1
|
Peng H, Cheng Q, Chen J, Wang Y, Du M, Lin X, Zhao Q, Chen S, Zhang J, Wang X. Green Tea Epigallocatechin-3-gallate Ameliorates Lipid Accumulation and Obesity-Associated Metabolic Syndrome via Regulating Autophagy and Lipolysis in Preadipocytes and Adipose Tissue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12272-12291. [PMID: 40347183 DOI: 10.1021/acs.jafc.5c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Previous studies have shown that epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, demonstrates promising antiobesity effects. While autophagy mediates obesity via preadipocyte differentiation and lipogenesis, EGCG's potential autophagy-dependent antiobesity mechanism remains unclear. We used 3T3-L1 cells and high-fat-diet (HFD)-fed mice to examine how EGCG inhibits adipogenesis and lipogenesis via autophagy. EGCG (50 or 100 mg/kg) significantly attenuated HFD-induced weight gain, fat accumulation, hyperlipidemia, and glucose intolerance in mice. It also enhanced autophagy and lipolysis in white adipose tissue (WAT). EGCG profoundly inhibited terminal preadipocyte differentiation and lipid droplet formation in 3T3-L1 cells accompanied by reduced PPARγ, C/EBPα, and FASN expressions. Mechanistically, EGCG inhibited autophagy during the early stage of preadipocyte differentiation, as evidenced by increased autophagosome accumulation and impaired autophagic flux. The antiadipogenic effect of EGCG was further aggravated by the autophagy inhibitor chloroquine. Meanwhile, EGCG increased p38 and AMPK/ACC phosphorylation while inhibiting JNK phosphorylation in 3T3-L1 cells at an early stage of adipogenesis. Interestingly, EGCG reduced the expression of lipolytic enzymes HSL and ATGL, and it decreased glycerol contents in differentiated 3T3-L1 cells. These findings provide novel insights into the mechanism of using green tea EGCG in functional foods to combat obesity by targeting autophagy and lipolysis.
Collapse
Affiliation(s)
- He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Qi Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Ying Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Menghao Du
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, P. R. China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Jingsa Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Hangzhou 311400, P. R. China
- School of Pharmaceutical Sciences & Institute of Advanced Studies, Taizhou University, Taizhou 318000, P. R. China
| |
Collapse
|
2
|
Luo S, Zhao X, Wang Y, Jiang M, Cao Y. Oral exposure to nanoplastics altered lipid profiles in mouse intestine. Food Chem Toxicol 2025; 197:115304. [PMID: 39904404 DOI: 10.1016/j.fct.2025.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
The wide uses of plastics lead to nanoplastic exposure in reality. Previous studies reported that micro- and nano-plastics (MNPs) disrupted metabolism, but few studies investigated lipid profile changes. Hereby, we exposed mice to vehicles (control), 0.05 or 0.5 mg/kg 20 or 100 nm nanoplastics via gavage, once a day, for 14 days. Albeit no obvious tissue damage, lipidomics data revealed 76 up-regulated and 29 down-regulated lipid molecules in mouse intestines. Further analysis revealed that a number of up-regulated lipid molecules belong to glycerophospholipid (GP). Among GP, we noticed an up-regulation of 9 phosphatidylserine (PS) molecules, and we further verified the presence of autophagosomes and co-localization of typical autophagic lipolysis proteins in intestinal sections, as well as decreased lysosomal associated protein 2 (LAMP2) and increased adipose triglyceride lipase (ATGL) in intestinal homogenates, indicating perturbed autophagic pathway. The exposure also up-regulated 9 phosphatidylinositol (PI) molecules, and we verified a significant decrease of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), indicating altered PI3K-signaling pathway. Besides GP, nanoplastics also significantly up-regulated some sphingolipids (SP), such as ceramide (Cer), and some sterol lipids, such as cholesterol derivatives. Combined, these results suggested that oral exposure to nanoplastics altered lipid profiles and related signaling pathway in mouse intestines.
Collapse
Affiliation(s)
- Sihuan Luo
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaomei Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yijin Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Miao Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Xu W, Mesa-Eguiagaray I, Morris DM, Wang C, Gray CD, Sjöström S, Papanastasiou G, Badr S, Paccou J, Li X, Timmers PRHJ, Timofeeva M, Farrington SM, Dunlop MG, Semple SI, MacGillivray T, Theodoratou E, Cawthorn WP. Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK Biobank. Nat Commun 2025; 16:99. [PMID: 39747859 PMCID: PMC11697225 DOI: 10.1038/s41467-024-55422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Bone marrow adipose tissue is a distinct adipose subtype comprising more than 10% of fat mass in healthy humans. However, the functions and pathophysiological correlates of this tissue are unclear, and its genetic determinants remain unknown. Here, we use deep learning to measure bone marrow adiposity in the femoral head, total hip, femoral diaphysis, and spine from MRI scans of approximately 47,000 UK Biobank participants, including over 41,000 white and over 6300 non-white participants. We then establish the heritability and genome-wide significant associations for bone marrow adiposity at each site. Our meta-GWAS in the white population finds 67, 147, 134, and 174 independent significant single nucleotide polymorphisms, which map to 54, 90, 43, and 100 genes for the femoral head, total hip, femoral diaphysis, and spine, respectively. Transcriptome-wide association studies, colocalization analyses, and sex-stratified meta-GWASes in the white participants further resolve functional and sex-specific genes associated with bone marrow adiposity at each site. Finally, we perform a multi-ancestry meta-GWAS to identify genes associated with bone marrow adiposity across the different bone regions and across ancestry groups. Our findings provide insights into BMAT formation and function and provide a basis to study the impact of BMAT on human health and disease.
Collapse
Affiliation(s)
- Wei Xu
- Centre for Global Health and Molecular Epidemiology, Usher Institute, University of Edinburgh, Edinburgh, UK
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Ines Mesa-Eguiagaray
- Centre for Global Health and Molecular Epidemiology, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - David M Morris
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Chengjia Wang
- Edinburgh Imaging, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
- School of Mathematics and Computer Sciences, Heriot-Watt University, Edinburgh, UK
| | - Calum D Gray
- Edinburgh Imaging, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Samuel Sjöström
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Giorgos Papanastasiou
- Edinburgh Imaging, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
- Archimedes Unit, Athena Research Centre, Marousi, Greece
| | - Sammy Badr
- Univ. Lille, CHU Lille, Marrow Adiposity and Bone Laboratory (MABlab) ULR 4490, Department of Rheumatology, Lille, France
| | - Julien Paccou
- Univ. Lille, CHU Lille, Marrow Adiposity and Bone Laboratory (MABlab) ULR 4490, Department of Rheumatology, Lille, France
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Paul R H J Timmers
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria Timofeeva
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Danish Institute for Advanced Study (DIAS), Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Scott I Semple
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Tom MacGillivray
- Centre for Clinical Brain Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health and Molecular Epidemiology, Usher Institute, University of Edinburgh, Edinburgh, UK.
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - William P Cawthorn
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, UK.
| |
Collapse
|
4
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
5
|
Adhish M, Manjubala I. Integrative in-silico and in-vitro analysis of taurine and vitamin B12 in modulating PPARγ and Wnt signaling in hyperhomocysteinemia-induced osteoporosis. Biol Direct 2024; 19:141. [PMID: 39707534 DOI: 10.1186/s13062-024-00581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a critical regulator of adipogenesis and bone metabolism, playing complex roles in osteoporosis. This study investigates the effects of taurine and homocysteine on PPARγ, focusing on their roles in osteoclastogenesis and bone health. In-silico analyses, including molecular docking and molecular dynamic simulations, revealed that both taurine and homocysteine bind competitively to the PPARγ ligand-binding domain, exhibiting distinctive antagonistic modes, including destabilization of PPARγ's key helices H3, H4/5, H11, and H12. In-vitro experiments further supported these results, demonstrating that taurine protects against oxidative damage, enhances bone mineralization, and reduces the expression levels of PPARγ, while also downregulating negative regulators of the Wnt signaling pathway, such as SOST and DKK1. Homocysteine, on the other hand, was observed to increase the expression of these regulators and impair bone formation. Vitamin B12 was included in the study due to its known role in mitigating hyperhomocysteinemia, a condition linked to impaired bone health and reduced taurine levels. While vitamin B12 alone demonstrated some beneficial effects, it did not achieve the same level of efficacy as taurine. However, a combination of taurine and vitamin B12 showed greater efficacy in ameliorating hyperhomocysteinemia-induced osteoporosis. Overall, this study highlights taurine's therapeutic potential in counteracting the adverse effects of hyperhomocysteinemia on bone health and underscores the need for further research into taurine's mechanisms in osteoporosis treatment.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
Alanazi YA, Al‐kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Negm WA, AlAnazi FH, Alrouji M, Batiha GE. Role of Autophagy in Type 2 Diabetes Mellitus: The Metabolic Clash. J Cell Mol Med 2024; 28:e70240. [PMID: 39656379 PMCID: PMC11629865 DOI: 10.1111/jcmm.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is developed due to the development of insulin resistance (IR) and pancreatic β cell dysfunction with subsequent hyperglycaemia. Hyperglycaemia-induced oxidative stress and endoplasmic reticulum (ER) stress enhances inflammatory disorders, leading to further pancreatic β cell dysfunction. These changes trigger autophagy activation, which recycles cytoplasmic components and injured organelles. Autophagy regulates pancreatic β cell functions by different mechanisms. Though the exact role of autophagy in T2DM is not completely elucidated, that could be beneficial or detrimental. Therefore, this review aims to discuss the exact role of autophagy in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Yousef Abud Alanazi
- Department of Pediatrics, College of MedicineMajmaah UniversityMajmaahSaudi Arabia
| | - Haydar M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of PharmacyTanta UniversityTantaEgypt
| | - Faisal Holil AlAnazi
- Department of Internal Medicine, College of MedicineMajmaah UniversityMajmaahSaudi Arabia
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
7
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
8
|
Pepe M, Addabbo F, Cecere A, Tritto R, Napoli G, Nestola PL, Cirillo P, Biondi-Zoccai G, Giordano S, Ciccone MM. Acute Hyperglycemia-Induced Injury in Myocardial Infarction. Int J Mol Sci 2024; 25:8504. [PMID: 39126075 PMCID: PMC11313474 DOI: 10.3390/ijms25158504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Acute hyperglycemia is a transient increase in plasma glucose level (PGL) frequently observed in patients with ST-elevation myocardial infarction (STEMI). The aim of this review is to clarify the molecular mechanisms whereby acute hyperglycemia impacts coronary flow and myocardial perfusion in patients with acute myocardial infarction (AMI) and to discuss the consequent clinical and prognostic implications. We conducted a comprehensive literature review on the molecular causes of myocardial damage driven by acute hyperglycemia in the context of AMI. The negative impact of high PGL on admission recognizes a multifactorial etiology involving endothelial function, oxidative stress, production of leukocyte adhesion molecules, platelet aggregation, and activation of the coagulation cascade. The current evidence suggests that all these pathophysiological mechanisms compromise myocardial perfusion as a whole and not only in the culprit coronary artery. Acute hyperglycemia on admission, regardless of whether or not in the context of a diabetes mellitus history, could be, thus, identified as a predictor of worse myocardial reperfusion and poorer prognosis in patients with AMI. In order to reduce hyperglycemia-related complications, it seems rational to pursue in these patients an adequate and quick control of PGL, despite the best pharmacological treatment for acute hyperglycemia still remaining a matter of debate.
Collapse
Affiliation(s)
- Martino Pepe
- Division of Cardiology, Department of Interdisciplinary Medicine (D.I.M.), University of Bari “Aldo Moro”, 70100 Bari, Italy (M.M.C.)
| | - Francesco Addabbo
- ASL Taranto, Local Health Authority of Taranto, Statistics and Epidemiology Unit, 74100 Taranto, Italy;
| | - Annagrazia Cecere
- Division of Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy;
| | - Rocco Tritto
- Division of Cardiology, Department of Interdisciplinary Medicine (D.I.M.), University of Bari “Aldo Moro”, 70100 Bari, Italy (M.M.C.)
| | - Gianluigi Napoli
- Division of Cardiology, Villa Verde Clinic, 74121 Taranto, Italy;
| | | | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy;
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
- Maria Cecilia Hospital, GVM Care & Research, 48032 Cotignola, Italy
| | - Salvatore Giordano
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy;
| | - Marco Matteo Ciccone
- Division of Cardiology, Department of Interdisciplinary Medicine (D.I.M.), University of Bari “Aldo Moro”, 70100 Bari, Italy (M.M.C.)
| |
Collapse
|
9
|
Wu W, Zhao W, Huang C, Cao Y. Comparison of developmental toxicity of graphene oxide and graphdiyne to zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109924. [PMID: 38615809 DOI: 10.1016/j.cbpc.2024.109924] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Graphdiyne (GDY) is a new member of family of carbon-based 2D nanomaterials (NMs), but the environmental toxicity is less investigated compared with other 2D NMs, such as graphene oxide (GO). In this study, we compared with developmental toxicity of GO and GDY to zebrafish larvae. It was shown that exposure of zebrafish embryos from 5 h post fertilization to GO and GDY for up to 5 days decreased hatching rate and induced morphological deformity. Behavioral tests indicated that GO and GDY treatment led to hyperactivity of larvae. However, blood flow velocity was not significantly affected by GO or GDY. RNA-sequencing data revealed that both types of NMs altered gene expression profiles as well as gene ontology terms and KEGG pathways related with metabolism. We further confirmed that the NMs altered the expression of genes related with lipid droplets and autophagy, which may be account for the delayed development of zebrafish larvae. At the same mass concentrations, GO induced comparable or even larger toxic effects compared with GDY, indicating that GDY might be more biocompatible compared with GO. These results may provide novel understanding about the environmental toxicity of GO and GDY in vivo.
Collapse
Affiliation(s)
- Wanyan Wu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
10
|
Oshakbayev K, Durmanova A, Zhankalova Z, Idrisov A, Bedelbayeva G, Gazaliyeva M, Nabiyev A, Tordai A, Dukenbayeva B. Weight loss treatment for COVID-19 in patients with NCDs: a pilot prospective clinical trial. Sci Rep 2024; 14:10979. [PMID: 38744929 PMCID: PMC11094141 DOI: 10.1038/s41598-024-61703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
COVID-19 comorbid with noncommunicable chronic diseases (NCDs) complicates the diagnosis, treatment, and prognosis, and increases the mortality rate. The aim is to evaluate the effects of a restricted diet on clinical/laboratory inflammation and metabolic profile, reactive oxygen species (ROS), and body composition in patients with COVID-19 comorbid with NCDs. We conducted a 6-week open, pilot prospective controlled clinical trial. The study included 70 adult patients with COVID-19 comorbid with type 2 diabetes (T2D), hypertension, or nonalcoholic steatohepatitis (NASH). INTERVENTIONS a restricted diet including calorie restriction, hot water drinking, walking, and sexual self-restraint. PRIMARY ENDPOINTS COVID-19 diagnosis by detecting SARS-CoV-2 genome by RT-PCR; weight loss in Main group; body temperature; C-reactive protein. Secondary endpoints: the number of white blood cells; erythrocyte sedimentation rate; adverse effects during treatment; fasting blood glucose, glycosylated hemoglobin A1c (HbA1c), systolic/diastolic blood pressure (BP); blood lipids; ALT/AST, chest CT-scan. In Main group, patients with overweight lost weight from baseline (- 12.4%; P < 0.0001); 2.9% in Main group and 7.2% in Controls were positive for COVID-19 (RR: 0.41, CI: 0.04-4.31; P = 0.22) on the 14th day of treatment. Body temperature and C-reactive protein decreased significantly in Main group compared to Controls on day 14th of treatment (P < 0.025). Systolic/diastolic BP normalized (P < 0.025), glucose/lipids metabolism (P < 0.025); ALT/AST normalized (P < 0.025), platelets increased from baseline (P < 0.025), chest CT (P < 0.025) in Main group at 14 day of treatment. The previous antidiabetic, antihypertensive, anti-inflammatory, hepatoprotective, and other symptomatic medications were adequately decreased to completely stop during the weight loss treatment. Thus, the fast weight loss treatment may be beneficial for the COVID-19 patients with comorbid T2D, hypertension, and NASH over traditional medical treatment because, it improved clinical and laboratory/instrumental data on inflammation; glucose/lipid metabolism, systolic/diastolic BPs, and NASH biochemical outcomes, reactive oxygen species; and allowed patients to stop taking medications. TRIAL REGISTRATION ClinicalTrials.gov NCT05635539 (02/12/2022): https://clinicaltrials.gov/ct2/show/NCT05635539?term=NCT05635539&draw=2&rank=1 .
Collapse
Affiliation(s)
- Kuat Oshakbayev
- Internal Medicine Department, University Medical Center, Street Syganak, 46, 010000, Astana, Republic of Kazakhstan.
- ANADETO Medical Center, St. Kerey, Zhanibek Khans, 22, 010000, Astana, Republic of Kazakhstan.
| | - Aigul Durmanova
- Internal Medicine Department, University Medical Center, Street Syganak, 46, 010000, Astana, Republic of Kazakhstan
| | - Zulfiya Zhankalova
- Department of General Medical Practice, Asfendiyarov Kazakh National Medical University, #1, Street Tole Bi, 94, 050000, Almaty, Republic of Kazakhstan
| | - Alisher Idrisov
- Department of Endocrinology, Astana Medical University, Street Beibitshilik St 49/A, Astana, Republic of Kazakhstan
| | - Gulnara Bedelbayeva
- Faculty of Postgraduate Education, Asfendiyarov Kazakh National Medical University, Street Tole Bi, 94, 050000, Almaty, Republic of Kazakhstan
| | - Meruyert Gazaliyeva
- Faculty of Internal Medicine, Astana Medical University, Street Beibitshilik St 49/A, Astana, Republic of Kazakhstan
| | - Altay Nabiyev
- Internal Medicine Department, University Medical Center, Street Syganak, 46, 010000, Astana, Republic of Kazakhstan
| | - Attila Tordai
- Department of Transfusion Medicine, Semmelweis University, Vas U. 17, Budapest, 1088, Hungary
| | - Bibazhar Dukenbayeva
- Faculty of Pathology and Forensic Medicine, Astana Medical University, Astana, Republic of Kazakhstan
- ANADETO Medical Center, St. Kerey, Zhanibek Khans, 22, 010000, Astana, Republic of Kazakhstan
| |
Collapse
|
11
|
Sekar M, Thirumurugan K. Autophagic Regulation of Adipogenesis Through TP53INP2: Insights from In Silico and In Vitro Analysis. Mol Biotechnol 2024; 66:1188-1205. [PMID: 38238641 DOI: 10.1007/s12033-023-01020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/04/2023] [Indexed: 05/12/2024]
Abstract
Obesity is an epidemic disease associated with multimorbidity resulting in higher mortality risk. The imbalance between energy storage and expenditure is the prime factor in the prognosis of the disease. Specifically, excessive lipid storage through adipogenesis leads to obesity. Adipogenesis is the process that converts preadipocytes into mature adipocytes by regulating major transcription factors like PPARγ and C/EBPα, contributes to lipid storage in adipose tissue. On the contrary, autophagy is a self-degradative process that maintains homeostasis in adipose tissue by regulating adipogenesis and lipolysis. TP53INP2 is a key player that regulates the autophagy process, and it negatively regulates adipogenesis and lipid storage. The gene expression profile GSE93637 was retrieved from the GEO database and analyzed using an integrated bioinformatics approach. The differentially expressed genes (DEGs) were analyzed using R-Bioconductor for TP53INP2 knockdown microarray dataset of 3T3L1 cells, and the DEGs were analyzed for the functional enrichment analysis. Further, the genes involved in the potential biological and molecular functions were evaluated for pathway enrichment analysis by KEGG (Kyoto Encyclopedia of Genes and Genomes). A total of 726 DEGs were found including 391 upregulated and 335 downregulated genes. Further, the functional and pathway enrichment analysis was employed to identify the highly interacting genes, and we identified a total of 56 genes that are highly interacting through a protein-protein interaction network. The DEGs mainly regulate the Peroxisome proliferator-activated receptor (PPAR) signaling pathway, lipolysis, and autophagy. Further, we investigated the associated Hub genes for enriched pathway genes and found the involvement of two autophagic genes ATG7 and sequestosome 1 (p62). In addition, in vitro studies of qRT-PCR (Quantitative real-time polymerase chain reaction) and Western blot analysis revealed that increased autophagy resulted in reduced lipid storage through down-regulation of the adipogenic gene. Moreover, increased expression of autophagic gene TP53INP2 and ATG7 facilitates the down-regulation of p62 and PPARγ gene resulting in lipolysis in mature adipocytes through autophagy. There is no specific treatment to reduce obesity other than a caloric diet and exercise. Hence, this study provides sufficient evidence to conclude that TP53INP2 negatively regulates adipogenesis and increases the degradation of lipids in mature adipocytes which is crucial for reducing obesity. Therefore, it is plausible to consider TP53INP2 as a promising therapeutic target for managing adipogenesis and obesity. However, further studies are necessary to validate their functional and molecular pathway analysis in the regulation of adipogenesis and obesity.
Collapse
Affiliation(s)
- Mouliganesh Sekar
- Structural Biology Lab, #412, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, #412, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
12
|
Wang Y, Chen G, Xu M, Cui Y, He W, Zeng H, Zeng T, Cheng R, Li X. Caspase-1 Deficiency Modulates Adipogenesis through Atg7-Mediated Autophagy: An Inflammatory-Independent Mechanism. Biomolecules 2024; 14:501. [PMID: 38672517 PMCID: PMC11048440 DOI: 10.3390/biom14040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity stands as a significant risk factor for type 2 diabetes, hyperlipidemia, and cardiovascular diseases, intertwining increased inflammation and decreased adipogenesis with metabolic disorders. Studies have highlighted the correlation between Caspase-1 and inflammation in obesity, elucidating its essential role in the biological functions of adipose tissue. However, the impact of Caspase-1 on adipogenesis and the underlying mechanisms remain largely elusive. In our study, we observed a positive correlation between Caspase-1 expression and obesity and its association with adipogenesis. In vivo experiments revealed that, under normal diet conditions, Caspase-1 deficiency improved glucose homeostasis, stimulated subcutaneous adipose tissue expansion, and enhanced adipogenesis. Furthermore, our findings indicate that Caspase-1 deficiency promotes the expression of autophagy-related proteins and inhibits autophagy with 3-MA or CQ blocked Caspase-1 deficiency-induced adipogenesis in vitro. Notably, Caspase-1 deficiency promotes adipogenesis via Atg7-mediated autophagy activation. In addition, Caspase-1 deficiency resisted against high-fat diet-induced obesity and glucose intolerance. Our study proposes the downregulation of Caspase-1 as a promising strategy for mitigating obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Cheng
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Wang R, Liu SL, Guo QQ, Shi XH, Ma MM. Circadian Clock REV-ERBs Agonist SR9009 Induces Synergistic Antitumor Activity in Multiple Myeloma by Suppressing Glucose-Regulated Protein 78-Dependent Autophagy and Lipogenesis. World J Oncol 2023; 14:464-475. [PMID: 38022411 PMCID: PMC10681778 DOI: 10.14740/wjon1681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background Proteasome inhibitors, such as bortezomib, have demonstrated efficacy in the therapeutic management of multiple myeloma (MM). However, it is important to note that these inhibitors also elicit endoplasmic reticulum stress, which subsequently triggers the unfolded protein response (UPR) and autophagy, which have been shown to facilitate the survival of tumor cells. The disruption of the circadian clock is considered a characteristic feature of cancer. However, how disrupted circadian clock intertwines with tumor metabolism and drug resistance is not clearly clarified. This work explores the antitumor effectiveness of bortezomib and the circadian clock agonist SR9009, elucidating their impact on glucose-regulated protein 78 (GRP78), the autophagy process, and lipogenesis. Methods The antitumor effects of bortezomib and SR9009 were evaluated using human MM cell lines (RPMI8226 and U266) in vitro and in vivo nonobese diabetic/severe combined immunodeficient (NOD/SCID) murine xenograft MM model. The assessment of cell viability was conducted using the cell counting kit-8 (CCK8) method, whereas the measurement of cell proliferation was performed with the inclusion of EdU (5-ethynyl-2'-deoxyuridine). Apoptosis was assessed by flow cytometry. The cells were transduced using adenovirus-tf-LC3, which was labeled with dual fluorescence. Subsequently, confocal imaging was employed to observe and examine the autophagosomes. REV-ERBα knockdown leads to upregulation of ATG5 and BENC1 at the protein level with immunoblot. Changes in the expression levels of GRP78, LC3, stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FASN) were assessed through the utilization of quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Results Our results showed that both bortezomib and circadian clock REV-ERBs agonist SR9009 decreased MM viability, proliferation rate and induced an apoptotic response in a dose-dependent manner in vitro. However, the two differ greatly in their mechanisms of action. Bortezomib upregulated GRP78 and autophagy LC3, while circadian clock agonist SR9009 inhibited GRP78 and autophagy LC3. Combined SR9009 with bortezomib induced synergistic cytotoxicity against MM cells. REV-ERBα knockdown lead to upregulation of ATG5, BENC1 and significant upregulation of FASN, and SCD1. Mechanically, SR9009 inhibited the core autophagy gene ATG5 and BECN1, and two essential enzymes for de novo lipogenesis FASN and SCD1. SR9009 had synergistic effect with bortezomib and slowed down murine xenograft models of human MM tumor growth in vivo. Conclusions Taken together, these results demonstrated that the circadian clock component REV-ERBs agonist SR9009 could inhibit GRP78-induced autophagy and de novo lipogenesis processes and had a synergistic effect with proteasome inhibitors in both in vitro and in vivo models of MM. Our findings shed light on how a disrupted circadian clock interacts with metabolic mechanisms to shape proteasome inhibitor drug resistance and suggest that SR9009 may be able to overcome the inherent drug resistance of proteasome inhibitors.
Collapse
Affiliation(s)
- Rui Wang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, No. 1055, San Xiang Road, Gu Su District, Su Zhou City, China
- Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
- These authors contributed equally to this article
| | - Shu Ling Liu
- Department of Radiotherapy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305, Zhong Shan Road, Xuan wu District, Nanjing City, China
- These authors contributed equally to this article
| | - Quan Quan Guo
- Department of Hematology, The Second Affiliated Hospital of Soochow University, No. 1055, San Xiang Road, Gu Su District, Su Zhou City, China
- Department of Oncology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
| | - Xiao Hong Shi
- Department of Pathology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
| | - Mei Mei Ma
- Department of Pathology, Suqian Affiliated Hospital of Xuzhou Medical University, No. 138, Huanghe Road, Su Cheng District, Suqian City, China
| |
Collapse
|
14
|
Navarro-Masip È, Manocchio F, Rodríguez RM, Bravo FI, Torres-Fuentes C, Muguerza B, Aragonès G. Photoperiod-Dependent Effects of Grape-Seed Proanthocyanidins on Adipose Tissue Metabolic Markers in Healthy Rats. Mol Nutr Food Res 2023; 67:e2300035. [PMID: 37423963 DOI: 10.1002/mnfr.202300035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/26/2023] [Indexed: 07/11/2023]
Abstract
SCOPE Variations in photoperiod patterns drive metabolic adaptations in mammals, involving important changes in body weight and adiposity. Moreover, (poly)phenols can help heterotrophs adopt metabolic adaptations to face the upcoming environmental conditions. Particularly, proanthocyanidins from grape-seeds show photoperiod-dependent effects on different metabolic parameters. The present study aims to explore whether grape-seed proanthocyanidin extract (GSPE) consumption differently affects the expression of metabolic markers in WAT (subcutaneous and visceral depots) and BAT in a photoperiod-dependent manner. METHODS AND RESULTS GSPE (25 mg kg-1 day-1 ) is orally administrated for 4 weeks to healthy rats exposed to three photoperiods (L6, L12, and L18). In WAT, GSPE consumption significantly upregulates the expression of lipolytic genes in all photoperiods, being accompanied by increased serum concentrations of glycerol and corticosterone only under the L6 photoperiod. Moreover, adiponectin mRNA levels are significantly upregulated in response to GSPE regardless of the photoperiod, whereas Tnfα and Il6 expression are only downregulated in L6 and L18 photoperiods but not in L12. In BAT, GSPE upregulates Pgc1α expression in all groups, whereas the expression of Pparα is only increased in L18. CONCLUSIONS The results indicate that GSPE modulates the expression of important metabolic markers of WAT and BAT in a photoperiod-dependent manner.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francesca Manocchio
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Romina M Rodríguez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| |
Collapse
|
15
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
16
|
Verma J, Rai AK, Satija NK. Autophagy perturbation upon acute pyrethroid treatment impacts adipogenic commitment of mesenchymal stem cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105566. [PMID: 37666621 DOI: 10.1016/j.pestbp.2023.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
Environmental chemical exposure can cause dysregulation in adipogenesis that can result in metabolic syndrome, which includes insulin resistance, type 2 diabetes, cardiovascular disease, as well as excessive body weight. The role of autophagy in adipocyte differentiation is debatable since both positive and negative effects have been reported. Type-I and type-II synthetic pyrethroids α-cypermethrin (CPM) and permethrin (PER), respectively, are reported to increase adipogenesis in vitro and in vivo. However, it is not known how these pyrethroids affect mesenchymal stem cells (MSCs). Thus, this study focused on evaluating the effect of pyrethroids (CPM and PER) pre-treatment (24 h) on MSC commitment and the regulatory role of autophagy in adipogenic lineage commitment. The formation of adipocytes was observed through nile red staining, perilipin expression by immunoflourescence, and adipogenic markers PPARγ, C/EBPα, and FABP4 by western blotting. It was found that the adipogenic differentiation ability of MSCs was significantly increased upon CPM or PER pre-treatment at 100 μM concentration as evident by lipid accumulation and enhanced expression of adipogenic markers. To assess the involvement of autophagy, the expression of p62 and LC3II were evaluated following pre-treatment. Immunoblotting results revealed an increased expression of p62 and LC3II in CPM or PER pretreated MSCs suggesting CPM and PER mediated inhibition of autophagy at 24 h. Further, an increase was observed in adipogenesis upon CPM or PER pre-treatment in combination with chloroquine, while use of rapamycin during pre-treatment abrogated the effect of CPM and PER. Thus, this study concludes that CPM or PER pre-treatment increases the adipogenic differentiation of MSCs. Since chloroquine also demonstrated similar adipogenic response, it further highlights that 24 h pre-treatment with autophagy modulators to inhibit basal autophagy primes MSCs towards adipogenic lineage.
Collapse
Affiliation(s)
- Julee Verma
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajit Kumar Rai
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar Satija
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Yang YY, Soh R, Vera-Colón M, Huang M, Zur Nieden NI, Wang Y. Targeted Proteomic Profiling Revealed Roles of Small GTPases during Osteogenic Differentiation. Anal Chem 2023; 95:6879-6887. [PMID: 37083350 PMCID: PMC10290900 DOI: 10.1021/acs.analchem.2c05781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The small GTPase superfamily of proteins are crucial for numerous cellular processes, including early development. The roles of these proteins in osteogenic differentiation, however, remained poorly explored. In this study, we employed a high-throughput targeted proteomic method, relying on scheduled liquid chromatography-multiple-reaction monitoring (LC-MRM) coupled with synthetic stable isotope-labeled peptides, to interrogate systematically the temporal responses of the entire small GTPase proteome during the course of osteogenic differentiation of H9 human embryonic stem cells. Our results demonstrated that the method offers high quantification accuracy, reproducibility, and throughput. In addition, the quantification results revealed altered expression of a large number of small GTPases accompanied with osteogenic differentiation, especially those involved with autophagy. We also documented a previously unrecognized role of KRAS in osteogenesis, where it regulates the accumulation of extracellular matrix for mineralization through attenuating the activity of secreted matrix metalloproteinase 9 (MMP9). Together, this study represents a novel application of a state-of-the-art analytical method, i.e., targeted quantitative proteomics, for revealing the progressive reprogramming of the small GTPase proteome during osteogenic differentiation of human embryonic stem cells, and our results revealed KRAS as a new regulator for osteogenesis.
Collapse
Affiliation(s)
- Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Ruthia Soh
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Madeline Vera-Colón
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Ming Huang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Nicole I Zur Nieden
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, California 92521-0403, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
18
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
19
|
Nutraceuticals and the Network of Obesity Modulators. Nutrients 2022; 14:nu14235099. [PMID: 36501129 PMCID: PMC9739360 DOI: 10.3390/nu14235099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is considered an increasingly widespread disease in the world population, regardless of age and gender. Genetic but also lifestyle-dependent causes have been identified. Nutrition and physical exercise play an important role, especially in non-genetic obesity. In a three-compartment model, the body is divided into fat mass, fat-free mass and water, and obesity can be considered a condition in which the percentage of total fat mass is in excess. People with a high BMI index or overweight use self-medications, such as food supplements or teas, with the aim to prevent or treat their problem. Unfortunately, there are several obesity modulators that act both on the pathways that promote adipogenesis and those that inhibit lipolysis. Moreover, these pathways involve different tissues and organs, so it is very difficult to identify anti-obesity substances. A network of factors and cells contributes to the accumulation of fat in completely different body districts. The identification of natural anti-obesity agents should consider this network, which we would like to call "obesosome". The nutrigenomic, nutrigenetic and epigenetic contribute to making the identification of active compounds very difficult. This narrative review aims to highlight nutraceuticals that, in vitro or in vivo, showed an anti-obesity activity or were found to be useful in the control of dysfunctions which are secondary to obesity. The results suggest that it is not possible to use a single compound to treat obesity, but that the studies have to be addressed towards the identification of mixtures of nutraceuticals.
Collapse
|
20
|
Zhang Y, Hua L, Lin C, Yuan M, Xu W, Raj D. A, Venkidasamy B, Cespedes-Acuna CL, Nile SH, Yan G, Zheng H. Pien-Tze-Huang alleviates CCl4-induced liver fibrosis through the inhibition of HSC autophagy and the TGF-β1/Smad2 pathway. Front Pharmacol 2022; 13:937484. [PMID: 36188553 PMCID: PMC9523731 DOI: 10.3389/fphar.2022.937484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Ethnopharmacological relevance: Pien-Tze-Huang (PZH)—a traditional Chinese medicine (TCM) compound—has been employed to treat various liver inflammation and tumors for over 10 decades. Interestingly, most of the pharmacological effects had been validated and explored toward liver ailment along with pro-inflammatory conditions and cancer at the cellular and molecular level to date. Aim of the study: The present study aimed to investigate the therapeutic effect of PZH on autophagy and TGF-β1 signaling pathways in rats with liver fibrosis and hepatic stellate cell line (HSC). Materials and methods: Male SD rats with carbon tetrachloride (CCl4)-induced liver fibrosis were used as the animal model. Next, PZH treatment was given for 8 weeks. Afterward, the therapeutic effects of PZH were analyzed through a hepatic tissue structure by hematoxylin-eosin (H&E), Van Gieson (VG) staining, and transmission electron microscopy (TEM), activity of ALT and AST by enzyme-associated immunosorbent assay as well. Subsequently, mRNA and protein expression were examined by quantitative polymerase chain reaction (qPCR), Western blotting, and immunohistochemistry (IHC). Then, the cell vitality of PZH-treated HSC and the expression of key molecules prevailing to autophagy were studied in vitro. Meanwhile, SM16 (a novel small molecular inhibitor which inhibits TGFβ-induced Smad2 phosphorylation) was employed to confirm PZH’s effects on the proliferation and autophagy of HSC. Results: PZH pharmacologically exerted anti-hepatic fibrosis effects as demonstrated by protecting hepatocytes and improving hepatic function. The results revealed the reduced production of extracellular collagen by adjusting the balance of matrix metalloproteinase (MMP) 2, MMP9, and tissue inhibitor of matrix metalloproteinase 1 (TIMP1) in PZH-treated CCl4-induced liver fibrosis. Interestingly, PZH inhibited the activation of HSC by down-regulating TGF-β1 and phosphorylating Smad2. Furthermore, PZH down-regulated yeast Atg6 (Beclin-1) and microtubule-associated protein light chain 3 (LC3) toward suppressing HSC autophagy, and PZH exhibited similar effects to that of SM16. Conclusion: To conclude, PZH alleviated CCl4-induced liver fibrosis to reduce the production of extracellular collagen and inhibiting the activation of HSC. In addition, their pharmacological mechanisms related to autophagy and TGF-β1/Smad2 signaling pathways were revealed for the first time.
Collapse
Affiliation(s)
- Yuqin Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Liping Hua
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Chunfeng Lin
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mingzhou Yuan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Anand Raj D.
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Carlos L. Cespedes-Acuna
- Plant Biochemistry and Phytochemical Ecology Lab, Basic Sciences Department University of Bio Bio, Chillan, Chile
| | - Shivraj Hariram Nile
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- *Correspondence: Shivraj Hariram Nile, ; Guohong Yan, ; Haiyin Zheng,
| | - Guohong Yan
- Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- *Correspondence: Shivraj Hariram Nile, ; Guohong Yan, ; Haiyin Zheng,
| | - Haiyin Zheng
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- *Correspondence: Shivraj Hariram Nile, ; Guohong Yan, ; Haiyin Zheng,
| |
Collapse
|