1
|
Lu CW, Lin TY, Yeh KC, Hsieh PW, Chiu KM, Lee MY, Wang SJ. Reduction in presynaptic glutamate release and the prevention of glutamate excitotoxicity by lupeol in rats. Neurochem Int 2025; 185:105951. [PMID: 39983833 DOI: 10.1016/j.neuint.2025.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/21/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
This study aimed to investigate whether lupeol, a pentacyclic triterpenoid, affects glutamate release in isolated nerve terminals (synaptosomes) from the rat cerebral cortex and whether lupeol affects the excitotoxicity induced by kainic acid (KA) in rats. In rat cerebrocortical synaptosomes, lupeol reduced glutamate release in a manner that could be blocked by extracellular Ca2+-free medium or P/Q-type Ca2+ channel antagonism. The synaptosomal membrane potential was not affected by lupeol treatment. Docking data also revealed that lupeol formed a hydrogen bond with amino acid residues of the P/Q-type Ca2+ channel. In the KA-induced acute excitotoxicity model, lupeol pretreatment ameliorated cortical neurodegeneration and downregulated the expression of glutamate release-related proteins vesicular glutamate transporter 1 (VGLUT1) and phospho-synapsin I, thereby reducing the glutamate levels in the cortices of rats. Our findings suggest that lupeol may exert a neuroprotective effect by reducing glutamate excitotoxicity through the inhibition of presynaptic glutamate release. These results indicate that lupeol could be a promising candidate for the treatment of glutamatergic excitotoxicity and related neurological diseases.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, 22060, Taiwan; Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei, 22060, Taiwan; Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 32003, Taiwan
| | - Kun-Chieh Yeh
- Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, 325208 Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33303, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei, 22060, Taiwan; Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far-Eastern Memorial Hospital, New Taipei, 22060, Taiwan
| | - Su-Jane Wang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei, 24205, Taiwan.
| |
Collapse
|
2
|
Fan W, Zheng J, Jiang F. Analysis of ferroptosis-related genes in cerebral ischemic stroke via immune infiltration and single-cell RNA-sequencing. BMC Med Genomics 2025; 18:31. [PMID: 39934808 PMCID: PMC11817822 DOI: 10.1186/s12920-025-02098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Ischemic stroke (IS) represents a harmful neurological disorder with limited treatment options. Ferroptosis accounts for the iron-dependent, nonapoptotic cell death pattern, which shows the feature of fatal lipid ROS accumulation. Nonetheless, ferroptosis-related biomarkers for identifying IS early are currently lacking. The present study focused on investigating the possible ferroptosis-related biomarkers for IS and analyzing their effects on immune infiltration. Altogether five hub differentially expressed ferroptosis-related genes (DEFRGs) were identified from the relevant databases. Additionally, single-cell RNA-sequencing (seq) analysis was conducted for the comprehensive mapping of cell populations based on the IS database. These five hub DEFRGs were analyzed using gene set enrichment analysis, miRNA prediction, and single-cell RNA-seq analysis. A transient middle cerebral artery occlusion mouse model was constructed. We also adopted bioinformatics methods combined with western blot, changes to mitochondria, hematoxylin & eosin staining, Nissl staining, ROS fluorescence staining, immunohistochemistry, and quantitative real-time polymerase chain reaction (qRT-PCR) to show the involvement of ferroptosis in IS progression. The results revealed that nuclear factor erythroid-derived 2-like 2 (Nfe2l2) was the potential candidate biomarker for IS diagnosis, and ferroptosis may be suppressed via the Nfe2l2/HO-1 pathway. Thus, drug targeting Nfe2l2 can shed novel lights on IS treatment.
Collapse
Affiliation(s)
- Wei Fan
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinhua Zheng
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Fangchao Jiang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, Henan, China.
| |
Collapse
|
3
|
Luo X, Li J, Cen Z, Feng G, Hong M, Huang L, Long Q. Exploring the therapeutic potential of lupeol: A review of its mechanisms, clinical applications, and advances in bioavailability enhancement. Food Chem Toxicol 2025; 196:115193. [PMID: 39662867 DOI: 10.1016/j.fct.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Lupeol, a naturally occurring triterpenoid, has garnered significant attention for its diverse range of biological activities and potential therapeutic applications. This comprehensive review delves into the various aspects of lupeol, including its sources, extraction methods, chemical characteristics, pharmacokinetics, safety evaluation, mechanisms of action, and applications in disease treatment. We highlight the compound's unique carbon skeleton and its role in inflammation regulation, antioxidant activity, and broad-spectrum antimicrobial effects. The review also underscores lupeol's potential in cancer therapy, cardiovascular protection, metabolic disease management, and wound healing. Furthermore, we discuss the challenges and future perspectives of lupeol's clinical application, emphasizing the need for further research to improve its bioavailability and explore its full therapeutic potential. The review concludes by recognizing the significance of lupeol in drug development and healthcare, with expectations for future breakthroughs in medical applications.
Collapse
Affiliation(s)
- Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ji Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhifeng Cen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiqi Hong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Kaya C, Kapisiz A, Eryilmaz S, Karabulut R, Turkyilmaz Z, Inan MA, Aydin GY, Celik MA, Sonmez K. Effects of Lupeol on Intestinal Anastomosis After Experimental Intestinal Ischemia-Reperfusion Injury in Rats. Drug Des Devel Ther 2025; 19:479-490. [PMID: 39872634 PMCID: PMC11771168 DOI: 10.2147/dddt.s501289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/18/2025] [Indexed: 01/30/2025] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury can occur in a wide variety of diseases and surgeries. If necessary, the blood flow should be restored, including re-anastomosis by removing the intestines with impaired circulation. In this process, anastomotic strength is as important as inflammatory responses and oxidative stress. Therefore, we conducted the study to investigate the effects of lupeol on intestinal ischemia-reperfusion injury, not only biochemically and histopathologically but also on anastomotic strength and miRNAs. Methods Female rats were randomly divided into six groups. While only laparotomy was performed in the control group (Group C), anastomosis was performed in the sham group (Group S). In the other groups, the superior mesenteric artery was clamped for 45 minutes. In the groups I/R1 and L1, the intestine was transected, and end-to-end anastomosis was performed at the 1st hour of reperfusion. In the groups I/R24 and L24, this procedure was performed at the 24th hour of reperfusion. In addition, lupeol treatment was given before reperfusion and for the following 4 days in the groups L1 and L24. All rats, except the control group, bursting pressure was measured on the 5th day of anastomosis, and then all rats including the control group were sacrificed. TNF-α, IL-6 levels in blood samples and MDA, GSH, caspase-3, miR-29b-3p, miR-34a-5p, miR-495-3p levels in intestinal tissues were measured, and intestinal histopathology was also examined. Results Lupeol treatment, which was statistically significant in some parameters, demonstrated positive effects by decreasing TNF, IL-6, MDA, caspase-3, histopathological damage levels and increasing GSH and bursting pressure. In addition, lupeol decreased miR-34a-5p expression and increased miR-29b-3p and miR-495-3p expression. Conclusion Lupeol protected the intestines from I/R damage with its antioxidant and anti-inflammatory effects. Besides, it reduced the histopathological damage and increased the anastomotic strength. Additionally, miR-29b-3p, miR-34a-5p, miR-495-3p expressions were altered by lupeol.
Collapse
Affiliation(s)
- Cem Kaya
- Department of Pediatric Surgery, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey
| | - Alparslan Kapisiz
- Department of Pediatric Surgery, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey
| | - Sibel Eryilmaz
- Department of Pediatric Surgery, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey
| | - Ramazan Karabulut
- Department of Pediatric Surgery, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey
| | - Zafer Turkyilmaz
- Department of Pediatric Surgery, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey
| | - Mehmet Arda Inan
- Department of Pathology, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey
| | - Gizem Yaz Aydin
- Department of Biochemistry, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey
| | | | - Kaan Sonmez
- Department of Pediatric Surgery, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey
| |
Collapse
|
5
|
Kapisiz A, Kaya C, Eryilmaz S, Karabulut R, Turkyilmaz Z, Inan MA, Gulbahar O, Sonmez K. Protective effects of lupeol in rats with renal ischemia‑reperfusion injury. Exp Ther Med 2024; 28:313. [PMID: 38911048 PMCID: PMC11190881 DOI: 10.3892/etm.2024.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
Acute kidney injury (AKI) caused by ischemia and, exogenous or endogenous nephrotoxic agents poses a serious health issue. AKI is seen in 1% of all hospital admissions, 2-5% of hospitalizations and 67% of intensive care unit (ICU) patients. The in-hospital mortality rates for AKI is 40-50, and >50% for ICU patients. Ischemia-reperfusion (I/R) injury in the kidney can activate inflammatory responses and oxidative stress, resulting in AKI. The common endpoint in acute tubular necrosis is a cellular insult secondary to ischemia or direct toxins, which results in effacement of brush border, cell death and decreased function of tubular cells. The aim of the present study was to assess if the reported antioxidant and anti-inflammatory agent lupeol can exert any effects against renal I/R damage. In total, 24 Wistar Albino rats were randomly assigned into four groups of 6, namely Sham, lupeol, ischemia and therapy groups. In the lupeol group, intraperitoneal administration of 100 mg/kg lupeol was given 1 h before laparotomy, whilst only laparotomy was conducted in the sham group. The renal arteries of both kidneys were clamped for 45 min, 1 h after either intraperitoneal saline injection (in the ischemia group) or 100 mg/kg lupeol application (in the therapy group). The blood samples and renal tissues of all rats were collected after 24 h. In blood samples, blood urea nitrogen (BUN) was measured by the urease enzymatic method, and creatinine was measured by the kinetic Jaffe method. Using ELISA method, TNF-α and IL-6 levels were measured in the blood samples, whereas malondialdehyde (MDA), glutathione (GSH), caspase-3 levels were measured in kidney tissues. In addition, kidney histopathological analysis was performed by evaluating the degree of degeneration, tubular dilatation, interstitial lymphocyte infiltration, protein cylinders, necrosis and loss of brush borders. It was determined that renal damage occurred due to higher BUN, creatinine, MDA, TNF-α and caspase-3 values observed in the kidney tissues and blood samples of rats in ischemia group compared with the Sham group. Compared with those in the ischemia group, rats in the therapy group exhibited increased levels of GSH and reduced levels of BUN, TNF-α, MDA. Furthermore, the ischemia group also had reduced histopathological damage scores. Although differences in creatinine, IL-6 and caspase-3 levels were not statistically significant, they were markedly reduced in the treatment group. Taken together, these findings suggest that lupeol can prevent kidney damage as mainly evidenced by the reduced histopathological damage scores, decreased levels of oxidative stress and reduced levels of inflammatory markers. These properties may allow lupeol to be used in the treatment of AKI.
Collapse
Affiliation(s)
- Alparslan Kapisiz
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Cem Kaya
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Sibel Eryilmaz
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Ramazan Karabulut
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Zafer Turkyilmaz
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Mehmet Arda Inan
- Department of Pathology, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Ozlem Gulbahar
- Department of Biochemistry, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| | - Kaan Sonmez
- Department of Pediatric Surgery, Gazi University Faculty of Medicine, Yenimahalle, 06500 Ankara, Turkey
| |
Collapse
|
6
|
Ram K, Kumar K, Singh D, Chopra D, Mani V, Jaggi AS, Singh N. Beneficial effect of lupeol and metformin in mouse model of intracerebroventricular streptozotocin induced dementia. Metab Brain Dis 2024; 39:661-678. [PMID: 38842663 DOI: 10.1007/s11011-024-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
This study examines the effectiveness of lupeol and metformin in a mouse model of dementia generated by intracerebroventricular streptozotocin (i.c.v., STZ). Dementia was induced in Swiss mice with the i.c.v. administration of STZ at a dosage of 3 mg/kg on the first and third day. The assessment of dementia involved an examination of the Morris Water Maze (MWM) performance, as well as a number of biochemical and histological studies. STZ treatment resulted in significant decrease in MWM performance; various biochemical alterations (increase in brain acetyl cholinesterase (AChE) activity, thiobarbituric acid reactive species (TBARS), nitrite/nitrate, and reduction in nuclear factor erythroid 2 related factor-2 (Nrf-2), reduced glutathione (GSH) levels) and neuroinflammation [increased myeloperoxidase (MPO) activity & neutrophil infiltration]. The administration of Lupeol (50 mg/kg & 100 mg/kg; p.o.) and Metformin (150 mg/kg & 300 mg/kg; p.o.) demonstrated a considerable reduction in the behavioral, biochemical, and histological alterations produced by STZ. Low dose combination of lupeol (50 mg/kg; p.o.) and Metformin (150 mg/kg; p.o.) produced more pronounced effect than that of high doses of either agent alone. It is concluded that Lupeol and Metformin has shown efficacy in dementia with possible synergism between the two and can be explored as potential therapeutic agents for managing dementia of Alzheimer's disease (AD) type.
Collapse
Affiliation(s)
- Khagesh Ram
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, 135001, Yamunanagar, HRY, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassin University, 51452, Buraydah, Saudi Arabia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
7
|
Fan W, Chen H, Li M, Fan X, Jiang F, Xu C, Wang Y, Wei W, Song J, Zhong D, Li G. NRF2 activation ameliorates blood-brain barrier injury after cerebral ischemic stroke by regulating ferroptosis and inflammation. Sci Rep 2024; 14:5300. [PMID: 38438409 PMCID: PMC10912757 DOI: 10.1038/s41598-024-53836-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Arterial occlusion-induced ischemic stroke (IS) is a highly frequent stroke subtype. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that modulates antioxidant genes. Its role in IS is still unelucidated. The current study focused on constructing a transient middle cerebral artery occlusion (tMCAO) model for investigating the NRF2-related mechanism underlying cerebral ischemia/reperfusion (I/R) injury. Each male C57BL/6 mouse was injected with/with no specific NRF2 activator post-tMCAO. Changes in blood-brain barrier (BBB)-associated molecule levels were analyzed using western-blotting, PCR, immunohistochemistry, and immunofluorescence analysis. NRF2 levels within cerebral I/R model decreased at 24-h post-ischemia. NRF2 activation improved brain edema, infarct volume, and neurological deficits after MCAO/R. Similarly, sulforaphane (SFN) prevented the down-regulated tight junction proteins occludin and zonula occludens 1 (ZO-1) and reduced the up-regulated aquaporin 4 (AQP4) and matrix metalloproteinase 9 (MMP9) after tMCAO. Collectively, NRF2 exerted a critical effect on preserving BBB integrity modulating ferroptosis and inflammation. Because NRF2 is related to BBB injury regulation following cerebral I/R, this provides a potential therapeutic target and throws light on the underlying mechanism for clinically treating IS.
Collapse
Affiliation(s)
- Wei Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Meng Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Fangchao Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Chen Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yingju Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Wan Wei
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Jihe Song
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
- Department of Neurology, Heilongjiang Provincial Hospital, 82 Zhong Shan Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
8
|
Park JS, Rehman IU, Choe K, Ahmad R, Lee HJ, Kim MO. A Triterpenoid Lupeol as an Antioxidant and Anti-Neuroinflammatory Agent: Impacts on Oxidative Stress in Alzheimer's Disease. Nutrients 2023; 15:3059. [PMID: 37447385 DOI: 10.3390/nu15133059] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease illustrated by neuronal dysfunctions, leading to memory weaknesses and personality changes mostly in the aged population worldwide. The exact cause of AD is unclear, but numerous studies have addressed the involvement of oxidative stress (OS), induced by reactive oxygen species (ROS), to be one of the leading causes in developing AD. OS dysregulates the cellular homeostasis, causing abnormal protein and lipid metabolism. Nutrition plays a pivotal role in modulating the antioxidant system and decreases the neuronal ROS level, thus playing an important therapeutic role in neurodegenerative diseases, especially in AD. Hence, medicinal herbs and their extracts have received global attention as a commercial source of antioxidants Lupeol. Lupeol is a pentacyclic triterpenoid and has many biological functions. It is available in fruits, vegetables, and medicinal plants. It has shown effective antioxidant and anti-inflammatory properties, and higher blood-brain barrier permeability. Also, the binding and inhibitory potentials of Lupeol have been investigated and proved to be effective against certain receptor proteins and enzymes in AD studies by computational molecular docking approaches. Therefore, AD-related research has gained interest in investigating the therapeutic effects of Lupeol. However, despite its beneficial effects in AD, there is still a lack of research in Lupeol. Hence, we compiled in this analysis all preclinical research that looked at Lupeol as an antioxidant and anti-inflammatory agent for AD.
Collapse
Affiliation(s)
- Jun Sung Park
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
9
|
Accipe L, Abadie A, Neviere R, Bercion S. Antioxidant Activities of Natural Compounds from Caribbean Plants to Enhance Diabetic Wound Healing. Antioxidants (Basel) 2023; 12:antiox12051079. [PMID: 37237945 DOI: 10.3390/antiox12051079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic wound healing is a global medical challenge. Several studies showed that delayed healing in diabetic patients is multifactorial. Nevertheless, there is evidence that excessive production of ROS and impaired ROS detoxification in diabetes are the main cause of chronic wounds. Indeed, increased ROS promotes the expression and activity of metalloproteinase, resulting in a high proteolytic state in the wound with significant destruction of the extracellular matrix, which leads to a stop in the repair process. In addition, ROS accumulation increases NLRP3 inflammasome activation and macrophage hyperpolarization in the M1 pro-inflammatory phenotype. Oxidative stress increases the activation of NETosis. This leads to an elevated pro-inflammatory state in the wound and prevents the resolution of inflammation, an essential step for wound healing. The use of medicinal plants and natural compounds can improve diabetic wound healing by directly targeting oxidative stress and the transcription factor Nrf2 involved in the antioxidant response or the mechanisms impacted by the elevation of ROS such as NLRP3 inflammasome, the polarization of macrophages, and expression or activation of metalloproteinases. This study of the diabetic pro-healing activity of nine plants found in the Caribbean highlights, more particularly, the role of five polyphenolic compounds. At the end of this review, research perspectives are presented.
Collapse
Affiliation(s)
- Laura Accipe
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Alisson Abadie
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Remi Neviere
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
- CHU Martinique, University Hospital of Martinique, 97200 Fort de France, France
| | - Sylvie Bercion
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| |
Collapse
|
10
|
Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia-reperfusion injury. Apoptosis 2023; 28:702-729. [PMID: 36892639 DOI: 10.1007/s10495-023-01824-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia-reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.
Collapse
Affiliation(s)
- Nan Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhe Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongtao Jia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
11
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|
12
|
Sohag AAM, Hossain MT, Rahaman MA, Rahman P, Hasan MS, Das RC, Khan MK, Sikder MH, Alam M, Uddin MJ, Rahman MH, Tahjib-Ul-Arif M, Islam T, Moon IS, Hannan MA. Molecular pharmacology and therapeutic advances of the pentacyclic triterpene lupeol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154012. [PMID: 35286936 DOI: 10.1016/j.phymed.2022.154012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant triterpenoids are major sources of nutraceuticals that provide many health benefits to humans. Lupeol is one of the pentacyclic dietary triterpenoids commonly found in many fruits and vegetables, which is highly investigated for its pharmacological effect and benefit to human health. PURPOSE This systematic review critically discussed the potential pharmacological benefits of lupeol and its derivatives as evidenced by various cellular and animal model studies. To gain insight into the pharmacological effects of lupeol, the network pharmacological approach is applied. Pharmacokinetics and recent developments in nanotechnology-based approaches to targeted delivery of lupeol along with its safety use are also discussed. METHODS This study is dependent on the systematic and non-exhaustive literature survey for related research articles, papers, and books on the chemistry, pharmacological benefits, pharmacokinetics, and safety of lupeol published between 2011 and 2021. For online materials, the popular academic search engines viz. Google Scholar, PubMed, Science Direct, Scopus, ResearchGate, Springer, as well as official websites were explored with selected keywords. RESULTS Lupeol has shown promising benefits in the management of cancer and many other human diseases such as diabetes, obesity, cardiovascular diseases, kidney and liver problems, skin diseases, and neurological disorders. The pharmacological effects of lupeol primarily rely on its capacity to revitalize the cellular antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Network pharmacological approach revealed some prospective molecular targets and pathways and presented some significant information that could help explain the pharmacological effects of lupeol and its derivatives. Despite significant progress in molecular pharmacology, the clinical application of lupeol is limited due to poor bioavailability and insufficient knowledge on its mode of action. Structural modification and nanotechnology-guided targeted delivery of lupeol improve the bioavailability and bioactivity of lupeol. CONCLUSION The pentacyclic triterpene lupeol possesses numerous human health-benefiting properties. This review updates current knowledge and critically discusses the pharmacological effects and potential applications of lupeol and its derivatives in human health and diseases. Future studies are needed to evaluate the efficacies of lupeol and its derivatives in the management and pathobiology of human diseases.
Collapse
Affiliation(s)
- Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Arifur Rahaman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Papia Rahman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Rakhal Chandra Das
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Kibria Khan
- Department of Pharmacy, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; Division of Chemistry and Biotechnology, Dongguk University, Gyeongju, 780-714, Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| |
Collapse
|
13
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
14
|
Yao D, Zhang S, Hu Z, Luo H, Mao C, Fan Y, Tang M, Liu F, Shen S, Fan L, Li M, Shi J, Li J, Ma D, Xu Y, Shi C. CHIP ameliorates cerebral ischemia-reperfusion injury by attenuating necroptosis and inflammation. Aging (Albany NY) 2021; 13:25564-25577. [PMID: 34905731 PMCID: PMC8714161 DOI: 10.18632/aging.203774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023]
Abstract
Blood reperfusion of ischemic cerebral tissue may cause cerebral ischemia-reperfusion (CIR) injury. Necroptosis and inflammation have been demonstrated to be involved in the disease-related process of CIR injury. The E3 ubiquitin ligase carboxyl terminus of Hsp70-interacting protein (CHIP) can modulate multiple cellular signaling processes, including necroptosis and inflammation. Numerous studies have demonstrated the neuroprotective effects of CHIP on multiple central nervous system (CNS) diseases. However, the effects of CHIP on CIR injury have not been fully explored. We hypothesize that CHIP can exert neuroprotective effects by attenuating necroptosis and inflammation during CIR injury. In the present study, adult wild-type (WT) C57BL/6 mice and CHIP knock-in (KI) mice with a C57BL/6 background and CHIP overexpression in neural tissue underwent middle cerebral artery occlusion (MCAO) surgery to simulate CIR onset. Our data indicated that CHIP expression in the peri-infarct tissue was markedly increased after MCAO surgery. Compared with WT mice, CHIP KI mice significantly improved neurological deficit scores, decreased cerebral infarct volume, and attenuated brain edema and neuronal damage. Meanwhile, CHIP overexpression attenuated necroptosis and inflammation induced by MCAO surgery. These findings indicated that overexpression of CHIP might exert neuroprotective effects by attenuating necroptosis and inflammation during CIR injury, and increasing CHIP levels may be a potential strategy in cerebrovascular disease therapy.
Collapse
Affiliation(s)
- Dabao Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Si Shen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jingjing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jiadi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
15
|
Cissus verticillata Extract Decreases Neuronal Damage Induced by Oxidative Stress in HT22 Cells and Ischemia in Gerbils by Reducing the Inflammation and Phosphorylation of MAPKs. PLANTS 2021; 10:plants10061217. [PMID: 34203930 PMCID: PMC8232592 DOI: 10.3390/plants10061217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
In the present study, we examined the effects of Cissus verticillata leaf extracts (CVE) against hydrogen peroxide (H2O2)- and ischemia-induced neuronal damage in HT22 cells and gerbil hippocampus. Incubation with CVE produced concentration-dependent toxicity in HT22 cells. Significant cellular toxicity was observed with >75 μg/mL CVE. CVE treatment at 50 μg/mL ameliorated H2O2-induced reactive oxygen species formation, DNA fragmentation, and cell death in HT22 cells. In addition, incubation with CVE significantly mitigated the increase in Bax and decrease in Bcl-2 induced by H2O2 treatment in HT22 cells. In an in vivo study, the administration of CVE to gerbils significantly decreased ischemia-induced motor activity 1 d after ischemia, as well as neuronal death and microglial activation 4 d after ischemia, respectively. CVE treatment reduced the release of interleukin-1β, interleukin-6, and tumor necrosis factor-α 6 h after ischemia. Furthermore, CVE treatment significantly ameliorated ischemia-induced phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38. These results suggest that CVE has the potential to reduce the neuronal damage induced by oxidative and ischemic stress by reducing the inflammatory responses and phosphorylation of MAPKs, suggesting that CVE could be a functional food to prevent neuronal damage induced by ischemia.
Collapse
|
16
|
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res 2020; 164:105373. [PMID: 33316380 DOI: 10.1016/j.phrs.2020.105373] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Lupeol is a natural triterpenoid that widely exists in edible fruits and vegetables, and medicinal plants. In the last decade, a plethora of studies on the pharmacological activities of lupeol have been conducted and have demonstrated that lupeol possesses an extensive range of pharmacological activities such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. Pharmacokinetic studies have indicated that absorption of lupeol by animals was rapid despite its nonpolar characteristics, and lupeol belongs to class II BCS (biopharmaceutics classification system) compounds. Moreover, the bioactivities of some isolated or synthesized lupeol derivatives have been investigated, and these results showed that, with modification to C-3 or C-19, some derivatives exhibit stronger activities, e.g., antiprotozoal or anticancer activity. This review aims to summarize the advances in pharmacological and pharmacokinetic studies of lupeol in the last decade with an emphasis on its anticancer and anti-inflammatory activities, as well as the research progress of lupeol derivatives thus far, to provide researchers with the latest information, point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
17
|
Revealing the Pharmacological Mechanism of Acorus tatarinowii in the Treatment of Ischemic Stroke Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3236768. [PMID: 33178313 PMCID: PMC7648688 DOI: 10.1155/2020/3236768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 02/04/2023]
Abstract
Aim Stroke is the second significant cause for death, with ischemic stroke (IS) being the main type threatening human being's health. Acorus tatarinowii (AT) is widely used in the treatment of Alzheimer disease, epilepsy, depression, and stroke, which leads to disorders of consciousness disease. However, the systemic mechanism of AT treating IS is unexplicit. This article is supposed to explain why AT has an effect on the treatment of IS in a comprehensive and systematic way by network pharmacology. Methods and Materials ADME (absorbed, distributed, metabolized, and excreted) is an important property for screening-related compounds in AT, which were screening out of TCMSP, TCMID, Chemistry Database, and literature from CNKI. Then, these targets related to screened compounds were predicted via Swiss Targets, when AT-related targets database was established. The gene targets related to IS were collected from DisGeNET and GeneCards. IS-AT is a common protein interactive network established by STRING Database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analysed by IS-AT common target genes. Cytoscape software was used to establish a visualized network for active compounds-core targets and core target proteins-proteins interactive network. Furthermore, we drew a signal pathway picture about its effect to reveal the basic mechanism of AT against IS systematically. Results There were 53 active compounds screened from AT, inferring the main therapeutic substances as follows: bisasaricin, 3-cyclohexene-1-methanol-α,α,4-trimethyl,acetate, cis,cis,cis-7,10,13-hexadecatrienal, hydroxyacoronene, nerolidol, galgravin, veraguensin, 2′-o-methyl isoliquiritigenin, gamma-asarone, and alpha-asarone. We obtained 398 related targets, 63 of which were the same as the IS-related genes from targets prediction. Except for GRM2, remaining 62 target genes have an interactive relation, respectively. The top 10 degree core target genes were IL6, TNF, IL1B, TLR4, NOS3, MAPK1, PTGS2, VEGFA, JUN, and MMP9. There were more than 20 terms of biological process, 7 terms of cellular components, and 14 terms of molecular function through GO enrichment analysis and 13 terms of signal pathway from KEGG enrichment analysis based on P < 0.05. Conclusion AT had a therapeutic effect for ischemic via multicomponent, multitarget, and multisignal pathway, which provided a novel research aspect for AT against IS.
Collapse
|
18
|
Ahmad R, Khan A, Lee HJ, Ur Rehman I, Khan I, Alam SI, Kim MO. Lupeol, a Plant-Derived Triterpenoid, Protects Mice Brains against Aβ-Induced Oxidative Stress and Neurodegeneration. Biomedicines 2020; 8:biomedicines8100380. [PMID: 32993092 PMCID: PMC7601269 DOI: 10.3390/biomedicines8100380] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that represents 60–70% of all dementia cases. AD is characterized by the formation and accumulation of amyloid-beta (Aβ) plaques, neurofibrillary tangles, and neuronal cell loss. Further accumulation of Aβ in the brain induces oxidative stress, neuroinflammation, and synaptic and memory dysfunction. In this study, we investigated the antioxidant and neuroprotective effects of the natural triterpenoid lupeol in the Aβ1-42 mouse model of AD. An Intracerebroventricular injection (i.c.v.) of Aβ (3 µL/5 min/mouse) into the brain of a mouse increased the reactive oxygen species (ROS) levels, neuroinflammation, and memory and cognitive dysfunction. The oral administration of lupeol at a dose of 50 mg/kg for two weeks significantly decreased the oxidative stress, neuroinflammation, and memory impairments. Lupeol decreased the oxidative stress via the activation of nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) in the brain of adult mice. Moreover, lupeol treatment prevented neuroinflammation by suppressing activated glial cells and inflammatory mediators. Additionally, lupeol treatment significantly decreased the accumulation of Aβ and beta-secretase-1 (BACE-1) expression and enhanced the memory and cognitive function in the Aβ-mouse model of AD. To the best of our knowledge, this is the first study to investigate the anti-oxidative and neuroprotective effects of lupeol against Aβ1-42-induced neurotoxicity. Our findings suggest that lupeol could serve as a novel, promising, and accessible neuroprotective agent against progressive neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Myeong Ok Kim
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|