1
|
Sun H, Yang LH, Fu MY, Cui B. Computational and Experimental Studies on the α-Functionalization of Ketones Using Domino Reactions: A Strategy to Increase Chemoselectivity at the α-Carbon of Ketones. Molecules 2025; 30:1114. [PMID: 40076337 PMCID: PMC11901711 DOI: 10.3390/molecules30051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
A facile strategy to increase the chemoselectivity of domino reactions was proposed and successfully applied in the α-functionalization of ketones. The strategy involved widening the activation energy of the main reaction and side reaction through intermolecular interactions, thereby increasing the chemoselectivity of the domino reaction. In the proposed α-functionalization reaction, TMSCF3 acted as an excellent reagent which increased the nucleophilicity of DMF through the Van der Waals force and reduced the nucleophilicity of H2O through a hydrogen bond. We found that TMSCF3 can increase the activation energy difference between the main reaction and side reaction using DFT calculations, which greatly increased chemoselectivity and avoided the formation of by-products. TMSCF3 was recycled by rectification, and the average recovery rate was 87.2%. DFT calculations, XRD experiments, and control experiments were performed to support this mechanism. We are confident that this strategy has the potential to deliver significant practical advancements while simultaneously fostering broader innovation in the field of domino synthesis.
Collapse
Affiliation(s)
- Hui Sun
- Manganese Catalysis and Asymmetric Synthesis Laboratory, Hebei University of Science and Technology, Shijiazhuang 050018, China; (L.-H.Y.); (M.-Y.F.)
| | | | | | - Bin Cui
- Manganese Catalysis and Asymmetric Synthesis Laboratory, Hebei University of Science and Technology, Shijiazhuang 050018, China; (L.-H.Y.); (M.-Y.F.)
| |
Collapse
|
2
|
Rana A, Pathak S, Lim DK, Kim SK, Srivastava R, Sharma SN, Verma R. Recent Advancements in Plant- and Microbe-Mediated Synthesis of Metal and Metal Oxide Nanomaterials and Their Emerging Antimicrobial Applications. ACS APPLIED NANO MATERIALS 2023; 6:8106-8134. [DOI: 10.1021/acsanm.3c01351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Archana Rana
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Saurabh Pathak
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, South Korea
| | - Sang-Koog Kim
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Ritu Srivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Shailesh Narain Sharma
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Rajni Verma
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Tripathi N, Goshisht MK. Advancing Women in Chemistry: A Step Toward Gender Parity. J Chem Inf Model 2022; 62:6386-6397. [PMID: 36038822 DOI: 10.1021/acs.jcim.2c00535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As chemistry progressed over the years, modern society witnessed the significant contribution of women chemists. However, the persisting gender imbalance in the scientific community, attributed to improper societal norms and several other reasons, is a matter of concern. The manuscript highlights some great women chemists, such as Nobel Prize awardees, who have created history through their outstanding research work and are role models for other women. Since women continue to encounter recurring obstacles to moving forward in their area, the "leaky pipeline" of women in chemical science remains problematic. Numerous factors, including having to shoulder the labor of childcare and household work and a lack of awareness of regulations and possibilities, contribute to prejudices and the gender gap in higher-level administrative and decision-making roles. To close the gender gap and empower women chemists, we highlight some initiatives (awards, fellowships, schemes, and grants) that have been put forth by governments, organizations, foundations, companies, industries, and publishing societies. As per statistics, only 4% of female scientists have been awarded the Nobel Prize in chemistry until now. Only 35%, 22%, 14%, 26%, and 5% of women are serving as editors-in-chief, while 38%, 40%, 18%, 22%, and 21% are working as associate editors of the American Chemical Society (ACS), Royal Society of Chemistry (RSC), Wiley, Elsevier, and Springer journals, respectively. A further issue is that women receive far fewer honors in chemistry. To promote a more encouraging atmosphere for women scientists at all career phases, we listed some recommendations that research grant funders, academic institutions, publishers, and scientific organizations can follow. For gender parity, the paper sought to address the current situation of women in the chemical sciences. Women's contributions to chemistry will promote innovation and progress in the field.
Collapse
Affiliation(s)
- Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar Goshisht
- Department of Chemistry, Government Naveen College Tokapal, Bastar, Chhattisgarh 494442, India
| |
Collapse
|
4
|
Chen W, Shao Y, Peng X, Liang B, Xu J, Xing D. Review of preclinical data of PF-07304814 and its active metabolite derivatives against SARS-CoV-2 infection. Front Pharmacol 2022; 13:1035969. [PMID: 36438815 PMCID: PMC9691842 DOI: 10.3389/fphar.2022.1035969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Main protease (Mpro) is a superior target for anti-SARS-COV-2 drugs. PF-07304814 is a phosphate ester prodrug of PF-00835231 that is rapidly metabolized into the active metabolite PF-00835231 by alkaline phosphatase (ALP) and then suppresses SARS-CoV-2 replication by inhibiting Mpro. PF-07304814 increased the bioavailability of PF-00835231 by enhancing plasma protein binding (PPB). P-glycoprotein (P-gp) inhibitors and cytochrome P450 3A (CYP3A) inhibitors increased the efficacy of PF-00835231 by suppressing its efflux from target cells and metabolism, respectively. The life cycle of SARS-CoV-2 is approximately 4 h. The mechanisms and efficacy outcomes of PF-00835231 occur simultaneously. PF-00835231 can inhibit not only cell infection (such as Vero E6, 293T, Huh-7.5, HeLa+angiotensin-converting enzyme 2 (ACE2), A549+ACE2, and MRC-5) but also the human respiratory epithelial organ model and animal model infection. PF-07304814 exhibits a short terminal elimination half-life and is cleared primarily through renal elimination. There were no significant adverse effects of PF-07304814 administration in rats. Therefore, PF-07304814 exhibits good tolerability, pharmacology, pharmacodynamics, pharmacokinetics, and safety in preclinical trials. However, the Phase 1 data of PF-07304814 were not released. The Phase 2/3 trial of PF-07304814 was also suspended. Interestingly, the antiviral activities of PF-00835231 derivatives (compounds 5–22) are higher than, similar to, or slightly weaker than those of PF-00835231. In particular, compound 22 exhibited the highest potency and had good safety and stability. However, the low solubility of compound 22 limits its clinical application. Prodrugs, nanotechnology and salt form drugs may solve this problem. In this review, we focus on the preclinical data of PF-07304814 and its active metabolite derivatives to hopefully provide knowledge for researchers to study SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Xiaojin Peng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Jiazhen Xu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Jiazhen Xu, ; Dongming Xing,
| |
Collapse
|
5
|
Bruscoli S, Puzzovio PG, Zaimi M, Tiligada K, Levi-Schaffer F, Riccardi C. Glucocorticoids and COVID-19. Pharmacol Res 2022; 185:106511. [PMID: 36243331 PMCID: PMC9556882 DOI: 10.1016/j.phrs.2022.106511] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 19 (COVID-19) is associated with high morbidity and mortality rates globally, representing the greatest health and economic challenge today. Several drugs are currently approved for the treatment of COVID-19. Among these, glucocorticoids (GCs) have received particular attention due to their anti-inflammatory and immunosuppressive effects. In fact, GC are widely used in current clinical practice to treat inflammatory, allergic and autoimmune diseases. Major mechanisms of GC action include inhibition of innate and adaptive immune activity. In particular, an important role is played by the inhibition of pro-inflammatory cytokines and chemokines, and the induction of proteins with anti-inflammatory activity. Overall, as indicated by various national and international regulatory agencies, GCs are recommended for the treatment of COVID-19 in patients requiring oxygen therapy, with or without mechanical ventilation. Regarding the use of GCs for the COVID-19 treatment of non-hospitalized patients at an early stage of the disease, many controversial studies have been reported and regulatory agencies have not recommended their use. The decision to start GC therapy should be based not only on the severity of COVID-19 disease, but also on careful considerations of the benefit/risk profile in individual patients, including monitoring of adverse events. In this review we summarize the effects of GCs on the major cellular and molecular components of the inflammatory/immune system, the benefits and the adverse common reactions in the treatment of inflammatory/autoimmune diseases, as well as in the management of COVID-19.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Tiligada
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy.
| |
Collapse
|
6
|
Sheikh A, Huang H, Parvin S, Badruzzaman M, Ahamed T, Hossain E, Baran IS, Saud ZA. A multi-population-based genomic analysis uncovers unique haplotype variants and crucial mutant genes in SARS-CoV-2. J Genet Eng Biotechnol 2022; 20:149. [PMID: 36318347 PMCID: PMC9626712 DOI: 10.1186/s43141-022-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Background COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rigorous detection and treatment strategies against SARS-CoV-2 have become very challenging due to continuous evolutions to the viral genome. Therefore, careful genomic analysis is sorely needed to understand transmission, the cellular mechanism of pathogenicity, and the development of vaccines or drugs. Objective In this study, we intended to identify SARS-CoV-2 genome variants that may help understand the cellular and molecular foundation of coronavirus infections required to develop effective intervention strategies. Methods SARS-CoV-2 genome sequences were downloaded from an open-source public database, processed, and analyzed for variants in target detection sites and genes. Results We have identified six unique variants, G---AAC, T---AAC---T, AAC---T, AAC--------T, C----------T, and C--------C, at the nucleocapsid region and eleven major hotspot mutant genes: nsp3, surface glycoprotein, nucleocapsid phosphoprotein, ORF8, nsp6, nsp2, nsp4, helicase, membrane glycoprotein, 3′-5′ exonuclease, and 2′-O-ribose methyltransferases. In addition, we have identified eleven major mutant genes that may have a crucial role in SARS-CoV-2 pathogenesis. Conclusion Studying haplotype variants and 11 major mutant genes to understand the mechanism of action of fatal pathogenicity and inter-individual variations in immune responses is inevitable for managing target patient groups with identified variants and developing effective anti-viral drugs and vaccines. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00431-3.
Collapse
Affiliation(s)
- Afzal Sheikh
- grid.443108.a0000 0000 8550 5526Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Dhaka 1706 Bangladesh
| | - He Huang
- Research and Development Department, Bioengineering Lab. Co., Ltd, 657 Nagatake Midori-ku, Sagamihara-shi, Kanagawa-ken 252-0154 Japan
| | - Sultana Parvin
- grid.263023.60000 0001 0703 3735Department of Biology, Faculty of Science and Engineering, Saitama University, Saitama, Japan
| | - Mohammad Badruzzaman
- grid.443108.a0000 0000 8550 5526Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Dhaka 1706 Bangladesh
| | - Tofayel Ahamed
- grid.443108.a0000 0000 8550 5526Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Dhaka 1706 Bangladesh
| | - Ekhtear Hossain
- grid.263880.70000 0004 0386 0655Department of Biological Sciences and Chemistry, Southern University and A&M College, 244 William James Hall, Baton Rouge, LA 70813 USA
| | - Iri Sato Baran
- Genesis Institute of Genetic Research, Genesis Healthcare Corporation, Yebisu Garden Place Tower 15F/26F 4-20-3 Ebisu, Shibuya-ku, Tokyo, Japan
| | - Zahangir Alam Saud
- grid.412656.20000 0004 0451 7306Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| |
Collapse
|
7
|
Chai X, Gu Y, Lv L, Chen C, Feng F, Cao Y, Liu Y, Zhu Z, Hong Z, Chai Y, Chen X. Screening of immune cell activators from Astragali Radix using a comprehensive two-dimensional NK-92MI cell membrane chromatography/C18 column/time-of-flight mass spectrometry system. J Pharm Anal 2022; 12:725-732. [PMID: 36320599 PMCID: PMC9615523 DOI: 10.1016/j.jpha.2022.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Astragali Radix (AR) is a clinically used herbal medicine with multiple immunomodulatory activities that can strengthen the activity and cytotoxicity of natural killer (NK) cells. However, owing to the complexity of its composition, the specific active ingredients in AR that act on NK cells are not clear yet. Cell membrane chromatography (CMC) is mainly used to screen the active ingredients in a complex system of herbal medicines. In this study, a new comprehensive two-dimensional (2D) NK-92MI CMC/C18 column/time-of-flight mass spectrometry (TOFMS) system was established to screen for potential NK cell activators. To obtain a higher column efficiency, 3-mercaptopropyltrimethoxysilane-modified silica was synthesized to prepare the NK-92MI CMC column. In total, nine components in AR were screened from this system, which could be washed out from the NK-92MI/CMC column after 10 min, and they showed good affinity for NK-92MI/CMC column. Two representative active compounds of AR, isoastragaloside I and astragaloside IV, promoted the killing effect of NK cells on K562 cells in a dose-dependent manner. It can thus suggest that isoastragaloside I and astragaloside IV are the main immunomodulatory components of AR. This comprehensive 2D NK-92MI CMC analytical system is a practical method for screening immune cell activators from other herbal medicines with immunomodulatory effects. A comprehensive 2D NK-92MI/CMC system was developed to screen for immune cell activators. Nine components of Astragali Radix were screened as potential immune activators. Isoastragaloside I and astragaloside IV were first confirmed to have immunomodulatory effects.
Collapse
|
8
|
Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:1391-1463. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substantial increase in multidrug-resistant (MDR) pathogenic bacteria is a major threat to global health. Recently, the Centers for Disease Control and Prevention reported possibilities of greater deaths due to bacterial infections than cancer. Nanomaterials, especially small-sized (size ≤10 nm) silver nanoparticles (AgNPs), can be employed to combat these deadly bacterial diseases. However, high reactivity, instability, susceptibility to fast oxidation, and cytotoxicity remain crucial shortcomings for their uptake and clinical application. In this review, we discuss various AgNPs-based approaches to eradicate bacterial infections and provide comprehensive mechanistic insights and recent advances in antibacterial activity, antibiofilm activity, and cytotoxicity (both in vitro and in vivo) of AgNPs. The mechanistic of antimicrobial activity involves four steps: (i) adhesion of AgNPs to cell wall/membrane and its disruption; (ii) intracellular penetration and damage; (iii) oxidative stress; and (iv) modulation of signal transduction pathways. Numerous factors affecting the bactericidal activity of AgNPs such as shape, size, crystallinity, pH, and surface coating/charge have also been described in detail. The review also sheds light on antimicrobial photodynamic therapy and the role of AgNPs versus Ag+ ions release in bactericidal activities. In addition, different methods of synthesis of AgNPs have been discussed in brief.
Collapse
Affiliation(s)
- Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar Goshisht
- Department of Chemistry, Government Naveen College Tokapal, Bastar, Chhattisgarh 494442, India
| |
Collapse
|
9
|
Masand VH, Sk MF, Kar P, Rastija V, Zaki MEA. Identification of Food Compounds as inhibitors of SARS-CoV-2 main protease using molecular docking and molecular dynamics simulations. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2021; 217:104394. [PMID: 34312571 PMCID: PMC8295492 DOI: 10.1016/j.chemolab.2021.104394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/22/2021] [Accepted: 07/18/2021] [Indexed: 05/27/2023]
Abstract
SARS-CoV-2 has rapidly emerged as a global pandemic with high infection rate. At present, there is no drug available for this deadly disease. Recently, Mpro (Main Protease) enzyme has been identified as essential proteins for the survival of this virus. In the present work, Lipinski's rules and molecular docking have been performed to identify plausible inhibitors of Mpro using food compounds. For virtual screening, a database of food compounds was downloaded and then filtered using Lipinski's rule of five. Then, molecular docking was accomplished to identify hits using Mpro protein as the target enzyme. This led to identification of a Spermidine derivative as a hit. In the next step, Spermidine derivatives were collected from PubMed and screened for their binding with Mpro protein. In addition, molecular dynamic simulations (200 ns) were executed to get additional information. Some of the compounds are found to have strong affinity for Mpro, therefore these hits could be used to develop a therapeutic agent for SARS-CoV-2.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, Maharashtra, 444 602, India
| | - Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Khandwa Road, MP, 453552, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Khandwa Road, MP, 453552, India
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| |
Collapse
|
10
|
Wang Z, Yang L, Zhao XE. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Comput Struct Biotechnol J 2021; 19:4684-4701. [PMID: 34426762 PMCID: PMC8373586 DOI: 10.1016/j.csbj.2021.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Safer and more-effective drugs are urgently needed to counter infections with the highly pathogenic SARS-CoV-2, cause of the COVID-19 pandemic. Identification of efficient inhibitors to treat and prevent SARS-CoV-2 infection is a predominant focus. Encouragingly, using X-ray crystal structures of therapeutically relevant drug targets (PLpro, Mpro, RdRp, and S glycoprotein) offers a valuable direction for anti-SARS-CoV-2 drug discovery and lead optimization through direct visualization of interactions. Computational analyses based primarily on MMPBSA calculations have also been proposed for assessing the binding stability of biomolecular structures involving the ligand and receptor. In this study, we focused on state-of-the-art X-ray co-crystal structures of the abovementioned targets complexed with newly identified small-molecule inhibitors (natural products, FDA-approved drugs, candidate drugs, and their analogues) with the assistance of computational analyses to support the precision design and screening of anti-SARS-CoV-2 drugs.
Collapse
Key Words
- 3CLpro, 3C-Like protease
- ACE2, angiotensin-converting enzyme 2
- COVID-19, coronavirus disease 2019
- Candidate drugs
- Co-crystal structures
- DyKAT, dynamic kinetic asymmetric transformation
- EBOV, Ebola virus
- EC50, half maximal effective concentration
- EMD, Electron Microscopy Data
- FDA, U.S. Food and Drug Administration
- FDA-approved drugs
- HCoV-229E, human coronavirus 229E
- HPLC, high-performance liquid chromatography
- IC50, half maximal inhibitory concentration
- MD, molecular dynamics
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MMPBSA, molecular mechanics Poisson-Boltzmann surface area
- MTase, methyltransferase
- Mpro, main protease
- Natural products
- Nsp, nonstructural protein
- PDB, Protein Data Bank
- PLpro, papain-like protease
- RTP, ribonucleoside triphosphate
- RdRp, RNA-dependent RNA polymerase
- SAM, S-adenosylmethionine
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SI, selectivity index
- Ugi-4CR, Ugi four-component reaction
- cryo-EM, cryo-electron microscopy
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xian-En Zhao
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
11
|
Mechanistic and Predictive QSAR Analysis of Diverse Molecules to Capture Salient and Hidden Pharmacophores for Anti-Thrombotic Activity. Int J Mol Sci 2021; 22:ijms22158352. [PMID: 34361118 PMCID: PMC8348508 DOI: 10.3390/ijms22158352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/24/2021] [Accepted: 07/31/2021] [Indexed: 12/02/2022] Open
Abstract
Thrombosis is a life-threatening disease with a high mortality rate in many countries. Even though anti-thrombotic drugs are available, their serious side effects compel the search for safer drugs. In search of a safer anti-thrombotic drug, Quantitative Structure-Activity Relationship (QSAR) could be useful to identify crucial pharmacophoric features. The present work is based on a larger data set comprising 1121 diverse compounds to develop a QSAR model having a balance of acceptable predictive ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR). The developed six parametric model fulfils the recommended values for internal and external validation along with Y-randomization parameters such as R2tr = 0.831, Q2LMO = 0.828, R2ex = 0.783. The present analysis reveals that anti-thrombotic activity is found to be correlated with concealed structural traits such as positively charged ring carbon atoms, specific combination of aromatic Nitrogen and sp2-hybridized carbon atoms, etc. Thus, the model captured reported as well as novel pharmacophoric features. The results of QSAR analysis are further vindicated by reported crystal structures of compounds with factor Xa. The analysis led to the identification of useful novel pharmacophoric features, which could be used for future optimization of lead compounds.
Collapse
|
12
|
Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review. Mol Divers 2021; 25:1643-1664. [PMID: 34110579 DOI: 10.1007/s11030-021-10237-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Artificial intelligence (AI) renders cutting-edge applications in diverse sectors of society. Due to substantial progress in high-performance computing, the development of superior algorithms, and the accumulation of huge biological and chemical data, computer-assisted drug design technology is playing a key role in drug discovery with its advantages of high efficiency, fast speed, and low cost. Over recent years, due to continuous progress in machine learning (ML) algorithms, AI has been extensively employed in various drug discovery stages. Very recently, drug design and discovery have entered the big data era. ML algorithms have progressively developed into a deep learning technique with potent generalization capability and more effectual big data handling, which further promotes the integration of AI technology and computer-assisted drug discovery technology, hence accelerating the design and discovery of the newest drugs. This review mainly summarizes the application progression of AI technology in the drug discovery process, and explores and compares its advantages over conventional methods. The challenges and limitations of AI in drug design and discovery have also been discussed.
Collapse
|
13
|
Zaki MEA, Al-Hussain SA, Masand VH, Akasapu S, Bajaj SO, El-Sayed NNE, Ghosh A, Lewaa I. Identification of Anti-SARS-CoV-2 Compounds from Food Using QSAR-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation Analysis. Pharmaceuticals (Basel) 2021; 14:357. [PMID: 33924395 PMCID: PMC8070011 DOI: 10.3390/ph14040357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure-Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole-indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, Maharashtra 444 602, India
| | | | | | | | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam 781014, India;
| | - Israa Lewaa
- Department of Business Administration, Faculty of Business Administration, Economics and Political Science, British University in Egypt, Cairo 11837, Egypt;
| |
Collapse
|