1
|
Valenzuela CF, Reid NM, Blanco BB, Carlson VL, Do AB. Impact of Developmental Alcohol Exposure on the Thalamus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:67-92. [PMID: 40128475 DOI: 10.1007/978-3-031-81908-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This chapter comprehensively explores the impact of prenatal alcohol (ethanol) exposure (PAE) on the thalamus, integrating findings from animal models and human studies spanning various developmental stages. Animal model investigations, encompassing first and second trimester-equivalent exposures and the critical third trimester, where the brain growth spurt starts, reveal specific alterations in thalamic structures and circuits, emphasizing the specificity of damage to corticothalamic loops. The ventrobasal thalamic nucleus exhibits a unique response to PAE, involving intricate interactions with postnatal neurogenesis and neurotrophin responsiveness. Third trimester-equivalent exposure consistently induces apoptotic neurodegeneration in various thalamic nuclei, highlighting the heightened susceptibility of the visual thalamus, particularly the lateral geniculate nucleus, during critical developmental periods. The nucleus reuniens, vital for cognitive processes, was shown to be significantly affected by alcohol exposure during this period. Investigations into the trigeminal/somatosensory system activity revealed disruptions in glucose utilization and increased neuronal activity in the thalamus. Research on binge-like alcohol exposure during the brain growth spurt demonstrates lasting modifications in action-potential properties and synaptic currents in thalamic neurons projecting to the retrosplenial cortex. Human studies, employing advanced techniques like super-resolution fetal MRI and functional MRI, underscore the PAE-induced structural and functional consequences in the thalamus and its connections, spanning from fetal development to adulthood. The complex effects of PAE on thalamic structure and function vary across developmental stages, emphasizing the importance of considering factors such as age and concurrent exposures. The development of higher-resolution imaging tools is essential for assessing the impact of PAE on the structure and function of individual thalamic nuclei in humans.
Collapse
Affiliation(s)
- C Fernando Valenzuela
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Natalie M Reid
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Benjamin B Blanco
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Victoria L Carlson
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Alynna B Do
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
2
|
Akison LK, Hayes N, Vanderpeet C, Logan J, Munn Z, Middleton P, Moritz KM, Reid N. Prenatal alcohol exposure and associations with physical size, dysmorphology and neurodevelopment: a systematic review and meta-analysis. BMC Med 2024; 22:467. [PMID: 39407296 PMCID: PMC11477020 DOI: 10.1186/s12916-024-03656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is a significant public health concern, yet there is no internationally agreed set of diagnostic criteria or summary of underlying evidence to inform diagnostic decision-making. This systematic review assesses associations of prenatal alcohol exposure (PAE) and outcomes of diagnostic assessments, providing an evidence base for the improvement of FASD diagnostic criteria. METHODS Six databases were searched (inception-February 2023). Case-controls or cohort studies examining associations between participants with/without PAE or a FASD diagnosis and the domains of physical size, dysmorphology, functional neurodevelopment and/or brain structure/neurology were included. Excluded studies were non-empirical, sample size < 10, PAE determined via biological markers only, or no suitable comparison group. Summary data were extracted and associations between outcomes and standardised levels of PAE or FASD diagnosis determined using random-effects meta-analyses. Certainty of the evidence was assessed using GRADE. RESULTS Of the 306 included studies, 106 reported physical size, 43 dysmorphology, 195 functional neurodevelopment and 110 structural/neurological outcomes, with 292 different outcomes examined. There was a dose-response relationship between PAE and head circumference, as well as measures of physical size, particularly at birth. There was also an association between higher PAE levels and characteristic sentinel facial dysmorphology, as well as many of the current functional neurodevelopmental outcomes considered during diagnosis. However, data were often lacking across the full range of exposures. There was a lack of evidence from studies examining PAE to support inclusion of non-sentinel dysmorphic features, social cognition, speech-sound impairments, neurological conditions, seizures, sensory processing or structural brain abnormalities (via clinical MRI) in diagnostic criteria. GRADE ratings ranged from very low to moderate certainty of evidence. CONCLUSIONS This comprehensive review provides guidance on which components are most useful to consider in the diagnostic criteria for FASD. It also highlights numerous gaps in the available evidence. Future well-designed pregnancy cohort studies should specifically focus on dose-response relationships between PAE and dysmorphology, neurodevelopment and brain structure/neurological outcomes. SYSTEMATIC REVIEW REGISTRATION PROSPERO: CRD42021230522.
Collapse
Affiliation(s)
- Lisa K Akison
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Nicole Hayes
- School of Early Childhood and Inclusive Education, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chelsea Vanderpeet
- Child Health Research Centre, The University of Queensland, South Brisbane, Brisbane, QLD, 4121, Australia
| | - Jayden Logan
- Child Health Research Centre, The University of Queensland, South Brisbane, Brisbane, QLD, 4121, Australia
| | - Zachary Munn
- Health Evidence Synthesis, Recommendations, and Impact (HESRI), School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Philippa Middleton
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natasha Reid
- Child Health Research Centre, The University of Queensland, South Brisbane, Brisbane, QLD, 4121, Australia.
| |
Collapse
|
3
|
Long M, Kar P, Forkert ND, Landman BA, Gibbard WB, Tortorelli C, McMorris CA, Huo Y, Lebel CA. Sex and age effects on gray matter volume trajectories in young children with prenatal alcohol exposure. Front Hum Neurosci 2024; 18:1379959. [PMID: 38660010 PMCID: PMC11039858 DOI: 10.3389/fnhum.2024.1379959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Prenatal alcohol exposure (PAE) occurs in ~11% of North American pregnancies and is the most common known cause of neurodevelopmental disabilities such as fetal alcohol spectrum disorder (FASD; ~2-5% prevalence). PAE has been consistently associated with smaller gray matter volumes in children, adolescents, and adults. A small number of longitudinal studies show altered gray matter development trajectories in late childhood/early adolescence, but patterns in early childhood and potential sex differences have not been characterized in young children. Using longitudinal T1-weighted MRI, the present study characterized gray matter volume development in young children with PAE (N = 42, 84 scans, ages 3-8 years) compared to unexposed children (N = 127, 450 scans, ages 2-8.5 years). Overall, we observed altered global and regional gray matter development trajectories in the PAE group, wherein they had attenuated age-related increases and more volume decreases relative to unexposed children. Moreover, we found more pronounced sex differences in children with PAE; females with PAE having the smallest gray matter volumes and the least age-related changes of all groups. This pattern of altered development may indicate reduced brain plasticity and/or accelerated maturation and may underlie the cognitive/behavioral difficulties often experienced by children with PAE. In conjunction with previous research on older children, adolescents, and adults with PAE, our results suggest that gray matter volume differences associated with PAE vary by age and may become more apparent in older children.
Collapse
Affiliation(s)
- Madison Long
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Preeti Kar
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Nils D. Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bennett A. Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - W. Ben Gibbard
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada
| | - Christina Tortorelli
- Department of Child Studies and Social Work, Mount Royal University, Calgary, AB, Canada
| | - Carly A. McMorris
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Paediatrics, University of Calgary, Calgary, AB, Canada
- Werklund School of Education, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Catherine A. Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Villalba NM, Madarnas C, Bressano J, Sanchez V, Brusco A. Perinatal ethanol exposure affects cell populations in adult dorsal hippocampal neurogenic niche. Neurosci Res 2024; 198:8-20. [PMID: 37419388 DOI: 10.1016/j.neures.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Neurodevelopment is highly affected by perinatal ethanol exposure (PEE). In the adult brain, neurogenesis takes place in the dentate gyrus (DG) of the hippocampus and in the subventricular zone. This work aimed to analyze the effect of PEE on the cellular types involved in adult dorsal hippocampal neurogenesis phases using a murine model. For this purpose, primiparous female CD1 mice consumed only ethanol 6% v/v from 20 days prior to mating and along pregnancy and lactation to ensure that the pups were exposed to ethanol throughout pre- and early postnatal development. After weaning, pups had no further contact with ethanol. Cell types of the adult male dorsal DG were studied by immunofluorescence. A lower percentage of type 1 cells and immature neurons and a higher percentage of type 2 cells were observed in PEE animals. This decrease in type 1 cells suggests that PEE reduces the population of remnant progenitors of the dorsal DG present in adulthood. The increase in type 2 cells and the decrease in immature neurons indicate that, during neurodevelopment, ethanol alters the capacity of neuroblasts to become neurons in the adult neurogenic niche. These results suggest that pathways implicated in cell determination are affected by PEE and remain affected in adulthood.
Collapse
Affiliation(s)
- Nerina M Villalba
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Catalina Madarnas
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Julieta Bressano
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Viviana Sanchez
- Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Boots A, Wiegersma AM, Vali Y, van den Hof M, Langendam MW, Limpens J, Backhouse EV, Shenkin SD, Wardlaw JM, Roseboom TJ, de Rooij SR. Shaping the risk for late-life neurodegenerative disease: A systematic review on prenatal risk factors for Alzheimer's disease-related volumetric brain biomarkers. Neurosci Biobehav Rev 2023; 146:105019. [PMID: 36608918 DOI: 10.1016/j.neubiorev.2022.105019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Environmental exposures including toxins and nutrition may hamper the developing brain in utero, limiting the brain's reserve capacity and increasing the risk for Alzheimer's disease (AD). The purpose of this systematic review is to summarize all currently available evidence for the association between prenatal exposures and AD-related volumetric brain biomarkers. We systematically searched MEDLINE and Embase for studies in humans reporting on associations between prenatal exposure(s) and AD-related volumetric brain biomarkers, including whole brain volume (WBV), hippocampal volume (HV) and/or temporal lobe volume (TLV) measured with structural magnetic resonance imaging (PROSPERO; CRD42020169317). Risk of bias was assessed using the Newcastle Ottawa Scale. We identified 79 eligible studies (search date: August 30th, 2020; Ntotal=24,784; median age 10.7 years) reporting on WBV (N = 38), HV (N = 63) and/or TLV (N = 5) in exposure categories alcohol (N = 30), smoking (N = 7), illicit drugs (N = 14), mental health problems (N = 7), diet (N = 8), disease, treatment and physiology (N = 10), infections (N = 6) and environmental exposures (N = 3). Overall risk of bias was low. Prenatal exposure to alcohol, opioids, cocaine, nutrient shortage, placental dysfunction and maternal anemia was associated with smaller brain volumes. We conclude that the prenatal environment is important in shaping the risk for late-life neurodegenerative disease.
Collapse
Affiliation(s)
- A Boots
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands.
| | - A M Wiegersma
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - Y Vali
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Methodology, Amsterdam Public Health, Amsterdam, the Netherlands
| | - M van den Hof
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - M W Langendam
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Methodology, Amsterdam Public Health, Amsterdam, the Netherlands
| | - J Limpens
- Amsterdam UMC location University of Amsterdam, Medical Library, Meibergdreef 9, the Netherlands
| | - E V Backhouse
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - S D Shenkin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Ageing and Health Research Group and Advanced Care Research Centre, Usher Institute, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - T J Roseboom
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Obstetrics and Gynecology, Meibergdreef 9, Amsterdam, the Netherlands
| | - S R de Rooij
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Meombe Mbolle A, Thapa S, Bukiya AN, Jiang H. High-resolution imaging in studies of alcohol effect on prenatal development. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10790. [PMID: 37593366 PMCID: PMC10433240 DOI: 10.3389/adar.2023.10790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Fetal alcohol syndrome represents the leading known preventable cause of mental retardation. FAS is on the most severe side of fetal alcohol spectrum disorders that stem from the deleterious effects of prenatal alcohol exposure. Affecting as many as 1 to 5 out of 100 children, FASD most often results in brain abnormalities that extend to structure, function, and cerebral hemodynamics. The present review provides an analysis of high-resolution imaging techniques that are used in animals and human subjects to characterize PAE-driven changes in the developing brain. Variants of magnetic resonance imaging such as magnetic resonance microscopy, magnetic resonance spectroscopy, diffusion tensor imaging, along with positron emission tomography, single-photon emission computed tomography, and photoacoustic imaging, are modalities that are used to study the influence of PAE on brain structure and function. This review briefly describes the aforementioned imaging modalities, the main findings that were obtained using each modality, and touches upon the advantages/disadvantages of each imaging approach.
Collapse
Affiliation(s)
- Augustine Meombe Mbolle
- Department Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Shiwani Thapa
- Department Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Anna N. Bukiya
- Department Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Huabei Jiang
- Department Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
7
|
Wedderburn CJ, Ringshaw JE, Donald KA, Joshi SH, Subramoney S, Fouche JP, Stadler JAM, Barnett W, Rehman AM, Hoffman N, Roos A, Narr KL, Zar HJ, Stein DJ. Association of Maternal and Child Anemia With Brain Structure in Early Life in South Africa. JAMA Netw Open 2022; 5:e2244772. [PMID: 36459137 PMCID: PMC9719049 DOI: 10.1001/jamanetworkopen.2022.44772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Importance Anemia affects millions of pregnant women and their children worldwide, particularly in low- and middle-income countries. Although anemia in pregnancy is a well-described risk factor for cognitive development, the association with child brain structure is poorly understood. Objective To explore the association of anemia during pregnancy and postnatal child anemia with brain structure in early life. Design, Setting, and Participants This neuroimaging nested cohort study was embedded within the Drakenstein Child Health Study (DCHS), a population-based birth cohort in South Africa. Pregnant individuals were enrolled into the DCHS between 2012 and 2015 from 2 clinics in a periurban setting. Mother-child pairs were assessed prospectively; follow-up is ongoing. A subgroup of children had brain magnetic resonance imaging (MRI) at age 2 to 3 years from 2015 to 2018. This study focused on the 147 pairs with structural neuroimaging and available hemoglobin data. Data analyses were conducted in 2021 and 2022. Exposures Mothers had hemoglobin measurements during pregnancy, and a subgroup of children had hemoglobin measurements during early life. Anemia was classified as hemoglobin levels less than 11 g/dL based on World Health Organization guidelines; children younger than 6 months were classified using local guidelines. Main Outcomes and Measures Child brain volumes of global, subcortical, and corpus callosum structures were quantified using T1-weighted MRI. Linear regression models were used to analyze the associations between maternal and child anemia with child brain volumes, accounting for potential confounders. Results Of 147 children (mean [SD] age at MRI, 34 [2] months; 83 [56.5%] male) with high-resolution MRI scans, prevalence of maternal anemia in pregnancy was 31.3% (46 of 147; median [IQR] gestation of measurement: 13 [9-20] weeks). Maternal anemia during pregnancy was significantly associated with smaller volumes of the child caudate bilaterally (adjusted percentage difference, -5.30% [95% CI, -7.01 to -3.59]), putamen (left hemisphere: -4.33% [95% CI, -5.74 to -2.92]), and corpus callosum (-7.75% [95% CI, -11.24 to -4.26]). Furthermore, antenatal maternal hemoglobin levels were also associated with brain volumes in the caudate (left hemisphere: standardized β = 0.15 [95% CI, 0.02 to 0.28]; right hemisphere: β = 0.15 [95% CI, 0.02 to 0.27]), putamen left hemisphere (β = 0.21 [95% CI, 0.07 to 0.35]), and corpus callosum (β = 0.24 [95% CI, 0.09 to 0.39]). Prevalence of child anemia was 52.5% (42 of 80; median [IQR] age of measurement: 8.0 [2.7 to 14.8] months). Child anemia was not associated with brain volumes, nor did it mediate the association of maternal anemia during pregnancy with brain volumes. Conclusions and Relevance In this cohort study, anemia in pregnancy was associated with altered child brain structural development. Given the high prevalence of antenatal maternal anemia worldwide, these findings suggest that optimizing interventions during pregnancy may improve child brain outcomes.
Collapse
Affiliation(s)
- Catherine J. Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jessica E. Ringshaw
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Shantanu H. Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Department of Bioengineering, University of California, Los Angeles
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouche
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jacob A. M. Stadler
- South African Medical Research Council (SAMRC), Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Whitney Barnett
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Andrea M. Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nadia Hoffman
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Katherine L. Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Hüls A, Wedderburn CJ, Groenewold NA, Gladish N, Jones MJ, Koen N, MacIsaac JL, Lin DTS, Ramadori KE, Epstein MP, Donald KA, Kobor MS, Zar HJ, Stein DJ. Newborn differential DNA methylation and subcortical brain volumes as early signs of severe neurodevelopmental delay in a South African Birth Cohort Study. World J Biol Psychiatry 2022; 23:601-612. [PMID: 34895032 PMCID: PMC9273810 DOI: 10.1080/15622975.2021.2016955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Early detection of neurodevelopmental delay is crucial for intervention and treatment strategies. We analysed associations between newborn DNA methylation (DNAm), neonatal magnetic resonance imaging (MRI) neuroimaging data, and neurodevelopment. METHODS Neurodevelopment was assessed in 161 children from the South African Drakenstein Child Health Study at 2 years of age using the Bayley Scales of Infant and Toddler Development III. We performed an epigenome-wide association study of neurodevelopmental delay using DNAm from cord blood. Subsequently, we analysed if associations between DNAm and neurodevelopmental delay were mediated by altered neonatal brain volumes (subset of 51 children). RESULTS Differential DNAm at SPTBN4 (cg26971411, Δbeta = -0.024, p-value = 3.28 × 10-08), and two intergenic regions (chromosome 11: cg00490349, Δbeta = -0.036, p-value = 3.02 × 10-08; chromosome 17: cg15660740, Δbeta = -0.078, p-value = 6.49 × 10-08) were significantly associated with severe neurodevelopmental delay. While these associations were not mediated by neonatal brain volume, neonatal caudate volumes were independently associated with neurodevelopmental delay, particularly in language (Δcaudate volume = 165.30 mm3, p = 0.0443) and motor (Δcaudate volume = 365.36 mm3, p-value = 0.0082) domains. CONCLUSIONS Differential DNAm from cord blood and increased neonatal caudate volumes were independently associated with severe neurodevelopmental delay at 2 years of age. These findings suggest that neurobiological signals for severe developmental delay may be detectable in very early life.
Collapse
Affiliation(s)
- Anke Hüls
- Department of Epidemiology and Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - David T S Lin
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Katia E Ramadori
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Michael P Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Abrishamcar S, Chen J, Feil D, Kilanowski A, Koen N, Vanker A, Wedderburn CJ, Donald KA, Zar HJ, Stein DJ, Hüls A. DNA methylation as a potential mediator of the association between prenatal tobacco and alcohol exposure and child neurodevelopment in a South African birth cohort. Transl Psychiatry 2022; 12:418. [PMID: 36180424 PMCID: PMC9525659 DOI: 10.1038/s41398-022-02195-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023] Open
Abstract
Prenatal tobacco exposure (PTE) and prenatal alcohol exposure (PAE) have been associated with an increased risk of delayed neurodevelopment in children as well as differential newborn DNA methylation (DNAm). However, the biological mechanisms connecting PTE and PAE, DNAm, and neurodevelopment are largely unknown. Here we aim to determine whether differential DNAm mediates the association between PTE and PAE and neurodevelopment at 6 (N = 112) and 24 months (N = 184) in children from the South African Drakenstein Child Health Study. PTE and PAE were assessed antenatally using urine cotinine measurements and the ASSIST questionnaire, respectively. Cord blood DNAm was measured using the EPIC and 450 K BeadChips. Neurodevelopment (cognitive, language, motor, adaptive behavior, socioemotional) was measured using the Bayley Scales of Infant and Toddler Development, Third Edition. We constructed methylation risk scores (MRS) for PTE and PAE and conducted causal mediation analysis (CMA) with these MRS as mediators. Next, we conducted a high-dimensional mediation analysis to identify individual CpG sites as potential mediators, followed by a CMA to estimate the average causal mediation effects (ACME) and total effect (TE). PTE and PAE were associated with neurodevelopment at 6 but not at 24 months. PTE MRS reached a prediction accuracy (R2) of 0.23 but did not significantly mediate the association between PTE and neurodevelopment. PAE MRS was not predictive of PAE (R2 = 0.006). For PTE, 31 CpG sites and eight CpG sites were identified as significant mediators (ACME and TE P < 0.05) for the cognitive and motor domains at 6 months, respectively. For PAE, 16 CpG sites and 1 CpG site were significant mediators for the motor and adaptive behavior domains at 6 months, respectively. Several of the associated genes, including MAD1L1, CAMTA1, and ALDH1A2 have been implicated in neurodevelopmental delay, suggesting that differential DNAm may partly explain the biological mechanisms underlying the relationship between PTE and PAE and child neurodevelopment.
Collapse
Affiliation(s)
- Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dakotah Feil
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anna Kilanowski
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Catherine J Wedderburn
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Kirsten A Donald
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Groenewold NA, Wedderburn CJ, Pellowski JA, Fouché JP, Michalak L, Roos A, Woods RP, Narr KL, Zar HJ, Donald KA, Stein DJ. Subcortical brain volumes in young infants exposed to antenatal maternal depression: Findings from a South African birth cohort. Neuroimage Clin 2022; 36:103206. [PMID: 36162238 PMCID: PMC9668606 DOI: 10.1016/j.nicl.2022.103206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Several studies have reported enlarged amygdala and smaller hippocampus volumes in children and adolescents exposed to maternal depression. It is unclear whether similar volumetric differences are detectable in the infants' first weeks of life, following exposure in utero. We investigated subcortical volumes in 2-to-6 week old infants exposed to antenatal maternal depression (AMD) from a South African birth cohort. METHODS AMD was measured with the Beck Depression Inventory 2nd edition (BDI-II) at 28-32 weeks gestation. T2-weighted structural images were acquired during natural sleep on a 3T Siemens Allegra scanner. Subcortical regions were segmented based on the University of North Carolina neonatal brain atlas. Volumetric estimates were compared between AMD-exposed (BDI-II ⩾ 20) and unexposed (BDI-II < 14) infants, adjusted for age, sex and total intracranial volume using analysis of covariance. RESULTS Larger volumes were observed in AMD-exposed (N = 49) compared to unexposed infants (N = 75) for the right amygdala (1.93% difference, p = 0.039) and bilateral caudate nucleus (left: 5.79% difference, p = 0.001; right: 6.09% difference, p < 0.001). A significant AMD-by-sex interaction was found for the hippocampus (left: F(1,118) = 4.80, p = 0.030; right: F(1,118) = 5.16, p = 0.025), reflecting greater volume in AMD-exposed females (left: 5.09% difference, p = 0.001, right: 3.54% difference, p = 0.010), but not males. CONCLUSIONS Volumetric differences in subcortical regions can be detected in AMD-exposed infants soon after birth, suggesting structural changes may occur in utero. Female infants might exhibit volumetric changes that are not observed in male infants. The potential mechanisms underlying these early volumetric differences, and their significance for long-term child mental health, require further investigation.
Collapse
Affiliation(s)
- Nynke A Groenewold
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SA-MRC) Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa; Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa; The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; The Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jennifer A Pellowski
- Department of Behavioral and Social Sciences and International Health Institute, Brown University School of Public Health, Providence, RI, USA; Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouché
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa; The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Liza Michalak
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; The Neuroscience Institute, University of Cape Town, Cape Town, South Africa; SA-MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Roger P Woods
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SA-MRC) Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa; The Neuroscience Institute, University of Cape Town, Cape Town, South Africa; SA-MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Ondersma SJ, Todd L, Jablonski S, Ahuja C, Gilstad-Hayden K, Goyert G, Loree A, Heffner J, Yonkers KA. Online randomised factorial trial of electronic Screening and Brief Intervention for alcohol use in pregnancy: a study protocol. BMJ Open 2022; 12:e062735. [PMID: 35922101 PMCID: PMC9352990 DOI: 10.1136/bmjopen-2022-062735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Approximately 1 in 7 pregnant women in the USA report past-month alcohol use. Strong evidence connects prenatal alcohol exposure with a range of adverse perinatal outcomes, including the spectrum of conditions known as fetal alcohol spectrum disorders. Screening and Brief Intervention (SBI) has been recommended for pregnant women but has proven difficult to implement. This study will test the efficacy of single-session technology-delivered SBI (electronic SBI) for alcohol use in pregnancy, while simultaneously evaluating the possible additional benefit of tailored text messages and/or booster sessions in a 3×2 factorial trial. METHOD AND ANALYSIS This full factorial trial will use online advertising and clinic-based flyers to recruit pregnant women meeting criteria for unhealthy alcohol use, and randomly assign them to one of six conditions crossing three levels of brief intervention (none, single 120-minute session and single session plus two 5-minute boosters) with two levels of tailored text messaging (none vs twice weekly messages). The primary analysis will test for dose-response effects of the brief intervention on alcohol abstinence, defined as no self-report of alcohol use in the 90 days prior to 34 weeks' gestation, and negative results for ethyl glucuronide analysis of fingernail samples. Secondary analyses will examine main and interaction effects of tailored text messaging as well as intervention effects on birth outcomes. ETHICS AND DISSEMINATION Ethical approval was provided by the Michigan State University Biomedical and Health Institutional Review Board (STUDY00005298). Results will be presented at conferences and community forums, in addition to being published in a peer-reviewed journal. Intervention content demonstrating sufficient efficacy and safety will be made publicly available. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT04332172).
Collapse
Affiliation(s)
- Steven J Ondersma
- Division of Public Health and Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Flint, Michigan, USA
| | - Lisa Todd
- Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Samantha Jablonski
- Health Care Value-Business Analytics Division, Blue Cross Blue Shield of Michigan, Detroit, Michigan, USA
| | - Chaarushi Ahuja
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale-New Haven Hospital, New Haven, Connecticut, USA
| | | | - Gregory Goyert
- Division of Maternal Fetal Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Amy Loree
- Center for Health Policy & Health Services Research, Henry Ford Health System, Detroit, Michigan, USA
| | - Jaimee Heffner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kimberly A Yonkers
- Departments of Psychiatry and Obstetrics & Gynecology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
12
|
Subramoney S, Joshi SH, Wedderburn CJ, Lee D, Roos A, Woods RP, Zar HJ, Narr K, Stein DJ, Donald KA. The impact of prenatal alcohol exposure on gray matter volume and cortical surface area of 2 to 3-year-old children in a South African birth cohort. Alcohol Clin Exp Res 2022; 46:1233-1247. [PMID: 35581528 PMCID: PMC9357164 DOI: 10.1111/acer.14873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND There is a growing literature that demonstrates the effects of prenatal alcohol exposure (PAE) on brain development in school-aged children. Less is known, however, on how PAE impacts the brain early in life. We investigated the effects of PAE and child sex on subcortical gray matter volume, cortical surface area (CSA), cortical volume (CV), and cortical thickness (CT) in children aged 2 to 3 years. METHODS The sample was recruited as a nested cross-sectional substudy of the Drakenstein Child Health Study. Images from T1-weighted magnetic resonance imaging were acquired on 47 alcohol-exposed and 124 control children (i.e., with no or minimal alcohol exposure), aged 2 to 3 years, some of whom were scanned as neonates. Brain images were processed through automated processing pipelines using FreeSurfer version 6.0. Subcortical and a priori selected cortical regions of interest were compared. RESULTS Subcortical volume analyses revealed a PAE by child sex interaction for bilateral putamen volumes (Left: p = 0.02; Right: p = 0.01). There was no PAE by child sex interaction effect on CSA, CV, and CT. Analyses revealed an impact of PAE on CSA (p = 0.04) and CV (p = 0.04), but not CT in this age group. Of note, the inferior parietal gyrus CSA was significantly smaller in children with PAE compared to control children. CONCLUSIONS Findings from this subgroup scanned at age 2 to 3 years build on previously described subcortical volume differences in neonates from this cohort. Findings suggest that PAE persistently affects gray matter development through the critical early years of life. The detectable influence of PAE on brain structure at this early age further highlights the importance of brain imaging studies on the impact of PAE on the young developing brain.
Collapse
Affiliation(s)
- Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
| | - Shantanu H. Joshi
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Catherine J. Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Department of Clinical ResearchLondon School of Hygiene and Tropical MedicineLondonUK
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - David Lee
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityStellenboschSouth Africa
| | - Roger P. Woods
- Departments of Neurology, Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Unit on Child & Adolescent Health, South African Medical Research Council (SAMRC)University of Cape TownCape TownSouth Africa
| | - Katherine L. Narr
- Departments of Neurology, Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dan J. Stein
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- SU/UCT MRC Unit on Risk and Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
13
|
Solar KG, Treit S, Beaulieu C. High-resolution diffusion tensor imaging identifies hippocampal volume loss without diffusion changes in individuals with prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:1204-1219. [PMID: 35567310 DOI: 10.1111/acer.14857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies of prenatal alcohol exposure (PAE) commonly report reduced hippocampal volumes, which animal models suggest may result from microstructural changes that include cell loss and altered myelination. Diffusion tensor imaging (DTI) is sensitive to microstructural changes but has not yet been used to study the hippocampus in PAE. METHODS Thirty-six healthy controls (19 females; 8 to 24 years) and 19 participants with PAE (8 females; 8 to 23 years) underwent high-resolution (1 mm isotropic) DTI, anatomical T1-weighted imaging, and cognitive testing. Whole-hippocampus, head, body, and tail subregions were manually segmented to yield DTI metrics (mean, axial, and radial diffusivities-MD, AD, and RD; fractional anisotropy-FA), volumes, and qualitative assessments of hippocampal morphology and digitations. Automated segmentation of T1-weighted images was used to corroborate manual whole-hippocampus volumes. RESULTS Gross morphology and digitation counts were similar in both groups. Whole-hippocampus volumes were 18% smaller in the PAE than the control group on manually traced diffusion images, but automated T1-weighted image segmentations were not significantly different. Subregion segmentation on DTI revealed reduced volumes of the body and tail, but not the head. There were no significant differences in diffusion metrics between groups for any hippocampal region. Correlations between age and volume were not significant in either group, whereas negative correlations between age and whole-hippocampus MD/AD/RD, and head/body (but not tail) MD/AD/RD were significant in both groups. There were no significant effects of sex, group by age, or group by sex for any hippocampal metric. In controls, seven positive linear correlations were found between hippocampal volume and cognition; five of these were left lateralized and included episodic and working memory, and two were right lateralized and included working memory and processing speed. In PAE, left tail MD positively correlated with executive functioning, and right head MD negatively correlated with episodic memory. CONCLUSIONS Reductions of hippocampal volumes and altered relationships with memory suggest disrupted hippocampal development in PAE.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Treit
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Gale-Grant O, Fenn-Moltu S, França LGS, Dimitrova R, Christiaens D, Cordero-Grande L, Chew A, Falconer S, Harper N, Price AN, Hutter J, Hughes E, O'Muircheartaigh J, Rutherford M, Counsell SJ, Rueckert D, Nosarti C, Hajnal JV, McAlonan G, Arichi T, Edwards AD, Batalle D. Effects of gestational age at birth on perinatal structural brain development in healthy term-born babies. Hum Brain Mapp 2022; 43:1577-1589. [PMID: 34897872 PMCID: PMC8886657 DOI: 10.1002/hbm.25743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Infants born in early term (37-38 weeks gestation) experience slower neurodevelopment than those born at full term (40-41 weeks gestation). While this could be due to higher perinatal morbidity, gestational age at birth may also have a direct effect on the brain. Here we characterise brain volume and white matter correlates of gestational age at birth in healthy term-born neonates and their relationship to later neurodevelopmental outcome using T2 and diffusion weighted MRI acquired in the neonatal period from a cohort (n = 454) of healthy babies born at term age (>37 weeks gestation) and scanned between 1 and 41 days after birth. Images were analysed using tensor-based morphometry and tract-based spatial statistics. Neurodevelopment was assessed at age 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Infants born earlier had higher relative ventricular volume and lower relative brain volume in the deep grey matter, cerebellum and brainstem. Earlier birth was also associated with lower fractional anisotropy, higher mean, axial, and radial diffusivity in major white matter tracts. Gestational age at birth was positively associated with all Bayley-III subscales at age 18 months. Regression models predicting outcome from gestational age at birth were significantly improved after adding neuroimaging features associated with gestational age at birth. This work adds to the body of evidence of the impact of early term birth and highlights the importance of considering the effect of gestational age at birth in future neuroimaging studies including term-born babies.
Collapse
Affiliation(s)
- Oliver Gale-Grant
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Sunniva Fenn-Moltu
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Lucas G S França
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Ralica Dimitrova
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Andrew Chew
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Nicholas Harper
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Jonathan O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK.,Department of Medicine and Informatics, Technical University of Munich, Munich, Germany
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,Paediatric Neurosciences, Evelina London Children's Hospital Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Bioengineering, Imperial College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
15
|
Abstract
IMPORTANCE High levels of prenatal alcohol exposure (PAE) are associated with widespread behavioral and cognitive problems as well as structural alterations of the brain. However, it remains unclear whether low levels of PAE affect brain structure and function, and prior studies generally have not had well-matched control populations (eg, for sociodemographic variables). OBJECTIVE To compare structural brain alterations and behavioral changes in children with lower levels of PAE with those of well-matched controls with no PAE. DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study, participants were selected from the Adolescent Brain Cognitive Development study. Children with PAE were compared with controls matched for age, sex, family income, maternal educational level, and caregiver status. Neither group had prenatal exposure to other adverse substances (eg, tobacco, cannabis, illicit drugs). Data were collected from September 1, 2016, to November 15, 2018, and analyzed from October 14, 2020, to February 14, 2022. EXPOSURES Diffusion tensor imaging, resting-state functional magnetic resonance imaging (MRI), and Child Behavior Checklist (CBCL) administration. MAIN OUTCOMES AND MEASURES Fractional anisotropy (FA); mean, axial, and radial diffusivity from diffusion tensor imaging; brain functional signal variations from functional MRI; and several scores, including internalizing and externalizing behavior problems, from the CBCL. Spearman correlation coefficients between diffusion tensor imaging and functional MRI measures and the CBCL scores were calculated. RESULTS A total of 270 children were included in the analysis (mean [SD] age, 9.86 [0.46] years; 141 female [52.2%] and 129 male [47.8%]), consisting of 135 children with PAE (mean [SD] age, 9.85 [0.65] years; 73 female [54.1%] and 62 male [45.9%]) (mean exposure, 1 drink/wk) and 135 unexposed controls (mean [SD] age, 9.87 [0.04] years; 68 female [50.4%] and 67 male [49.6%]). Children with PAE had lower mean (SD) FA in white matter of the left postcentral (0.35 [0.05] vs 0.36 [0.04]; mean difference, -0.02 [95% CI, -0.03 to -0.01]), left inferior parietal (0.31 [0.07] vs 0.33 [0.06]; mean difference, -0.03 [95% CI, -0.04 to -0.01]), left planum temporale (0.26 [0.04] vs 0.28 [0.03]; mean difference, -0.02 [95% CI, -0.03 to -0.01]), left inferior occipital (0.30 [0.07] vs 0.32 [0.05]; mean difference, -0.03 [95% CI, -0.04 to -0.01]), and right middle occipital (0.30 [0.04] vs 0.31 [0.04]; mean difference, -0.01 [95% CI, -0.02 to -0.01]) areas compared with controls, and higher FA in the gray matter of the putamen (0.22 [0.03] vs 0.21 [0.02]; mean difference, 0.01 [95% CI, 0.005-0.02]). Externalizing behavior scores were higher (worse) in children with PAE than in controls (mean [SD], 45.2 [9.0] vs 42.8 [9.0]; mean difference, 2.39 [95% CI, 0.30-4.47]). Several of these regions had significant group-behavior interactions, such that the higher FA was associated with less problematic behaviors in controls (ρ range, -0.24 to -0.08) but no associations were present in the PAE group (ρ range, 0.02-0.16). CONCLUSIONS AND RELEVANCE In this cross-sectional study, children with low levels of PAE had lower FA and more behavioral problems compared with a well-matched control group. These results suggest that PAE, even in small amounts, has a measurable effect on brain structure in children.
Collapse
Affiliation(s)
- Xiangyu Long
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Joseph JJ, Mela M, Pei J. Aggressive behaviour and violence in children and adolescents with FASD: A synthesizing review. Clin Psychol Rev 2022; 94:102155. [DOI: 10.1016/j.cpr.2022.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
|
17
|
Wedderburn CJ, Groenewold NA, Roos A, Yeung S, Fouche JP, Rehman AM, Gibb DM, Narr KL, Zar HJ, Stein DJ, Donald KA. Early structural brain development in infants exposed to HIV and antiretroviral therapy in utero in a South African birth cohort. J Int AIDS Soc 2022; 25:e25863. [PMID: 35041774 PMCID: PMC8765561 DOI: 10.1002/jia2.25863] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction There is a growing population of children who are HIV‐exposed and uninfected (HEU) with the successful expansion of antiretroviral therapy (ART) use in pregnancy. Children who are HEU are at risk of delayed neurodevelopment; however, there is limited research on early brain growth and maturation. We aimed to investigate the effects of in utero exposure to HIV/ART on brain structure of infants who are HEU compared to HIV‐unexposed (HU). Methods Magnetic resonance imaging using a T2‐weighted sequence was undertaken in a subgroup of infants aged 2–6 weeks enrolled in the Drakenstein Child Health Study birth cohort, South Africa, between 2012 and 2015. Mother–child pairs received antenatal and postnatal HIV testing and ART per local guidelines. We compared subcortical and total grey matter volumes between HEU and HU groups using multivariable linear regression adjusting for infant age, sex, intracranial volume and socio‐economic variables. We further assessed associations between brain volumes with maternal CD4 cell count and ART exposure. Results One hundred forty‐six infants (40 HEU; 106 HU) with high‐resolution images were included in this analysis (mean age 3 weeks; 50.7% male). All infants who were HEU were exposed to ART (88% maternal triple ART). Infants who were HEU had smaller caudate volumes bilaterally (5.4% reduction, p < 0.05) compared to HU infants. There were no group differences in other subcortical volumes (all p > 0.2). Total grey matter volume was also reduced in infants who were HEU (2.1% reduction, p < 0.05). Exploratory analyses showed that low maternal CD4 cell count (<350 cells/mm3) was associated with decreased infant grey matter volumes. There was no relationship between timing of ART exposure and grey matter volumes. Conclusions Lower caudate and total grey matter volumes were found in infants who were HEU compared to HU in the first weeks of life, and maternal immunosuppression was associated with reduced volumes. These findings suggest that antenatal HIV exposure may impact early structural brain development and improved antenatal HIV management may have the potential to optimize neurodevelopmental outcomes of children who are HEU.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK.,The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Jean-Paul Fouche
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College London, London, UK
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,SA MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,SA MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Moore EM, Xia Y. Neurodevelopmental Trajectories Following Prenatal Alcohol Exposure. Front Hum Neurosci 2022; 15:695855. [PMID: 35058760 PMCID: PMC8763806 DOI: 10.3389/fnhum.2021.695855] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Prenatal alcohol exposure (PAE) interferes with neurodevelopment. The brain is particularly susceptible to the adverse consequences of prenatal alcohol exposure, and numerous studies have documented changes to brain anatomy and function, as well as consequences for cognition, behavior, and mental health. Studies in typically developing individuals have shown that the brain undergoes dynamic developmental processes over an individual’s lifespan. Furthermore, magnetic resonance imaging (MRI) studies in other neurodevelopmental and psychiatric disorders have shown that their developmental trajectories differ from the typical pattern. Therefore, to understand long-term clinical outcomes of fetal alcohol spectrum disorders (FASD), it is necessary to investigate changes in neurodevelopmental trajectories in this population. Here we review studies that have used MRI to evaluate changes in brain structure and function over time via cross-sectional or longitudinal methods in individuals with PAE. Research demonstrates that individuals with PAE have atypical cortical and white matter microstructural developmental trajectories through childhood and adolescence. More research is needed to understand how factors such as sex and postnatal experiences may further mediate these trajectories. Furthermore, nothing is known about the trajectories beyond young adulthood.
Collapse
|
19
|
Dufford AJ, Spann M, Scheinost D. How prenatal exposures shape the infant brain: Insights from infant neuroimaging studies. Neurosci Biobehav Rev 2021; 131:47-58. [PMID: 34536461 DOI: 10.1016/j.neubiorev.2021.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Brain development during the prenatal period is rapid and unparalleled by any other time during development. Biological systems undergoing rapid development are at higher risk for disorganizing influences. Therefore, certain prenatal exposures impact brain development, increasing risk for negative neurodevelopmental outcome. While prenatal exposures have been associated with cognitive and behavioral outcomes later in life, the underlying macroscopic brain pathways remain unclear. Here, we review magnetic resonance imaging (MRI) studies investigating the association between prenatal exposures and infant brain development focusing on prenatal exposures via maternal physical health factors, maternal mental health factors, and maternal drug and medication use. Further, we discuss the need for studies to consider multiple prenatal exposures in parallel and suggest future directions for this body of research.
Collapse
Affiliation(s)
| | - Marisa Spann
- Columbia University Irving Medical Center, 622 West 168th Street, New York, NY, 10032, USA
| | - Dustin Scheinost
- Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
20
|
Copeland A, Silver E, Korja R, Lehtola SJ, Merisaari H, Saukko E, Sinisalo S, Saunavaara J, Lähdesmäki T, Parkkola R, Nolvi S, Karlsson L, Karlsson H, Tuulari JJ. Infant and Child MRI: A Review of Scanning Procedures. Front Neurosci 2021; 15:666020. [PMID: 34321992 PMCID: PMC8311184 DOI: 10.3389/fnins.2021.666020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a safe method to examine human brain. However, a typical MR scan is very sensitive to motion, and it requires the subject to lie still during the acquisition, which is a major challenge for pediatric scans. Consequently, in a clinical setting, sedation or general anesthesia is often used. In the research setting including healthy subjects anesthetics are not recommended for ethical reasons and potential longer-term harm. Here we review the methods used to prepare a child for an MRI scan, but also on the techniques and tools used during the scanning to enable a successful scan. Additionally, we critically evaluate how studies have reported the scanning procedure and success of scanning. We searched articles based on special subject headings from PubMed and identified 86 studies using brain MRI in healthy subjects between 0 and 6 years of age. Scan preparations expectedly depended on subject's age; infants and young children were scanned asleep after feeding and swaddling and older children were scanned awake. Comparing the efficiency of different procedures was difficult because of the heterogeneous reporting of the used methods and the success rates. Based on this review, we recommend more detailed reporting of scanning procedure to help find out which are the factors affecting the success of scanning. In the long term, this could help the research field to get high quality data, but also the clinical field to reduce the use of anesthetics. Finally, we introduce the protocol used in scanning 2 to 5-week-old infants in the FinnBrain Birth Cohort Study, and tips for calming neonates during the scans.
Collapse
Affiliation(s)
- Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Satu J. Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Susanne Sinisalo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Effects of prenatal alcohol and cannabis exposure on neurodevelopmental and cognitive disabilities. HANDBOOK OF CLINICAL NEUROLOGY 2021. [PMID: 32958186 DOI: 10.1016/b978-0-444-64150-2.00028-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Substance use during pregnancy and the short- and long-term impacts of different substances on maternal, fetal, and longer-term health outcomes of individuals prenatally exposed have been the subject of much investigation. Alcohol has been recognized as harmful during pregnancy and has been clearly recognized as a neurobehavioral teratogen, and the pattern of effects has been termed fetal alcohol spectrum disorder. More recently, the effects of prenatal cannabis exposure have been vigorously explored as a priority research area following decriminalization/legalization of cannabis in Canada and the United States. As the data become more and more robust, we are learning that cannabis during pregnancy can have negative effects on maternal and fetal outcomes and on longer-term neurodevelopmental and cognitive functions.
Collapse
|
22
|
Abstract
Prenatal alcohol exposure leads to alterations in cognition, behavior and underlying brain architecture. However, prior studies have not integrated structural and functional imaging data in children with prenatal alcohol exposure. The aim of this study was to characterize disruptions in both structural and functional brain network organization after prenatal alcohol exposure in very early life. A group of 11 neonates with prenatal alcohol exposure and 14 unexposed controls were investigated using diffusion weighted structural and resting state functional magnetic resonance imaging. Covariance networks were created using graph theoretical analyses for each data set, controlling for age and sex. Group differences in global hub arrangement and regional connectivity were determined using nonparametric permutation tests. Neonates with prenatal alcohol exposure and controls exhibited similar global structural network organization. However, global functional networks of neonates with prenatal alcohol exposure comprised of temporal and limbic hubs, while hubs were more distributed in controls representing an early default mode network. On a regional level, controls showed prominent structural and functional connectivity in parietal and occipital regions. Neonates with prenatal alcohol exposure showed regionally, predominant structural and functional connectivity in several subcortical regions and occipital regions. The findings suggest early functional disruption on a global and regional level after prenatal alcohol exposure and indicate suboptimal organization of functional networks. These differences likely underlie sensory dysregulation and behavioral difficulties in prenatal alcohol exposure.
Collapse
|
23
|
Okazaki S, Otsuka I, Shinko Y, Horai T, Hirata T, Yamaki N, Sora I, Hishimoto A. Epigenetic Clock Analysis in Children With Fetal Alcohol Spectrum Disorder. Alcohol Clin Exp Res 2021; 45:329-337. [PMID: 33296097 DOI: 10.1111/acer.14532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is characterized by severe clinical impairment, considerable social burden, and high mortality and morbidity, which are due to various malformations, sepsis, and cancer. As >50% of deaths from FASD occur during the first year of life, we hypothesized that there is the acceleration of biological aging in FASD. Several recent studies have established genome-wide DNA methylation (DNAm) profiles as "epigenetic clocks" that can estimate biological aging, and FASD has been associated with differential DNAm patterns. Therefore, we tested this hypothesis using epigenetic clocks. METHODS We investigated 5 DNAm-based measures of epigenetic age (HorvathAge, HannumAge, SkinBloodAge, PhenoAge, and GrimAge) and telomere length (DNAmTL) using 4 independent publicly available DNAm datasets; 2 datasets were derived from buccal epithelium, and the other 2 datasets were derived from peripheral blood. RESULTS Compared with controls, children with FASD exhibited an acceleration of GrimAge in 1 buccal and 2 blood datasets. No significant difference was found in other DNAm ages and DNAmTL. Meta-analyses showed a significant acceleration of GrimAge in the blood samples but not in the buccal samples. CONCLUSIONS This study provides novel evidence regarding accelerated epigenetic aging in children with FASD.
Collapse
Affiliation(s)
- Satoshi Okazaki
- From, Department of Psychiatry, (SO, IO, YS, THo, THi, NY, IS, AH), Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Otsuka
- From, Department of Psychiatry, (SO, IO, YS, THo, THi, NY, IS, AH), Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Shinko
- From, Department of Psychiatry, (SO, IO, YS, THo, THi, NY, IS, AH), Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- From, Department of Psychiatry, (SO, IO, YS, THo, THi, NY, IS, AH), Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Hirata
- From, Department of Psychiatry, (SO, IO, YS, THo, THi, NY, IS, AH), Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naruhisa Yamaki
- From, Department of Psychiatry, (SO, IO, YS, THo, THi, NY, IS, AH), Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ichiro Sora
- From, Department of Psychiatry, (SO, IO, YS, THo, THi, NY, IS, AH), Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akitoyo Hishimoto
- From, Department of Psychiatry, (SO, IO, YS, THo, THi, NY, IS, AH), Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Psychiatry, (AH), Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
24
|
Bird CW, Barber MJ, Martin J, Mayfield JJ, Valenzuela CF. The mouse-equivalent of the human BDNF VAL66MET polymorphism increases dorsal hippocampal volume and does not interact with developmental ethanol exposure. Alcohol 2020; 86:17-24. [PMID: 32224221 DOI: 10.1016/j.alcohol.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
A relatively common polymorphism in the human brain-derived neurotrophic factor (BDNF) gene (Val66Met, which corresponds to Val68Met in mice) has been shown to modulate cognitive function and vulnerability to mental health disorders. This substitution impairs trafficking and activity-dependent release of BDNF. A number of studies with both humans and transgenic mice suggest that carriers of the Met allele have deficits in the structure and/or function of the hippocampal formation. Using a relatively new transgenic mouse model of this polymorphism, we recently demonstrated that it modulates the effects of developmental ethanol exposure in the hippocampus. Here, we further characterized the effect of this polymorphism on hippocampal morphology and its interaction with ethanol vapor exposure during the 2nd and 3rd trimester equivalents of human pregnancy. We found that BDNFmet/met mice have slightly larger hippocampal volumes than BDNFval/val mice. Ethanol vapor exposure during the 2nd and 3rd trimester equivalents of human pregnancy increased hippocampal volume in a single hippocampal subregion, the CA1 stratum radiatum. Ethanol exposure did not interact with BDNF genotype to affect volume in any hippocampal subregion. These results suggest that the Val66Met polymorphism does not reduce hippocampal size (i.e., it rather increases it slightly) or increase susceptibility to prenatal ethanol exposure-induced structural hippocampal damage during adulthood.
Collapse
|
25
|
McLachlan K, Zhou D, Little G, Rasmussen C, Pei J, Andrew G, Reynolds JN, Beaulieu C. Current Socioeconomic Status Correlates With Brain Volumes in Healthy Children and Adolescents but Not in Children With Prenatal Alcohol Exposure. Front Hum Neurosci 2020; 14:223. [PMID: 32714166 PMCID: PMC7344164 DOI: 10.3389/fnhum.2020.00223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
Individuals with prenatal alcohol exposure (PAE) exhibit neurological deficits associated with brain injury including smaller brain volumes. Additional risk factors such as lower socioeconomic status (SES) may also have an impact on brain development for this population. This study examined how brain volumes are related to SES in both neurotypically developing children and adolescents, and those with PAE. 3D T1-weighted MPRAGE images were acquired from 69 participants with PAE (13.0 ± 3.2 years, range 7.1–18.8 years, 49% female) and 70 neurotypical controls (12.4 ± 2.9 years, range 7.0–18.5 years, 60% female) from four scanning sites in Canada. SES scores calculated using Hollingshead’s Four-Factor Index of Social Status from current caregiver placement were not significantly different between groups, though more children with PAE had lower SES scores compared to controls. Psychometric data comprised 14 cognitive measures, including executive functioning, attention and working memory, memory, math/numerical ability, and word reading. All cognitive scores were significantly worse in children with PAE compared to controls, though SES was not correlated with cognitive scores in either group after correction for multiple comparisons. All 13 brain volumes were smaller in children with PAE compared to children in the control group. Higher SES was associated with larger hippocampus and amygdala volumes in controls, but there were no such associations in children with PAE. Direct evaluation of the interaction between SES and diagnostic group did not show a significant differential impact of SES on these structures. These findings support previous links between SES and brain volumes in neurotypically developing children, but the lack of such a relationship with SES in children with PAE may be due to the markedly smaller brain volumes resulting from the initial brain injury and postpartum brain development, regardless of later SES.
Collapse
Affiliation(s)
- Kaitlyn McLachlan
- Department of Psychology, College of Social & Applied Human Sciences, University of Guelph, Guelph, ON, Canada
| | - Dongming Zhou
- Department of Zoology, Kunming Medical University, Kunming, Yunnan, China.,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Graham Little
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Carmen Rasmussen
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jacqueline Pei
- Department of Educational Psychology, Faculty of Education, University of Alberta, Edmonton, AB, Canada
| | - Gail Andrew
- Glenrose Rehabilitation Hospital PAE Clinic, Edmonton, AB, Canada
| | - James N Reynolds
- Department of Biomedical and Molecular Sciences, School of Medicine, Faculty of Health Sciences, Queens University, Kingston, ON, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Madarnas C, Villalba NM, Soriano D, Brusco A. Anxious Behavior of Adult CD1 Mice Perinatally Exposed to Low Concentrations of Ethanol Correlates With Morphological Changes in Cingulate Cortex and Amygdala. Front Behav Neurosci 2020; 14:92. [PMID: 32636737 PMCID: PMC7319189 DOI: 10.3389/fnbeh.2020.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/14/2020] [Indexed: 01/12/2023] Open
Abstract
Perinatal ethanol (EtOH) exposure is associated with high incidence of behavioral disorders such as depression and anxiety. The cerebral areas related with these consequences involve the corticolimbic system, in particular the prefrontal cortex, hippocampus, amygdala, and cingulate cortex, although the latter has not been thoroughly studied yet. Different animal models of prenatal or perinatal EtOH exposure have reported morphofunctional alterations in the central nervous system, which could explain behavioral disorders along life; these results focus on youth and adolescents and are still controversial. In the light of these inconclusive results, the aim of this work was to analyze adult behavior in CD1 mice perinatally exposed to low concentrations of EtOH (PEE) during gestation and lactation, and describe the morphology of the cingulate cortex and amygdala with a view to establishing structure/function/behavior correlations. Primiparous CD1 female mice were exposed to EtOH 6% v/v for 20 days prior to mating and continued drinking EtOH 6% v/v during pregnancy and lactation. After weaning, male pups were fed food and water ad libitum until 77 days of age, when behavioral and morphological studies were performed. Mouse behavior was analyzed through light–dark box and open field tests. Parameters related to anxious behavior and locomotor activity revealed anxiogenic behavior in PEE mice. After behavioral studies, mice were perfused and neurons, axons, serotonin transporter, 5HT, CB1 receptor (CB1R) and 5HT1A receptor (5HT1AR) were studied by immunofluorescence and immunohistochemistry in brain sections containing cingulate cortex and amygdala. Cingulate cortex and amygdala cytoarchitecture were preserved in adult PEE mice, although a smaller number of neurons was detected in the amygdala. Cingulate cortex axons demonstrated disorganized radial distribution and reduced area. Serotonergic and endocannabinoid systems, both involved in anxious behavior, showed differential expression. Serotonergic afferents were lower in both brain areas of PEE animals, while 5HT1AR expression was lower in the cingulate cortex and higher in the amygdala. The expression of CB1R was lower only in the amygdala. In sum, EtOH exposure during early brain development induces morphological changes in structures of the limbic system and its neuromodulation, which persist into adulthood and may be responsible for anxious behavior.
Collapse
Affiliation(s)
- Catalina Madarnas
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Nerina Mariel Villalba
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Delia Soriano
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Zar HJ, Pellowski JA, Cohen S, Barnett W, Vanker A, Koen N, Stein DJ. Maternal health and birth outcomes in a South African birth cohort study. PLoS One 2019; 14:e0222399. [PMID: 31751344 PMCID: PMC6874071 DOI: 10.1371/journal.pone.0222399] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Background Maternal physical and mental health during pregnancy are key determinants of birth outcomes. There are relatively few prospective data that integrate physical and mental maternal health measures with birth outcomes in low- and middle-income country settings. We aimed to investigate maternal health during pregnancy and the impact on birth outcomes in an African birth cohort study, the Drakenstein Child Health Study. Methods Pregnant women attending 2 public health clinics, Mbekweni (serving a predominantly black African population) and TC Newman (predominantly mixed ancestry) in a poor peri-urban area of South Africa were enrolled in their second trimester and followed through childbirth. All births occurred at a single public hospital. Maternal sociodemographic, physical and psychosocial characteristics were comprehensively assessed. Multivariable linear regression models were used to explore associations between maternal health and birth outcomes. Results Over 3 years, 1137 women (median age 25.8 years; 21% HIV-infected) gave birth to 1143 live babies. Most pregnancies were uncomplicated but gestational diabetes (1%), anaemia (22%) or pre-eclampsia (2%) occurred in a minority. Most households (87%) had a monthly income of less than USD 350; only 27% of moms were employed and food insecurity was common (37%). Most babies (80%) were born by vaginal delivery at full term; 17% were preterm, predominantly late preterm. Only 74 (7%) of babies required hospitalisation immediately after birth and only 2 babies were HIV-infected. Food insecurity, socioeconomic status, pregnancy-associated hypertension, pre-eclampsia, gestational diabetes and mixed ancestry were associated with lower infant gestational age while maternal BMI at enrolment was associated with higher infant gestational age. Primigravida or alcohol use during pregnancy were negatively associated with infant birth weight and head circumference. Maternal BMI at enrolment was positively associated with birth weight and gestational diabetes was positively associated with birth weight and head circumference for gestational age. Smoking during pregnancy was associated with lower infant birth weight. Conclusion Several modifiable risk factors including food insecurity, smoking, and alcohol consumption during pregnancy were identified as associated with negative birth outcomes, all of which are amenable to public health interventions. Interventions to address key exposures influencing birth outcomes are needed to improve maternal and child health in low-middle income country settings.
Collapse
Affiliation(s)
- Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Jennifer A. Pellowski
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island, United States of America
| | - Sophie Cohen
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Whitney Barnett
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nastassja Koen
- Department of Psychiatry and Mental Health and SA-MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health and SA-MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Little G, Beaulieu C. Multivariate models of brain volume for identification of children and adolescents with fetal alcohol spectrum disorder. Hum Brain Mapp 2019; 41:1181-1194. [PMID: 31737980 PMCID: PMC7267984 DOI: 10.1002/hbm.24867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/17/2023] Open
Abstract
Magnetic resonance imaging (MRI) studies of fetal alcohol spectrum disorder (FASD) have shown reductions of brain volume associated with prenatal exposure to alcohol. Previous studies consider regional brain volumes independently but ignore potential relationships across numerous structures. This study aims to (a) identify a multivariate model based on regional brain volume that discriminates children/adolescents with FASD versus healthy controls, and (b) determine if FASD classification performance can be increased by building classification models separately for each sex. Three‐dimensional T1‐weighted MRI from two independent childhood/adolescent datasets were used for training (79 FASD, aged 5.7–18.9 years, 35 males; 81 controls, aged 5.8–18.5 years, 32 males) and testing (67 FASD, aged 6.0–19.6 years, 38 males; 74 controls, aged 5.2–19.5 years, 42 males) a classification model. Using FreeSurfer, 87 regional brain volumes were extracted for each subject and were used as input into a support vector machine generating a classification model from the training data. The model performed moderately well on the test data with accuracy 77%, sensitivity 64%, and specificity 88%. Regions that contributed heavily to prediction in this model included temporal lobe and subcortical gray matter. Further investigation of two separate models for males and females showed slightly decreased accuracy compared to the model including all subjects (male accuracy 70%; female accuracy 67%), but had different regional contributions suggesting sex differences. This work demonstrates the potential of multivariate analysis of brain volumes for discriminating children/adolescents with FASD and provides indication of the most affected regions.
Collapse
Affiliation(s)
- Graham Little
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Heroux NA, Horgan CJ, Rosen JB, Stanton ME. Cholinergic rescue of neurocognitive insult following third-trimester equivalent alcohol exposure in rats. Neurobiol Learn Mem 2019; 163:107030. [PMID: 31185278 PMCID: PMC6689250 DOI: 10.1016/j.nlm.2019.107030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 12/28/2022]
Abstract
Neonatal ethanol exposure during the third trimester equivalent of human pregnancy in the rat significantly impairs hippocampal and prefrontal neurobehavioral functioning. Postnatal day [PD] 4-9 ethanol exposure in rats disrupts long-term context memory formation, resulting in abolished post-shock and retention test freezing in a variant of contextual fear conditioning called the Context Preexposure Facilitation Effect (CPFE). This behavioral impairment is accompanied by disrupted medial prefrontal, but not dorsal hippocampal expression of the immediate early genes (IEGs) c-Fos, Arc, Egr-1, and Npas4 (Heroux, Robinson-Drummer, Kawan, Rosen, & Stanton, 2019). The current experiment examined if systemic administration of the acetylcholinesterase inhibitor physostigmine (PHY) prior to context learning would rescue prefrontal IEG expression and freezing in the CPFE. From PD4-9, Long-Evans rats received oral intubation of ethanol (EtOH; 5.25 g/kg/day) or sham-intubation (SI). Rats received a systemic injection of saline (SAL) or PHY (0.01 mg/kg) prior to all three phases (Experiment 1) or just context exposure (Experiment 2) in the CPFE from PD31-33. A subset of rats were sacrificed 30 min after context learning to assay changes in IEG expression in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and ventral hippocampus (vHPC). Administration of PHY prior to all three phases or just context learning rescued both post-shock and retention test freezing in the CPFE in EtOH rats without altering performance in SI rats. EtOH-SAL rats had significantly reduced mPFC but not dHPC expression of c-Fos, Arc, Egr-1, and Npas4. EtOH-PHY treatment rescued mPFC expression of c-Fos in ethanol-exposed rats and increased Arc and Npas4 regardless of dosing condition. While there was no effect of PHY on dHPC or vHPC expression of Arc, Egr-1, or Npas4, this treatment significantly boosted hippocampal expression of c-Fos regardless of ethanol treatment. These findings implicate impaired cholinergic and prefrontal function in cognitive deficits arising from 3rd-trimester equivalent alcohol exposure.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - Colin J Horgan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
30
|
Risk and protective factors for child development: An observational South African birth cohort. PLoS Med 2019; 16:e1002920. [PMID: 31560687 PMCID: PMC6764658 DOI: 10.1371/journal.pmed.1002920] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Approximately 250 million (43%) children under the age of 5 years in low- and middle-income countries (LMICs) are failing to meet their developmental potential. Risk factors are recognised to contribute to this loss of human potential. Expanding understanding of the risks that lead to poor outcomes and which protective factors contribute to resilience in children may be critical to improving disparities. METHODS AND FINDINGS The Drakenstein Child Health Study is a population-based birth cohort in the Western Cape, South Africa. Pregnant women were enrolled between 20 and 28 weeks' gestation from two community clinics from 2012 to 2015; sociodemographic and psychosocial data were collected antenatally. Mothers and children were followed through birth until 2 years of age. Developmental assessments were conducted by trained assessors blinded to background, using the Bayley-III Scales of Infant and Toddler Development (BSID-III), validated for use in South Africa, at 24 months of age. The study assessed all available children at 24 months; however, some children were not able to attend, because of loss to follow-up or unavailability of a caregiver or child at the correct age. Of 1,143 live births, 1,002 were in follow-up at 24 months, and a total of 734 children (73%) had developmental assessments, of which 354 (48.2%) were girls. This sample was characterised by low household employment (n = 183; 24.9%) and household income (n = 287; 39.1% earning <R1,000 per month), and high prevalence of maternal psychosocial risk factors including alcohol use in pregnancy (n = 95; 14.5%), smoking (n = 241; 34.7%), depression (n = 156; 23.7%), lifetime intimate partner violence (n = 310; 47.3%), and history of maternal childhood trauma (n = 228; 34.7%). A high proportion of children were categorised as delayed (defined by scoring < -1 standard deviation below the mean scaled score calculated using the BSID-III norms from a United States population) in different domains (369 [50.5%] cognition, 402 [55.6%] receptive language, 389 [55.4%] expressive language, 169 [23.2%] fine motor, and 267 [38.4%] gross motor). Four hundred five (55.3%) children had >1 domain affected, and 75 (10.2%) had delay in all domains. Bivariate and multivariable analyses revealed several factors that were associated with developmental outcomes. These included protective factors (maternal education, higher birth weight, and socioeconomic status) and risk factors (maternal anaemia in pregnancy, depression or lifetime intimate partner violence, and maternal HIV infection). Boys consistently performed worse than girls (in cognition [β = -0.74; 95% CI -1.46 to -0.03, p = 0.042], receptive language [β = -1.10; 95% CI -1.70 to -0.49, p < 0.001], expressive language [β = -1.65; 95% CI -2.46 to -0.84, p < 0.001], and fine motor [β = -0.70; 95% CI -1.20 to -0.20, p = 0.006] scales). There was evidence that child sex interacted with risk and protective factors including birth weight, maternal anaemia in pregnancy, and socioeconomic factors. Important limitations of the study include attrition of sample from birth to assessment age and missing data in some exposure areas from those assessed. CONCLUSIONS This study provides reliable developmental data from a sub-Saharan African setting in a well-characterised sample of mother-child dyads. Our findings highlight not only the important protective effects of maternal education, birth weight, and socioeconomic status for developmental outcomes but also sex differences in developmental outcomes and key risk and protective factors for each group.
Collapse
|
31
|
Raineki C, Morgan EJ, Ellis L, Weinberg J. Glucocorticoid receptor expression in the stress-limbic circuitry is differentially affected by prenatal alcohol exposure and adolescent stress. Brain Res 2019; 1718:242-251. [PMID: 31102593 PMCID: PMC6579044 DOI: 10.1016/j.brainres.2019.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The dense expression of glucocorticoid receptors (GR) within the amygdala, medial prefrontal cortex (mPFC) and paraventricular nucleus of hypothalamus (PVN) mediates many aspects of emotional and stress regulation. Importantly, both prenatal alcohol exposure (PAE) and adolescent stress are known to induce emotional and stress dysregulation. Little is known, however, about how PAE and/or adolescent stress may alter the expression of GR in the amygdala, mPFC, and PVN. To fill this gap, we exposed PAE and control adolescent male and female rats to chronic mild stress (CMS) and assessed GR mRNA expression in the amygdala, mPFC, and PVN immediately following stress or in adulthood. We found that the effects of PAE on GR expression were more prevalent in the amygdala, while effects of adolescent stress on GR expression were more prevalent in the mPFC. Moreover, PAE effects in the amygdala were more pronounced during adolescence and adolescent stress effects in the mPFC were more pronounced in adulthood. GR expression in the PVN was affected by both PAE and adolescent stress. Finally, PAE and/or adolescent stress effects were distinct between males and females. Together, these results suggest that PAE and adolescent CMS induce dynamic alterations in GR expression in the amygdala, mPFC, and PVN, which manifest differently depending on the brain area, age, and sex of the animal. Additionally, these data indicate that PAE-induced hyperresponsiveness to stress and increased vulnerability to mental health problems may be mediated by different neural mechanisms depending on the sex and age of the animal.
Collapse
Affiliation(s)
- Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - Erin J Morgan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Linda Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Pagnozzi AM, Fripp J, Rose SE. Quantifying deep grey matter atrophy using automated segmentation approaches: A systematic review of structural MRI studies. Neuroimage 2019; 201:116018. [PMID: 31319182 DOI: 10.1016/j.neuroimage.2019.116018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
The deep grey matter (DGM) nuclei of the brain play a crucial role in learning, behaviour, cognition, movement and memory. Although automated segmentation strategies can provide insight into the impact of multiple neurological conditions affecting these structures, such as Multiple Sclerosis (MS), Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD) and Cerebral Palsy (CP), there are a number of technical challenges limiting an accurate automated segmentation of the DGM. Namely, the insufficient contrast of T1 sequences to completely identify the boundaries of these structures, as well as the presence of iso-intense white matter lesions or extensive tissue loss caused by brain injury. Therefore in this systematic review, 269 eligible studies were analysed and compared to determine the optimal approaches for addressing these technical challenges. The automated approaches used among the reviewed studies fall into three broad categories, atlas-based approaches focusing on the accurate alignment of atlas priors, algorithmic approaches which utilise intensity information to a greater extent, and learning-based approaches that require an annotated training set. Studies that utilise freely available software packages such as FIRST, FreeSurfer and LesionTOADS were also eligible, and their performance compared. Overall, deep learning approaches achieved the best overall performance, however these strategies are currently hampered by the lack of large-scale annotated data. Improving model generalisability to new datasets could be achieved in future studies with data augmentation and transfer learning. Multi-atlas approaches provided the second-best performance overall, and may be utilised to construct a "silver standard" annotated training set for deep learning. To address the technical challenges, providing robustness to injury can be improved by using multiple channels, highly elastic diffeomorphic transformations such as LDDMM, and by following atlas-based approaches with an intensity driven refinement of the segmentation, which has been done with the Expectation Maximisation (EM) and level sets methods. Accounting for potential lesions should be achieved with a separate lesion segmentation approach, as in LesionTOADS. Finally, to address the issue of limited contrast, R2*, T2* and QSM sequences could be used to better highlight the DGM due to its higher iron content. Future studies could look to additionally acquire these sequences by retaining the phase information from standard structural scans, or alternatively acquiring these sequences for only a training set, allowing models to learn the "improved" segmentation from T1-sequences alone.
Collapse
Affiliation(s)
- Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia.
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Stephen E Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|
33
|
Garrison L, Morley S, Chambers CD, Bakhireva LN. Forty Years of Assessing Neurodevelopmental and Behavioral Effects of Prenatal Alcohol Exposure in Infants: What Have We Learned? Alcohol Clin Exp Res 2019; 43:1632-1642. [PMID: 31206743 DOI: 10.1111/acer.14127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
It has been known for over 4 decades that prenatal alcohol exposure (PAE) can adversely affect neurodevelopment and behavior (NDB). Yet, early detection of altered NDB due to PAE continues to present a major clinical challenge. Identification of altered NDB in the first 2 years of life, before higher-order cognitive processes develop, invites early interventions for affected children to improve long-term outcomes. Studies published in English from January of 1980 to July of 2018 were identified in PubMed/MEDLINE. The review focused on prospective birth cohort studies which used standardized NDB assessments in children up to 2 years of age, wherein PAE was the main exposure and NDB was the main outcome. NDB was categorized into the domains of neurocognitive, adaptive, and self-regulation based on the 2016 Updated Clinical Guidelines for Diagnosing fetal alcohol spectrum disorder. An initial search resulted in 1,867 articles for which we reviewed abstracts; 114 were selected for full-text review; and 3 additional abstracts were identified through review of references in eligible publications. Thirty-one publications met criteria and were included: of these, 24 reported neurocognitive outcomes, 24 reported adaptive behavior outcomes, and 12 reported outcomes in the domain of self-regulation. Although self-regulation was assessed in the fewest number of studies, 8/12 (75%) reported PAE-associated deficits. In contrast, results were mixed for the other 2 domains: 13/24 (54%) of the selected studies that included neurocognitive outcomes showed poorer performance following PAE, and 8/24 (33%) studies that assessed adaptive functioning found significant differences between PAE and comparison infants. There is considerable evidence to support the value of early-life assessments of infant NDB when PAE is known or suspected. More studies focusing on infant self-regulation, in particular, are needed to determine the utility of early evaluation of this critical developmental domain in infants with PAE.
Collapse
Affiliation(s)
- Laura Garrison
- Department of Pharmacy Practice and Administrative Sciences, Substance Use Research and Education Center, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| | - Sarah Morley
- Health Sciences Library and Informatics Center, University of New Mexico, Albuquerque, New Mexico
| | - Christina D Chambers
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Ludmila N Bakhireva
- Department of Pharmacy Practice and Administrative Sciences, Substance Use Research and Education Center, University of New Mexico College of Pharmacy, Albuquerque, New Mexico.,Department of Family and Community Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
34
|
Mattson SN, Bernes GA, Doyle LR. Fetal Alcohol Spectrum Disorders: A Review of the Neurobehavioral Deficits Associated With Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:1046-1062. [PMID: 30964197 DOI: 10.1111/acer.14040] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
In utero alcohol exposure can disrupt the development of the fetal brain and result in a wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum disorders (FASD). This paper provides a comprehensive review of the cognitive and behavioral outcomes of prenatal alcohol exposure, including domains of general intelligence, executive functioning, language development, learning and memory, adaptive functioning, academic performance, and concurrent psychopathology. In addition, the current status of the neurobehavioral profile of FASD and its potential as a diagnostic tool will be discussed.
Collapse
Affiliation(s)
- Sarah N Mattson
- Center for Behavioral Teratology and Department of Psychology, San Diego State University, San Diego, California
| | - Gemma A Bernes
- Center for Behavioral Teratology and Department of Psychology, San Diego State University, San Diego, California
| | - Lauren R Doyle
- Center for Behavioral Teratology and Department of Psychology, San Diego State University, San Diego, California
| |
Collapse
|
35
|
Pulli EP, Kumpulainen V, Kasurinen JH, Korja R, Merisaari H, Karlsson L, Parkkola R, Saunavaara J, Lähdesmäki T, Scheinin NM, Karlsson H, Tuulari JJ. Prenatal exposures and infant brain: Review of magnetic resonance imaging studies and a population description analysis. Hum Brain Mapp 2018; 40:1987-2000. [PMID: 30451332 DOI: 10.1002/hbm.24480] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Brain development is most rapid during the fetal period and the first years of life. This process can be affected by many in utero factors, such as chemical exposures and maternal health characteristics. The goal of this review is twofold: to review the most recent findings on the effects of these prenatal factors on the developing brain and to qualitatively assess how those factors were generally reported in studies on infants up to 2 years of age. To capture the latest findings in the field, we searched articles from PubMed 2012 onward with search terms referring to magnetic resonance imaging (MRI), brain development, and infancy. We identified 19 MRI studies focusing on the effects of prenatal environment and summarized them to highlight the recent advances in the field. We assessed population descriptions in a representative sample of 67 studies and conclude that prenatal factors that have been shown to affect brain metrics are not generally reported comprehensively. Based on our findings, we propose some improvements for population descriptions to account for plausible confounders and in time enable reliable meta-analyses to be performed. This could help the pediatric neuroimaging field move toward more reliable identification of biomarkers for developmental outcomes and to better decipher the nuances of normal and abnormal brain development.
Collapse
Affiliation(s)
- Elmo P Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Venla Kumpulainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jussi H Kasurinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Future Technologies, University of Turku, Turku, Finland.,Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Child Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
| |
Collapse
|
36
|
Neonatal ethanol exposure impairs long-term context memory formation and prefrontal immediate early gene expression in adolescent rats. Behav Brain Res 2018; 359:386-395. [PMID: 30447241 DOI: 10.1016/j.bbr.2018.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022]
Abstract
Fetal alcohol exposure leads to severe disruptions in learning and memory involving the hippocampus and prefrontal cortex in humans. Animal model research on FASD has documented impairment of hippocampal neuroanatomy and function but animal studies of cognition involving the prefrontal cortex are sparse. We have found that a variant of contextual fear conditioning in which both the hippocampus and prefrontal cortex is required, the Context Preexposure Facilitation Effect (CPFE), is particularly sensitive to neurobehavioral disruption caused by neonatal ethanol exposure during the third trimester equivalent of human pregnancy in the rat (i.e., PD4-9). In the CPFE, learning about the context, acquiring a context-shock association, and retrieving contextual fear are temporally separated across three days. The current study asked whether neonatal alcohol exposure impairs context learning, consolidation, or retrieval and examined prefrontal and hippocampal molecular signaling as correlates of this impairment. Long-Evans rats that received oral intubation of ethanol (AE; 5.25 g/kg/day, split into two doses) or underwent sham-intubation (SI) from PND4-9 were tested on the CPFE on PD31-33. Extending our previous reports, ethanol abolished both post-shock and retention test freezing in the CPFE. Assays (qPCR) of immediate early gene expression revealed that ethanol disrupted prefrontal but not hippocampal expression of c-Fos, Arc, Egr-1, and Npas4 during context learning. Finally, ethanol-exposed animals were unimpaired in a standard contextual fear conditioning procedure in which learning about the context and acquiring a context-shock association occurs concurrently. These findings implicate impaired prefrontal function in cognitive deficits arising from 3rd-trimester equivalent alcohol exposure in the rat.
Collapse
|
37
|
Self-medication practice in pregnant women from central Mexico. Saudi Pharm J 2018; 26:886-890. [PMID: 30202232 PMCID: PMC6128711 DOI: 10.1016/j.jsps.2018.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/14/2018] [Indexed: 12/13/2022] Open
Abstract
Self-medication during pregnancy represents a serious threat for mother and child health. The objective of this study was to evaluate the prevalence and the factors associated with self-medication among Mexican women living in the central region of Mexico. This is a descriptive interview-study of 1798 pregnant women or women who were pregnant no more than 3 years ago, when the interview was carried out. Data analysis was carried out with chi-square analysis and odds ratio. The prevalence of self-medication (allopathic drugs, medicinal plants, and other products, including vitamins, food supplements, among others) was 21.9%. The factors associated (p < 0.05) with self-medication were: higher education (college and postgraduate), smoking, and consumption of alcohol. Smoking was the strongest factor (OR: 2.536; 1.46–4.42) associated to self-medication during pregnancy, followed by consumption of alcohol (OR: 2.06; 1.38–3.08), and higher education (OR: 1.607; 1.18–2.19). Medicinal plant consumption was associated with nausea, constipation, migraine, and cold (p < 0.05), whereas he self-medication of allopathy was associated with gastritis and migraine (p < 0.05). Self-medication was influenced mainly by a relative or friend, who recommended the use of herbal medicine/allopathic medication. Two of the most common medicinal plants (arnica and ruda) here informed are reported to induce abortion or toxicity during pregnancy. The findings showed that self-medication (medicinal plants and allopathic medication) is a common practice among pregnant women from central Mexico. Adequate counselling of pregnant women by healthcare professionals about the potential risks of self-medication with herbal medicine and allopathic drugs during pregnancy is strongly warranted.
Collapse
|
38
|
Raineki C, Ellis L, Weinberg J. Impact of adolescent stress on the expression of stress-related receptors in the hippocampus of animals exposed to alcohol prenatally. Hippocampus 2018; 28:201-216. [PMID: 29251811 DOI: 10.1002/hipo.22823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 12/22/2022]
Abstract
Many functions of the hippocampus are affected by prenatal alcohol exposure (PAE). In particular, dysregulation of the stress response is especially important because individuals with PAE carry increased risks for exposure to stressful environments throughout life. Little is known, though, about how adolescent stress in the context of PAE-related stress system dysregulation may further alter hippocampal development. Here, we investigate the short- and long-term effects of adolescent chronic mild stress (CMS) on mRNA expression of stress-related mineralocorticoid (MR), glucocorticoid (GR), and type 1 CRH (CRHR1) receptors in the dorsal and ventral hippocampal formation of PAE and control rats. Our results indicate that PAE affects the expression of stress-related receptors in the hippocampus; however, PAE effects were more prominent during adolescence, as MR and CRHR1 mRNA expression were altered in both male and female PAE animals, with GR mRNA expression alterations observed only in PAE female. In adulthood, the effects of PAE were restricted to alterations in CRHR1 mRNA expression in females, while there were no effects in males. In contrast, the effects of adolescent CMS were more pronounced in adulthood, long after stress exposure termination. Importantly, PAE animals were less responsive to adolescent CMS, with effects only on CRHR1 in PAE animals compared to the altered MR, GR, and CRHR1 mRNA expression observed in controls. Together, our results show that PAE and adolescent CMS induce dynamic alterations in the expression of stress-related receptors in the hippocampal formation that manifest differently depending on the age and sex of the animal.
Collapse
Affiliation(s)
- Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Linda Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Bhattacharya D, Majrashi M, Ramesh S, Govindarajulu M, Bloemer J, Fujihashi A, Crump BR, Hightower H, Bhattacharya S, Moore T, Suppiramaniam V, Dhanasekaran M. Assessment of the cerebellar neurotoxic effects of nicotine in prenatal alcohol exposure in rats. Life Sci 2017; 194:177-184. [PMID: 29225110 DOI: 10.1016/j.lfs.2017.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023]
Abstract
The adverse effects of prenatal nicotine and alcohol exposure on human reproductive outcomes are a major scientific and public health concern. In the United States, substantial percentage of women (20-25%) of childbearing age currently smoke cigarettes and consume alcohol, and only a small percentage of these individuals quit after learning of their pregnancy. However, there are very few scientific reports on the effect of nicotine in prenatal alcohol exposure on the cerebellum of the offspring. Therefore, this study was conducted to investigate the cerebellar neurotoxic effects of nicotine in a rodent model of Fetal Alcohol Spectrum Disorder (FASD). In this study, we evaluated the behavioral changes, biochemical markers of oxidative stress and apoptosis, mitochondrial functions and the molecular mechanisms associated with nicotine in prenatal alcohol exposure on the cerebellum. Prenatal nicotine and alcohol exposure induced oxidative stress, did not affect the mitochondrial functions, increased the monoamine oxidase activity, increased caspase expression and decreased ILK, PSD-95 and GLUR1 expression without affecting the GSK-3β. Thus, our current study of prenatal alcohol and nicotine exposure on cerebellar neurotoxicity may lead to new scientific perceptions and novel and suitable therapeutic actions in the future.
Collapse
Affiliation(s)
| | - Mohammed Majrashi
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | - Sindhu Ramesh
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | - Manoj Govindarajulu
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | - Jenna Bloemer
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | - Ayaka Fujihashi
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | - Bailee-Ryan Crump
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | - Harrison Hightower
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | | | - Timothy Moore
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | - Vishnu Suppiramaniam
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | | |
Collapse
|
40
|
Raineki C, Bodnar TS, Holman PJ, Baglot SL, Lan N, Weinberg J. Effects of early-life adversity on immune function are mediated by prenatal environment: Role of prenatal alcohol exposure. Brain Behav Immun 2017; 66:210-220. [PMID: 28698116 PMCID: PMC5650917 DOI: 10.1016/j.bbi.2017.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 01/07/2023] Open
Abstract
The contribution of the early postnatal environment to the pervasive effects of prenatal alcohol exposure (PAE) is poorly understood. Moreover, PAE often carries increased risk of exposure to adversity/stress during early life. Dysregulation of immune function may play a role in how pre- and/or postnatal adversity/stress alters brain development. Here, we combine two animal models to examine whether PAE differentially increases vulnerability to immune dysregulation in response to early-life adversity. PAE and control litters were exposed to either limited bedding (postnatal day [PN] 8-12) to model early-life adversity or normal bedding, and maternal behavior and pup vocalizations were recorded. Peripheral (serum) and central (amygdala) immune (cytokines and C-reactive protein - CRP) responses of PAE animals to early-life adversity were evaluated at PN12. Insufficient bedding increased negative maternal behavior in both groups. Early-life adversity increased vocalization in all animals; however, PAE pups vocalized less than controls. Early-life adversity reduced serum TNF-α, KC/GRO, and IL-10 levels in control but not PAE animals. PAE increased serum CRP, and levels were even higher in pups exposed to adversity. Finally, PAE reduced KC/GRO and increased IL-10 levels in the amygdala. Our results indicate that PAE alters immune system development and both behavioral and immune responses to early-life adversity, which could have subsequent consequences for brain development and later life health.
Collapse
Affiliation(s)
- Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Parker J Holman
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Samantha L Baglot
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Ni Lan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
41
|
Jacobson SW, Jacobson JL, Molteno CD, Warton CMR, Wintermark P, Hoyme HE, De Jong G, Taylor P, Warton F, Lindinger NM, Carter RC, Dodge NC, Grant E, Warfield SK, Zöllei L, van der Kouwe AJW, Meintjes EM. Heavy Prenatal Alcohol Exposure is Related to Smaller Corpus Callosum in Newborn MRI Scans. Alcohol Clin Exp Res 2017; 41:965-975. [PMID: 28247416 DOI: 10.1111/acer.13363] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/23/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies have consistently demonstrated disproportionately smaller corpus callosa in individuals with a history of prenatal alcohol exposure (PAE) but have not previously examined the feasibility of detecting this effect in infants. Tissue segmentation of the newborn brain is challenging because analysis techniques developed for the adult brain are not directly transferable, and segmentation for cerebral morphometry is difficult in neonates, due to the latter's incomplete myelination. This study is the first to use volumetric structural MRI to investigate PAE effects in newborns using manual tracing and to examine the cross-sectional area of the corpus callosum (CC). METHODS Forty-three nonsedated infants born to 32 Cape Coloured heavy drinkers and 11 controls recruited prospectively during pregnancy were scanned using a custom-designed birdcage coil for infants, which increases signal-to-noise ratio almost 2-fold compared to the standard head coil. Alcohol use was ascertained prospectively during pregnancy, and fetal alcohol spectrum disorders diagnosis was conducted by expert dysmorphologists. Data were acquired using a multi-echo FLASH protocol adapted for newborns, and a knowledge-based procedure was used to hand-segment the neonatal brains. RESULTS CC was disproportionately smaller in alcohol-exposed neonates than controls after controlling for intracranial volume. By contrast, CC area was unrelated to infant sex, gestational age, age at scan, or maternal smoking, marijuana, or methamphetamine use during pregnancy. CONCLUSIONS Given that midline craniofacial anomalies have been recognized as a hallmark of fetal alcohol syndrome in humans and animal models since this syndrome was first identified, the CC deficit identified here in newborns may support early identification of a range of midline structural impairments. Smaller CC during the newborn period may provide an early indicator of fetal alcohol-related cognitive deficits that have been linked to this critically important brain structure in childhood and adolescence.
Collapse
Affiliation(s)
- Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences , Wayne State University School of Medicine, Detroit, Michigan.,Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences , Wayne State University School of Medicine, Detroit, Michigan.,Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher M R Warton
- Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - H Eugene Hoyme
- Department of Pediatrics , Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota.,College of Medicine , University of Arizona, Tucson, Arizona
| | - Greetje De Jong
- Division of Molecular Biology and Human Genetics , Stellenbosch University, Faculty of Medicine and Health Sciences, Cape Town, South Africa
| | - Paul Taylor
- Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Scientific and Statistical Computing Core , National Institutes of Health, Bethesda, Maryland
| | - Fleur Warton
- Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nadine M Lindinger
- Department of Psychology , University of Cape Town, Cape Town, South Africa
| | - R Colin Carter
- Division of Pediatric Emergency Medicine , Morgan Stanley Children's Hospital of New York, Columbia University Medical Center, New York, New York
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences , Wayne State University School of Medicine, Detroit, Michigan
| | - Ellen Grant
- Division of Pediatric Emergency Medicine , Morgan Stanley Children's Hospital of New York, Columbia University Medical Center, New York, New York
| | - Simon K Warfield
- Department of Pediatrics , Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts
| | - Lilla Zöllei
- Department of Radiology , Massachusetts General Hospital, Boston, Massachusetts
| | | | - Ernesta M Meintjes
- Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,MRC/UCT Medical Imaging Research Unit , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|