1
|
Parker A, Petersen-Ross K, Maponga T, Parkar S, Ahmed N, Snyders CI, Kidd M, Taljaard JJ, Meintjes G, Koegelenberg CFN, Kleynhans L, Smith C. Pre-existing adipose tissue signaling profile related to obesity determines disease outcome of COVID-19: addressing obesity should be a priority for future pandemic preparedness. Front Endocrinol (Lausanne) 2025; 16:1506065. [PMID: 40352457 PMCID: PMC12061698 DOI: 10.3389/fendo.2025.1506065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/18/2025] [Indexed: 05/14/2025] Open
Abstract
Objectives Obesity is associated with COVID-19 severity and mortality. We investigated relationships between adipokines, cytokines and redox parameters with obesity, human immunodeficiency virus (HIV), severity and outcome. Methods In the exploratory study, adipose tissue (AT) was sampled in patients with COVID-19 on admission. Concentrations of leptin, adiponectin, resistin, interleukin 1 beta (IL-1b), IL-2, IL-6, IL-10, IL-17, tumor necrosis factor alpha (TNF-a), monocyte chemoattractant protein 1 (MCP-1), Trolox equivalent antioxidant capacity (TEAC), oxidative stress (H202) and malonaldehyde (MDA) were determined. Results Thirty-eight biopsies of subcutaneous adipose tissue were obtained (prevalence of HIV was 39% and of obesity 61%). Higher IL-6 serum concentrations (p=0.03) were associated with more severe COVID-19, and higher serum IL-10 concentrations, (p=0.03) with mortality. People with obesity had higher leptin concentrations (p=0.03, and p<0.01), lower adiponectin/leptin (p=0.03 and p<0.01), and higher leptin/resistin ratios (p=0.09 and p<0.01) in both AT and serum respectively. Higher leptin/resistin (p=0.04) and lower adiponectin/resistin (p=0.05) ratios in AT, but not serum, were predictive of mortality. HIV was not associated with any differences. Relationships between resistin and redox indicators, TEAC and MDA, suggest a dysregulation of metabolic vs immune-relevant effect of resistin, which differentially predicted severity and mortality. SARS-CoV-2 RNA was detected in the subcutaneous AT in 3/8 patients who demised, but only in 1/30 who survived. Conclusion Given the significant link demonstrated between leptin dysregulation in obesity and mortal severity of COVID-19, addressing obesity should be a priority therapeutic target in terms of future pandemic preparedness. Mechanistic studies are recommended to further elucidate the importance of metabolic vs immune modulation by resistin in COVID-19, to identify future therapeutic targets.
Collapse
Affiliation(s)
- Arifa Parker
- Division of General Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Kelly Petersen-Ross
- Experimental Medicine Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Tongai Maponga
- Division of Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Samina Parkar
- Division of Dermatology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Nadiya Ahmed
- Division of General Surgery, Department of Surgery, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Candice I. Snyders
- Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jantjie J. Taljaard
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Graeme Meintjes
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Coenraad F. N. Koegelenberg
- Division of Pulmonology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Léanie Kleynhans
- Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute - The University of Queensland, Translational Research
Institute, Brisbane, QLD, Australia
| | - Carine Smith
- Division of Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
2
|
Tassakos A, Kloppman A, Louie JCY. The Impact of Diet Quality on COVID-19 Severity and Outcomes-A Scoping Review. Curr Nutr Rep 2025; 14:27. [PMID: 39891806 PMCID: PMC11787171 DOI: 10.1007/s13668-025-00618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE OF REVIEW The COVID-19 pandemic, caused by SARS-CoV-2, has highlighted the potential role of nutrition in modifying disease susceptibility and severity. This review aims to systematically evaluate the current evidence on associations between dietary patterns, assessed using diet quality scores (DQS), and COVID-19 severity and outcomes. RECENT FINDINGS A comprehensive literature search identified 15 studies across diverse populations. Prospective cohort studies generally found higher diet quality associated with lower COVID-19 infection rates. Case-control studies consistently showed reduced odds of COVID-19 infection and severe illness with adherence to anti-inflammatory dietary patterns, particularly the Mediterranean diet. Cross-sectional data revealed associations between higher DQS and reduced COVID-19 symptom burden and improved prognostic biomarkers. An ecological study demonstrated inverse relationships between national-level diet quality and COVID-19 caseloads. Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and plant-based diet scores were notably predictive of favourable outcomes, even after adjusting for confounders. Conversely, consumption of processed foods high in saturated fats, sugars, and additives was linked to increased COVID-19 complications. Despite these findings, research gaps remain, including the impacts of specific dietary components, effect modifiers across populations, and establishing causality through interventional trials. This review highlights the observational evidence supporting the potential integration of optimal nutrition into pandemic preparedness strategies. Further research is needed to strengthen these findings and inform evidence-based dietary recommendations for COVID-19 prevention and management.
Collapse
Affiliation(s)
- Athina Tassakos
- Discipline of Dietetics, Department of Allied Health, School of Health Sciences, Swinburne University of Technology, SPW Building, 1 John St, Hawthorn, VIC, Australia
| | - Alanna Kloppman
- Discipline of Dietetics, Department of Allied Health, School of Health Sciences, Swinburne University of Technology, SPW Building, 1 John St, Hawthorn, VIC, Australia
| | - Jimmy Chun Yu Louie
- Discipline of Dietetics, Department of Allied Health, School of Health Sciences, Swinburne University of Technology, SPW Building, 1 John St, Hawthorn, VIC, Australia.
| |
Collapse
|
3
|
Kebriaei A, Besharati R, Namdar Ahmad Abad H, Havakhah S, Khosrojerdi M, Azimian A. The relationship between microRNAs and COVID-19 complications. Noncoding RNA Res 2025; 10:16-24. [PMID: 39296641 PMCID: PMC11406673 DOI: 10.1016/j.ncrna.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Over the past three years, since the onset of COVID-19, several scientific studies have concentrated on understanding susceptibility to the virus, the progression of the illness, and possible long-term complexity. COVID-19 is broadly recognized with effects on multiple systems in the body, and various factors related to society, medicine, and genetics/epigenetics may contribute to the intensity and results of the disease. Additionally, a SARS-CoV-2 infection can activate pathological activities and expedite the emergence of existing health issues into clinical problems. Forming easily accessible, distinctive, and permeable biomarkers is essential for categorizing patients, preventing the disease, predicting its course, and tailoring treatments for COVID-19 individually. One promising candidate for such biomarkers is microRNAs, which could serve various purposes in understanding diverse forms of COVID-19, including susceptibility, intensity, disease progression, outcomes, and potential therapeutic options. This review provides an overview of the most significant findings related to the involvement of microRNAs in COVID-19 pathogenesis. Furthermore, it explores the function of microRNAs in a broad span of effects that may arise from accompanying or underlying health status. It underscores the value of comprehending how diverse conditions, such as neurological disorders, diabetes, cardiovascular diseases, and obesity, interact with COVID-19.
Collapse
Affiliation(s)
- Abdollah Kebriaei
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Besharati
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hasan Namdar Ahmad Abad
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shahrzad Havakhah
- Department of Physiology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahsa Khosrojerdi
- Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
4
|
Ashmawy R, Hamouda EA, Zeina S, Sharaf S, Erfan S, Redwan EM. Impact of COVID-19 on preexisting comorbidities. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:215-258. [PMID: 40246345 DOI: 10.1016/bs.pmbts.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
COVID-19 is a highly contagious viral disease caused by SARS-CoV-2, leading to a tragic global pandemic, where it was ranked in 2020 as the third leading cause of death in the USA, causing approximately 375,000 deaths, following heart disease and cancer. The CDC reports that the risk of death increases with age and preexisting comorbidities such as such as hypertension, diabetes, respiratory system disease, and cardiovascular disease. this report will delineate and analyze the paramount comorbidities and their repercussions on individuals infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Rasha Ashmawy
- Ministry of Health and Population, Alexandria, Egypt
| | | | - Sally Zeina
- Ministry of Health and Population, Alexandria, Egypt
| | - Sandy Sharaf
- Ministry of Health and Population, Alexandria, Egypt
| | - Sara Erfan
- Ministry of Health and Population, Alexandria, Egypt
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Mahankali VB, Velraja S, Parvathi VD, Ramasamy S. Key Players in the Complex Pathophysiology of Obesity: A Cross-Talk Between the Obesogenic Genes and Unraveling the Metabolic Pathway of Action of Capsaicin and Orange Peel. Appl Biochem Biotechnol 2025; 197:649-666. [PMID: 39102081 DOI: 10.1007/s12010-024-04999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Obesity is a widespread prevailing health concern with multifactorial causes. Among the various defined molecular targets associated with obesity, peroxisome proliferator activated receptor gamma, leptin, ghrelin, and adiponectin play crucial roles in fundamental processes including energy balance, adipose tissue biology, and metabolic health, making them particularly significant in the study of obesity.Capsaicin and orange peel exhibit promising anti-obesity properties through their thermogenic, metabolic, and anti-inflammatory effects. Potential pathways for therapeutic approaches in the management of obesity are provided by these targets. The lipid-lowering and anti-obesity benefits of specific plant species have been highlighted in Asian medicine. Due to the potential anti-obesity qualities, capsaicin, which is derived from chilli peppers, and orange peel extract has been focused in this review. Capsaicin causes apoptosis in preadipocytes and adipocytes and suppresses adipogenesis. Citrus fruits are a significant source of bioactive substances, primarily flavonoids. Due to their ability to reduce adipocyte development and cellular lipid content, citrus polyphenols are helpful in the control of obesity. This extensive analysis offers insights into new treatment approaches for the prevention and management of obesity and metabolic syndrome by examining the interactions of molecular variables in obesity as well as the possible anti-obesity advantages of capsaicin and orange peel extract.
Collapse
Affiliation(s)
- Varshini Bhavanandam Mahankali
- Department of Clinical Nutrition, Sri Ramachandra Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India
| | - Supriya Velraja
- Department of Clinical Nutrition, Sri Ramachandra Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India.
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India.
| | | |
Collapse
|
6
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Beurton A, Kooistra EJ, De Jong A, Schiffl H, Jourdain M, Garcia B, Vimpère D, Jaber S, Pickkers P, Papazian L. Specific and Non-specific Aspects and Future Challenges of ICU Care Among COVID-19 Patients with Obesity: A Narrative Review. Curr Obes Rep 2024; 13:545-563. [PMID: 38573465 DOI: 10.1007/s13679-024-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Since the end of 2019, the coronavirus disease 2019 (COVID-19) pandemic has infected nearly 800 million people and caused almost seven million deaths. Obesity was quickly identified as a risk factor for severe COVID-19, ICU admission, acute respiratory distress syndrome, organ support including mechanical ventilation and prolonged length of stay. The relationship among obesity; COVID-19; and respiratory, thrombotic, and renal complications upon admission to the ICU is unclear. RECENT FINDINGS The predominant effect of a hyperinflammatory status or a cytokine storm has been suggested in patients with obesity, but more recent studies have challenged this hypothesis. Numerous studies have also shown increased mortality among critically ill patients with obesity and COVID-19, casting doubt on the obesity paradox, with survival advantages with overweight and mild obesity being reported in other ICU syndromes. Finally, it is now clear that the increase in the global prevalence of overweight and obesity is a major public health issue that must be accompanied by a transformation of our ICUs, both in terms of equipment and human resources. Research must also focus more on these patients to improve their care. In this review, we focused on the central role of obesity in critically ill patients during this pandemic, highlighting its specificities during their stay in the ICU, identifying the lessons we have learned, and identifying areas for future research as well as the future challenges for ICU activity.
Collapse
Affiliation(s)
- Alexandra Beurton
- Department of Intensive Care, Hôpital Tenon, APHP, Paris, France.
- UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, Sorbonne Université, Paris, France.
| | - Emma J Kooistra
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Audrey De Jong
- Anesthesia and Critical Care Department, Saint Eloi Teaching Hospital, University Montpellier 1, Montpellier, France
- Phymed Exp INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Helmut Schiffl
- Division of Nephrology, Department of Internal Medicine IV, University Hospital LMU Munich, Munich, Germany
| | - Mercedes Jourdain
- CHU Lille, Univ-Lille, INSERM UMR 1190, ICU Department, F-59037, Lille, France
| | - Bruno Garcia
- CHU Lille, Univ-Lille, INSERM UMR 1190, ICU Department, F-59037, Lille, France
| | - Damien Vimpère
- Anesthesia and Critical Care Department, Hôpital Necker, APHP, Paris, France
| | - Samir Jaber
- Anesthesia and Critical Care Department, Saint Eloi Teaching Hospital, University Montpellier 1, Montpellier, France
- Phymed Exp INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Laurent Papazian
- Intensive Care Unit, Centre Hospitalier de Bastia, Bastia, Corsica, France
- Aix-Marseille University, Marseille, France
| |
Collapse
|
8
|
Porntharukchareon T, Dechates B, Sirisreetreerux S, Therawit P, Tawinprai K. The existence of adrenal insufficiency in patients with COVID-19 pneumonia. Front Endocrinol (Lausanne) 2024; 15:1337652. [PMID: 39022343 PMCID: PMC11251879 DOI: 10.3389/fendo.2024.1337652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Infection with SARS-CoV-2 virus may result in long COVID, a syndrome characterized by symptoms such as dyspnea, cardiac abnormalities, cognitive impairment, and fatigue. One potential explanation for these symptoms is hypocortisolism. Objective To evaluate the prevalence of hypocortisolism in patients with a history of COVID-19 pneumonia. Methods Cross-sectional study of patients who were aged ≥18 years and had a 3-month history of radiography-confirmed COVID-19 pneumonia. Exclusion criteria included current or previous treatment with glucocorticoids and use of an oral contraceptive. Adrenal function was evaluated using a low dose (1ug) corticotropin stimulation test (CST). Serum cortisol levels were measured at 0, 30, and 60 minutes, and baseline plasma ACTH was also measured. Results Of the 41 patients enrolled, the median age was 62 years, 17 (42%) were female, and all 41 (100%) had severe pneumonia at baseline. Eleven patients (27%) had hypocortisolism, as evidenced by peak cortisol of less than 402.81 nmol/l after low dose (1 µg) CST. Of these 11 patients, 10 (91%) had secondary hypocortisolism (median ACTH 6.27 pmol/L, range 4.98-9.95 pmol/L) and one had primary hypocortisolism (mean ACTH 32.78 pmol/L). Six of the 11 patients with hypocortisolism (54.5%) reported symptoms of persistent fatigue and 5 (45.5%) required regular glucocorticoid replacement. Conclusions Our results suggest that hypocortisolism, predominantly caused by pituitary disruption, may emerge after SARS-CoV-2 infection and should be considered in patients with a history of COVID-19 pneumonia with or without clinical hypocortisolism.
Collapse
|
9
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
10
|
Zhu Y, Mierau JO, Bakker SJL, Dekker LH, Navis GJ. Sarcopenia augments the risk of excess weight on COVID-19 hospitalization: A prospective study using the Lifelines COVID-19 cohort. Nutrition 2024; 121:112361. [PMID: 38367316 DOI: 10.1016/j.nut.2024.112361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE We investigated the associations of sarcopenia alone, overweight or obesity, and sarcopenic overweight or obesity with COVID-19 hospitalization. METHODS Participants from the Lifelines COVID-19 cohort who were infected with COVID-19 were included in this study. Sarcopenia was defined as a relative deviation of muscle mass of ≤ -1.0 SD from the sex-specific mean 24-h urinary creatinine excretion. Overweight or obesity was defined as a body mass index ≥ 25 kg/m2. Sarcopenic overweight or obesity was defined as the presence of overweight or obesity and low muscle mass. COVID-19 hospitalization was self-reported. Logistic regression models were used to analyze the associations of sarcopenia alone, overweight or obesity, and sarcopenic overweight or obesity with COVID-19 hospitalization. RESULTS Of the 3594 participants infected with COVID-19 and recruited in this study, 173 had been admitted to the hospital. Compared with the reference group, individuals with overweight or obesity and sarcopenic overweight or obesity were 1.78-times and 2.09-times more likely to have been hospitalized for COVID-19, respectively, whereas sarcopenia alone did not increase the risk of COVID-19 hospitalization. CONCLUSIONS In this middle-aged population, sarcopenic overweight or obesity elevated the risk of hospitalization for COVID-19 in those infected with COVID-19 more than overweight or obesity alone. These data support the relevance of sarcopenic overweight or obesity as a risk factor beyond the geriatric setting and should be considered in risk stratification in future public health and vaccination campaigns.
Collapse
Affiliation(s)
- Yinjie Zhu
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, The Netherlands.
| | - Jochen O Mierau
- Team Strategy and External Relations, University of Groningen, University Medical Center Groningen, The Netherlands; Lifelines Cohort Study and Biobank, Groningen, The Netherlands; Department of Economics, Econometrics and Finance, Faculty of Economics and Business, University of Groningen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Louise H Dekker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gerjan J Navis
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
11
|
Kirbiš S, Sobotkiewicz N, Schaubach BA, Završnik J, Kokol P, Završnik M, Blažun Vošner H. The Effects of Diabetes and Being Overweight on Patients with Post-COVID-19 Syndrome. Infect Dis Rep 2023; 15:747-757. [PMID: 38131880 PMCID: PMC10742883 DOI: 10.3390/idr15060067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
In the aftermath of the COVID-19 pandemic, post-COVID-19 syndrome (PCS) remains a challenge and may continue to pose a major health problem in the future. Moreover, the influences of type 2 diabetes and being overweight on PCS remain unclear. This study aimed to assess these influences. We performed an observational study from October 2020 to July 2022, which included 466 patients (269 males and 197 females) with a median age of 65. They were hospitalized due to COVID-19 pneumonia and had persistent symptoms after 1 month of COVID-19 infection. The patients were divided into four groups according to the study objectives: patients with type 2 diabetes, overweight patients, overweight patients with type 2 diabetes, and average-weight patients without type 2 diabetes. The clinical and demographic data collected during hospitalization and regular visits to the Community Healthcare Center dr. Adolf Drolc Maribor were analyzed. Our results showed that type 2 diabetes patients had more difficult courses of treatment and longer hospitalizations. Moreover, more type 2 diabetes patients underwent rehabilitation than the other study groups. The prevailing symptoms of our patients with PCS were dyspnea and fatigue, mostly among female patients with type 2 diabetes. Our study also showed that more women with type 2 diabetes and overweight women with type 2 diabetes suffered from secondary infections. Furthermore, more overweight patients were treated in the intensive care unit than patients from the other groups. However, our study showed an interesting result: patients with type 2 diabetes had the shortest PCS durations. Type 2 diabetes and being overweight are risk factors for PCS onset and prolonged duration. Therefore, our data that revealed a shorter duration of PCS in type 2 diabetes patients than the other investigated groups was unexpected. We believe that answering the questions arising from our unexpected results will improve PCS treatment in general.
Collapse
Affiliation(s)
- Simona Kirbiš
- Pneumophtisiology Department, General Health Organizational Unit, Community Healthcare Center dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia; (S.K.); (N.S.); (B.A.S.)
| | - Nina Sobotkiewicz
- Pneumophtisiology Department, General Health Organizational Unit, Community Healthcare Center dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia; (S.K.); (N.S.); (B.A.S.)
| | - Barbara Antolinc Schaubach
- Pneumophtisiology Department, General Health Organizational Unit, Community Healthcare Center dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia; (S.K.); (N.S.); (B.A.S.)
| | - Jernej Završnik
- Paediatric Department, Children and Youth Protection Unit, Community Healthcare Center dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia;
- Alma Mater Europaea—ECM, 2000 Maribor, Slovenia
| | - Peter Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Scientific Research Department, Community Healthcare Center dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia
| | - Matej Završnik
- Department of Endocrinology and Diabetology, Internal Medicine Clinic, University Clinical Center, 2000 Maribor, Slovenia;
| | - Helena Blažun Vošner
- Scientific Research Department, Community Healthcare Center dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia
- Faculty of Health and Social Sciences, 2000 Slovenj Gradec, Slovenia
| |
Collapse
|
12
|
Alghamdi A, Wani K, Alnaami AM, Al-Daghri NM. Dose Intervals and Time since Final Dose on Changes in Metabolic Indices after COVID-19 Vaccination. Vaccines (Basel) 2023; 11:1746. [PMID: 38140151 PMCID: PMC10748310 DOI: 10.3390/vaccines11121746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The rapid development and implementation of COVID-19 vaccines merit understanding its effects on metabolic indices. This retrospective longitudinal study investigated the influence of first-to-second-dose intervals and time since the final dose on the metabolic indices of individuals receiving COVID-19 vaccinations. A total of 318 Saudi subjects (59.7% females) aged 12-60 years received COVID-19 vaccines via the national vaccination program. We collected the anthropometric data and fasting blood samples at specific time points before vaccination and after the final vaccination dose, and biochemical metabolic indices, including glucose and lipid profile, were measured. We also collected the dates of vaccination and COVID-19 history during the study period. The participants were stratified into groups based on first-to-second-dose intervals and time since the final dose to compare pre-and post-vaccination changes in metabolic indices between the groups. Logistic regression analysis revealed no differences in pre- to post-vaccination metabolic status between groups based on first-to-second-dose intervals in either adolescents or adults. However, shorter intervals (≤6 months) between the final dose and follow-up were associated with a decrease in total cardiometabolic components, especially triglyceride levels (OR = 0.39, 95% CI: (0.22-0.68), p < 0.001) than longer intervals (>6 months) in adults. In conclusion, time duration since final dose was associated with pre- to post-vaccination changes in metabolic indices, especially triglyceride levels, indicating that post-vaccination improvements wane over time. Further research is needed to validate the observed relationship, as it may contribute to optimizing vaccine effectiveness and safety in the future.
Collapse
Affiliation(s)
- Amani Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser M. Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Nigro E, D’Agnano V, Quarcio G, Mariniello DF, Bianco A, Daniele A, Perrotta F. Exploring the Network between Adipocytokines and Inflammatory Response in SARS-CoV-2 Infection: A Scoping Review. Nutrients 2023; 15:3806. [PMID: 37686837 PMCID: PMC10490077 DOI: 10.3390/nu15173806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Adipose tissue is actually regarded as an endocrine organ, rather than as an organ that merely stores energy. During the COVID-19 pandemic, obesity has undoubtedly emerged as one of the most important risk factors for disease severity and poor outcomes related to SARS-CoV-2 infection. The aberrant production of cytokine-like hormones, called adipokines, may contribute to alterations in metabolism, dysfunction in vascular endothelium and the creation of a state of general chronic inflammation. Moreover, chronic, low-grade inflammation linked to obesity predisposes the host to immunosuppression and excessive cytokine activation. In this respect, understanding the mechanisms that link obesity with the severity of SARS-CoV-2 infection could represent a real game changer in the development of new therapeutic strategies. Our review therefore examines the pathogenic mechanisms of SARS-CoV-2, the implications with visceral adipose tissue and the influences of the adipose tissue and its adipokines on the clinical behavior of COVID-19.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (E.N.); (A.D.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (E.N.); (A.D.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80055 Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| |
Collapse
|
14
|
McDowell SA, Milette S, Doré S, Yu MW, Sorin M, Wilson L, Desharnais L, Cristea A, Varol O, Atallah A, Swaby A, Breton V, Arabzadeh A, Petrecca S, Loucif H, Bhagrath A, De Meo M, Lach KD, Issac MS, Fiset B, Rayes RF, Mandl JN, Fritz JH, Fiset PO, Holt PR, Dannenberg AJ, Spicer JD, Walsh LA, Quail DF. Obesity alters monocyte developmental trajectories to enhance metastasis. J Exp Med 2023; 220:e20220509. [PMID: 37166450 PMCID: PMC10182775 DOI: 10.1084/jem.20220509] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/27/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023] Open
Abstract
Obesity is characterized by chronic systemic inflammation and enhances cancer metastasis and mortality. Obesity promotes breast cancer metastasis to lung in a neutrophil-dependent manner; however, the upstream regulatory mechanisms of this process remain unknown. Here, we show that obesity-induced monocytes underlie neutrophil activation and breast cancer lung metastasis. Using mass cytometry, obesity favors the expansion of myeloid lineages while restricting lymphoid cells within the peripheral blood. RNA sequencing and flow cytometry revealed that obesity-associated monocytes resemble professional antigen-presenting cells due to a shift in their development and exhibit enhanced MHCII expression and CXCL2 production. Monocyte induction of the CXCL2-CXCR2 axis underlies neutrophil activation and release of neutrophil extracellular traps to promote metastasis, and enhancement of this signaling axis is observed in lung metastases from obese cancer patients. Our findings provide mechanistic insight into the relationship between obesity and cancer by broadening our understanding of the interactive role that myeloid cells play in this process.
Collapse
Affiliation(s)
- Sheri A.C. McDowell
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Physiology, McGill University, Montreal, Canada
| | - Simon Milette
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Samuel Doré
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Miranda W. Yu
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Physiology, McGill University, Montreal, Canada
| | - Mark Sorin
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Liam Wilson
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Physiology, McGill University, Montreal, Canada
| | - Lysanne Desharnais
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Alyssa Cristea
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Ozgun Varol
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Aline Atallah
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Anikka Swaby
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Valérie Breton
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
| | | | - Sarah Petrecca
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Hamza Loucif
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- McGill University Research Centre on Complex Traits, Montreal, Canada
| | - Aanya Bhagrath
- Department of Physiology, McGill University, Montreal, Canada
- McGill University Research Centre on Complex Traits, Montreal, Canada
| | - Meghan De Meo
- Department of Experimental Surgery, McGill University, Montreal, Canada
| | - Katherine D. Lach
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Marianne S.M. Issac
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Benoit Fiset
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
| | - Roni F. Rayes
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
| | - Judith N. Mandl
- Department of Physiology, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- McGill University Research Centre on Complex Traits, Montreal, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- McGill University Research Centre on Complex Traits, Montreal, Canada
| | - Pierre O. Fiset
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Peter R. Holt
- Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New Nork, NY, USA
| | - Andrew J. Dannenberg
- Department of Medicine (retired), Weill Cornell Medical College, New York, NY, USA
| | - Jonathan D. Spicer
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
- Department of Surgery, McGill University Health Centre, Montreal, Canada
| | - Logan A. Walsh
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Daniela F. Quail
- Rosalind and Morris Goodman Cancer Institute, Montreal, Canada
- Department of Physiology, McGill University, Montreal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Sulakshana S, Chatterjee D, Chakraborty A. Extracorporeal Membrane Oxygenation for Severe COVID-19 in Indian Scenario: A Single Center Retrospective Study. Indian J Crit Care Med 2023; 27:381-385. [PMID: 37378373 PMCID: PMC10291672 DOI: 10.5005/jp-journals-10071-24469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/26/2023] [Indexed: 06/29/2023] Open
Abstract
Background Initial reports from Wuhan (China) suggested poor outcomes for severe COVID-19 patients treated with Extracorporeal Membrane Oxygenation (ECMO). Extracorporeal Life Support Organization (ELSO) interim 2019 guidelines also recommended using ECMO only when all conventional therapies are exhausted. However, later studies showed that delayed ECMO initiation may lead to longer ECMO runs, offsetting any benefit from resource conservation by delaying the initiation. Hence, this study was intended to analyze the sociodemographic characteristics, type of ECMO, and complications of its outcome in the Indian scenario. Materials and methods Demographic and patient clinical outcome data of all the patients of severe ARDS due to COVID-19 being treated with ECMO from 1st June 2020 to 31st May 2021 at Medica Super-specialty Hospital (Kolkata, India), were retrospectively compiled and analyzed. Results Total number of patients treated was 79 with 10% female representation. The mean age was 43 ± 3.2 years and the mean body mass index 37 ± 4.3. Fifty percent of the patient survived. The mean duration of the ECMO run was 17 ± 5.2 days. Sepsis (65%) was the commonest complication observed followed by acute kidney injury (39%). Conclusion This study provides significant insight into the outcomes of patients of COVID-19 treated by ECMO in the Indian scenario. Mortality rates of COVID-19 patients on ECMO were comparable to the non-COVID-19 patients, although the ECMO run time was relatively longer. Our study concluded that ECMO should be considered as a treatment option in appropriate COVID-19 cases. However, if the capacity diminishes in a pandemic situation, ECMO consideration should be based on more stringent criteria. How to cite this article Sulakshana S, Chatterjee D, Chakraborty A. Extracorporeal Membrane Oxygenation for Severe COVID-19 in Indian Scenario: A Single Center Retrospective Study. Indian J Crit Care Med 2023;27(6):381-385.
Collapse
Affiliation(s)
- Sulakshana Sulakshana
- Department of Anaesthesiology and Critical Care, Heritage Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Dipanjan Chatterjee
- Department of Cardiac Anesthesiology and Critical Care and ECMO Services, Medica Hospital, Kolkata, West Bengal, India
| | - Arpan Chakraborty
- Department of Cardiac Anesthesiology and Critical Care and ECMO Services, Medica Hospital, Kolkata, West Bengal, India
| |
Collapse
|
16
|
Papadopoulos KI, Papadopoulou A, Aw TC. Beauty and the beast: host microRNA-155 versus SARS-CoV-2. Hum Cell 2023; 36:908-922. [PMID: 36847920 PMCID: PMC9969954 DOI: 10.1007/s13577-023-00867-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) infection in the young and healthy usually results in an asymptomatic or mild viral syndrome, possibly through an erythropoietin (EPO)-dependent, protective evolutionary landscape. In the old and in the presence of co-morbidities, however, a potentially lethal coronavirus disease 2019 (COVID-19) cytokine storm, through unrestrained renin-angiotensin aldosterone system (RAAS) hyperactivity, has been described. Multifunctional microRNA-155 (miR-155) elevation in malaria, dengue virus (DENV), the thalassemias, and SARS-CoV-1/2, plays critical antiviral and cardiovascular roles through its targeted translational repression of over 140 genes. In the present review, we propose a plausible miR-155-dependent mechanism whereby the translational repression of AGRT1, Arginase-2 and Ets-1, reshapes RAAS towards Angiotensin II (Ang II) type 2 (AT2R)-mediated balanced, tolerable, and SARS-CoV-2-protective cardiovascular phenotypes. In addition, it enhances EPO secretion and endothelial nitric oxide synthase activation and substrate availability, and negates proinflammatory Ang II effects. Disrupted miR-155 repression of AT1R + 1166C-allele, significantly associated with adverse cardiovascular and COVID-19 outcomes, manifests its decisive role in RAAS modulation. BACH1 and SOCS1 repression creates an anti-inflammatory and cytoprotective milieu, robustly inducing antiviral interferons. MiR-155 dysregulation in the elderly, and in comorbidities, allows unimpeded RAAS hyperactivity to progress towards a particularly aggressive COVID-19 course. Elevated miR-155 in thalassemia plausibly engenders a favorable cardiovascular profile and protection against malaria, DENV, and SARS-CoV-2. MiR-155 modulating pharmaceutical approaches could offer novel therapeutic options in COVID-19.
Collapse
Affiliation(s)
- K. I. Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Bangkok, 10310 Thailand
| | - A. Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63 Lund, Sweden
| | - T. C. Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889 Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228 Singapore
| |
Collapse
|
17
|
Montes-Ibarra M, Orsso CE, Limon-Miro AT, Gonzalez MC, Marzetti E, Landi F, Heymsfield SB, Barazonni R, Prado CM. Prevalence and clinical implications of abnormal body composition phenotypes in patients with COVID-19: a systematic review. Am J Clin Nutr 2023:S0002-9165(23)46332-0. [PMID: 37037395 PMCID: PMC10082471 DOI: 10.1016/j.ajcnut.2023.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND The impact of body composition (BC) abnormalities on coronavirus disease 2019 (COVID-19) outcomes remains to be determined. OBJECTIVE We summarized the evidence on BC abnormalities and their relationship with adverse clinical outcomes in patients with COVID-19. METHODS A systematic search was conducted up until September 26, 2022 for observational studies using BC techniques to quantify skeletal muscle mass (or related compartments), muscle radiodensity or echo intensity, adipose tissue (AT, or related compartments), and phase angle (PhA) in adults with COVID-19. Methodological quality of studies was assessed using the Newcastle-Ottawa Scale. A synthesis without meta-analysis was conducted to summarize the prevalence of BC abnormalities and their significant associations with clinical outcomes. RESULTS We included 62 studies (69.4% low risk of bias) with 12 to 1,138 participants, except three with up to 490,301 participants. Using computed tomography and different cut-offs, prevalence ranged approximately from 22-90% for low muscle mass, 12-85% for low muscle radiodensity, 16-70% for high visceral AT. Using bioelectrical impedance analysis (BIA), prevalence of high fat mass was 51% and low PhA was 22-88%. Mortality was inversely related to PhA (3/4 studies) and positively related to intramuscular AT (4/5 studies), muscle echo intensity (2/2 studies), and BIA-estimated fat mass (2/2 studies). Intensive care unit admission was positively related to visceral AT (6/7 studies) and total AT (2/3 studies). Disease severity and hospitalization outcomes were positively related to intramuscular AT (2/2 studies). Inconsistent associations were found for the rest of BC measures and hospitalization outcomes. CONCLUSIONS Abnormalities in BC were prevalent in patients with COVID-19. Although conflicting associations were observed among certain BC abnormalities and clinical outcomes, higher muscle echo intensity (reflective of myosteatosis) and lower PhA were more consistently associated with greater mortality risk. Likewise, high IMAT and VAT were associated with mortality and ICU admission, respectively.
Collapse
Affiliation(s)
- Montserrat Montes-Ibarra
- Human Nutrition Research Unit, Department of Agricultural, Food, & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada. (MMI, CEO, ATLM and CMP)
| | - Camila E Orsso
- Human Nutrition Research Unit, Department of Agricultural, Food, & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada. (MMI, CEO, ATLM and CMP)
| | - Ana Teresa Limon-Miro
- Human Nutrition Research Unit, Department of Agricultural, Food, & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada. (MMI, CEO, ATLM and CMP); Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. (ATLM)
| | - Maria Cristina Gonzalez
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil. (MCG)
| | - Emanuele Marzetti
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, Rome, Italy. (EM and FL); Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy. (EM and FL)
| | - Francesco Landi
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, Rome, Italy. (EM and FL); Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy. (EM and FL)
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States. (SBH)
| | - Rocco Barazonni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy; Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Cattinara Hospital, Trieste, Italy. (RB)
| | - Carla M Prado
- Human Nutrition Research Unit, Department of Agricultural, Food, & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada. (MMI, CEO, ATLM and CMP).
| |
Collapse
|
18
|
Jankovic M, Nikolic D, Novakovic I, Petrovic B, Lackovic M, Santric-Milicevic M. miRNAs as a Potential Biomarker in the COVID-19 Infection and Complications Course, Severity, and Outcome. Diagnostics (Basel) 2023; 13:1091. [PMID: 36980399 PMCID: PMC10047241 DOI: 10.3390/diagnostics13061091] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
During the last three years, since the emergence of the COVID-19 pandemic, a significant number of scientific publications have focused on resolving susceptibility to the infection, as well as the course of the disease and potential long-term complications. COVID-19 is widely considered as a multisystem disease and a variety of socioeconomic, medical, and genetic/epigenetic factors may contribute to the disease severity and outcome. Furthermore, the SARS-COV-2 infection may trigger pathological processes and accelerate underlying conditions to clinical entities. The development of specific and sensitive biomarkers that are easy to obtain will allow for patient stratification, prevention, prognosis, and more individualized treatments for COVID-19. miRNAs are proposed as promising biomarkers for different aspects of COVID-19 disease (susceptibility, severity, complication course, outcome, and therapeutic possibilities). This review summarizes the most relevant findings concerning miRNA involvement in COVID-19 pathology. Additionally, the role of miRNAs in wide range of complications due to accompanied and/or underlying health conditions is discussed. The importance of understanding the functional relationships between different conditions, such as pregnancy, obesity, or neurological diseases, with COVID-19 is also highlighted.
Collapse
Affiliation(s)
- Milena Jankovic
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Physical Medicine and Rehabilitation, University Children's Hospital, 11000 Belgrade, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Petrovic
- Clinic of Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Milan Lackovic
- Department of Obstetrics and Gynecology, University Hospital "Dragisa Misovic", 11000 Belgrade, Serbia
| | - Milena Santric-Milicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, School of Public Health and Health Management, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
19
|
Adiponectin, Leptin, and Resistin Are Dysregulated in Patients Infected by SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24021131. [PMID: 36674646 PMCID: PMC9861572 DOI: 10.3390/ijms24021131] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Obesity, through adipose tissue (AT) inflammation and dysregulation, represents a critical factor for COVID-19; here, we investigated whether serum levels of adiponectin, HMW oligomers, leptin, and resistin are modulated and/or correlated with clinical and biochemical parameters of severe COVID-19 patients. This study included 62 severe COVID-19 patients; 62 age and sex-matched healthy subjects were recruited as a control group. Anthropometric and biochemical parameters were obtained and compared. Adiponectin, HMW oligomers, leptin, and resistin were analyzed by ELISA. The adiponectin oligomerization state was visualized by Western blotting. When compared to healthy subjects, total adiponectin levels were statistically lower in severe COVID-19 while, in contrast, the levels of leptin and resistin were statistically higher. Interestingly, HMW adiponectin oligomers negatively correlated with leptin and were positively associated with LUS scores. Resistin showed a positive association with IL-6, IL-2R, and KL-6. Our data strongly support that adipose tissue might play a functional role in COVID-19. Although it needs to be confirmed in larger cohorts, adiponectin HMW oligomers might represent a laboratory resource to predict patient seriousness. Whether adipokines can be integrated as a potential additional tool in the evolving landscape of biomarkers for the COVID-19 disease is still a matter of debate. Other studies are needed to understand the molecular mechanisms behind adipokine's involvement in COVID-19.
Collapse
|
20
|
Hafez W, Saleh H, Abdelshakor M, Ahmed S, Osman S, Gador M. Vitamin C as a Potential Interplaying Factor between Obesity and COVID-19 Outcome. Healthcare (Basel) 2022; 11:healthcare11010093. [PMID: 36611553 PMCID: PMC9819584 DOI: 10.3390/healthcare11010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
(1) Background: Obesity is a risk factor for severe COVID-19 outcomes. Obesity can interfere with the action of vitamin C. The study aimed to investigate the association between BMI and severe outcomes of COVID-19 while considering vitamin C levels; (2) Methods: This was a retrospective study of 63 COVID-19 patients treated at the NMC Royal Hospital, United Arab Emirates; (3) Results: There was no significant difference in vitamin C levels among patients in all BMI categories (p > 0.05). The risk of severe COVID-19 significantly increased by 5.4 times among class 1 obese patients compared with normal BMI (OR = 5.40, 95%CI: (1.54−21.05), p = 0.010). Vitamin C did not affect the risk of COVID-19 severity or mortality across BMI categories (p = 0.177, p > 0.05, respectively). The time till viral clearance was significantly different among patients in different BMI categories when vitamin C levels were considered (p = 0.02). Although there was no significant difference in vitamin C levels across BMI categories, there was a significant interaction between vitamin C levels and viral clearance rate in obese patients; (4) Conclusions: Given the safety of vitamin C supplements and our findings, proper vitamin C uptake and supplementation for patients of various BMI levels are encouraged.
Collapse
Affiliation(s)
- Wael Hafez
- NMC Royal Hospital, 16th Street, Khalifa City, Abu Dhabi P.O. Box 764659, United Arab Emirates
- The Medical Research Division, Department of Internal Medicine, The National Research Center, El Buhouth Street, Ad Doqi, Cairo 12622, Egypt
- Correspondence:
| | - Husam Saleh
- NMC Royal Hospital, 16th Street, Khalifa City, Abu Dhabi P.O. Box 764659, United Arab Emirates
| | - Mahmoud Abdelshakor
- NMC Royal Hospital, 16th Street, Khalifa City, Abu Dhabi P.O. Box 764659, United Arab Emirates
| | - Shougyat Ahmed
- NMC Royal Hospital, 16th Street, Khalifa City, Abu Dhabi P.O. Box 764659, United Arab Emirates
| | - Sana Osman
- NMC Royal Hospital, 16th Street, Khalifa City, Abu Dhabi P.O. Box 764659, United Arab Emirates
| | - Muneir Gador
- NMC Royal Hospital, 16th Street, Khalifa City, Abu Dhabi P.O. Box 764659, United Arab Emirates
| |
Collapse
|
21
|
Mongraw-Chaffin M, Tjaden AH, Seals AL, Miller K, Ahmed N, Espeland MA, Gibbs M, Thomas D, Uschner D, Weintraub WS, Edelstein SL. Association of Obesity and Diabetes with SARS-Cov-2 Infection and Symptoms in the COVID-19 Community Research Partnership. J Clin Endocrinol Metab 2022; 108:dgac715. [PMID: 36482096 DOI: 10.1210/clinem/dgac715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Obesity and diabetes are established risk factors for severe SARS-CoV-2 outcomes, but less is known about their impact on susceptibility to COVID-19 infection and general symptom severity. We hypothesized that those with obesity or diabetes would be more likely to self-report a positive SARS-CoV-2 test, and among those with a positive test, have greater symptom severity and duration. METHODS Among 44,430 COVID-19 Community Research Partnership participants, we evaluated the association of self-reported and electronic health record obesity and diabetes with a self-reported positive COVID-19 test at any time. Among the 2,663 participants with a self-reported positive COVID-19 test during the study, we evaluated the association of obesity and diabetes with self-report of symptom severity, duration, and hospitalization. Logistic regression models were adjusted for age, sex, race/ethnicity, socioeconomic status, and healthcare worker status. RESULTS We found a positive graded association between Body Mass Index (BMI) category and positive COVID-19 test (Overweight OR = 1.14 [1.05-1.25]; Obesity I OR = 1.29 [1.17-2.42]; Obesity II OR = 1.34 [1.19-1.50]; Obesity III OR = 1.53 [1.35-1.73]), and a similar but weaker association with COVID-19 symptoms and severity among those with a positive test. Diabetes was associated with COVID-19 infection but not symptoms after adjustment, with some evidence of an interaction between obesity and diabetes. CONCLUSIONS While the limitations of this health system convenience sample include generalizability and selection around test-seeking, the strong graded association of BMI and diabetes with self-reported COVID-19 infection suggests that obesity and diabetes may play a role in risk for symptomatic SARS-CoV-2 beyond co-occurrence with socioeconomic factors.
Collapse
Affiliation(s)
| | | | | | - Kristen Miller
- MedStar Health Research Institute, Georgetown University Washington, District of Columbia
| | | | | | | | - Dorey Thomas
- Wake Forest School of Medicine, Winston-Salem, NC
| | - Diane Uschner
- The Biostatistics Center, George Washington University, Rockville, Maryland
| | - William S Weintraub
- MedStar Health Research Institute, Georgetown University Washington, District of Columbia
| | - Sharon L Edelstein
- The Biostatistics Center, George Washington University, Rockville, Maryland
| |
Collapse
|
22
|
Castro-Fuentes CA, Reyes-Montes MDR, Frías-De-León MG, Valencia-Ledezma OE, Acosta-Altamirano G, Duarte-Escalante E. Aspergillus-SARS-CoV-2 Coinfection: What Is Known? Pathogens 2022; 11:1227. [PMID: 36364979 PMCID: PMC9694759 DOI: 10.3390/pathogens11111227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) has had a high incidence. In addition, it has been associated with prolonged hospital stays, as well as several predisposing risk factors, such as fungal factors (nosocomial organism, the size of the conidia, and the ability of the Aspergillus spp. of colonizing the respiratory tract), environmental factors (remodeling in hospitals, use of air conditioning and negative pressure in intensive care units), comorbidities, and immunosuppressive therapies. In addition to these factors, SARS-CoV-2 per se is associated with significant dysfunction of the patient's immune system, involving both innate and acquired immunity, with reduced CD4+ and CD8+ T cell counts and cytokine storm. Therefore, this review aims to identify the factors influencing the fungus so that coinfection with SARS-CoV-2 can occur. In addition, we analyze the predisposing factors in the fungus, host, and the immune response alteration due to the pathogenicity of SARS-CoV-2 that causes the development of CAPA.
Collapse
Affiliation(s)
- Carlos Alberto Castro-Fuentes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - María del Rocío Reyes-Montes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - María Guadalupe Frías-De-León
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Omar E. Valencia-Ledezma
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Gustavo Acosta-Altamirano
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Esperanza Duarte-Escalante
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
23
|
Alvarez M, Trent E, Goncalves BDS, Pereira DG, Puri R, Frazier NA, Sodhi K, Pillai SS. Cognitive dysfunction associated with COVID-19: Prognostic role of circulating biomarkers and microRNAs. Front Aging Neurosci 2022; 14:1020092. [PMID: 36268187 PMCID: PMC9577202 DOI: 10.3389/fnagi.2022.1020092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is renowned as a multi-organ disease having subacute and long-term effects with a broad spectrum of clinical manifestations. The evolving scientific and clinical evidence demonstrates that the frequency of cognitive impairment after COVID-19 is high and it is crucial to explore more clinical research and implement proper diagnostic and treatment strategies. Several central nervous system complications have been reported as comorbidities of COVID-19. The changes in cognitive function associated with neurodegenerative diseases develop slowly over time and are only diagnosed at an already advanced stage of molecular pathology. Hence, understanding the common links between COVID-19 and neurodegenerative diseases will broaden our knowledge and help in strategizing prognostic and therapeutic approaches. The present review focuses on the diverse neurodegenerative changes associated with COVID-19 and will highlight the importance of major circulating biomarkers and microRNAs (miRNAs) associated with the disease progression and severity. The literature analysis showed that major proteins associated with central nervous system function, such as Glial fibrillary acidic protein, neurofilament light chain, p-tau 181, Ubiquitin C-terminal hydrolase L1, S100 calcium-binding protein B, Neuron-specific enolase and various inflammatory cytokines, were significantly altered in COVID-19 patients. Furthermore, among various miRNAs that are having pivotal roles in various neurodegenerative diseases, miR-146a, miR-155, Let-7b, miR-31, miR-16 and miR-21 have shown significant dysregulation in COVID-19 patients. Thus the review consolidates the important findings from the numerous studies to unravel the underlying mechanism of neurological sequelae in COVID-19 and the possible association of circulatory biomarkers, which may serve as prognostic predictors and therapeutic targets in future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sneha S. Pillai
- Department of Surgery, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
24
|
Pulido Perez P, Póndigo de los Angeles JA, Perez Peralta A, Ramirez Mojica E, Torres Rasgado E, Hernandez-Hernandez ME, Romero JR. Reduction in Serum Magnesium Levels and Renal Function Are Associated with Increased Mortality in Obese COVID-19 Patients. Nutrients 2022; 14:nu14194054. [PMID: 36235704 PMCID: PMC9571102 DOI: 10.3390/nu14194054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Several studies provide evidence that obesity is a significant risk factor for adverse outcomes in coronavirus disease 2019 (COVID-19). Altered renal function and disturbances in magnesium levels have been reported to play important pathophysiological roles in COVID-19. However, the relationship between obesity, renal function, circulating magnesium levels, and mortality in patients with COVID-19 remains unclear. In this retrospective cohort study, we characterized 390 hospitalized patients with COVID-19 that were categorized according to their body mass index (BMI). Patients were clinically characterized and biochemical parameters, renal function, and electrolyte markers measured upon admission. We found that in patients who died, BMI was associated with reduced estimated glomerular filtration rate (eGFR, Rho: −0.251, p = 0.001) and serum magnesium levels (Rho: −0.308, p < 0.0001). Multiple linear regression analyses showed that death was significantly associated with obesity (p = 0.001). The Cox model for obese patients showed that magnesium levels were associated with increased risk of death (hazard ratio: 0.213, 95% confidence interval: 0.077 to 0.586, p = 0.003). Thus, reduced renal function and lower magnesium levels were associated with increased mortality in obese COVID-19 patients. These results suggest that assessment of kidney function, including magnesium levels, may assist in developing effective treatment strategies to reduce mortality among obese COVID-19 patients.
Collapse
Affiliation(s)
- Patricia Pulido Perez
- Faculty of Medicine, Autonomous University of Puebla, 13 Sur 2901 Col. Volcanes, Puebla 72420, Mexico
| | | | - Alonso Perez Peralta
- Internal Medicine Department, University Hospital of Puebla, Mexico. Av 27 Poniente, Los Volcanes, Puebla 72410, Mexico
| | - Eloisa Ramirez Mojica
- Internal Medicine Department, University Hospital of Puebla, Mexico. Av 27 Poniente, Los Volcanes, Puebla 72410, Mexico
| | - Enrique Torres Rasgado
- Faculty of Medicine, Autonomous University of Puebla, 13 Sur 2901 Col. Volcanes, Puebla 72420, Mexico
- Correspondence: ; Tel.: +52-(222)-229-5500; Fax: +52-(222)-240-5032
| | - Maria Elena Hernandez-Hernandez
- Faculty of Medicine, Autonomous University of Puebla, 13 Sur 2901 Col. Volcanes, Puebla 72420, Mexico
- Doctorate in Biological Science, Autonomous University of Tlaxcala, La Loma Xicohtencatl, Tlaxcala 90070, Mexico
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
25
|
Bagheri S, Zolghadri S, Stanek A. Beneficial Effects of Anti-Inflammatory Diet in Modulating Gut Microbiota and Controlling Obesity. Nutrients 2022; 14:3985. [PMID: 36235638 PMCID: PMC9572805 DOI: 10.3390/nu14193985] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity has consistently been associated with an increased risk of metabolic abnormalities such as diabetes, hyperlipidemia, and cardiovascular diseases, as well as the development of several types of cancer. In recent decades, unfortunately, the rate of overweight/obesity has increased significantly among adults and children. A growing body of evidence shows that there is a relationship between metabolic disorders such as obesity and the composition of the gut microbiota. Additionally, inflammation is considered to be a driving force in the obesity-gut microbiota connection. Therefore, it seems that anti-inflammatory nutrients, foods, and/or diets can play an essential role in the management of obesity by affecting the intestinal flora and controlling inflammatory responses. In this review, we describe the links between the gut microbiota, obesity, and inflammation, and summarize the benefits of anti-inflammatory diets in preventing obesity.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
26
|
Steenblock C, Hassanein M, Khan EG, Yaman M, Kamel M, Barbir M, Lorke DE, Everett D, Bejtullah S, Lohmann T, Lindner U, Tahirukaj E, Jirjees FJ, Soliman SS, Quitter F, Bornstein SR. Obesity and COVID-19: What are the Consequences? Horm Metab Res 2022; 54:496-502. [PMID: 35724688 PMCID: PMC9427204 DOI: 10.1055/a-1878-9757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity is an increasing health problem all over the world. In combination with the current COVID-19 pandemic, this has turned into a massive challenge as individuals with overweight and obesity at all ages show a significant increase in their risk of getting severe COVID-19. Around 20% of all patients that were hospitalized for COVID-19 suffered from obesity alone, whereas obesity in combination with other metabolic comorbidities, such as type 2 diabetes and hypertension, account for up to 60% of all hospitalizations in relation to COVID-19. Therefore, it is of immense importance to put the spotlight on the high incidence of obesity present already in childhood both by changing the individual minds and by encouraging politicians and the whole society to commence preventive interventions for achieving a better nutrition for all social classes all over the world. In the current review, we aim to explain the different pathways and mechanisms that are responsible for the increased risk of severe COVID-19 in people with overweight and obesity. Furthermore, we discuss how the pandemic has led to weight gains in many people during lockdown. At the end, we discuss the importance of preventing such an interface between a non-communicable disease like obesity and a communicable disease like COVID-19 in the future.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Medicine III, Universitätsklinikum Carl Gustav
Carus, Dresden, Germany
- Correspondence Dr. Charlotte Steenblock University Hospital Carl Gustav Carus, Technische Universität
Dresden, Department of Medicine IIIFetscherstraße 7401307 DresdenGermany+493514586130+493514586398
| | - Mohamed Hassanein
- Department of Diabetes and Endocrinology, Dubai Hospital, Dubai, United
Arab Emirates
| | - Emran G. Khan
- Endocrinology and Diabetology, King’s College Hospital London,
Dubai, United Arab Emirates
| | - Mohamad Yaman
- Building 6, Nesmah Technology, Dubai, United Arab
Emirates
| | - Margrit Kamel
- Center for Regenerative Therapies Dresden, Technische Universitat
Dresden, Dresden, Germany
| | - Mahmoud Barbir
- Department of Cardiology, Harefield Hospital, Harefield, United Kingdom
of Great Britain and Northern Ireland
| | - Dietrich E. Lorke
- Department of Anatomy and Cellular Biology, Khalifa University, Abu
Dhabi, United Arab Emirates
| | - Dean Everett
- Department of Pathology and Infectious Diseases, Khalifa University,
Abu Dhabi, United Arab Emirates
| | | | | | - Uwe Lindner
- Internal Medicine II, Klinikum Chemnitz, Chemnitz,
Germany
| | - Ermal Tahirukaj
- Department of Medicine III, Universitätsklinikum Carl Gustav
Carus, Dresden, Germany
| | | | - Sameh S.M. Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab
Emirates
| | - Friederike Quitter
- Klinik für Kinder- und Jugendmedizin,
Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Medicine III, Universitätsklinikum Carl Gustav
Carus, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty
of Life Sciences & Medicine, King’s College London, London,
UK
| |
Collapse
|
27
|
Zhang X, Guo M, Huang Z, Huang Y, Wu C, Pan X. Mapping the intersection of nanotechnology and SARS-CoV-2/COVID-19: A bibliometric analysis. INFECTIOUS MEDICINE 2022; 1:103-112. [PMID: 38013718 PMCID: PMC9233748 DOI: 10.1016/j.imj.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has imposed great medical and economic burdens on human society, and nanotechnology is a promising technique for managing the ongoing COVID-19 pandemic. To drive further studies on anti-COVID-19 nanotechnology, this paper provides an analysis, from a bibliometric perspective, of the intersection of nanotechnology and SARS-CoV-2/COVID-19. METHODS We analyzed the 2585 publications on nanotechnology and SARS-CoV-2/COVID-19 included in the Web of Science Core Collection from January 2019 to March 2022 to determine the bibliometric landscape. The basic bibliometric characteristics are summarized in this article. RESULTS Our bibliometric analysis revealed that the intersection between nanotechnology and SARS-CoV-2/COVID-19 is a cutting-edge field in the science community and that the related studies were multidisciplinary in nature. Studies on the structural basis of SARS-CoV-2, SARS-CoV-2 detection assays, and mRNA vaccines against COVID-19 provided the development foundation for this field. CONCLUSIONS The current research focuses are the development of nanomaterial-based vaccines and SARS-CoV-2 detection methods, and the design of nanomedicines carrying SARS-CoV-2 inhibitors is a relatively burgeoning frontier. In summary, this bibliometric analysis of the intersection of nanotechnology and SARS-CoV-2/COVID-19 highlights the current research focuses of this field to inspire future studies on anti-COVID-19 nanotechnologies.
Collapse
Affiliation(s)
- Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mengqin Guo
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
28
|
The Influence of Obesity on the Evolution of SARS-COV2 Infection. ARS MEDICA TOMITANA 2021. [DOI: 10.2478/arsm-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Aim: The issue of body weight has left a deep mark on the COVID-19 pandemic, where this category of patients has been linked to significant increases in morbidity and mortality due to infection. Conversely, due to the restrictions imposed, the pandemic has worsened the situation of overweight people. Our study conducted over a period of one year and five months aims to assess the prevalence of obesity among patients with SARS-COV2 infection in Constanta County.
Material and method: This retrospective study included a number of 177 patients hospitalized with the diagnosis of SARS-COV2 infection in the Clinical Hospital of Pneumoftiziology Constanta.
Results: 2483 of patients confirmed with SARS-COV2 infection were identified in our Department, out of which 302 had a body mass index over 30 kg/m2. We included a random sample of 95 men and 82 women in a database. The average age was 55 years. The most common comorbidities were hypertension (48%), diabetes (13%), and cardiovascular disease (12%). The most common symptoms were fever (67%), cough (58%), dyspnea (37%), and asthenia (29%). The radiological appearance showed the predominance of the moderate form (49%) and the severe form (22%). Antibiotic treatment was based on third-generation cephalosporins (53%), and the evolution was for improvement with a survival rate of 86%. Only one death was reported in our study.
Conclusion: The body mass index influences the evolution of infected cases. Old age, male gender and associated comorbidities are risk factors for a poorer prognosis and greater complications in patients with SARS-COV2.
Collapse
|