1
|
Daksh R, Mathew MS, Bosco AM, Sojan C, Tom AA, Bojja SL, Nampoothiri M. The role of exosomes in diagnosis, pathophysiology, and management of Alzheimer's Disease. Biochem Biophys Res Commun 2025; 754:151526. [PMID: 40015072 DOI: 10.1016/j.bbrc.2025.151526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with impaired cognitive function and memory loss. Currently, available therapeutics can effectively alleviate the symptoms of AD, but there is a lack of treatment to halt the progression of the disease. In recent years, exosomes have gained much attention due to their involvement in various neurological disorders. Exosomes are small extracellular vesicles comprising lipids, proteins, DNA, non-coding RNA, and mRNAs, can carry various therapeutic molecules, and are potential drug delivery vehicles. Exosomes are known as a double-edged sword due to their involvement in both the pathogenesis and management of AD. This review explores the function of exosomes in the pathophysiology, treatment, and diagnosis of AD, also emphasizing their potential as a targeted drug delivery carrier to the brain. This review seeks to provide novel perspectives to understand better the onset, targeted treatment, and diagnosis of AD using exosomes.
Collapse
Affiliation(s)
- Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Meby Susan Mathew
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Aan Mery Bosco
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Christy Sojan
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Antriya Annie Tom
- Nirmala College of Pharmacy, Kerala University of Health Sciences, Kerala, India
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
2
|
Najdaghi S, Davani DN, Fouladseresht H, Ebrahimi N, Sullman MJM, Moradi M, Eskandari N. The Role of Extracellular Vesicles and Microparticles in Central Nervous System Disorders: Mechanisms, Biomarkers, and Therapeutic Potential. Cell Mol Neurobiol 2024; 44:82. [PMID: 39625540 PMCID: PMC11614997 DOI: 10.1007/s10571-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Microscopic, membranous vesicles known as extracellular vesicles (EVs) have been proposed to play a role in the mechanisms underlying central nervous system (CNS) diseases. EVs are secreted by a variety of cells, including myeloid, endothelial, microglial, oligodendroglial, and mesenchymal stem cells (MSCs). Body fluids such as plasma, urine, and cerebrospinal fluid (CSF) contain microparticles (MPs). The detection of MPs in CSF may indicate genetic or environmental susceptibility to conditions such as schizophrenia, schizoaffective disorder, and bipolar disorder. MPs of different origins can exhibit changes in specific biomarkers at various stages of the disease, aiding in the diagnosis and monitoring of neurological conditions. However, understanding the role and clinical applications of MPs is complicated by challenges such as their isolation and dual roles within the CNS. In this review, we discuss the history, characteristics, and roles of MPs in CNS diseases. We also provide practical insights for future research and highlight the challenges that obscure the therapeutic potential of MPs.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahimi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Social Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Marjan Moradi
- Departement of Genetics, School of Science, Shahrekord University, Shahrakord, Iran
| | - Nahid Eskandari
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Santos-Ortega Á, Alba-Linero C, Urbinati F, Rocha-de-Lossada C, Orti R, Reyes-Bueno JA, Garzón-Maldonado FJ, Serrano V, de Rojas-Leal C, de la Cruz-Cosme C, España-Contreras M, Rodríguez-Calvo-de-Mora M, García-Casares N. Structural and Functional Retinal Changes in Patients with Mild Cognitive Impairment with and without Diabetes. J Clin Med 2023; 12:7035. [PMID: 38002648 PMCID: PMC10672424 DOI: 10.3390/jcm12227035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Our objective is to analyze retinal changes using optical coherence tomography angiography (OCT-A) in patients with mild cognitive impairment (MCI) to characterize structural and vascular alterations. This cross-sectional study involved 117 eyes: 39 eyes from patients with MCI plus diabetes (DM-MCI), 39 eyes from patients with MCI but no diabetes (MCI); and 39 healthy control eyes (C). All patients underwent a visual acuity measurement, a structural OCT, an OCT-A, and a neuropsychological examination. Our study showed a thinning of retinal nerve fiber layer thickness (RNFL) and a decrease in macular thickness when comparing the MCI-DM group to the C group (p = 0.008 and p = 0.016, respectively). In addition, an increase in arteriolar thickness (p = 0.016), a reduction in superficial capillary plexus density (p = 0.002), and a decrease in ganglion cell thickness (p = 0.027) were found when comparing the MCI-DM group with the MCI group. Diabetes may exacerbate retinal vascular changes when combined with mild cognitive impairment.
Collapse
Affiliation(s)
| | - Carmen Alba-Linero
- Department of Ophthalmology, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- Department of Ophthalmology, Faculty of Medicine, University of Malaga, 29016 Malaga, Spain;
| | - Facundo Urbinati
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
| | - Carlos Rocha-de-Lossada
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
- Qvision, Opththalmology Department, VITHAS Almería Hospital, 04120 Almería, Spain
- Ophthalmology Department, VITHAS Málaga, 29016 Malaga, Spain
- Department of Surgery, Faculty of Medicine, Ophthalmology Area Doctor Fedriani, University of Sevilla, 41004 Sevilla, Spain
| | - Rafael Orti
- Department of Ophthalmology, Faculty of Medicine, University of Malaga, 29016 Malaga, Spain;
| | | | - Francisco Javier Garzón-Maldonado
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
| | - Vicente Serrano
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
| | - Carmen de Rojas-Leal
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
| | - Carlos de la Cruz-Cosme
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
| | - Manuela España-Contreras
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
| | - Marina Rodríguez-Calvo-de-Mora
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
- Qvision, Opththalmology Department, VITHAS Almería Hospital, 04120 Almería, Spain
- Ophthalmology Department, VITHAS Málaga, 29016 Malaga, Spain
| | - Natalia García-Casares
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
- Department of Medicine, Faculty of Medicine, University of Malaga, 29016 Malaga, Spain
- Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, 29016 Malaga, Spain
| |
Collapse
|
4
|
Pastorello Y, Carare RO, Banescu C, Potempa L, Di Napoli M, Slevin M. Monomeric C-reactive protein: A novel biomarker predicting neurodegenerative disease and vascular dysfunction. Brain Pathol 2023; 33:e13164. [PMID: 37158450 PMCID: PMC10580018 DOI: 10.1111/bpa.13164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Circulating C-reactive protein (pCRP) concentrations rise dramatically during both acute (e.g., following stroke) or chronic infection and disease (e.g., autoimmune conditions such as lupus), providing complement fixation through C1q protein binding. It is now known, that on exposure to the membranes of activated immune cells (and microvesicles and platelets), or damaged/dysfunctional tissue, it undergoes lysophosphocholine (LPC)-phospholipase-C-dependent dissociation to the monomeric form (mCRP), concomitantly becoming biologically active. We review histological, immunohistochemical, and morphological/topological studies of post-mortem brain tissue from individuals with neuroinflammatory disease, showing that mCRP becomes stably distributed within the parenchyma, and resident in the arterial intima and lumen, being "released" from damaged, hemorrhagic vessels into the extracellular matrix. The possible de novo synthesis via neurons, endothelial cells, and glia is also considered. In vitro, in vivo, and human tissue co-localization analyses have linked mCRP to neurovascular dysfunction, vascular activation resulting in increased permeability, and leakage, compromise of blood brain barrier function, buildup of toxic proteins including tau and beta amyloid (Aβ), association with and capacity to "manufacture" Aβ-mCRP-hybrid plaques, and, greater susceptibility to neurodegeneration and dementia. Recently, several studies linked chronic CRP/mCRP systemic expression in autoimmune disease with increased risk of dementia and the mechanisms through which this occurs are investigated here. The neurovascular unit mediates correct intramural periarterial drainage, evidence is provided here that suggests a critical impact of mCRP on neurovascular elements that could suggest its participation in the earliest stages of dysfunction and conclude that further investigation is warranted. We discuss future therapeutic options aimed at inhibiting the pCRP-LPC mediated dissociation associated with brain pathology, for example, compound 1,6-bis-PC, injected intravenously, prevented mCRP deposition and associated damage, after temporary left anterior descending artery ligation and myocardial infarction in a rat model.
Collapse
Affiliation(s)
- Ylenia Pastorello
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Roxana O. Carare
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Clinical and experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Claudia Banescu
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Lawrence Potempa
- Department of Life Sciences, College of Science, Health and PharmacyRoosevelt UniversitySchaumburgIllinoisUSA
| | - Mario Di Napoli
- Department of Neurology and Stroke UnitSan Camillo de Lellis General HospitalRietiItaly
| | - Mark Slevin
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Manchester Metropolitan UniversityManchesterUK
| |
Collapse
|
5
|
Singh MV, Uddin MN, Singh VB, Peterson AN, Murray KD, Zhuang Y, Tyrell A, Wang L, Tivarus ME, Zhong J, Qiu X, Schifitto G. Initiation of combined antiretroviral therapy confers suboptimal beneficial effects on neurovascular function in people with HIV. Front Neurol 2023; 14:1240300. [PMID: 37719766 PMCID: PMC10500594 DOI: 10.3389/fneur.2023.1240300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Due to advances in combined anti-retroviral treatment (cART), there is an increased burden of age-related cerebrovascular disease (CBVD), in people living with HIV (PWH). The underlying CNS injury can be assessed by measuring cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). Methods 35 treatment-naïve PWH and 53 HIV negative controls (HC) were enrolled in this study. Study participants underwent T1-weighted anatomical, pseudo-continuous arterial spin labeling, and resting-state functional MRI to obtain measures of CBF and CVR prior to starting cART treatment and at two-time points (12 weeks and 2 years) post-cART initiation. Controls were scanned at the baseline and 2-year visits. We also measured plasma levels of microparticles of endothelial and glial origin and well-known endothelial inflammation markers, ICAM-1 and VCAM-1, to assess HIV-associated endothelial inflammation and the interaction of these peripheral markers with brain neurovascular function. Results HIV infection was found to be associated with reduced CVR and increased levels of endothelial and glial microparticles (MPs) prior to initiation of cART. Further, CVR correlated negatively with peripheral MP levels in PWH. Discussion Our results suggest that while cART treatment has a beneficial effect on the neurovascular function after initiation, these benefits are suboptimal over time.
Collapse
Affiliation(s)
- Meera V. Singh
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Vir B. Singh
- Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | | | - Kyle D. Murray
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Alicia Tyrell
- Clinical and Translational Science Institute, University of Rochester, Rochester, NY, United States
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Madalina E. Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
6
|
Iadecola C, Smith EE, Anrather J, Gu C, Mishra A, Misra S, Perez-Pinzon MA, Shih AY, Sorond FA, van Veluw SJ, Wellington CL. The Neurovasculome: Key Roles in Brain Health and Cognitive Impairment: A Scientific Statement From the American Heart Association/American Stroke Association. Stroke 2023; 54:e251-e271. [PMID: 37009740 PMCID: PMC10228567 DOI: 10.1161/str.0000000000000431] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
BACKGROUND Preservation of brain health has emerged as a leading public health priority for the aging world population. Advances in neurovascular biology have revealed an intricate relationship among brain cells, meninges, and the hematic and lymphatic vasculature (the neurovasculome) that is highly relevant to the maintenance of cognitive function. In this scientific statement, a multidisciplinary team of experts examines these advances, assesses their relevance to brain health and disease, identifies knowledge gaps, and provides future directions. METHODS Authors with relevant expertise were selected in accordance with the American Heart Association conflict-of-interest management policy. They were assigned topics pertaining to their areas of expertise, reviewed the literature, and summarized the available data. RESULTS The neurovasculome, composed of extracranial, intracranial, and meningeal vessels, as well as lymphatics and associated cells, subserves critical homeostatic functions vital for brain health. These include delivering O2 and nutrients through blood flow and regulating immune trafficking, as well as clearing pathogenic proteins through perivascular spaces and dural lymphatics. Single-cell omics technologies have unveiled an unprecedented molecular heterogeneity in the cellular components of the neurovasculome and have identified novel reciprocal interactions with brain cells. The evidence suggests a previously unappreciated diversity of the pathogenic mechanisms by which disruption of the neurovasculome contributes to cognitive dysfunction in neurovascular and neurodegenerative diseases, providing new opportunities for the prevention, recognition, and treatment of these conditions. CONCLUSIONS These advances shed new light on the symbiotic relationship between the brain and its vessels and promise to provide new diagnostic and therapeutic approaches for brain disorders associated with cognitive dysfunction.
Collapse
|
7
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
8
|
Yousefsani BS, Mehri S, Pourahmad J, Hosseinzadeh H. Protective Effect of Crocin against Mitochondrial Damage and Memory Deficit Induced by Beta-amyloid in the Hippocampus of Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:79-94. [PMID: 34567148 PMCID: PMC8457717 DOI: 10.22037/ijpr.2020.112206.13604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease is the most common form of dementia among the elderly. This progressive neurodegenerative disorder affects brain regions that control cognition, memory, language, speech, and awareness. As a potent antioxidant, crocin has been proposed to effectively manage the neurodegenerative disease. In this study, the recovery effects of crocin on the memory deficits caused by the intra-hippocampal injection of amyloid beta1-42 (Aβ1-42) were evaluated in rats. We also considered the protective effects of crocin on the mitochondrial damage caused by Aβ1-42. We examined the memory deficits of rats with the help of the Morris water maze. Then, we determined different mitochondrial toxicity endpoints caused by Aβ1-42, including mitochondrial ROS formation, lipid peroxidation, mitochondrial membrane potential collapse, mitochondrial outer membrane integrity, and cytochrome c release. Our results demonstrated that the behavioral signs of memory deficiency caused by Aβ1-42 significantly (P < 0.01) reduced by both pretreatment and post-treatment with crocin (30 mg/kg). Furthermore, crocin prevented all the Aβ1-42 induced above referenced mitochondrial upstream toxic events leading to neuronal apoptosis. These results demonstrated that crocin is a promising preventive candidate for the potential treatment of Alzheimer's disease. Furthermore, it seems that the antioxidant and neuroprotective effects of crocin are better seen when the compound is pretreated beforehand rather than introduced afterward in Aβ1-42 exposed mitochondria.
Collapse
Affiliation(s)
- Bahareh Sadat Yousefsani
- Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Traditional Pharmacy, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Liu D, Yang S, Kavdia K, Sifford JM, Wu Z, Xie B, Wang Z, Pagala VR, Wang H, Yu K, Dey KK, High AA, Serrano GE, Beach TG, Peng J. Deep Profiling of Microgram-Scale Proteome by Tandem Mass Tag Mass Spectrometry. J Proteome Res 2020; 20:337-345. [PMID: 33175545 DOI: 10.1021/acs.jproteome.0c00426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tandem mass tag (TMT)-based mass spectrometry (MS) enables deep proteomic profiling of more than 10,000 proteins in complex biological samples but requires up to 100 μg protein in starting materials during a standard analysis. Here, we present a streamlined protocol to quantify more than 9000 proteins with 0.5 μg protein per sample by 16-plex TMT coupled with two-dimensional liquid chromatography and tandem mass spectrometry (LC/LC-MS/MS). In this protocol, we optimized multiple conditions to reduce sample loss, including processing each sample in a single tube to minimize surface adsorption, increasing digestion enzymes to shorten proteolysis and function as carriers, eliminating a desalting step between digestion and TMT labeling, and developing miniaturized basic pH LC for prefractionation. By profiling 16 identical human brain tissue samples of Alzheimer's disease (AD), vascular dementia (VaD), and non-dementia controls, we directly compared this new microgram-scale protocol to the standard-scale protocol, quantifying 9116 and 10,869 proteins, respectively. Importantly, bioinformatics analysis indicated that the microgram-scale protocol had adequate sensitivity and reproducibility to detect differentially expressed proteins in disease-related pathways. Thus, this newly developed protocol is of general application for deep proteomics analysis of biological and clinical samples at sub-microgram levels.
Collapse
Affiliation(s)
- Danting Liu
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Shu Yang
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Jeffrey M Sifford
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Boer Xie
- Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Vishwajeeth R Pagala
- Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Hong Wang
- Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Kaushik Kumar Dey
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Anthony A High
- Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona 85351, United States
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona 85351, United States
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States.,Center for Proteomics and Metabolomics, Saint Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| |
Collapse
|
10
|
Villar-Vesga J, Henao-Restrepo J, Voshart DC, Aguillon D, Villegas A, Castaño D, Arias-Londoño JD, Zuhorn IS, Ribovski L, Barazzuol L, Cardona-Gómez GP, Posada-Duque R. Differential Profile of Systemic Extracellular Vesicles From Sporadic and Familial Alzheimer's Disease Leads to Neuroglial and Endothelial Cell Degeneration. Front Aging Neurosci 2020; 12:587989. [PMID: 33281599 PMCID: PMC7705379 DOI: 10.3389/fnagi.2020.587989] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Evidence suggests that extracellular vesicles (EVs) act as mediators and biomarkers of neurodegenerative diseases. Two distinct forms of Alzheimer disease (AD) are known: a late-onset sporadic form (SAD) and an early-onset familial form (FAD). Recently, neurovascular dysfunction and altered systemic immunological components have been linked to AD neurodegeneration. Therefore, we characterized systemic-EVs from postmortem SAD and FAD patients and evaluated their effects on neuroglial and endothelial cells. We found increase CLN-5 spots with vesicular morphology in the abluminal portion of vessels from SAD patients. Both forms of AD were associated with larger and more numerous systemic EVs. Specifically, SAD patients showed an increase in endothelial- and leukocyte-derived EVs containing mitochondria; in contrast, FAD patients showed an increase in platelet-derived EVs. We detected a differential protein composition for SAD- and FAD-EVs associated with the coagulation cascade, inflammation, and lipid-carbohydrate metabolism. Using mono- and cocultures (endothelium-astrocytes-neurons) and human cortical organoids, we showed that AD-EVs induced cytotoxicity. Both forms of AD featured decreased neuronal branches area and astrocytic hyperreactivity, but SAD-EVs led to greater endothelial detrimental effects than FAD-EVs. In addition, FAD- and SAD-EVs affected calcium dynamics in a cortical organoid model. Our findings indicate that the phenotype of systemic AD-EVs is differentially defined by the etiopathology of the disease (SAD or FAD), which results in a differential alteration of the NVU cells implied in neurodegeneration.
Collapse
Affiliation(s)
- Juan Villar-Vesga
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Julián Henao-Restrepo
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Daniëlle C Voshart
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Section of Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - David Aguillon
- Neurobank, Neuroscience Group of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia
| | - Andrés Villegas
- Neurobank, Neuroscience Group of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Inge S Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Laís Ribovski
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Section of Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gloria P Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia
| | - Rafael Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
11
|
Wu J, Zhang X, Azhati G, Li T, Xu G, Liu F. Retinal microvascular attenuation in mental cognitive impairment and Alzheimer's disease by optical coherence tomography angiography. Acta Ophthalmol 2020; 98:e781-e787. [PMID: 32153141 DOI: 10.1111/aos.14381] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/25/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To explore regional variation of the macular microvasculature in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD), also to detect the association between retinal macular microvascular parameters and the progress of preclinical AD. METHODS Prospective study of healthy controls, patients with MCI and patients with AD by using Optical coherence tomography angiography (OCT-A). We quantified foveal avascular zone (FAZ) areas, densities of the superficial retinal capillary plexuses (SRCP) and deep retinal capillary plexuses (DRCP). The SRCP and DRCP were divided into inner (3 mm) and external (6 mm) annular rings, each containing four quadrants (SI, II, TI, NI, SE, IE, TE and NE). The data were analysed statistically by using SPSS 22 software. RESULTS Totally, 60 subjects including 21 HC (33 eyes), 21 patients with MCI (32 eyes) and 18 AD patients (28 eyes) were recruited. The microvascular densities of DRCP at all quadrants of the parafovea and perifovea were significantly lower in AD patients compared to HC group (p < 0.05). Compared to the HCs, MCI patients showed significant microvascular loss in most sectors of the parafovea and the SE sector of the DRCP (p < 0.05), but not in the parafovea (p = 0.829) or perifovea (p = 0.824) of the SRCP. No significant difference was found in microvascular density of SRCP among the groups, except at SI between the AD and HC groups (p = 0.048). CONCLUSION Our findings demonstrated the macular microvascular attenuation in MCI and AD patients. Both AD and MCI patients showed retinal microvascular density loss, which is more significant in the deep retinal capillary plexuses. Optical coherence tomography angiography (OCT-A) can be used to identify early microvascular abnormalities in AD and MCI. Quantified microvascular density in the DRCP might serve as potential biomarkers of early sign of AD then contribute to forestall the progression of preclinical AD.
Collapse
Affiliation(s)
- Jing Wu
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University Shanghai China
- School of Medicine Tongji University Shanghai China
| | - Xiaojun Zhang
- Department of Neurology OSF St. Francis Medical Center University of Illinois College of Medicine Peoria Peoria Illinois USA
| | - Guliqiwaer Azhati
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University Shanghai China
| | - Tingting Li
- Department of Ophthalmology Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University Shanghai China
| | - Guoxing Xu
- Department of Ophthalmology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Fang Liu
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University Shanghai China
| |
Collapse
|
12
|
Ellegaard Nielsen J, Sofie Pedersen K, Vestergård K, Georgiana Maltesen R, Christiansen G, Lundbye-Christensen S, Moos T, Risom Kristensen S, Pedersen S. Novel Blood-Derived Extracellular Vesicle-Based Biomarkers in Alzheimer's Disease Identified by Proximity Extension Assay. Biomedicines 2020; 8:E199. [PMID: 32645971 PMCID: PMC7400538 DOI: 10.3390/biomedicines8070199] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Easily accessible biomarkers for Alzheimer's dementia (AD) are lacking and established clinical markers are limited in applicability. Blood is a common biofluid for biomarker discoveries, and extracellular vesicles (EVs) may provide a matrix for exploring AD related biomarkers. Thus, we investigated proteins related to neurological and inflammatory processes in plasma and EVs. By proximity extension assay (PEA), 182 proteins were measured in plasma and EVs from patients with AD (n = 10), Mild Cognitive Impairment (MCI, n = 10), and healthy controls (n = 10). Plasma-derived EVs were enriched by 20,000× g, 1 h, 4 °C, and confirmed using nanoparticle tracking analysis (NTA), western blotting, and transmission electron microscopy with immunolabelling (IEM). Presence of CD9+ EVs was confirmed by western blotting and IEM. No group differences in particle concentration or size were detected by NTA. However, significant protein profiles were observed among subjects, particularly for EVs. Several proteins and their ratios could distinguish cognitively affected from healthy individuals. For plasma TGF-α│CCL20 (AUC = 0.96, 95% CI = 0.88-1.00, p = 0.001) and EVs CLEC1B│CCL11 (AUC = 0.95, 95% CI = 0.86-1.00, p = 0.001) showed diagnostic capabilities. Using PEA, we identified protein profiles capable of distinguishing healthy controls from AD patients. EVs provided additional biological information related to AD not observed in plasma alone.
Collapse
Affiliation(s)
- Jonas Ellegaard Nielsen
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (S.L.-C.); (S.R.K.)
- Department of Clinical Biochemistry, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | | | - Karsten Vestergård
- Department of Neurology, Aalborg University Hospital, DK-9000 Aalborg, Denmark;
| | - Raluca Georgiana Maltesen
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, DK-9000 Aalborg, Denmark;
| | - Gunna Christiansen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark;
- Department of Health Science and Technology, Aalborg University, DK-9220 Aalborg, Denmark;
| | - Søren Lundbye-Christensen
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (S.L.-C.); (S.R.K.)
- Unit of Clinical Biostatistics, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Torben Moos
- Department of Health Science and Technology, Aalborg University, DK-9220 Aalborg, Denmark;
| | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (S.L.-C.); (S.R.K.)
- Department of Clinical Biochemistry, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Shona Pedersen
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (S.L.-C.); (S.R.K.)
- Department of Clinical Biochemistry, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| |
Collapse
|
13
|
Schou AS, Nielsen JE, Askeland A, Jørgensen MM. Extracellular vesicle-associated proteins as potential biomarkers. Adv Clin Chem 2020; 99:1-48. [PMID: 32951635 DOI: 10.1016/bs.acc.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Every cell in the body secretes extracellular vesicles (EVs) possibly as cellular signaling components and these cell-derivatives can be found in multiple numbers in biological fluids. EVs have in the scientific field received great attention in relation to pathophysiology and disease diagnostics. Altered protein expressions associated with circulating EVs in diseased individuals can serve as biomarkers for different disease states. This capacity paves the way for non-invasive screening tools and early diagnostic markers. However, no isolation method of EVs has been acknowledged as the "golden standard," thus reproducibility of the studies remains inadequate. Increasing interest in EV proteins as disease biomarkers could give rise to more scientific knowledge with diagnostic applicability. In this chapter, studies of proteins believed to be associated with EVs within cancer, autoimmunity, metabolic and neurodegenerative diseases have been outlined.
Collapse
Affiliation(s)
- Anne Sophie Schou
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark; Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Ellegaard Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Askeland
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
14
|
Pollution, Particles, and Dementia: A Hypothetical Causative Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030862. [PMID: 32019078 PMCID: PMC7038194 DOI: 10.3390/ijerph17030862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/11/2022]
Abstract
Epidemiological studies of air pollution have shown associations between exposure to particles and dementia. The mechanism of this is unclear. As these seem unlikely in terms of the very small dose likely to reach the brain in usual Western urban circumstances, we extend our 1995 hypothetical explanation of the association of air pollution with cardiac deaths as a plausible alternative explanation of its associations with dementia. Since our original proposal, it has become apparent that inflammation may be carried by blood from organ to organ by biologic microparticles derived from cell membranes. These transmit inflammatory messages to endothelial cells throughout the body as part of a general defensive response to assumed bacterial infection; particulate air pollution has recently been shown to be associated with their release into the blood. We propose that episodic release of biologic microparticles from pollution-induced lung inflammation causes secondary inflammation in the blood-brain barrier and cerebral microbleeds, culminating over time in cognitive impairment. Ultimately, by incomplete repair and accumulation of amyloid, this increases the risk of Alzheimer’s disease. Importantly, this mechanism may also explain the relationships of other inflammatory conditions and environmental factors with cognitive decline, and point to new opportunities to understand and prevent dementia.
Collapse
|
15
|
Microparticles are related to cognitive and functional status from normal aging to dementia. J Neuroimmunol 2019; 336:577027. [DOI: 10.1016/j.jneuroim.2019.577027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 01/03/2023]
|
16
|
Yun JW, Barzegar M, Boyer CJ, Minagar A, Couraud PO, Alexander JS. Brain Endothelial Cells Release Apical and Basolateral Microparticles in Response to Inflammatory Cytokine Stimulation: Relevance to Neuroinflammatory Stress? Front Immunol 2019; 10:1455. [PMID: 31316509 PMCID: PMC6610500 DOI: 10.3389/fimmu.2019.01455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Microparticles (MP) are regarded both as biomarkers and mediators of many forms of pathology, including neurovascular inflammation. Here, we characterized vectorial release of apical and basolateral MPs (AMPs and BMPs) from control and TNF-α/IFN-γ treated human brain endothelial monolayers, studied molecular composition of AMPs and BMPs and characterized molecular pathways regulating AMP and BMP release. The effects of AMPs and BMPs on blood-brain barrier properties and human brain microvascular smooth muscle tonic contractility in vitro were also evaluated. We report that human brain microvascular endothelial cells release MPs both apically and basolaterally with both AMP and BMP release significantly increased following inflammatory cytokine challenge (3.5-fold and 3.9-fold vs. control, respectively). AMPs and BMPs both carry proteins derived from parent cells including those in BBB junctions (Claudin−1, −3, −5, occludin, VE-cadherin). AMPs and BMPs represent distinct populations whose release appears to be regulated by distinctly separate molecular pathways, which depend on signaling from Rho-associated, coiled-coil containing protein kinase (ROCK), calpain as well as cholesterol depletion. AMPs and BMPs modulate functions of neighboring cells including BBB endothelial solute permeability and brain vascular smooth muscle contractility. While control AMPs enhanced brain endothelial barrier, cytokine-induced AMPs impaired BBB. Cytokine-induced but not control BMPs significantly impaired human brain smooth muscle contractility as early as day 1. Taken together these results indicate that AMPs and BMPs may contribute to neurovascular inflammatory disease progression both within the circulation (AMP) and in the brain parenchyma (BMP).
Collapse
Affiliation(s)
- J Winny Yun
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Mansoureh Barzegar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Christen J Boyer
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | - Jonathan Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
17
|
Feng Q, Stork CJ, Xu S, Yuan D, Xia X, LaPenna KB, Guo G, Sun H, Xu L, Siedlecki CA, Brundage KM, Sheaffer N, Schell TD, He P. Increased circulating microparticles in streptozotocin-induced diabetes propagate inflammation contributing to microvascular dysfunction. J Physiol 2019; 597:781-798. [PMID: 30548258 PMCID: PMC6355626 DOI: 10.1113/jp277312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Circulating microparticles (MPs) are elevated in many cardiovascular diseases and have been considered as biomarkers of disease prognosis; however, current knowledge of MP functions has been mainly derived from in vitro studies and their precise impact on vascular inflammation and disease progression remains obscure. Using a diabetic rat model, we identified a >130-fold increase in MPs in plasma of diabetic rats compared to normal rats, the majority of which circulated as aggregates, expressing multiple cell markers and largely externalized phosphatidylserine; vascular images illustrate MP biogenesis and their manifestations in microvessels of diabetic rats. Using combined single microvessel perfusion and systemic cross-transfusion approaches, we delineated how diabetic MPs propagate inflammation in the vasculature and transform normal microvessels into an inflammatory phenotype observed in the microvessels of diabetic rats. Our observations derived from animal studies resembling conditions in diabetic patients, providing a mechanistic insight into MP-mediated pathogenesis of diabetes-associated multi-organ microvascular dysfunction. ABSTRACT In various cardiovascular diseases, microparticles (MPs), the membrane-derived vesicles released during cell activation, are markedly increased in the circulation. These MPs have been recognized to play diverse roles in the regulation of cellular functions. However, current knowledge of MP function has been largely derived from in vitro studies. The precise impact of disease-induced MPs on vascular inflammation and disease progression remains obscure. In this study we investigated the biogenesis, profile and functional roles of circulating MPs using a streptozotocin-induced diabetic rat model with well-characterized microvascular functions. Our study revealed a >130-fold increase in MPs in the plasma of diabetic rats compared to normal rats. The majority of these MPs originate from platelets, leukocytes and endothelial cells (ECs), and circulate as aggregates. Diabetic MPs show greater externalized phosphatidylserine (PS) than normal MPs. When diabetic plasma or isolated diabetic MPs were perfused into normal microvessels or systemically transfused into normal rats, MPs immediately adhered to endothelium and subsequently mediated leukocyte adhesion. These microvessels then exhibited augmented permeability responses to inflammatory mediators, replicating the microvascular manifestations observed in diabetic rats. These effects were abrogated when MPs were removed from diabetic plasma or when diabetic MPs were pre-coated with a lipid-binding protein, annexin V, suggesting externalized PS to be key in mediating MP interactions with endothelium and leukocytes. Our study demonstrated that the elevated MPs in diabetic plasma are actively involved in the propagation of vascular inflammation through their adhesive surfaces, providing mechanistic insight into the pathogenesis of multi-organ vascular dysfunction that commonly occurs in diabetic patients.
Collapse
Affiliation(s)
- Qilong Feng
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
- Department of PhysiologyShanxi Medical UniversityTaiyuanShanxiChina030001
| | - Christian J. Stork
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Sulei Xu
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Dong Yuan
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Xinghai Xia
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
| | - Kyle B. LaPenna
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
| | - Ge Guo
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Haoyu Sun
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
| | - Li‐Chong Xu
- Department of Surgery, College of MedicinePenn State UniversityHersheyPA17033USA
| | | | - Kathleen M. Brundage
- Department of Microbiology, Immunology and Cell Biology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| | - Nate Sheaffer
- Flow Cytometry Core, College of MedicinePenn State UniversityHersheyPA17033USA
| | - Todd D. Schell
- Flow Cytometry Core, College of MedicinePenn State UniversityHersheyPA17033USA
- Department of Microbiology and Immunology, College of MedicinePenn State UniversityHersheyPA17033USA
| | - Pingnian He
- Department of Cellular and Molecular Physiology, College of MedicinePenn State UniversityHersheyPA17033USA
- Department of Physiology and Pharmacology, School of MedicineWest Virginia UniversityMorgantownWV26506USA
| |
Collapse
|
18
|
Ramirez SH, Andrews AM, Paul D, Pachter JS. Extracellular vesicles: mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS 2018; 15:19. [PMID: 29960602 PMCID: PMC6026502 DOI: 10.1186/s12987-018-0104-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous, nano-sized vesicles that are shed into the blood and other body fluids, which disperse a variety of bioactive molecules (e.g., protein, mRNA, miRNA, DNA and lipids) to cellular targets over long and short distances. EVs are thought to be produced by nearly every cell type, however this review will focus specifically on EVs that originate from cells at the interface of CNS barriers. Highlighted topics include, EV biogenesis, the production of EVs in response to neuroinflammation, role in intercellular communication and their utility as a therapeutic platform. In this review, novel concepts regarding the use of EVs as biomarkers for BBB status and as facilitators for immune neuroinvasion are also discussed. Future directions and prospective are covered along with important unanswered questions in the field of CNS endothelial EV biology.
Collapse
Affiliation(s)
- Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA. .,Shriners Hospital Pediatric Research Center, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA.,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Debayon Paul
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA
| | - Joel S Pachter
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA.
| |
Collapse
|