
- Geriatric Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Xingchao Zhou
- Department of Medical Equipment, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, China
| | - Lei Yang
- Department of Rehabilitation Medicine, The Second People's Hospital of Kunming, Kunming, Yunnan, 650506, China.
| |
Collapse
|
31
|
Jafar Sameri1 M, Savari F, Mard SA, Rezaie A, Kalantar M. Zinc Oxide Nanoparticles Ameliorate Histological Alterations Through Apoptotic Gene Regulation in Rat Model of Liver Ischemia-Reperfusion Injury. Rep Biochem Mol Biol 2024; 12:619-630. [PMID: 39086591 PMCID: PMC11288243 DOI: 10.61186/rbmb.12.4.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/19/2024] [Indexed: 08/02/2024]
Abstract
Background Organ ischemia-reperfusion (IR) is a common clinical condition associated with various situations such as trauma surgery, organ transplantation, and myocardial ischemia. Current therapeutic methods for IR injury have limitations, and nanotechnology, particularly zinc oxide nanoparticles (ZnO NPs), offers new approaches for disease diagnosis and treatment. In this study, we investigated the protective and anti-apoptotic effects of ZnO NPs in liver ischemia-reperfusion (IR) injury in rats. Methods Forty-eight male rats were divided into six groups: sham, ZnO5, ZnO10, ischemia-reperfusion (IR), IR+ZnO5, and IR+ZnO10. The protective effect of ZnO NPs was evaluated by liver enzymes (AST, ALT, Bilirubin, ALP), biochemical (TAC, TNF-α, and MDA), molecular examinations (Bcl2, BAX), and histopathological evaluations (H&E, TUNEL). Results Pre-treatment with ZnO5 and ZnO10 improved hepatic function in IR liver injury, attenuated the levels of oxidants (P = 0.03) and inflammatory mediators, and reduced apoptosis (P = 0). ZnO10 was found to have a greater effect on ischemic reperfusion injury than ZnO5 did. Histopathological examination also showed a dose-dependent decrease in alterations in the IR+ZnO5 and IR+ZnO10 groups. Conclusion Administration of ZnO5 and ZnO10 improved liver function after IR. The findings of this study suggest that ZnO NPs have a protective effect against oxidative stress and apoptosis in liver ischemia-reperfusion injury in rats. These results may have important implications for developing advanced methods in ischemia-reperfusion treatment.
Collapse
Affiliation(s)
- Maryam Jafar Sameri1
- Department of physiology, medicine faculty, Abadan University of Medical Sciences, Abadan, Iran.
| | - Feryal Savari
- Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Seyyed Ali Mard
- Clinical Sciences Research Institute, Alimentary Tract Research Center, Department of Physiology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Anahita Rezaie
- Department of Pathobiology, School of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mojtaba Kalantar
- Department of Occupational Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| |
Collapse
|
32
|
Liu B, Zhang J, Zhou Z, Feng B, He J, Yan W, Zhou X, Amponsah AE, Guo R, Du X, Liu X, Cui H, O'Brien T, Ma J. Preclinical Evidence for the Effectiveness of Mesenchymal Stromal Cells for Diabetic Cardiomyopathy: A Systematic Review and Meta-analysis. Curr Stem Cell Res Ther 2024; 19:220-233. [PMID: 37165495 DOI: 10.2174/1574888x18666230510111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus that endangers human health. DCM results in cardiac dysfunction, which eventually progresses to heart failure. Mesenchymal stromal cells (MSCs), a type of multipotent stem cell, have shown promising therapeutic effects in various cardiovascular diseases and diabetic complications in preclinical studies due to their immunomodulatory and regenerative abilities. However, there is still a lack of evidence to summarize the effectiveness of MSCs in the treatment of DCM. Therefore, a meta-analysis and systematic review are warranted to evaluate the therapeutic potential of MSCs for DCM in preclinical studies. METHODS A comprehensive literature search in English or Chinese was conducted in PubMed, EMBASE, web of Science, Cochrane Library, and China National Knowledge Internet from inception to June 30, 2022. The summarized outcomes included echocardiography, morphology, and pathology. Data were independently extracted and analyzed by two authors. The software we adopted was Review Manager5.4.1. This systematic review was written in compliance with PRISMA 2020 and the review protocol was registered on PROSPERO, registration no. CRD42022350032. RESULTS We included 20 studies in our meta-analysis to examine the efficacy of MSCs in the treatment of DCM. The MSC-treated group showed a statistically significant effect on left ventricular ejection fraction (WMD=12.61, 95% CI 4.32 to 20.90, P=0.003) and short axis fractional shortening (WMD=6.84, 95% CI 4.09 to 9.59, P < 0.00001). The overall effects on the ratio of early to late diastolic mitral annular velocity, left ventricular end-diastolic pressure, maximum positive pressure development, maximum negative pressure development, left ventricular relaxation time constant, heart weight to body weight ratio, fibrosis area, and arteriole density were analyzed, suggesting that MSCs represent an effective therapy for the treatment of DCM. CONCLUSION Our results suggest a therapeutic role for MSCs in the treatment of DCM, and these results provide support for the use of MSCs in clinical trials of patients with DCM.
Collapse
Affiliation(s)
- Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Zijing Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Yan
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xinghong Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| | - Timothy O'Brien
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| |
Collapse
|
33
|
Wan Z, zhang Y, Lv J, Yuan Y, Guo W, Leng Y. Exosomes derived from bone marrow mesenchymal stem cells regulate pyroptosis via the miR-143-3p/myeloid differentiation factor 88 axis to ameliorate intestinal ischemia-reperfusion injury. Bioengineered 2023; 14:2253414. [PMID: 37674357 PMCID: PMC10486297 DOI: 10.1080/21655979.2023.2253414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 09/08/2023] Open
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a condition in which tissue injury is aggravated after ischemia due to recovery of blood supply. Bone marrow mesenchymal stem cell-derived exosome (BMSC-exo) showed a protective effect on I/R injury. This study aimed to investigate the possible mechanisms by which BMSC-exos ameliorate intestinal I/R injury. We isolated mouse BMSC-exos by super-centrifugation and found that they effectively increased cell viability in a cell model, alleviated intestinal barrier injury in a mouse model, and downregulated the expression of inflammatory cytokines and pyroptosis-related proteins, suggesting that BMSC-exos may alleviate intestinal I/R injury in vitro and in vivo by regulating pyroptosis. We identified miR-143-3p as a differentially expressed miRNA by microarray sequencing. Bioinformatic analysis predicted a binding site between miR-143-3p and myeloid differentiation factor 88 (MyD88); a dual-luciferase reporter assay confirmed that miR-143-3p could directly regulate the expression of MyD88. Our findings suggest that miR-143-3p regulates pyroptosis by regulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) through the toll-like receptor (TLR)-4/MyD88/nuclear factor kappa-B (NF-кB) pathway. This study describes a potential strategy for the treatment of intestinal I/R injury using BMSC-exos that act by regulating pyroptosis through the miR-143-3p mediated TLR4/MyD88/NF-кB pathway.
Collapse
Affiliation(s)
- Zhanhai Wan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yan zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jipeng Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yuan Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Wenwen Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Tan J, Chen M, Liu M, Chen A, Huang M, Chen X, Tian X, Chen W. Exosomal miR-192-5p secreted by bone marrow mesenchymal stem cells inhibits hepatic stellate cell activation and targets PPP2R3A. J Histotechnol 2023; 46:158-169. [PMID: 37226801 DOI: 10.1080/01478885.2023.2215151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Bone marrow mesenchymal stem cell (BSMC)-derived extracellular vehicles (EVs) have a pivotal therapeutic potential in hepatic fibrosis (HF). Activation of hepatic stellate cells (HSCs) is the key mechanism in HF progression. Downregulation of miR-192-5p was previously observed in activated HSCs. Nonetheless, the functions of BSMC-derived exosomal miR-192-5p in activated HSCs remain unclear. In this study, transforming growth factor (TGF)-β1 was used to activate HSC-T6 cells to mimic HF in vitro. Characterization of BMSCs and BMSC-derived EVs was performed. Cell-counting kit-8 assay, flow cytometry, and western blotting revealed that TGF-β1 increased cell viability, promoted cell cycle progression, and induced upregulation of fibrosis markers in HSC-T6 cells. Overexpression of miR-192-5p or BMSC-derived exosomal miR-192-5p suppressed TGF-β1-triggered HSC-T6 cell activation. RT-qPCR revealed that protein phosphatase 2 regulatory subunit B'' alpha (PPP2R3A) was downregulated in miR-192-5p-overexpressed HSC-T6 cells. Luciferase reporter assay was used for verifying the relation between miR-192-5p and PPP2R3A, which showed that miR-192-5p targeted PPP2R3A in activated HSC-T6 cells. Collectively, BMSC-derived exosomal miR-192-5p targets PPP2R3A and inhibits activation of HSC-T6 cells.
Collapse
Affiliation(s)
- Jie Tan
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Mingtao Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Meng Liu
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Aifang Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Yin X, Lin L, Fang F, Zhang B, Shen C. Mechanisms and Optimization Strategies of Paracrine Exosomes from Mesenchymal Stem Cells in Ischemic Heart Disease. Stem Cells Int 2023; 2023:6500831. [PMID: 38034060 PMCID: PMC10686715 DOI: 10.1155/2023/6500831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The morbidity and mortality of myocardial infarction (MI) are increasing worldwide. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal and differentiation capabilities that are essential in tissue healing and regenerative medicine. However, the low implantation and survival rates of transplanted cells hinder the widespread clinical use of stem cells. Exosomes are naturally occurring nanovesicles that are secreted by cells and promote the repair of cardiac function by transporting noncoding RNA and protein. In recent years, MSC-derived exosomes have been promising cell-free treatment tools for improving cardiac function and reversing cardiac remodeling. This review describes the biological properties and therapeutic potential of exosomes and summarizes some engineering approaches for exosomes optimization to enhance the targeting and therapeutic efficacy of exosomes in MI.
Collapse
Affiliation(s)
- Xiaorong Yin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lizhi Lin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fang Fang
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Cheng Shen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
36
|
Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol 2023; 601:4873-4893. [PMID: 36398654 PMCID: PMC10192497 DOI: 10.1113/jp282053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 07/28/2023] Open
Abstract
Exosomes are nanosized vesicles that carry biologically diverse molecules for intercellular communication. Researchers have been trying to engineer exosomes for therapeutic purposes by using different approaches to deliver biologically active molecules to the various target cells efficiently. Recent technological advances may allow the biodistribution and pharmacokinetics of exosomes to be modified to meet scientific needs with respect to specific diseases. However, it is essential to determine an exosome's optimal dosage and potential side effects before its clinical use. Significant breakthroughs have been made in recent decades concerning exosome labelling and imaging techniques. These tools provide in situ monitoring of exosome biodistribution and pharmacokinetics and pinpoint targetability. However, because exosomes are nanometres in size and vary significantly in contents, a deeper understanding is required to ensure accurate monitoring before they can be applied in clinical settings. Different research groups have established different approaches to elucidate the roles of exosomes and visualize their spatial properties. This review covers current and emerging strategies for in vivo and in vitro exosome imaging and tracking for potential studies.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Karen Colin
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- UAB School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
37
|
Collado A, Gan L, Tengbom J, Kontidou E, Pernow J, Zhou Z. Extracellular vesicles and their non-coding RNA cargos: Emerging players in cardiovascular disease. J Physiol 2023; 601:4989-5009. [PMID: 36094621 DOI: 10.1113/jp283200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, have recently received attention as essential mechanisms for cell-to-cell communication in cardiovascular disease. EVs can be released from different types of cells, including endothelial cells, smooth muscle cells, cardiac cells, fibroblasts, platelets, adipocytes, immune cells and stem cells. Non-coding (nc)RNAs as EV cargos have recently been investigated in the cardiovascular system. Up- or downregulated ncRNAs in EVs have been shown to play a crucial role in various cardiovascular diseases. Communication via EV-derived ncRNAs can occur between cells of the same type and between different types of cells involved in the pathophysiology of cardiovascular disease. In the present review, we highlight the important aspects of diverse cell-derived EVs and their ncRNA cargos as disease mediators and potential therapeutic targets in atherosclerosis, coronary artery disease, ischaemic heart disease and cardiac fibrosis. In addition, we summarize the potential of EV-derived ncRNAs in the treatment of cardiovascular disease. Finally, we discuss the different methods for EV isolation and characterization. A better understanding of the specific role of EVs and their ncRNA cargos in the regulation of cardiovascular (dys)function will be of importance for the development of diagnostic and therapeutic tools for cardiovascular disease.
Collapse
Affiliation(s)
- Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lu Gan
- Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Wu Y, Dong HR, Liu LT, Peng ML, Su XL. Advances in the study of exosome-derived miRNAs in the pathogenesis, diagnosis, and treatment of systemic lupus erythematosus. Lupus 2023; 32:1475-1485. [PMID: 37906972 PMCID: PMC10666474 DOI: 10.1177/09612033231212280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory disease caused by autoantibodies, with high morbidity and mortality. It involves multiple systems, particularly the renal, which can lead to lupus nephritis (LN); its multi-system effects have a significant impact on the physical and mental health of patients. Exosomes are vesicles that are secreted during cell activity and carry a variety of nucleic acids, proteins, and lipids. They are distributed through body fluids for cellular communication. MicroRNAs (miRNAs) are nucleic acids that are packaged within the exosome that are taken up and released in response to changes in plasma membrane structure. MiRNAs are potential participants in immune and inflammatory responses, which are transported to target cells and can inhibit gene expression in receptor cells. It has been suggested that exosomal miRNA can regulate the pathogenesis of SLE and, as such, they are of value in diagnosis and treatment. In this paper, we focus on the research progress into exosomal miRNA in SLE and inspire new directions for SLE related research.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | | | - Li Tin Liu
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mei Lin Peng
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiu Lan Su
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
39
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
40
|
Chang C, Cai RP, Su YM, Wu Q, Su Q. Mesenchymal Stem Cell-Derived Exosomal Noncoding RNAs as Alternative Treatments for Myocardial Ischemia-Reperfusion Injury: Current Status and Future Perspectives. J Cardiovasc Transl Res 2023; 16:1085-1098. [PMID: 37286924 PMCID: PMC10246878 DOI: 10.1007/s12265-023-10401-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
Ischemic cardiomyopathy is treated mainly with thrombolytic drugs, percutaneous coronary intervention, and coronary artery bypass grafting to recanalize blocked vessels. Myocardial ischemia-reperfusion injury (MIRI) is an unavoidable complication of obstructive revascularization. Compared with those of myocardial ischemic injury, few effective therapeutic options are available for MIRI treatment. The pathophysiological mechanisms of MIRI involve the inflammatory response, the immune response, oxidative stress, apoptosis, intracellular Ca2+ overload, and cardiomyocyte energy metabolism. These mechanisms exacerbate MIRI. Mesenchymal stem cell-derived exosomes (MSC-EXOs) can alleviate MIRI through these mechanisms and, to some extent, prevent the limitations caused by direct MSC administration. Therefore, using MSC-EXOs instead of MSCs to treat MIRI is a potentially beneficial cell-free treatment strategy. In this review, we describe the mechanism of action of MSC-EXO-derived noncoding RNAs in the treatment of MIRI and discuss the advantages and limitations of this strategy, as well as possible future research directions.
Collapse
Affiliation(s)
- Chen Chang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China
| | - Ru-Ping Cai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Ying-Man Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China
| | - Qiang Wu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China.
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China.
| |
Collapse
|
41
|
Bai Z, Hu H, Hu F, Ji J, Ji Z. Bone marrow mesenchymal stem cellsderived exosomes stabilize atherosclerosis through inhibiting pyroptosis. BMC Cardiovasc Disord 2023; 23:441. [PMID: 37679676 PMCID: PMC10486039 DOI: 10.1186/s12872-023-03453-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVES This study aimed to determine the effects of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (BMSC-EXO) on atherosclerosis (AS), and its related underlying mechanisms. METHODS Exosomes were isolated from mouse BMSCs, and identified by transmission electron microscopy (TEM), Nanosight (NTA), and western blot. A mouse AS model was established, and exosomes were injected into the tail vein. Total cholesterol (TC) and triglycerides (TG) were detected using their corresponding assay kits. The contents of IL-1β and IL-18 in serum were detected by ELISA. The mRNA and protein expression levels of GSDMD, Caspase1, and NLRP3 were detected by qRT-PCR and Western blot. Finally, aortic tissues in the Model and BMSC-EXO groups were sent for sequencing. RESULTS TEM, NTA, and western blot indicated successful isolation of exosomes. Compared with the control group, the TC, TG contents, IL-1β and IL-18 concentrations of the mice in the Model group were significantly increased; nonetheless, were significantly lower after injected with BMSC-EXO than those in the Model group (p < 0.05). Compared with the control group, the expressions of NLRP3, caspase-1 and GSDMD were significantly up-regulated in the Model group (p < 0.05), while the expressions of NLRP3, caspase-1, and GSDMD were significantly down-regulated by BMSC-EXO. By sequencing, a total of 3852 DEGs were identified between the Model and BMSC-EXO group and were significantly enriched in various biological processes and pathways related to mitochondrial function, metabolism, inflammation, and immune response. CONCLUSION AS can induce pyroptosis, and BMSC-EXO can reduce inflammation and alleviate the progression of AS by inhibiting NLRP3/Caspase-1/GSDMD in the pyroptosis pathway.
Collapse
Affiliation(s)
- Zhibin Bai
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Haolin Hu
- Department of General Surgery, Institute for Minimally Invasive Surgery, Medical School, ZhongDa Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Fangfang Hu
- Department of General Surgery, Institute for Minimally Invasive Surgery, Medical School, ZhongDa Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Jiajie Ji
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Zhenling Ji
- Department of General Surgery, Institute for Minimally Invasive Surgery, Medical School, ZhongDa Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
42
|
Yuan H, Yu J, Liu C, Zhao H, Xue J, Liu J, Yang Y. LncRNA KCNQ10T1 shuttled by bone marrow mesenchymal stem cell-derived exosome inhibits sepsis via regulation of miR-154-3p/RNF19A axis. Cell Tissue Res 2023; 393:507-521. [PMID: 37326687 PMCID: PMC10485167 DOI: 10.1007/s00441-023-03784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
This study aims to discuss the role of exosomes KCNQ10T1 derived from bone marrow mesenchymal stem cells (BMMSCs) in sepsis and to further investigate its potential molecular mechanisms. Exosomes extracted from BMMSCs are identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot. Fluorescence labeling is applied to detect the internalization of exosomes in receptors. The proliferation ability, migration ability, and invasion ability of HUVECs are determined by CCK-8, EdU, wound healing, and Transwell. The levels of inflammatory cytokines in sepsis cells are quantitatively detected by ELISA. Kaplan-Meier survival curve is used to describe the overall survival. RT-qPCR is used to detect mRNA expression of related genes. Bioinformatics analysis is performed to search the downstream target of KCNQ1OT1 and miR-154-3p and the interaction is verified by luciferase reporter assay. Exosomes derived from BMMSCs alleviated the toxicity in sepsis cell models and animal models. In mice with septic cell models, exosomal KCNQ10T1 was down-regulated and associated with lower survival. Overexpression of KCNQ10T1 inhibited the proliferation and metastasis of LPS-induced HUVECs. Further research illustrated that miR-154-3p was the downstream target gene of KCNQ1OT1 and RNF19A was the downstream target gene of miR-154-3p. Importantly, functional research findings indicated that KCNQ1OT1 regulated sepsis progression by targeting miR-154-3p/RNF19A axis. Our study demonstrates that the exosomal KCNQ1OT1 suppresses sepsis via mediating miR-154-3p/RNF19A, which provides a latent target for sepsis treatment.
Collapse
Affiliation(s)
- Haojie Yuan
- Department of Trauma Center, Affiliated Hospital of Nantong University, Chongchuan District, Jiangsu Province, No. 20 Xisi Road, 226001, Nantong, China
| | - Junbo Yu
- Department of Trauma Center, Affiliated Hospital of Nantong University, Chongchuan District, Jiangsu Province, No. 20 Xisi Road, 226001, Nantong, China
| | - Chun Liu
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Jiangsu Province, Nantong, 226001, China
| | - Heyan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Building of Qixiu Campus, Medical School of Nantong University, Jiangsu Province, No.19 Qixiu Road, Nantong, 226001, No.3 , China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, Chongchuan District, Jiangsu Province, No. 20 Xisi Road, 226001, Nantong, China
| | - Jiajia Liu
- Department of Trauma Center, Affiliated Hospital of Nantong University, Chongchuan District, Jiangsu Province, No. 20 Xisi Road, 226001, Nantong, China.
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Chongchuan District, Jiangsu Province, No. 20 Xisi Road, 226001, Nantong, China.
| |
Collapse
|
43
|
Yang Y, Ma M, Su J, Jia L, Zhang D, Lin X. Acetylation, ferroptosis, and their potential relationships: Implications in myocardial ischemia-reperfusion injury. Am J Med Sci 2023; 366:176-184. [PMID: 37290744 DOI: 10.1016/j.amjms.2023.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 06/10/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a serious complication affecting the prognosis of patients with myocardial infarction and can cause cardiac arrest, reperfusion arrhythmias, no-reflow, and irreversible myocardial cell death. Ferroptosis, an iron-dependent, peroxide-driven, non-apoptotic form of regulated cell death, plays a vital role in reperfusion injury. Acetylation, an important post-translational modification, participates in many cellular signaling pathways and diseases, and plays a pivotal role in ferroptosis. Elucidating the role of acetylation in ferroptosis may therefore provide new insights for the treatment of MIRI. Here, we summarized the recently discovered knowledge about acetylation and ferroptosis in MIRI. Finally, we focused on the acetylation modification during ferroptosis and its potential relationship with MIRI.
Collapse
Affiliation(s)
- Yu Yang
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Mengqing Ma
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Jiannan Su
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Lin Jia
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Dingxin Zhang
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China.
| |
Collapse
|
44
|
Li K, Zhu Z, Sun X, Zhao L, Liu Z, Xing J. Harnessing the therapeutic potential of mesenchymal stem cell-derived exosomes in cardiac arrest: Current advances and future perspectives. Biomed Pharmacother 2023; 165:115201. [PMID: 37480828 DOI: 10.1016/j.biopha.2023.115201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Cardiac arrest (CA), characterized by sudden onset and high mortality rates, is one of the leading causes of death globally, with a survival rate of approximately 6-24%. Studies suggest that the restoration of spontaneous circulation (ROSC) hardly improved the mortality rate and prognosis of patients diagnosed with CA, largely due to ischemia-reperfusion injury. MAIN BODY Mesenchymal stem cells (MSCs) exhibit self-renewal and strong potential for multilineage differentiation. Their effects are largely mediated by extracellular vesicles (EVs). Exosomes are the most extensively studied subgroup of EVs. EVs mainly mediate intercellular communication by transferring vesicular proteins, lipids, nucleic acids, and other substances to regulate multiple processes, such as cytokine production, cell proliferation, apoptosis, and metabolism. Thus, exosomes exhibit significant potential for therapeutic application in wound repair, tissue reconstruction, inflammatory reaction, and ischemic diseases. CONCLUSION Based on similar pathological mechanisms underlying post-cardiac arrest syndrome involving various tissues and organs in many diseases, the review summarizes the therapeutic effects of MSC-derived exosomes and explores the prospects for their application in the treatment of CA.
Collapse
Affiliation(s)
- Ke Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhu Zhu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Xiumei Sun
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Linhong Zhao
- Northeast Normal University, Changchun 130022, China.
| | - Zuolong Liu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
45
|
Sun ZL, You T, Zhang BH, Liu Y, Liu J. Bone marrow mesenchymal stem cell-derived exosomes miR-202-5p inhibited pyroptosis to alleviate lung ischemic-reperfusion injury by targeting CMPK2. Kaohsiung J Med Sci 2023; 39:688-698. [PMID: 37092308 DOI: 10.1002/kjm2.12688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Bone mesenchymal stem cell-derived exosome (BMSC-exosome) is a potential candidate for lung ischemia-reperfusion injury (LIRI) treatment. This study aims to investigate the anti-pyroptosis effect of BMSC-exosomes in LIRI. The LIRI cell model was established by hypoxia/reoxygenation (H/R) treatment. Interleukin (IL)-1β and IL-18 levels were examined by enzyme-linked immunosorbent assay. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Lactate dehydrogenase (LDH) release was examined using a LDH assay kit. The interaction between microRNA (miR)-202-5p and cytidine monophosphate kinase 2 (CMPK2) was analyzed using dual-luciferase reporter assay and RNA immunoprecipitation. BMSC-exosomes promoted cell viability and suppressed pyroptosis in H/R-treated mouse lung epithelial. miR-202-5p was enriched in BMSC-exosomes, and exosomal miR-202-5p inhibition upregulated pyroptosis-associated proteins, including cleaved N-terminal Gasdermin D, nucleotide-binding domain-like receptor family member pyrin domain-containing protein 3, and Caspase1. Meanwhile, miR-202-5p suppressed CMPK2 expression by directly targeting CMPK2. Expectedly, CMPK2 knockdown reversed the promoting effect of exosomal miR-202-5p inhibition on pyroptosis in LIRI. Therefore, BMSC-derived exosome miR-202-5p repressed pyroptosis to inhibit LIRI progression by targeting CMPK2.
Collapse
Affiliation(s)
- Zhi-Lu Sun
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Ting You
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Bi-Hong Zhang
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Yu Liu
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, People's Republic of China
| | - Jing Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan Province, People's Republic of China
| |
Collapse
|
46
|
Wang Y, Guo L, Zhang Z, Fu S, Huang P, Wang A, Liu M, Ma X. A bibliometric analysis of myocardial ischemia/reperfusion injury from 2000 to 2023. Front Cardiovasc Med 2023; 10:1180792. [PMID: 37383699 PMCID: PMC10293770 DOI: 10.3389/fcvm.2023.1180792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Background Myocardial ischemia/reperfusion injury (MIRI) refers to the more severe damage that occurs in the previously ischemic myocardium after a short-term interruption of myocardial blood supply followed by restoration of blood flow within a certain period of time. MIRI has become a major challenge affecting the therapeutic efficacy of cardiovascular surgery. Methods A scientific literature search on MIRI-related papers published from 2000 to 2023 in the Web of Science Core Collection database was conducted. VOSviewer was used for bibliometric analysis to understand the scientific development and research hotspots in this field. Results A total of 5,595 papers from 81 countries/regions, 3,840 research institutions, and 26,202 authors were included. China published the most papers, but the United States had the most significant influence. Harvard University was the leading research institution, and influential authors included Lefer David J., Hausenloy Derek J., Yellon Derek M., and others. All keywords can be divided into four different directions: risk factors, poor prognosis, mechanisms and cardioprotection. Conclusion Research on MIRI is flourishing. It is necessary to conduct an in-depth investigation of the interaction between different mechanisms and multi-target therapy will be the focus and hotspot of MIRI research in the future.
Collapse
Affiliation(s)
- Yifei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangqing Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Pingping Huang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
47
|
Liu YP, Wen R, Liu CF, Zhang TN, Yang N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed Pharmacother 2023; 164:114931. [PMID: 37263163 DOI: 10.1016/j.biopha.2023.114931] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Sirtuins (SIRTs) are a nicotinic adenine dinucleotide (+) -dependent histone deacetylase that regulates critical signaling pathways in prokaryotes and eukaryotes. Studies have identified seven mammalian homologs of the yeast SIRT silencing message regulator 2, namely, SIRT1-SIRT7. Recent in vivo and in vitro studies have successfully demonstrated the involvement of SIRTs in key pathways for cell biological function in physiological and pathological processes of the cardiovascular system, including processes including cellular senescence, oxidative stress, apoptosis, DNA damage, and cellular metabolism. Emerging evidence has stimulated a significant evolution in preventing and treating cardiovascular disease (CVD). Here, we review the important roles of SIRTs for the regulatory pathways involved in the pathogenesis of cardiovascular diseases and their molecular targets, including novel protein post-translational modifications of succinylation. In addition, we summarize the agonists and inhibitors currently identified to target novel specific small molecules of SIRTs. A better understanding of the role of SIRTs in the biology of CVD opens new avenues for therapeutic intervention with great potential for preventing and treating CVD.
Collapse
Affiliation(s)
- Yong-Ping Liu
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Ri Wen
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Chun-Feng Liu
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Tie-Ning Zhang
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Ni Yang
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
48
|
Khatami SH, Karami N, Taheri-Anganeh M, Taghvimi S, Tondro G, Khorsand M, Soltani Fard E, Sedighimehr N, Kazemi M, Rahimi Jaberi K, Moradi M, Nafisi Fard P, Darvishi MH, Movahedpour A. Exosomes: Promising Delivery Tools for Overcoming Blood-Brain Barrier and Glioblastoma Therapy. Mol Neurobiol 2023:10.1007/s12035-023-03365-0. [PMID: 37138197 PMCID: PMC10155653 DOI: 10.1007/s12035-023-03365-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Gliomas make up virtually 80% of all lethal primary brain tumors and are categorized based on their cell of origin. Glioblastoma is an astrocytic tumor that has an inferior prognosis despite the ongoing advances in treatment modalities. One of the main reasons for this shortcoming is the presence of the blood-brain barrier and blood-brain tumor barrier. Novel invasive and non-invasive drug delivery strategies for glioblastoma have been developed to overcome both the intact blood-brain barrier and leverage the disrupted nature of the blood-brain tumor barrier to target cancer cells after resection-the first treatment stage of glioblastoma. Exosomes are among non-invasive drug delivery methods and have emerged as a natural drug delivery vehicle with high biological barrier penetrability. There are various exosome isolation methods from different origins, and the intended use of the exosomes and starting materials defines the choice of isolation technique. In the present review, we have given an overview of the structure of the blood-brain barrier and its disruption in glioblastoma. This review provided a comprehensive insight into novel passive and active drug delivery techniques to overcome the blood-brain barrier, emphasizing exosomes as an excellent emerging drug, gene, and effective molecule delivery vehicle used in glioblastoma therapy.
Collapse
Affiliation(s)
- Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Karami
- TU Wien, Institute of Solid State Electronics, A-1040, Vienna, Austria
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Gholamhossein Tondro
- Microbiology Department, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Sedighimehr
- Department of Physical Therapy, School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Kazemi
- Department of Radio-oncology, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Moradi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parvaneh Nafisi Fard
- Department of Veterinary Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
49
|
Gao C, Xu YJ, Meng ZX, Gu S, Zhang L, Zheng L. BMSC-Derived Exosomes Carrying lncRNA-ZFAS1 Alleviate Pulmonary Ischemia/Reperfusion Injury by UPF1-Mediated mRNA Decay of FOXD1. Mol Neurobiol 2023; 60:2379-2396. [PMID: 36652050 DOI: 10.1007/s12035-022-03129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/04/2022] [Indexed: 01/19/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) exert protective effects against pulmonary ischemia/reperfusion (I/R) injury; however, the potential mechanism involved in their protective ability remains unclear. Thus, this study aimed to explore the function and underlying mechanism of BMSC-derived exosomal lncRNA-ZFAS1 in pulmonary I/R injury. Pulmonary I/R injury models were established in mice and hypoxia/reoxygenation (H/R)-exposed primary mouse lung microvascular endothelial cells (LMECs). Exosomes were extracted from BMSCs. Target molecule expression was assessed by qRT-PCR and Western blotting. Pathological changes in the lungs, pulmonary edema, apoptosis, pro-inflammatory cytokine levels, SOD, MPO activities, and MDA level were measured. The proliferation, apoptosis, and migration of LMECs were detected by CCK-8, EdU staining, flow cytometry, and scratch assay. Dual-luciferase reporter assay, RNA pull-down, RIP, and ChIP assays were performed to validate the molecular interaction. In the mouse model of pulmonary I/R injury, BMSC-Exos treatment relieved lung pathological injury, reduced lung W/D weight ratio, and restrained apoptosis and inflammation, whereas exosomal ZFAS1 silencing abolished these beneficial effects. In addition, the proliferation, migration inhibition, apoptosis, and inflammation in H/R-exposed LMECs were repressed by BMSC-derived exosomal ZFAS1. Mechanistically, ZFAS1 contributed to FOXD1 mRNA decay via interaction with UPF1, thereby leading to Gal-3 inactivation. Furthermore, FOXD1 depletion strengthened the weakened protective effect of ZFAS1-silenced BMSC-Exos on pulmonary I/R injury. ZFAS1 delivered by BMSC-Exos results in FOXD1 mRNA decay and subsequent Gal-3 inactivation via direct interaction with UPF1, thereby attenuating pulmonary I/R injury.
Collapse
Affiliation(s)
- Cao Gao
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Yan-Jie Xu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Zhi-Xiu Meng
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Shuang Gu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Lei Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Liang Zheng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
50
|
Pan W, Chen H, Wang A, Wang F, Zhang X. Challenges and strategies: Scalable and efficient production of mesenchymal stem cells-derived exosomes for cell-free therapy. Life Sci 2023; 319:121524. [PMID: 36828131 DOI: 10.1016/j.lfs.2023.121524] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Exosomes are small membrane vesicles secreted by most cell types, and widely exist in cell supernatants and various body fluids. They can transmit numerous bioactive elements, such as proteins, nucleic acids, and lipids, to affect the gene expression and function of recipient cells. Mesenchymal stem cells (MSCs) have been confirmed to be a potentially promising therapy for tissue repair and regeneration. Accumulating studies demonstrated that the predominant regenerative paradigm of MSCs transplantation was the paracrine effect but not the differentiation effect. Exosomes secreted by MSCs also showed similar therapeutic effects as their parent cells and were considered to be used for cell-free regenerative medicine. However, the inefficient and limited production has hampered their development for clinical translation. In this review, we summarize potential methods to efficiently promote the yield of exosomes. We mainly focus on engineering the process of exosome biogenesis and secretion, altering the cell culture conditions, cell expansion through 3D dynamic culture and the isolation of exosomes. In addition, we also discuss the application of MSCs-derived exosomes as therapeutics in disease treatment.
Collapse
Affiliation(s)
- Wei Pan
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 Jingwuweiqi Road 324, Jinan 250021, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, UC Davis Health Medical Center, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Fengshan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China.
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|