1
|
Yates JR. Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111107. [PMID: 39098647 PMCID: PMC11409449 DOI: 10.1016/j.pnpbp.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
2
|
Robbins E, Wong B, Pwint MY, Salavatian S, Mahajan A, Cui XT. Improving Sensitivity and Longevity of In Vivo Glutamate Sensors with Electrodeposited NanoPt. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40570-40580. [PMID: 39078097 PMCID: PMC11310907 DOI: 10.1021/acsami.4c06692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
In vivo glutamate sensing has provided valuable insight into the physiology and pathology of the brain. Electrochemical glutamate biosensors, constructed by cross-linking glutamate oxidase onto an electrode and oxidizing H2O2 as a proxy for glutamate, are the gold standard for in vivo glutamate measurements for many applications. While glutamate sensors have been employed ubiquitously for acute measurements, there are almost no reports of long-term, chronic glutamate sensing in vivo, despite demonstrations of glutamate sensors lasting for weeks in vitro. To address this, we utilized a platinum electrode with nanometer-scale roughness (nanoPt) to improve the glutamate sensors' sensitivity and longevity. NanoPt improved the GLU sensitivity by 67.4% and the sensors were stable in vitro for 3 weeks. In vivo, nanoPt glutamate sensors had a measurable signal above a control electrode on the same array for 7 days. We demonstrate the utility of the nanoPt sensors by studying the effect of traumatic brain injury on glutamate in the rat striatum with a flexible electrode array and report measurements of glutamate taken during the injury itself. We also show the flexibility of the nanoPt platform to be applied to other oxidase enzyme-based biosensors by measuring γ-aminobutyric acid in the porcine spinal cord. NanoPt is a simple, effective way to build high sensitivity, robust biosensors harnessing enzymes to detect neurotransmitters in vivo.
Collapse
Affiliation(s)
- Elaine
M. Robbins
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Benjamin Wong
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - May Yoon Pwint
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Center
for Neural Basis of Cognition, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Siamak Salavatian
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Aman Mahajan
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Xinyan Tracy Cui
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Center
for Neural Basis of Cognition, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United
States
| |
Collapse
|
3
|
Jain J, Hasan W, Jat D, Biswas P, Yadav RS. Delayed in sensorimotor reflex ontogeny, slow physical growth, and impairments in behaviour as well as dopaminergic neuronal death in mice offspring following prenatally rotenone administration. Int J Dev Neurosci 2023; 83:518-531. [PMID: 37337287 DOI: 10.1002/jdn.10282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023] Open
Abstract
The environment is varying day by day with the introduction of chemicals such as pesticides, most of which have not been effectively studied for their influence on a susceptible group of population involving infants and pregnant females. Rotenone is an organic pesticide used to prepare Parkinson's disease models. A lot of literature is available on the toxicity of rotenone on the adult brain, but to the best of our knowledge, effect of rotenone on prenatally exposed mice has never been investigated yet. Therefore, the recent work aims to evaluate the toxic effect of rotenone on mice, exposed prenatally. We exposed female mice to rotenone at the dose of 5 mg/Kg b.w. throughout the gestational period with oral gavage. We then investigated the effects of rotenone on neonate's central nervous systems as well as on postnatal day (PD) 35 offspring. In the rotenone group, we observed slow physical growth, delays in physical milestones and sensorimotor reflex in neonates and induction of anxiety and impairment in cognitive performances of offspring at PD-35. Additionally, immunohistochemical analysis revealed a marked reduction in TH-positive neurons in substantia nigra. Histological examination of the cerebellum revealed a decrease in Purkinje neurons in the rotenone exposed group as compared to the control. The data from the study showed that prenatally exposure to rotenone affects growth, physical milestones, neuronal population and behaviour of mice when indirectly exposed to the offspring through their mother. This study could provide a great contribution to researchers to find out the molecular mechanism and participating signalling pathway behind these outcomes.
Collapse
Affiliation(s)
- Juli Jain
- Neuroscience Research Lab, School of Biological Sciences, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Whidul Hasan
- Neurology Department, Harward Medical School, Harvard Medical School, Boston, USA
| | - Deepali Jat
- Neuroscience Research Lab, School of Biological Sciences, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Pronit Biswas
- Department of Life Sciences, Christ (Deemed-to-be University), Bangalore, India
| | - Rajesh Singh Yadav
- School of Forensic Science, National Forensic Sciences University, Bhopal, India
| |
Collapse
|
4
|
Bakhshi S, Tehrani-Doost M, Batouli SAH. Fronto-Cerebellar Neurometabolite Alterations After Methylphenidate in Children and Adolescents With ADHD: A Proton Magnetic Resonance Spectroscopy Study. J Atten Disord 2023; 27:410-422. [PMID: 36635897 DOI: 10.1177/10870547221146238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The fronto-cerebellar circuit is involved in ADHD pathophysiology. Methylphenidate, as a first-line medication for ADHD, affects different brain regions, however, its effect on the fronto-cerebellar circuit is not investigated sufficiently. We aimed to investigate the effect of 8-week treatment with methylphenidate on neurometabolite ratios in the fronto-cerebellar circuit in ADHD participants using magnetic resonance spectroscopy (MRS). METHODS Fifteen drug-naïve ADHD children and adolescents were enrolled in the present study. Two single-voxel MR spectra were acquired from the right dorsolateral prefrontal cortex (DLPFC) and left Crus 1, before and after the medication. Also, neuropsychological and behavioral assessments were administered. RESULTS After medication, the glutamate/creatine in the DLPFC and the choline/creatine in the Crus 1 decreased in the ADHD participants. CONCLUSION These findings propose that methylphenidate-induced metabolite changes in the fronto-cerebellar circuit could be associated with improvement in cognitive/behavioral characteristics in ADHD. Also, results highlighted cerebellar engagement in ADHD pathophysiology.
Collapse
Affiliation(s)
- Soroush Bakhshi
- Institute for Cognitive Science Studies, Tehran, Iran
- Shahid Beheshti University, Tehran, Iran
| | - Mehdi Tehrani-Doost
- Institute for Cognitive Science Studies, Tehran, Iran
- Tehran University of Medical Sciences, Iran
| | | |
Collapse
|
5
|
de Sousa Macedo LLB, Antunes FTT, de Andrade Alvarenga W, Batista MCC, de Moura MSB, Farias MNL, Caminski ES, Dallegrave E, Grivicich I, de Souza AH. Curcumin for attention-deficit-hyperactivity disorder: a systematic review and preliminary behavioral investigation. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:803-813. [PMID: 35394134 DOI: 10.1007/s00210-022-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 12/08/2022]
Abstract
Curcumin has protective actions in neuropsychiatric disorders, acting as a neuroprotective agent. As a first approach, the study aimed at a systematic review of the potential effects of curcumin on cognitive performance for attention-deficit-hyperactivity disorder (ADHD). This research was carried out in the databases of PubMed, Embase, SciELO, the Cochrane Central Register of Controlled Trials (CENTRAL), the Web of Science, and the Grey literature. Upon discovering the scarcity of relevant studies, and knowing that curcumin might have an ADHD hyperactive and anxious behavior, the study proposed to evaluate the effects of curcumin in an ADHD phenotype of spontaneously hypertensive Wistar rats (SHR). No studies were found that related to curcumin and ADHD. Fifteen SHRs were then divided into separate groups that received water (1 mg/kg/day), curcumin (50 mg/kg/day), or methylphenidate (1 mg/kg/day) for 42 days. Behavioral tests to assess activity (Open Field Test), anxiety and impulsivity (Elevated Plus-Maze, and Social Interaction), and memory (Y-Maze, and the Object Recognition Test) were all performed. The animals that were treated with curcumin showed less anxious and hyperactive behavior, as seen in the Open Field Test and the Social Interaction Test. Anxious behavior was measured by the EPM and was not modulated by any treatment. The results of the Y-Maze Test demonstrated that curcumin improved spatial memory. In the Object Recognition Test, neither the short nor the long-term memory was improved. The treatments that were used in this study beneficially modulated the anxious and hyperactive behavior of the SHR.
Collapse
Affiliation(s)
- Lélia Lilianna Borges de Sousa Macedo
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| | - Flavia Tasmin Techera Antunes
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil.
| | | | | | | | | | - Emanuelle Sistherenn Caminski
- Laboratório de Pesquisa Em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Eliane Dallegrave
- Laboratório de Pesquisa Em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Ivana Grivicich
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| | - Alessandra Hübner de Souza
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| |
Collapse
|
6
|
Özaslan A, Güney E, Gülbahar Ö, Büyüktaskin D, Arslan B. Increased Serum Level of CCL5 in Children with Attention‑Deficit/Hyperactivity Disorder: First Results about Serum Chemokines. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:109-117. [PMID: 35078953 PMCID: PMC8813316 DOI: 10.9758/cpn.2022.20.1.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/02/2022]
Abstract
Objective Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder and its aetiology is not fully understood. This study aimed to determine whether the CCL5 and CCL11 influence the ADHD aetiology by comparing serum CCL5 and CCL11 levels of children with ADHD and typical development. Methods This study included 45 (27 males, mean age = 8.9 ± 1.7 years) treatment-naive patients diagnosed with ADHD and 35 (20 males, mean age = 8.8 ± 1.6 years) healthy controls. Participants ranged in age between 6−12 years and completed the Conners Teacher Rating Scale that assesses ADHD presentation and severity. CCL5 and CCL11 serum levels were also measured using enzyme-linked immunosorbent assay kits. Results Significantly higher serum CCL5 levels were found in children with ADHD compared to healthy controls (p < 0.001). No significant difference was found between the mean serum CC11 level of the patients and controls (p = 0.93). In addition, there was no significant correlation between the serum CCL5 and CCL11 levels and predominant presentations of ADHD and disease severity. Conclusion This study suggests that there are higher levels of serum CCL5 in drug naive children with ADHD, this findings suggest that CCL5 might play a role in the pathophysiology of ADHD. Moreover, these changes in peripheral blood may have therapeutic value. In addition, these results help to understand the role of chemokines in elucidating the etiopathogenesis of ADHD. Our results can be considered as the first step in investigating the role of CCL5 in ADHD, and further research is needed to support these initial findings.
Collapse
Affiliation(s)
- Ahmet Özaslan
- Department of Child and Adolescent Psychiatry, Ankara, Turkey
| | - Esra Güney
- Department of Child and Adolescent Psychiatry, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Medical Biochemistry, Gazi University Medical Faculty, Ankara, Turkey
| | - Dicle Büyüktaskin
- Department of Child and Adolescent Psychiatry, Ankara, Turkey
- Department of Child and Adolescent Psychiatry, Cizre State Hospital, Şırnak, Turkey
| | - Burak Arslan
- Department of Medical Biochemistry, Erciş Şehit Rıdvan Çevik State Hospital, Van, Turkey
| |
Collapse
|
7
|
Glutamate receptor metabotropic 7 (GRM7) gene polymorphisms in mood disorders and attention deficit hyperactive disorder. Neurochem Int 2019; 129:104483. [DOI: 10.1016/j.neuint.2019.104483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
|
8
|
Leffa DT, Panzenhagen AC, Salvi AA, Bau CHD, Pires GN, Torres ILS, Rohde LA, Rovaris DL, Grevet EH. Systematic review and meta-analysis of the behavioral effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 2019; 100:166-179. [PMID: 30826386 DOI: 10.1016/j.neubiorev.2019.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022]
Abstract
The spontaneously hypertensive rats (SHR) are the most widely used model for ADHD. While face and construct validity are consolidated, questions remain about the predictive validity of the SHR model. We aim at summarizing the evidence for the predictive validity of SHR by evaluating its ability to respond to methylphenidate (MPH), the most well documented treatment for ADHD. A systematic review was carried out to identify studies evaluating MPH effects on SHR behavior. Studies (n=36) were grouped into locomotion, attention, impulsivity or memory, and a meta-analysis was performed. Meta-regression, sensitivity, heterogeneity, and publication bias analyses were also conducted. MPH increased attentional and mnemonic performances in the SHR model and decreased impulsivity in a dose-dependent manner. However, MPH did not reduce hyperactivity in low and medium doses, while increased locomotor activity in high doses. Thus, since the paradoxical effect of stimulant in reducing hyperactivity was not observed in the SHR model, our study does not fully support the predictive validity of SHR, questioning their validity as an animal model for ADHD.
Collapse
Affiliation(s)
- Douglas T Leffa
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alana C Panzenhagen
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil
| | - Artur A Salvi
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel N Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit - GPPG - Hospital de Clínicas de Porto Alegre - Porto, Alegre, Brazil
| | - Luis A Rohde
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents, Brazil
| | - Diego L Rovaris
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Eugenio H Grevet
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Moretto E, Murru L, Martano G, Sassone J, Passafaro M. Glutamatergic synapses in neurodevelopmental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:328-342. [PMID: 28935587 DOI: 10.1016/j.pnpbp.2017.09.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Accepted: 09/16/2017] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders (NDDs) are a group of diseases whose symptoms arise during childhood or adolescence and that impact several higher cognitive functions such as learning, sociability and mood. Accruing evidence suggests that a shared pathogenic mechanism underlying these diseases is the dysfunction of glutamatergic synapses. We summarize present knowledge on autism spectrum disorders (ASD), intellectual disability (ID), Down syndrome (DS), Rett syndrome (RS) and attention-deficit hyperactivity disorder (ADHD), highlighting the involvement of glutamatergic synapses and receptors in these disorders. The most commonly shared defects involve α-amino-3-hydroxy-5-methyl- 4-isoxazole propionic acid receptors (AMPARs), N-methyl-d-aspartate receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), whose functions are strongly linked to synaptic plasticity, affecting both cell-autonomous features as well as circuit formation. Moreover, the major scaffolding proteins and, thus, the general structure of the synapse are often deregulated in neurodevelopmental disorders, which is not surprising considering their crucial role in the regulation of glutamate receptor positioning and functioning. This convergence of defects supports the definition of neurodevelopmental disorders as a continuum of pathological manifestations, suggesting that glutamatergic synapses could be a therapeutic target to ameliorate patient symptomatology.
Collapse
Affiliation(s)
- Edoardo Moretto
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Luca Murru
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Giuseppe Martano
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Jenny Sassone
- San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Maria Passafaro
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
10
|
Miller EM, Quintero JE, Pomerleau F, Huettl P, Gerhardt GA, Glaser PEA. Chronic Methylphenidate Alters Tonic and Phasic Glutamate Signaling in the Frontal Cortex of a Freely-Moving Rat Model of ADHD. Neurochem Res 2018; 44:89-101. [PMID: 29397534 DOI: 10.1007/s11064-018-2483-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 01/09/2023]
Abstract
Glutamate dysfunction has been implicated in a number of substance of abuse studies, including cocaine and methamphetamine. Moreover, in attention-deficit/hyperactivity disorder (ADHD), it has been discovered that when the initiation of stimulant treatment occurs during adolescence, there is an increased risk of developing a substance use disorder later in life. The spontaneously hypertensive rat (SHR) serves as a phenotype for ADHD and studies have found increased cocaine self-administration in adult SHRs when treated with the stimulant methylphenidate (MPH) during adolescence. For this reason, we wanted to examine glutamate signaling in the pre-limbic frontal cortex, a region implicated in ADHD and drug addiction, in the SHR and its progenitor control strain, the Wistar Kyoto (WKY). We chronically implanted glutamate-selective microelectrode arrays (MEAs) into 8-week-old animals and treated with MPH (2 mg/kg, s.c.) for 11 days while measuring tonic and phasic extracellular glutamate concentrations. We observed that intermediate treatment with a clinically relevant dose of MPH increased tonic glutamate levels in the SHR but not the WKY compared to vehicle controls. After chronic treatment, both the SHR and WKY exhibited increased tonic glutamate levels; however, only the SHR was found to have decreased amplitudes of phasic glutamate signaling following chronic MPH administration. The findings from this study suggest that the MPH effects on extracellular glutamate levels in the SHR may potentiate the response for drug abuse later in life. Additionally, these data illuminate a pathway for investigating novel therapies for the treatment of ADHD and suggest that possibly targeting the group II metabotropic glutamate receptors may be a useful therapeutic avenue for adolescents diagnosed with ADHD.
Collapse
Affiliation(s)
- Erin M Miller
- Department of Neuroscience, Center for Microelectrode Technology, Brain Restoration Center, University of Kentucky Chandler Medical Center, MN206 Medical Science Bldg., 800 Rose Street, Lexington, KY, 40536-0298, USA
| | - Jorge E Quintero
- Department of Neuroscience, Center for Microelectrode Technology, Brain Restoration Center, University of Kentucky Chandler Medical Center, MN206 Medical Science Bldg., 800 Rose Street, Lexington, KY, 40536-0298, USA
| | - Francois Pomerleau
- Department of Neuroscience, Center for Microelectrode Technology, Brain Restoration Center, University of Kentucky Chandler Medical Center, MN206 Medical Science Bldg., 800 Rose Street, Lexington, KY, 40536-0298, USA
| | - Peter Huettl
- Department of Neuroscience, Center for Microelectrode Technology, Brain Restoration Center, University of Kentucky Chandler Medical Center, MN206 Medical Science Bldg., 800 Rose Street, Lexington, KY, 40536-0298, USA
| | - Greg A Gerhardt
- Department of Neuroscience, Center for Microelectrode Technology, Brain Restoration Center, University of Kentucky Chandler Medical Center, MN206 Medical Science Bldg., 800 Rose Street, Lexington, KY, 40536-0298, USA.
| | - Paul E A Glaser
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, USA
| |
Collapse
|
11
|
Tzang RF, Chang YC, Tsai GE, Lane HY. Sarcosine treatment for oppositional defiant disorder symptoms of attention deficit hyperactivity disorder children. J Psychopharmacol 2016; 30:976-82. [PMID: 27443598 DOI: 10.1177/0269881116658986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methylphenidate, a stimulant that activates dopaminergic and noradrenergic function, is an important agent in the treatment of attention deficit hyperactivity disorder (ADHD). Sarcosine, a glycine transporter-1 inhibitor, may also play a role in treating ADHD by modulating the glutamatergic neurotransmission system through activating N-methyl-D-aspartate type glutamate receptors. This study aimed to assess the efficacy of sarcosine in treating children with ADHD. We conducted a six-week, randomized, double-blind, placebo-controlled clinical trial. The primary outcome measures were those on the Inattention, Hyperactivity/impulsivity, and oppositional defiant disorder (ODD) subscales of the Swanson, Nolan, and Pelham, version IV scale. Efficacy and safety were measured bi-weekly. A total of 116 children with ADHD were enrolled. Among them, 48 (83%) of the 58 sarcosine recipients and 44 (76%) of the 58 placebo recipients returned for the first post-treatment visit. The missing data values were imputed by the last observation carry forward method. From a multiple linear regression analysis, using the generalized estimating equation approach, and an intention to treat analysis, the efficacy of sarcosine marginally surpassed that of placebo at weeks 2, 4, and 6, with p-values=0.01, 0.026, and 0.012, respectively, although only for ODD symptoms. Treatment of ADHD by sarcosine (0.03 g/kg/day) was well tolerated. Sarcosine could possibly be a novel agent for managing ODD symptoms in the context of ADHD. However, future larger-scale studies are warranted to optimize its dosage.
Collapse
Affiliation(s)
- Ruu-Fen Tzang
- Department of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Yue-Cune Chang
- Department of Mathematics, Tamkang University, Taipei, Taiwan
| | - Guochuan E Tsai
- Department of Psychiatry, Harbor-UCLA Medical Center, Torrance, CA, USA Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan Institute of Clinical Medical Science, China Medical University Medical College, Taichung, Taiwan
| |
Collapse
|
12
|
Kline RL, Zhang S, Farr OM, Hu S, Zaborszky L, Samanez-Larkin GR, Li CSR. The Effects of Methylphenidate on Resting-State Functional Connectivity of the Basal Nucleus of Meynert, Locus Coeruleus, and Ventral Tegmental Area in Healthy Adults. Front Hum Neurosci 2016; 10:149. [PMID: 27148006 PMCID: PMC4834346 DOI: 10.3389/fnhum.2016.00149] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/24/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Methylphenidate (MPH) influences catecholaminergic signaling. Extant work examined the effects of MPH on the neural circuits of attention and cognitive control, but few studies have investigated the effect of MPH on the brain's resting-state functional connectivity (rsFC). Methods: In this observational study, we compared rsFC of a group of 24 healthy adults who were administered an oral 45 mg dose of MPH with a group of 24 age and gender matched controls who did not receive MPH. We focused on three seed regions: basal nucleus of Meynert (BNM), locus coeruleus (LC), and ventral tegmental area/substantia nigra, pars compacta (VTA/SNc), each providing cholinergic, noradrenergic and dopaminergic inputs to the cerebral cortex. Images were pre-processed and analyzed as in our recent work (Li et al., 2014; Zhang et al., 2015). We used one-sample t-test to characterize group-specific rsFC of each seed region and two-sample t-test to compare rsFC between groups. Results: MPH reversed negative connectivity between BNM and precentral gyri. MPH reduced positive connectivity between LC and cerebellum, and induced positive connectivity between LC and right hippocampus. MPH decreased positive VTA/SNc connectivity to the cerebellum and putamen, and reduced negative connectivity to left middle occipital gyrus. Conclusion: MPH had distinct effects on the rsFC of BNM, LC, and VTA/SNc in healthy adults. These new findings may further our understanding of the role of catecholaminergic signaling in Attention Deficit Hyperactivity Disorder (ADHD) and Parkinson's disease and provide insights into the therapeutic mechanisms of MPH in the treatment of clinical conditions that implicate catecholaminergic dysfunction.
Collapse
Affiliation(s)
- Ryan L Kline
- Department of Psychology, Yale University School of Arts and Sciences New Haven, CT, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Olivia M Farr
- Interdepartmental Neuroscience Program, Yale University New Haven, CT, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience Rutgers, NJ, USA
| | - Gregory R Samanez-Larkin
- Department of Psychology, Yale University School of Arts and SciencesNew Haven, CT, USA; Interdepartmental Neuroscience Program, Yale UniversityNew Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA; Interdepartmental Neuroscience Program, Yale UniversityNew Haven, CT, USA; Department of Neurobiology, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
13
|
Adolescent D-amphetamine treatment in a rodent model of ADHD: Pro-cognitive effects in adolescence without an impact on cocaine cue reactivity in adulthood. Behav Brain Res 2015; 297:165-79. [PMID: 26467602 DOI: 10.1016/j.bbr.2015.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is comorbid with cocaine abuse. Whereas initiating ADHD medication in childhood does not alter later cocaine abuse risk, initiating medication during adolescence may increase risk. Preclinical work in the Spontaneously Hypertensive Rat (SHR) model of ADHD found that adolescent methylphenidate increased cocaine self-administration in adulthood, suggesting a need to identify alternatively efficacious medications for teens with ADHD. We examined effects of adolescent d-amphetamine treatment on strategy set shifting performance during adolescence and on cocaine self-administration and reinstatement of cocaine-seeking behavior (cue reactivity) during adulthood in male SHR, Wistar-Kyoto (inbred control), and Wistar (outbred control) rats. During the set shift phase, adolescent SHR needed more trials and had a longer latency to reach criterion, made more regressive errors and trial omissions, and exhibited slower and more variable lever press reaction times. d-Amphetamine improved performance only in SHR by increasing choice accuracy and decreasing errors and latency to criterion. In adulthood, SHR self-administered more cocaine, made more cocaine-seeking responses, and took longer to extinguish lever responding than control strains. Adolescent d-amphetamine did not alter cocaine self-administration in adult rats of any strain, but reduced cocaine seeking during the first of seven reinstatement test sessions in adult SHR. These findings highlight utility of SHR in modeling cognitive dysfunction and comorbid cocaine abuse in ADHD. Unlike methylphenidate, d-amphetamine improved several aspects of flexible learning in adolescent SHR and did not increase cocaine intake or cue reactivity in adult SHR. Thus, adolescent d-amphetamine was superior to methylphenidate in this ADHD model.
Collapse
|
14
|
Grados MA, Atkins EB, Kovacikova GI, McVicar E. A selective review of glutamate pharmacological therapy in obsessive-compulsive and related disorders. Psychol Res Behav Manag 2015; 8:115-31. [PMID: 25995654 PMCID: PMC4425334 DOI: 10.2147/prbm.s58601] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate, an excitatory central nervous system neurotransmitter, is emerging as a potential alternative pharmacological treatment when compared to gamma-aminobutyric acid (GABA)-, dopamine-, and serotonin-modulating treatments for neuropsychiatric conditions. The pathophysiology, animal models, and clinical trials of glutamate modulation are explored in disorders with underlying inhibitory deficits (cognitive, motor, behavioral) including obsessive–compulsive disorder, attention deficit hyperactivity disorder, Tourette syndrome, trichotillomania, excoriation disorder, and nail biting. Obsessive–compulsive disorder, attention deficit hyperactivity disorder, and grooming disorders (trichotillomania and excoriation disorder) have emerging positive data, although only scarce controlled trials are available. The evidence is less supportive for the use of glutamate modulators in Tourette syndrome. Glutamate-modulating agents show promise in the treatment of disorders of inhibition.
Collapse
Affiliation(s)
- Marco A Grados
- Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
15
|
Söderlund GBW, Eckernäs D, Holmblad O, Bergquist F. Acoustic noise improves motor learning in spontaneously hypertensive rats, a rat model of attention deficit hyperactivity disorder. Behav Brain Res 2014; 280:84-91. [PMID: 25454351 DOI: 10.1016/j.bbr.2014.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/03/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
Abstract
The spontaneously hypertensive (SH) rat model of ADHD displays impaired motor learning. We used this characteristic to study if the recently described acoustic noise benefit in learning in children with ADHD is also observed in the SH rat model. SH rats and a Wistar control strain were trained in skilled reach and rotarod running under either ambient noise or in 75 dBA white noise. In other animals the effect of methylphenidate (MPH) on motor learning was assessed with the same paradigms. To determine if acoustic noise influenced spontaneous motor activity, the effect of acoustic noise was also determined in the open field activity paradigm. We confirm impaired motor learning in the SH rat compared to Wistar SCA controls. Acoustic noise restored motor learning in SH rats learning the Montoya reach test and the rotarod test, but had no influence on learning in Wistar rats. Noise had no effect on open field activity in SH rats, but increased corner time in Wistar. MPH completely restored rotarod learning and performance but did not improve skilled reach in the SH rat. It is suggested that the acoustic noise benefit previously reported in children with ADHD is shared by the SH rat model of ADHD, and the effect is in the same range as that of stimulant treatment. Acoustic noise may be useful as a non-pharmacological alternative to stimulant medication in the treatment of ADHD.
Collapse
Affiliation(s)
| | - Daniel Eckernäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Olof Holmblad
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Miller EM, Pomerleau F, Huettl P, Gerhardt GA, Glaser PEA. Aberrant glutamate signaling in the prefrontal cortex and striatum of the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 2014; 231:3019-29. [PMID: 24682500 DOI: 10.1007/s00213-014-3479-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023]
Abstract
RATIONALE Attention-deficit/hyperactivity disorder (ADHD) is thought to involve hypofunctional catecholamine systems in the striatum, nucleus accumbens, and prefrontal cortex (PFC); however, recent clinical evidence has implicated glutamate dysfunction in the pathophysiology of ADHD. Recent studies show that increased stimulation of dopamine D2 and D4 receptors causes inhibition of N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, respectively. The spontaneously hypertensive rat (SHR) model of ADHD combined type (C) has been found to have a hypofunctional dopamine system in the ventral striatum, nucleus accumbens, and PFC compared to the control Wistar Kyoto (WKY) strain. OBJECTIVES Based on the current understanding of typical dopamine-glutamate interactions, we hypothesized that the SHR model of ADHD would have a hyperfunctional glutamate system terminating in the striatum, nucleus accumbens, and PFC. RESULTS High-speed amperometric recordings combined with four-channel microelectrode arrays to directly measure glutamate dynamics showed increased evoked glutamate release in the PFC (cingulate and infralimbic cortices, p < 0.05) and also in the striatum (p < 0.05) of the SHR (ADHD-C) as compared to the WKY. Finally, glutamate uptake was discovered to be aberrant in the PFC, but not the striatum, of the SHR when compared to the control WKY strain. CONCLUSIONS These results suggest that the glutamatergic system in the PFC of the SHR model of ADHD is hyperfunctional and that targeting glutamate in the PFC could lead to the development of novel therapeutics for the treatment of ADHD.
Collapse
Affiliation(s)
- Erin M Miller
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY, 40536, USA
| | | | | | | | | |
Collapse
|
17
|
Maltezos S, Horder J, Coghlan S, Skirrow C, O'Gorman R, Lavender TJ, Mendez MA, Mehta M, Daly E, Xenitidis K, Paliokosta E, Spain D, Pitts M, Asherson P, Lythgoe DJ, Barker GJ, Murphy DG. Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl Psychiatry 2014; 4:e373. [PMID: 24643164 PMCID: PMC3966039 DOI: 10.1038/tp.2014.11] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence that abnormalities in glutamate signalling may contribute to the pathophysiology of attention-deficit hyperactivity disorder (ADHD). Proton magnetic resonance spectroscopy ([1H]MRS) can be used to measure glutamate, and also its metabolite glutamine, in vivo. However, few studies have investigated glutamate in the brain of adults with ADHD naive to stimulant medication. Therefore, we used [1H]MRS to measure the combined signal of glutamate and glutamine (Glu+Gln; abbreviated as Glx) along with other neurometabolites such as creatine (Cr), N-acetylaspartate (NAA) and choline. Data were acquired from three brain regions, including two implicated in ADHD-the basal ganglia (caudate/striatum) and the dorsolateral prefrontal cortex (DLPFC)-and one 'control' region-the medial parietal cortex. We compared 40 adults with ADHD, of whom 24 were naive for ADHD medication, whereas 16 were currently on stimulants, against 20 age, sex and IQ-matched healthy controls. We found that compared with controls, adult ADHD participants had a significantly lower concentration of Glx, Cr and NAA in the basal ganglia and Cr in the DLPFC, after correction for multiple comparisons. There were no differences between stimulant-treated and treatment-naive ADHD participants. In people with untreated ADHD, lower basal ganglia Glx was significantly associated with more severe symptoms of inattention. There were no significant differences in the parietal 'control' region. We suggest that subcortical glutamate and glutamine have a modulatory role in ADHD adults; and that differences in glutamate-glutamine levels are not explained by use of stimulant medication.
Collapse
Affiliation(s)
- S Maltezos
- Adult ADHD Service, The Maudsley Hospital, London, UK,King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - J Horder
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, PO Box 50, London SE5 8AF, UK. E-mail:
| | - S Coghlan
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - C Skirrow
- King's College London, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK
| | - R O'Gorman
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - T J Lavender
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - M A Mendez
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,Autism Assessment and Behavioural Genetics Clinic, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - M Mehta
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - E Daly
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - K Xenitidis
- Adult ADHD Service, The Maudsley Hospital, London, UK,King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - E Paliokosta
- Adult ADHD Service, The Maudsley Hospital, London, UK
| | - D Spain
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,Autism Assessment and Behavioural Genetics Clinic, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - M Pitts
- Adult ADHD Service, The Maudsley Hospital, London, UK
| | - P Asherson
- Adult ADHD Service, The Maudsley Hospital, London, UK,King's College London, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK
| | - D J Lythgoe
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - G J Barker
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - D G Murphy
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,Autism Assessment and Behavioural Genetics Clinic, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
18
|
Surman CBH, Hammerness PG, Petty C, Spencer T, Doyle R, Napolean S, Chu N, Yorks D, Biederman J. A pilot open label prospective study of memantine monotherapy in adults with ADHD. World J Biol Psychiatry 2013; 14:291-8. [PMID: 22436083 DOI: 10.3109/15622975.2011.623716] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Available pharmacotherapies treat some adults with ADHD inadequately. A small literature suggests that glutamate modulation could have effects on ADHD. METHODS Memantine, an N-methyl-d-aspartate (NMDA) receptor antagonist, was titrated to a maximum dose of 10 mg BID in 34 adult subjects aged 18-55 who met DSM-IV criteria for ADHD or ADHD NOS on structured interview. Twenty-eight subjects completed 12 weeks exposure. The Adult ADHD Investigator Symptom Report (AISRS), Clinical Global Impression (CGI), a neuropsychological battery sensitive to domains of executive function, and the CANTAB cognitive battery were administered. Paired t-tests compared treated and baseline scores. RESULTS At week 12, AISRS data showed reduction in total symptoms (-17.5, P < 0.001), inattentive symptoms (-10.6, P < 0.001), and hyperactive symptoms (-6.9, P < 0.01). A total of 44% of subjects had CGI ratings of much or very much improved. Cognitive performance improved in measures of attention, working memory, and other selected executive domains by weeks 6 and 12 (each P < 0.05); simple reaction time declined by week 12 (P < 0.05). There were no severe adverse events, but mild adverse events were common and six subjects discontinued due to adverse effects. CONCLUSIONS Memantine was largely well-tolerated and associated with improvement in ADHD symptoms and neuropsychological performance. Randomized studies are indicated to confirm whether memantine is a novel therapy for ADHD across the lifespan.
Collapse
Affiliation(s)
- Craig B H Surman
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Pediatric Psychopharmacology Unit, Yawkey Center for Outpatient Care, Boston, MA 02138, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Turner M, Wilding E, Cassidy E, Dommett EJ. Effects of atomoxetine on locomotor activity and impulsivity in the spontaneously hypertensive rat. Behav Brain Res 2012; 243:28-37. [PMID: 23266523 DOI: 10.1016/j.bbr.2012.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/11/2012] [Accepted: 12/15/2012] [Indexed: 11/30/2022]
Abstract
Atomoxetine (ATX) is a commonly used non-stimulant treatment for Attention deficit hyperactivity disorder (ADHD). It primarily acts to increase noradrenalin levels; however, at higher doses it can increase dopamine levels. To date there has been no investigations into the effects of orally-administered ATX in the most commonly used model of ADHD, the spontaneously hypertensive rat (SHR). The aim of this study was to describe the effects of doses thought to be selective (0.15 mg/kg) and non-selective (0.3 mg/kg) for noradrenalin on behavioural measures in the SHR. Firstly, we examined the effects of acute and chronic ATX on locomotor activity including sensitisation and cross-sensitisation to amphetamine. Secondly, we measured drug effects on impulsivity using a T-maze delay discounting paradigm. We found no effect of ATX on locomotor activity and no evidence for sensitisation or cross-sensitisation. Furthermore, there were no differences in T-maze performance, indicating no effects on impulsivity at these doses. The absence of behavioural sensitisation supports previous claims of superior safety relative to psychostimulants for the doses administered. There was also no effect on impulsivity; however, we suggest that was confounded by stress specific to SHRs. Implications for future studies, behavioural assessment of SHRs and their use as a model of ADHD are discussed.
Collapse
Affiliation(s)
- Michael Turner
- Brain and Behavioural Sciences, Dept of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | | | | | | |
Collapse
|
20
|
Adler LA, Kroon RA, Stein M, Shahid M, Tarazi FI, Szegedi A, Schipper J, Cazorla P. A translational approach to evaluate the efficacy and safety of the novel AMPA receptor positive allosteric modulator org 26576 in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 2012; 72:971-7. [PMID: 22771238 DOI: 10.1016/j.biopsych.2012.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/21/2012] [Accepted: 05/07/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND It has been posited that glutamate dysregulation contributes to the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). Modulation of glutamate neurotransmission may provide alternative therapeutic options. The novel 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptor positive allosteric modulator Org 26576 was investigated with a translational approach including preclinical and clinical testing. METHODS Neonatal rat 6-hydroxydopamine lesion-induced hyperactivity was used as preclinical model. Seventy-eight ADHD adults entered a multicenter, double-blind, placebo-controlled, two-period crossover trial. After 1 week placebo lead-in, 67 subjects were randomized into one of four treatment sequences: sequence A (n = 15) Org 26576 (100 mg b.i.d.) for 3 weeks, followed by a 2-week placebo crossover and 3 weeks placebo; sequence B (n = 16) 5 weeks placebo followed by 3 weeks Org 26576 (100 mg b.i.d.); sequence C (n = 18) Org 26576 flexible dose (100-300 mg b.i.d.) for 3 weeks, then 5 weeks placebo; sequence D (n = 18) 5 weeks placebo followed by 3 weeks Org 26576 (100-300 mg b.i.d.). The Adult ADHD Investigator Symptom Rating Scale was used to assess changes in ADHD symptomatology. RESULTS Org 26576 (1, 3, 10 mg/kg intraperitoneal) produced dose-dependent inhibition of locomotor hyperactivity in 6-hydroxydopamine-lesioned rats. Org 26576 (100 mg b.i.d.) was superior to placebo in treating symptoms of adult ADHD subjects. The primary Adult ADHD Investigator Symptom Rating Scale results were supported by some secondary analyses. However, Org 26576 (100-300 mg b.i.d.) did not confirm these results. Most frequently reported adverse events were nausea, dizziness, and headache. CONCLUSIONS These preclinical and clinical findings suggest that Org 25676 may have utility in the treatment of ADHD.
Collapse
Affiliation(s)
- Lenard A Adler
- Departments of Psychiatry and Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY 10017, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sani G, Serra G, Kotzalidis GD, Romano S, Tamorri SM, Manfredi G, Caloro M, Telesforo CL, Caltagirone SS, Panaccione I, Simonetti A, Demontis F, Serra G, Girardi P. The role of memantine in the treatment of psychiatric disorders other than the dementias: a review of current preclinical and clinical evidence. CNS Drugs 2012; 26:663-690. [PMID: 22784018 DOI: 10.2165/11634390-000000000-00000] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Memantine, a non-competitive NMDA receptor antagonist approved for Alzheimer's disease with a good safety profile, is increasingly being studied in a variety of non-dementia psychiatric disorders. We aimed to critically review relevant literature on the use of the drug in such disorders. We performed a PubMed search of the effects of memantine in animal models of psychiatric disorders and its effects in human studies of specific psychiatric disorders. The bulk of the data relates to the effects of memantine in major depressive disorder and schizophrenia, although more recent studies have provided data on the use of the drug in bipolar disorder as an add-on. Despite interesting preclinical data, results in major depression are not encouraging. Animal studies investigating the possible usefulness of memantine in schizophrenia are controversial; however, interesting findings were obtained in open studies of schizophrenia, but negative placebo-controlled, double-blind studies cast doubt on their validity. The effects of memantine in anxiety disorders have been poorly investigated, but data indicate that the use of the drug in obsessive-compulsive disorder and post-traumatic stress disorder holds promise, while findings relating to generalized anxiety disorder are rather disappointing. Results in eating disorders, catatonia, impulse control disorders (pathological gambling), substance and alcohol abuse/dependence, and attention-deficit hyperactivity disorder are inconclusive. In most psychiatric non-Alzheimer's disease conditions, the clinical data fail to support the usefulness of memantine as monotherapy or add-on treatment However, recent preclinical and clinical findings suggest that add-on memantine may show antimanic and mood-stabilizing effects in treatment-resistant bipolar disorder.
Collapse
Affiliation(s)
- Gabriele Sani
- NeSMOS Department (Neurosciences, Mental Health, and Sensory Organs), School of Medicine and Psychology, Sapienza University, UOC Psychiatry, SantAndrea Hospital, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yates JR, Darna M, Gipson CD, Dwoskin LP, Bardo MT. Isolation rearing as a preclinical model of attention/deficit-hyperactivity disorder. Behav Brain Res 2012; 234:292-8. [PMID: 22580232 DOI: 10.1016/j.bbr.2012.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/20/2012] [Accepted: 04/25/2012] [Indexed: 12/18/2022]
Abstract
Rats raised in an isolated condition (IC) are impulsive and hyperactive compared to rats raised in an enriched condition (EC), suggesting that isolation rearing may be a preclinical model of attention-deficit/hyperactivity disorder (ADHD). The current study determined if administration of methylphenidate (MPH), a dopamine transporter (DAT) blocker used in the treatment of ADHD, reduces the hyperactivity observed in IC rats toward levels observed in EC rats. Another goal was to determine if chronic MPH treatment differentially alters DAT function in EC and IC rats in medial prefrontal cortex (mPFC) or orbitofrontal cortex (OFC). IC and EC rats were treated with either MPH (1.5 mg/kg, p.o.) or vehicle from postnatal days (PND) 28-51. On PND 28 and 51, rats were evaluated for MPH-induced locomotor activity. On PND 55-63, in vitro [(3)H]DA uptake assays were performed in mPFC and OFC. At both PND 28 and 51, IC rats were hyperactive compared to EC rats. At PND 28, MPH increased activity in EC rats only. At PND 51, MPH did not alter locomotor activity in IC or EC rats. Beginning at PND 55, basal uptake of [(3)H]dopamine in IC rats was higher in mPFC and lower in OFC compared to EC rats. The basal differences in DAT function were normalized by MPH treatment in mPFC, but not in OFC. These findings suggest that isolation rearing may not represent a valid predictive model for screening effective medications in the treatment of hyperactivity associated with ADHD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
23
|
Wickens JR, Hyland BI, Tripp G. Animal models to guide clinical drug development in ADHD: lost in translation? Br J Pharmacol 2012; 164:1107-28. [PMID: 21480864 DOI: 10.1111/j.1476-5381.2011.01412.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We review strategies for developing animal models for examining and selecting compounds with potential therapeutic benefit in attention-deficit hyperactivity disorder (ADHD). ADHD is a behavioural disorder of unknown aetiology and pathophysiology. Current understanding suggests that genetic factors play an important role in the aetiology of ADHD. The involvement of dopaminergic and noradrenergic systems in the pathophysiology of ADHD is probable. We review the clinical features of ADHD including inattention, hyperactivity and impulsivity and how these are operationalized for laboratory study. Measures of temporal discounting (but not premature responding) appear to predict known drug effects well (treatment validity). Open-field measures of overactivity commonly used do not have treatment validity in human populations. A number of animal models have been proposed that simulate the symptoms of ADHD. The most commonly used are the spontaneously hypertensive rat (SHR) and the 6-hydroxydopamine-lesioned (6-OHDA) animals. To date, however, the SHR lacks treatment validity, and the effects of drugs on symptoms of impulsivity and inattention have not been studied extensively in 6-OHDA-lesioned animals. At the present stage of development, there are no in vivo models of proven effectiveness for examining and selecting compounds with potential therapeutic benefit in ADHD. However, temporal discounting is an emerging theme in theories of ADHD, and there is good evidence of increased value of delayed reward following treatment with stimulant drugs. Therefore, operant behaviour paradigms that measure the effects of drugs in situations of delayed reinforcement, whether in normal rats or selected models, show promise for the future.
Collapse
|
24
|
Bernardi S, Anagnostou E, Shen J, Kolevzon A, Buxbaum JD, Hollander E, Hof PR, Fan J. In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism. Brain Res 2011; 1380:198-205. [PMID: 21185269 PMCID: PMC3073642 DOI: 10.1016/j.brainres.2010.12.057] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/10/2010] [Accepted: 12/16/2010] [Indexed: 11/29/2022]
Abstract
Attentional dysfunction is one of the most consistent findings in individuals with autism spectrum disorders (ASD). However, the significance of such findings for the pathophysiology of autism is unclear. In this study, we investigated cellular neurochemistry with proton magnetic resonance spectroscopy imaging ((1)H-MRS) in brain regions associated with networks subserving alerting, orienting, and executive control of attention in patients with ASD. Concentrations of cerebral N-acetyl-aspartate (NAA), creatinine+phosphocreatinine, choline-containing compounds, myo-inositol (Ins) and glutamate+glutamine (Glx) were determined by 3T (1)H-MRS examinations in 14 high-functioning medication-free adults with a diagnosis of ASD and 14 age- and IQ-matched healthy controls (HC) in the anterior cingulate cortex (ACC), thalamus, temporoparietal junction (TPJ), and areas near or along the intraparietal sulcus (IPS). Compared to HC group, the ASD group showed significantly lower Glx concentration in right ACC and reduced Ins concentration in left TPJ. This study provides evidence of abnormalities in neurotransmission related to networks subserving executive control and alerting of attention, functions which have been previously implicated in ASD pathogenesis.
Collapse
Affiliation(s)
- Silvia Bernardi
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
- Department of Psychiatry, University of Florence, 50137 ITALY
| | - Evdokia Anagnostou
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Jun Shen
- Section on Magnetic Resonance Spectroscopy, Molecular Imaging Branch, National Institutes of Health, Bethesda, MD 20892-1527, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Eric Hollander
- Montefiore Medical Center, University Hospital for Albert Einstein College of Medicine, New York, NY 10467-2490, USA
| | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Jin Fan
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
- Department of Psychology, Queens College, City University of New York, Flushing, NY 11367, USA
| |
Collapse
|