1
|
Ravelombola W, Manley A, Pham H, Brown M, Ruhl C, Ghosh P. Genome-Wide Association Study for Seed Yield of Tepary Bean Using Whole-Genome Resequencing. Int J Mol Sci 2024; 25:11302. [PMID: 39457083 PMCID: PMC11508933 DOI: 10.3390/ijms252011302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Tepary bean (Phaseolus acutifolius A. Gray) is a diploid legume species (2n = 2x = 22). It is the most drought- and heat-tolerant crop of the genus Phaseolus. Tepary bean is native to the northern part of Mexico and the south-western part of the U.S. The lack of molecular markers associated with agronomic traits such as 100-seed weight and seed yield limit the development of elite tepary bean cultivars. Therefore, the objectives of this study were to evaluate tepary bean for 100-seed weight and yield, and identify single-nucleotide polymorphism (SNP) markers associated with these traits. A total of 230,000 high-quality SNPs obtained from the whole-genome resequencing of 153 tepary bean accessions were used for this study. For 100-seed weight, a total of 5 and 20 SNPs were found using a mixed linear model (MLM) and compressed mixed linear model (cMLM), respectively. A candidate gene, Phacu.CVR.002G320800.13, encoding the squamosa promoter-binding protein-like (SBP domain) transcription factor family protein was found to be associated with 100-seed weight. For seed yield, a total of one and eight SNPs were identified using an MLM and cMLM, respectively. Phacu.CVR.009G294200.1, encoding for peroxidase family protein, was identified as a candidate gene for seed yield. Both Phacu.CVR.002G320800.13 and Phacu.CVR.009G294200.1 are likely to be involved in seed development of tepary bean. This is one of the few studies investigating the genetics of 100-seed weight and seed yield in tepary bean.
Collapse
Affiliation(s)
- Waltram Ravelombola
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
- Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843, USA
| | - Aurora Manley
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
| | - Hanh Pham
- Texas A&M AgriLife Research, 1102 East Drew Street, Lubbock, TX 79403, USA
| | - Madeline Brown
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
| | - Caroline Ruhl
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX 76384, USA
| | - Protik Ghosh
- Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843, USA
| |
Collapse
|
2
|
Bosmali I, Lagiotis G, Ganopoulos I, Stefanidou E, Madesis P, Biliaderis CG. Phaseolus coccineus L. Landraces in Greece: Microsatellite Genotyping and Molecular Characterization for Landrace Authenticity and Discrimination. BIOTECH 2024; 13:18. [PMID: 38921050 PMCID: PMC11201852 DOI: 10.3390/biotech13020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Phaseolus coccineus L. is a highly valuable crop for human consumption with a high protein content and other associated health benefits. Herein, 14 P. coccineus L. landraces were selected for genetic characterization: two Protected Geographical Indication (PGI) landraces from the Prespon area, namely "Gigantes" ("G") and "Elephantes" ("E"), and 12 additional landraces from the Greek Gene Bank collection of beans (PC1-PC12). The genetic diversity among these landraces was assessed using capillary electrophoresis utilizing fluorescence-labeled Simple Sequence Repeat (SSR) and Expressed Sequence Tag (EST); Simple Sequence Repeat (SSR) is a molecular marker technology. The "G" and "E" Prespon landraces were clearly distinguished among them, as well as from the PC1 to PC12 landraces, indicating the unique genetic identity of the Prespon beans. Overall, the genetic characterization of the abundant Greek bean germplasm using molecular markers can aid in the genetic identification of "G" and "E" Prespon beans, thus preventing any form of fraudulent practices as well as supporting traceability management strategies for the identification of authenticity, and protection of the origin of local certified products.
Collapse
Affiliation(s)
- Irene Bosmali
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis, 57001 Thessaloniki, Greece; (G.L.); (E.S.)
| | - Georgios Lagiotis
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis, 57001 Thessaloniki, Greece; (G.L.); (E.S.)
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Volos, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA (ex NAGREF), 1st District Road of Thessalonikis-Polygyrou, 57001 Thermi, Greece;
| | - Eleni Stefanidou
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis, 57001 Thessaloniki, Greece; (G.L.); (E.S.)
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Volos, Greece
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis, 57001 Thessaloniki, Greece; (G.L.); (E.S.)
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Volos, Greece
| | - Costas G. Biliaderis
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| |
Collapse
|
3
|
Reinprecht Y, Schram L, Perry GE, Morneau E, Smith TH, Pauls KP. Mapping yield and yield-related traits using diverse common bean germplasm. Front Genet 2024; 14:1246904. [PMID: 38234999 PMCID: PMC10791882 DOI: 10.3389/fgene.2023.1246904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Common bean (bean) is one of the most important legume crops, and mapping genes for yield and yield-related traits is essential for its improvement. However, yield is a complex trait that is typically controlled by many loci in crop genomes. The objective of this research was to identify regions in the bean genome associated with yield and a number of yield-related traits using a collection of 121 diverse bean genotypes with different yields. The beans were evaluated in replicated trials at two locations, over two years. Significant variation among genotypes was identified for all traits analyzed in the four environments. The collection was genotyped with the BARCBean6K_3 chip (5,398 SNPs), two yield/antiyield gene-based markers, and seven markers previously associated with resistance to common bacterial blight (CBB), including a Niemann-Pick polymorphism (NPP) gene-based marker. Over 90% of the single-nucleotide polymorphisms (SNPs) were polymorphic and separated the panel into two main groups of small-seeded and large-seeded beans, reflecting their Mesoamerican and Andean origins. Thirty-nine significant marker-trait associations (MTAs) were identified between 31 SNPs and 15 analyzed traits on all 11 bean chromosomes. Some of these MTAs confirmed genome regions previously associated with the yield and yield-related traits in bean, but a number of associations were not reported previously, especially those with derived traits. Over 600 candidate genes with different functional annotations were identified for the analyzed traits in the 200-Kb region centered on significant SNPs. Fourteen SNPs were identified within the gene model sequences, and five additional SNPs significantly associated with five different traits were located at less than 0.6 Kb from the candidate genes. The work confirmed associations between two yield/antiyield gene-based markers (AYD1m and AYD2m) on chromosome Pv09 with yield and identified their association with a number of yield-related traits, including seed weight. The results also confirmed the usefulness of the NPP marker in screening for CBB resistance. Since disease resistance and yield measurements are environmentally dependent and labor-intensive, the three gene-based markers (CBB- and two yield-related) and quantitative trait loci (QTL) that were validated in this work may be useful tools for simplifying and accelerating the selection of high-yielding and CBB-resistant bean cultivars.
Collapse
Affiliation(s)
| | - Lyndsay Schram
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Gregory E. Perry
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Emily Morneau
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| | - Thomas H. Smith
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - K. Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
García-Fernández C, Jurado M, Campa A, Bitocchi E, Papa R, Ferreira JJ. Genetic control of pod morphological traits and pod edibility in a common bean RIL population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:6. [PMID: 38091106 PMCID: PMC10719158 DOI: 10.1007/s00122-023-04516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
KEY MESSAGE QTL mapping, association analysis, and colocation study with previously reported QTL revealed three main regions controlling pod morphological traits and two loci for edible pod characteristics on the common bean chromosomes Pv01 and Pv06. Bean pod phenotype is a complex characteristic defined by the combination of different traits that determine the potential use of a genotype as a snap bean. In this study, the TUM RIL population derived from a cross between 'TU' (dry) and 'Musica' (snap) was used to investigate the genetic control of pod phenotype. The character was dissected into pod morphological traits (PMTs) and edible pod characteristics (EPC). The results revealed 35 QTL for PMTs located on seven chromosomes, suggesting a strong QTL colocation on chromosomes Pv01 and Pv06. Some QTL were colocated with previously reported QTL, leading to the mapping of 15 consensus regions associated with bean PMTs. Analysis of EPC of cooked beans revealed that two major loci with epistatic effect, located on chromosomes Pv01 and Pv06, are involved in the genetic control of this trait. An association study using a subset of the Spanish Diversity Panel (snap vs. non-snap) detected 23 genomic regions, with three regions being mapped at a position similar to those of two loci identified in the TUM population. The results demonstrated the relevant roles of Pv01 and Pv06 in the modulation of bean pod phenotype. Gene ontology enrichment analysis revealed a significant overrepresentation of genes regulating the phenylpropanoid metabolic process and auxin response in regions associated with PMTs and EPC, respectively. Both biological functions converged in the lignin biosynthetic pathway, suggesting the key role of the pathway in the genetic control of bean pod phenotype.
Collapse
Affiliation(s)
- Carmen García-Fernández
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain.
| | - Maria Jurado
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Elena Bitocchi
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Juan Jose Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| |
Collapse
|
5
|
Izquierdo P, Kelly JD, Beebe SE, Cichy K. Combination of meta-analysis of QTL and GWAS to uncover the genetic architecture of seed yield and seed yield components in common bean. THE PLANT GENOME 2023:e20328. [PMID: 37082832 DOI: 10.1002/tpg2.20328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Increasing seed yield in common bean could help to improve food security and reduce malnutrition globally due to the high nutritional quality of this crop. However, the complex genetic architecture and prevalent genotype by environment interactions for seed yield makes increasing genetic gains challenging. The aim of this study was to identify the most consistent genomic regions related with seed yield components and phenology reported in the last 20 years in common bean. A meta-analysis of quantitative trait locus (QTL) for seed yield components and phenology (MQTL-YC) was performed for 394 QTL reported in 21 independent studies under sufficient water and drought conditions. In total, 58 MQTL-YC over different genetic backgrounds and environments were identified, reducing threefold on average the confidence interval (CI) compared with the CI for the initial QTL. Furthermore, 40 MQTL-YC identified were co-located with 210 SNP peak positions reported via genome-wide association (GWAS), guiding the identification of candidate genes. Comparative genomics among these MQTL-YC with MQTL-YC reported in soybean and pea allowed the identification of 14 orthologous MQTL-YC shared across species. The integration of MQTL-YC, GWAS, and comparative genomics used in this study is useful to uncover and refine the most consistent genomic regions related with seed yield components for their use in plant breeding.
Collapse
Affiliation(s)
- Paulo Izquierdo
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - James D Kelly
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Stephen E Beebe
- Bean Program, Crops for Health and Nutrition Area, Alliance Bioversity International-CIAT, Cali, Colombia
| | - Karen Cichy
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- USDA-ARS, Sugarbeet and Bean Research Unit, East Lansing, MI, USA
| |
Collapse
|
6
|
Arriagada O, Arévalo B, Cabeza RA, Carrasco B, Schwember AR. Meta-QTL Analysis for Yield Components in Common Bean ( Phaseolus vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2022; 12:117. [PMID: 36616246 PMCID: PMC9824219 DOI: 10.3390/plants12010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Common bean is one of the most important legumes produced and consumed worldwide because it is a highly valuable food for the human diet. However, its production is mainly carried out by small farmers, who obtain average grain yields below the potential yield of the species. In this sense, numerous mapping studies have been conducted to identify quantitative trait loci (QTL) associated with yield components in common bean. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies. Consequently, the objective of this study was to perform a MQTL analysis to identify the most reliable and stable genomic regions associated with yield-related traits of common bean. A total of 667 QTL associated with yield-related traits reported in 21 different studies were collected. A total of 42 MQTL associated with yield-related traits were identified, in which the average confidence interval (CI) of the MQTL was 3.41 times lower than the CIs of the original QTL. Most of the MQTL (28) identified in this study contain QTL associated with yield and phenological traits; therefore, these MQTL can be useful in common bean breeding programs. Finally, a total of 18 candidate genes were identified and associated with grain yield within these MQTL, with functions related to ubiquitin ligase complex, response to auxin, and translation elongation factor activity.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bárbara Arévalo
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile
| | - Ricardo A. Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
7
|
Özkan G, Haliloğlu K, Türkoğlu A, Özturk HI, Elkoca E, Poczai P. Determining Genetic Diversity and Population Structure of Common Bean ( Phaseolus vulgaris L.) Landraces from Türkiye Using SSR Markers. Genes (Basel) 2022; 13:1410. [PMID: 36011321 PMCID: PMC9407889 DOI: 10.3390/genes13081410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Assessment of genetic diversity among different varieties helps to improve desired characteristics of crops, including disease resistance, early maturity, high yield, and resistance to drought. Molecular markers are one of the most effective tools for discovering genetic diversity that can increase reproductive efficiency. Simple sequence repeats (SSRs), which are codominant markers, are preferred for the determination of genetic diversity because they are highly polymorphic, multi-allelic, highly reproducible, and have good genome coverage. This study aimed to determine the genetic diversity of 40 common bean (Phaseolus vulgaris L.) landraces collected from the Ispir district located in the Northeast Anatolia region of Türkiye and five commercial varieties using SSR markers. The Twenty-seven SSR markers produced a total of 142 polymorphic bands, ranging from 2 (GATS91 and PVTT001) to 12 (BM153) alleles per marker, with an average number of 5.26 alleles. The gene diversity per marker varied between 0.37 and 0.87 for BM053 and BM153 markers, respectively. When heterozygous individuals are calculated proportional to the population, the heterozygosity ranged from 0.00 to 1.00, with an average of 0.30. The expected heterozygosity of the SSR locus ranged from 0.37 (BM053) to 0.88 (BM153), with an average of 0.69. Nei's gene diversity scored an average of 0.69. The polymorphic information content (PIC) values of SSR markers varied from 0.33 (BM053) to 0.86 (BM153), with an average of 0.63 per locus. The greatest genetic distance (0.83) was between lines 49, 50, 53, and cultivar Karacaşehir-90, while the shortest (0.08) was between lines 6 and 26. In cluster analysis using Nei's genetic distance, 45 common bean genotypes were divided into three groups and very little relationship was found between the genotypes and the geographical distances. In genetic structure analysis, three subgroups were formed, including local landraces and commercial varieties. The result confirmed that the rich diversity existing in Ispir bean landraces could be used as a genetic resource in designing breeding programs and may also contribute to Türkiye bean breeding programs.
Collapse
Affiliation(s)
- Güller Özkan
- Department of Biology, Faculty of Science, Ankara University, Ankara 06100, Türkiye
| | - Kamil Haliloğlu
- Department of Field Crops, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Çankırı 18200, Türkiye
| | - Aras Türkoğlu
- Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, Konya 42310, Türkiye
| | - Halil Ibrahim Özturk
- Health Services Vocational School, Binali Yıldırım University, Erzincan 24100, Türkiye
| | - Erdal Elkoca
- Vocational High School, Department of Plant and Animal Production, İbrahim Çeçen University, Ağrı 04100, Türkiye
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, FI-00014 Helsinki, Finland
- Institute of Advanced Studies Kőszeg (iASK), H-9731 Kőszeg, Hungary
| |
Collapse
|
8
|
Ansari MA, Bano N, Kumar A, Dubey AK, Asif MH, Sanyal I, Pande V, Pandey V. Comparative transcriptomic analysis and antioxidant defense mechanisms in clusterbean (Cyamopsis tetragonoloba (L.) Taub.) genotypes with contrasting drought tolerance. Funct Integr Genomics 2022; 22:625-642. [PMID: 35426545 DOI: 10.1007/s10142-022-00860-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023]
Abstract
To understand drought tolerance mechanism(s) in clusterbean (Cyamopsis tetragonoloba), we conducted physiological, biochemical, and de novo comparative transcriptome analysis of drought-tolerant (RGC-1002) and drought-sensitive (RGC-1066) genotypes subjected to 30 days of drought stress. Relative water content (RWC) was maintained in tolerant genotype but was reduced in sensitive genotype. Leaf pigment concentrations were higher in tolerant genotype. Net photosynthesis was significantly decreased in sensitive genotype but insignificant reduction was found in tolerant genotype. Enzymatic antioxidant (GR, APX, DHAR) activities were enhanced in tolerant genotype, while there were insignificant changes in these enzymes in sensitive genotype. The ratios of antioxidant molecules (ASC/DHA and GSH/GSSG) were higher in tolerant genotype as compared to sensitive genotype. In sensitive genotype, 6625 differentially expressed genes (DEGs) were upregulated and 5365 genes were downregulated. In tolerant genotype, 5206 genes were upregulated and 2793 genes were downregulated. In tolerant genotype, transketolase family protein, phosphoenolpyruvate carboxylase 3, temperature-induced lipocalin, and cytochrome oxidase were highly upregulated. Moreover, according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the drought tolerance may be attributed to upregulated starch and sucrose metabolism-related genes in tolerant genotype. Finally, quantitative real-time PCR confirmed the reproducibility of the RNA-seq data.
Collapse
Affiliation(s)
- Mohd Akram Ansari
- Plant Ecology and Climate Change Science Division, CSIR-NBRI, Lucknow, India. .,Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.
| | - Nasreen Bano
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Anil Kumar
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.,Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Arvind Kumar Dubey
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.,Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Mehar Hasan Asif
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Indraneel Sanyal
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Division, CSIR-NBRI, Lucknow, India.
| |
Collapse
|
9
|
Wu L, Chang Y, Wang L, Wang S, Wu J. The aquaporin gene PvXIP1;2 conferring drought resistance identified by GWAS at seedling stage in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:485-500. [PMID: 34698878 DOI: 10.1007/s00122-021-03978-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
A whole-genome resequencing-derived SNP dataset used for genome-wide association analysis revealed 12 loci significantly associated with drought stress based on survival rate after drought stress at seedling stage. We further confirmed the drought-related function of an aquaporin gene (PvXIP1;2) located at Locus_10. A variety of adverse conditions, including drought stress, severely affect common bean production. Molecular breeding for drought resistance has been proposed as an effective and practical way to improve the drought resistance of common bean. A genome-wide association analysis was conducted to identify drought-related loci based on survival rates at the seedling stage using a natural population consisting of 400 common bean accessions and 3,832,340 SNPs. The coefficient of variation ranged from 40.90 to 56.22% for survival rates in three independent experiments. A total of 12 associated loci containing 89 significant SNPs were identified for survival rates at the seedling stage. Four loci overlapped in the region of the QTLs reported to be associated with drought resistance. According to the expression profiles, gene annotations and references of the functions of homologous genes in Arabidopsis, 39 genes were considered potential candidate genes selected from 199 genes annotated within all associated loci. A stable locus (Locus_10) was identified on chromosome 11, which contained LEA, aquaporin, and proline-rich protein genes. We further confirmed the drought-related function of an aquaporin (PvXIP1;2) located at Locus_10 by expression pattern analysis, phenotypic analysis of PvXIP1;2-overexpressing Arabidopsis and Agrobacterium rhizogenes-mediated hairy root transformation systems, indicating that the association results can facilitate the efficient identification of genes related to drought resistance. These loci and their candidate genes provide a foundation for crop improvement via breeding for drought resistance in common bean.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Losa A, Vorster J, Cominelli E, Sparvoli F, Paolo D, Sala T, Ferrari M, Carbonaro M, Marconi S, Camilli E, Reboul E, Waswa B, Ekesa B, Aragão F, Kunert K. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food Energy Secur 2021. [DOI: 10.1002/fes3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alessia Losa
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Eleonora Cominelli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Francesca Sparvoli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Dario Paolo
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
11
|
Elias JCF, Gonçalves-Vidigal MC, Ariani A, Valentini G, Martiniano-Souza MDC, Vaz Bisneta M, Gepts P. Genome-Environment Association Analysis for Bio-Climatic Variables in Common Bean ( Phaseolus vulgaris L.) from Brazil. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081572. [PMID: 34451617 PMCID: PMC8399474 DOI: 10.3390/plants10081572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 05/08/2023]
Abstract
Abiotic stress is a limiting factor for common bean (Phaseolus vulgaris L.) production globally. The study of the genotypic, phenotypic, and bio-climatic variables in a broad set of accessions may assist the identification of genomic regions involved in the climatic adaptation of the common bean. We conducted a genotyping-by-sequencing analysis using 28,823 SNPs on 110 georeferenced common bean accessions from Brazil to discover associations between SNPs and bio-climatic indexes. The population structure analysis clustered the accessions into two groups corresponding to the Andean and Mesoamerican gene pools. Of the 19 bioclimatic variables, 17 exhibited a significant association with SNPs on chromosomes Pv01, Pv02, Pv03, Pv04, Pv06, Pv09, Pv10, and Pv11 of common bean. Ten candidate genes were associated with specific bio-climatic variables related to temperature and precipitation. The candidate genes associated with this significant Pv09 region encode a Platz transcription factor family protein previously reported to be an essential regulator of drought stress. The SNP markers and candidate genes associated with the bio-climatic variables should be validated in segregating populations for water stress, which could further be used for marker-assisted selection. As a result, bean breeding programs may be able to provide advances in obtaining drought-tolerant cultivars.
Collapse
Affiliation(s)
- Júlio Cesar F. Elias
- Departamento de Agronomia, Universidade Estadual de Maringá-UEM, Av. Colombo 5790, Maringá 87020-900, Brazil; (J.C.F.E.); (M.d.C.M.-S.); (M.V.B.)
| | - Maria Celeste Gonçalves-Vidigal
- Departamento de Agronomia, Universidade Estadual de Maringá-UEM, Av. Colombo 5790, Maringá 87020-900, Brazil; (J.C.F.E.); (M.d.C.M.-S.); (M.V.B.)
- Correspondence: ; Tel.:+55-449-9908-8186
| | | | - Giseli Valentini
- Soybean Genomics and Improvement Laboratory USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA;
| | - Maria da Conceição Martiniano-Souza
- Departamento de Agronomia, Universidade Estadual de Maringá-UEM, Av. Colombo 5790, Maringá 87020-900, Brazil; (J.C.F.E.); (M.d.C.M.-S.); (M.V.B.)
| | - Mariana Vaz Bisneta
- Departamento de Agronomia, Universidade Estadual de Maringá-UEM, Av. Colombo 5790, Maringá 87020-900, Brazil; (J.C.F.E.); (M.d.C.M.-S.); (M.V.B.)
| | - Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA 95161-8780, USA;
| |
Collapse
|
12
|
Elias JCF, Gonçalves-Vidigal MC, Vaz Bisneta M, Valentini G, Vidigal Filho PS, Gilio TAS, Moda-Cirino V, Song Q. Genetic Mapping for Agronomic Traits in IAPAR 81/LP97-28 Population of Common Bean ( Phaseolus vulgaris L.) under Drought Conditions. PLANTS 2021; 10:plants10081568. [PMID: 34451614 PMCID: PMC8400692 DOI: 10.3390/plants10081568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
One of the significant challenges of common bean breeding is developing cultivars with high yields under drought conditions. The present study attempted to map quantitative trait loci (QTLs) and identify molecular markers that are linked to drought tolerance in the common bean. We evaluated 160 recombinant inbred lines (RILs), derived from the cross between the carioca cultivars IAPAR 81 (drought tolerant) and LP97-28 (susceptible to drought). In 2014 and 2015, two experiments were conducted (DS-drought stress, and NS-no drought stress). In the DS experiment, water suppression was performed at the flowering stages R5 to R6. The results of our experiments showed that drought conditions play an essential role in reducing most of the traits that were evaluated. RILs under drought conditions reduced the grain yield by 62.03% and 24% in 2014 and 2015, respectively. We identified 15 quantitative trait loci distributed on the chromosomes Pv01, Pv02, Pv03, Pv07, Pv08, Pv09, Pv10, and Pv11, related to grain yield, seed yield per day, 100-seed weight, number of pods per plant, plant height, number of days for flowering, and number of days to maturity. The characteristics of seed yield per day, 100-seed weight, and number of days to maturity showed that QTLs colocalized on Pv07. Identifying QTLs that are linked to drought tolerance in the RIL population IAPAR 81 × LP97-28 is of particular importance for common bean breeding programs seeking to improve carioca beans that are cultivated in regions with drought conditions, such as Brazil.
Collapse
Affiliation(s)
- Júlio César Ferreira Elias
- Departamento de Agronomia, Universidade Estadual de Maringá—UEM, Av. Colombo 5790, Maringá 87020-900, PR, Brazil; (J.C.F.E.); (M.V.B.); (P.S.V.F.)
| | - Maria Celeste Gonçalves-Vidigal
- Departamento de Agronomia, Universidade Estadual de Maringá—UEM, Av. Colombo 5790, Maringá 87020-900, PR, Brazil; (J.C.F.E.); (M.V.B.); (P.S.V.F.)
- Correspondence:
| | - Mariana Vaz Bisneta
- Departamento de Agronomia, Universidade Estadual de Maringá—UEM, Av. Colombo 5790, Maringá 87020-900, PR, Brazil; (J.C.F.E.); (M.V.B.); (P.S.V.F.)
| | - Giseli Valentini
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, USA; (G.V.); (Q.S.)
| | - Pedro Soares Vidigal Filho
- Departamento de Agronomia, Universidade Estadual de Maringá—UEM, Av. Colombo 5790, Maringá 87020-900, PR, Brazil; (J.C.F.E.); (M.V.B.); (P.S.V.F.)
| | - Thiago Alexandre Santana Gilio
- Programa de Pós-graduação em Genética e Melhoramento de Plantas, Universidade do Estado de Mato Grosso, Cáceres 78217-900, MT, Brazil;
| | - Vânia Moda-Cirino
- Instituto Agronômico do Paraná—IAPAR, Rua Celso Garcia Cid, km 375, Londrina 86047-902, PR, Brazil;
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, USA; (G.V.); (Q.S.)
| |
Collapse
|
13
|
Nadeem MA, Yeken MZ, Shahid MQ, Habyarimana E, Yılmaz H, Alsaleh A, Hatipoğlu R, Çilesiz Y, Khawar KM, Ludidi N, Ercişli S, Aasim M, Karaköy T, Baloch FS. Common bean as a potential crop for future food security: an overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1920462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Mehmet Zahit Yeken
- Department of Field Crops, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, PR China
| | | | - Hilal Yılmaz
- Department of Plant and Animal Production, Izmit Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Ahmad Alsaleh
- Department of Food and Agriculture, Insitutue of Hemp Research, Yozgat Bozok University, 66200, Yozgat, Turkey
| | - Rüştü Hatipoğlu
- Department of Field Crops, Faculty of Agricultural, University of Cukurova, Adana, Turkey
| | - Yeter Çilesiz
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Khalid Mahmood Khawar
- Department of Field Crops, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Ndiko Ludidi
- Department of Biotechnology and DSI-NRF Center of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Sezai Ercişli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| |
Collapse
|
14
|
Allelic Diversity at Abiotic Stress Responsive Genes in Relationship to Ecological Drought Indices for Cultivated Tepary Bean, Phaseolus acutifolius A. Gray, and Its Wild Relatives. Genes (Basel) 2021; 12:genes12040556. [PMID: 33921270 PMCID: PMC8070098 DOI: 10.3390/genes12040556] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Some of the major impacts of climate change are expected in regions where drought stress is already an issue. Grain legumes are generally drought susceptible. However, tepary bean and its wild relatives within Phaseolus acutifolius or P. parvifolius are from arid areas between Mexico and the United States. Therefore, we hypothesize that these bean accessions have diversity signals indicative of adaptation to drought at key candidate genes such as: Asr2, Dreb2B, and ERECTA. By sequencing alleles of these genes and comparing to estimates of drought tolerance indices from climate data for the collection site of geo-referenced, tepary bean accessions, we determined the genotype x environmental association (GEA) of each gene. Diversity analysis found that cultivated and wild P. acutifolius were intermingled with var. tenuifolius and P. parvifolius, signifying that allele diversity was ample in the wild and cultivated clade over a broad sense (sensu lato) evaluation. Genes Dreb2B and ERECTA harbored signatures of directional selection, represented by six SNPs correlated with the environmental drought indices. This suggests that wild tepary bean is a reservoir of novel alleles at genes for drought tolerance, as expected for a species that originated in arid environments. Our study corroborated that candidate gene approach was effective for marker validation across a broad genetic base of wild tepary accessions.
Collapse
|
15
|
Wu L, Chang Y, Wang L, Wu J, Wang S. Genetic dissection of drought resistance based on root traits at the bud stage in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1047-1061. [PMID: 33426592 DOI: 10.1007/s00122-020-03750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
A whole-genome resequencing-derived SNP dataset used for genome-wide association analysis revealed 196 loci significantly associated with drought stress based on root traits. Candidate genes identified in the regions of these loci include homologs of known drought resistance genes in A. thaliana. Drought is the main abiotic constraint of the production of common bean. Improved adaptation to drought environments has become a main goal of crop breeding due to the increasing scarcity of water that will occur in the future. The overall objective of our study was to identify genomic regions associated with drought resistance based on root traits using genome-wide association analysis. A natural population of 438 common bean accessions was evaluated for root traits: root surface area, root average diameter, root volume, total root length, taproot length, lateral root number, root dry weight, lateral root length, special root weight/length, using seed germination pouches under drought conditions and in well-watered environments. The coefficient of variation ranged from 11.24% (root average diameter) to 38.19% (root dry weight) in the well-watered environment and from 9.61% (root average diameter) to 39.05% (lateral root length) under drought stress. A whole-genome resequencing-derived SNP dataset revealed 196 loci containing 230 candidate SNPs associated with drought resistance. Seventeen candidate SNPs were simultaneously associated with more than two traits. Forty-one loci were simultaneously associated with more than two traits, and eleven loci were colocated with loci previously reported to be related to drought resistance. Candidate genes of the associated loci included the ABA-responsive element-binding protein family, MYB, NAC, the protein kinase superfamily, etc. These results revealed promising alleles linked to drought resistance or root traits, providing insights into the genetic basis of drought resistance and roots, which will be useful for common bean improvement.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
16
|
Simons KJ, Oladzad A, Lamppa R, Maniruzzaman, McClean PE, Osorno JM, Pasche JS. Using Breeding Populations With a Dual Purpose: Cultivar Development and Gene Mapping-A Case Study Using Resistance to Common Bacterial Blight in Dry Bean ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2021; 12:621097. [PMID: 33719292 PMCID: PMC7953056 DOI: 10.3389/fpls.2021.621097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/22/2021] [Indexed: 03/27/2024]
Abstract
Dry bean (Phaseolus vulgaris L.) is an important worldwide legume crop with low to moderate levels of resistance to common bacterial blight (CBB) caused by Xanthomonas axonopodis pv. phaseoli. A total of 852 genotypes (cultivars, preliminary and advanced breeding lines) from the North Dakota State University dry bean breeding program were tested for their effectiveness as populations for genome-wide association studies (GWAS) to identify genomic regions associated with resistance to CBB, to exploit the associated markers for marker-assisted breeding (MAB), and to identify candidate genes. The genotypes were evaluated in a growth chamber for disease resistance at both the unifoliate and trifoliate stages. At the unifoliate stage, 35% of genotypes were resistant, while 25% of genotypes were resistant at the trifoliate stage. Libraries generated from each genotype were sequenced using the Illumina platform. After filtering for sequence quality, read depth, and minor allele frequency, 41,998 single-nucleotide polymorphisms (SNPs) and 30,285 SNPs were used in GWAS for the Middle American and Andean gene pools, respectively. One region near the distal end of Pv10 near the SAP6 molecular marker from the Andean gene pool explained 26.7-36.4% of the resistance variation. Three to seven regions from the Middle American gene pool contributed to 25.8-27.7% of the resistance, with the most significant peak also near the SAP6 marker. Six of the eight total regions associated with CBB resistance are likely the physical locations of quantitative trait loci identified from previous genetic studies. The two new locations associated with CBB resistance are located at Pv10:22.91-23.36 and Pv11:52.4. A lipoxgenase-1 ortholog on Pv10 emerged as a candidate gene for CBB resistance. The state of one SNP on Pv07 was associated with susceptibility. Its subsequent use in MAB would reduce the current number of lines in preliminary and advanced field yield trial by up to 14% and eliminate only susceptible genotypes. These results provide a foundational SNP data set, improve our understanding of CBB resistance in dry bean, and impact resource allocation within breeding programs as breeding populations may be used for dual purposes: cultivar development as well as genetic studies.
Collapse
Affiliation(s)
- Kristin J. Simons
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Robin Lamppa
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Maniruzzaman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Juan M. Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Julie S. Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
17
|
Leitão ST, Bicho MC, Pereira P, Paulo MJ, Malosetti M, Araújo SDS, van Eeuwijk F, Vaz Patto MC. Common bean SNP alleles and candidate genes affecting photosynthesis under contrasting water regimes. HORTICULTURE RESEARCH 2021; 8:4. [PMID: 33384448 PMCID: PMC7775448 DOI: 10.1038/s41438-020-00434-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 06/01/2023]
Abstract
Water deficit is a major worldwide constraint to common bean (Phaseolus vulgaris L.) production, being photosynthesis one of the most affected physiological processes. To gain insights into the genetic basis of the photosynthetic response of common bean under water-limited conditions, a collection of 158 Portuguese accessions was grown under both well-watered and water-deficit regimes. Leaf gas-exchange parameters were measured and photosynthetic pigments quantified. The same collection was genotyped using SNP arrays, and SNP-trait associations tested considering a linear mixed model accounting for the genetic relatedness among accessions. A total of 133 SNP-trait associations were identified for net CO2 assimilation rate, transpiration rate, stomatal conductance, and chlorophylls a and b, carotenes, and xanthophyll contents. Ninety of these associations were detected under water-deficit and 43 under well-watered conditions, with only two associations common to both treatments. Identified candidate genes revealed that stomatal regulation, protein translocation across membranes, redox mechanisms, hormone, and osmotic stress signaling were the most relevant processes involved in common bean response to water-limited conditions. These candidates are now preferential targets for common bean water-deficit-tolerance breeding. Additionally, new sources of water-deficit tolerance of Andean, Mesoamerican, and admixed origin were detected as accessions valuable for breeding, and not yet explored.
Collapse
Affiliation(s)
- Susana Trindade Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Maria Catarina Bicho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Priscila Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Marcos Malosetti
- Wageningen University & Research, Wageningen, The Netherlands
- Nunhems Vegetable Seeds, Nunhem, The Netherlands
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Association BLC3-Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, Lisboa, Portugal
| | | | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
18
|
Diaz S, Ariza-Suarez D, Izquierdo P, Lobaton JD, de la Hoz JF, Acevedo F, Duitama J, Guerrero AF, Cajiao C, Mayor V, Beebe SE, Raatz B. Genetic mapping for agronomic traits in a MAGIC population of common bean (Phaseolus vulgaris L.) under drought conditions. BMC Genomics 2020; 21:799. [PMID: 33198642 PMCID: PMC7670608 DOI: 10.1186/s12864-020-07213-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/05/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Common bean is an important staple crop in the tropics of Africa, Asia and the Americas. Particularly smallholder farmers rely on bean as a source for calories, protein and micronutrients. Drought is a major production constraint for common bean, a situation that will be aggravated with current climate change scenarios. In this context, new tools designed to understand the genetic basis governing the phenotypic responses to abiotic stress are required to improve transfer of desirable traits into cultivated beans. RESULTS A multiparent advanced generation intercross (MAGIC) population of common bean was generated from eight Mesoamerican breeding lines representing the phenotypic and genotypic diversity of the CIAT Mesoamerican breeding program. This population was assessed under drought conditions in two field trials for yield, 100 seed weight, iron and zinc accumulation, phenology and pod harvest index. Transgressive segregation was observed for most of these traits. Yield was positively correlated with yield components and pod harvest index (PHI), and negative correlations were found with phenology traits and micromineral contents. Founder haplotypes in the population were identified using Genotyping by Sequencing (GBS). No major population structure was observed in the population. Whole Genome Sequencing (WGS) data from the founder lines was used to impute genotyping data for GWAS. Genetic mapping was carried out with two methods, using association mapping with GWAS, and linkage mapping with haplotype-based interval screening. Thirteen high confidence QTL were identified using both methods and several QTL hotspots were found controlling multiple traits. A major QTL hotspot located on chromosome Pv01 for phenology traits and yield was identified. Further hotspots affecting several traits were observed on chromosomes Pv03 and Pv08. A major QTL for seed Fe content was contributed by MIB778, the founder line with highest micromineral accumulation. Based on imputed WGS data, candidate genes are reported for the identified major QTL, and sequence changes were identified that could cause the phenotypic variation. CONCLUSIONS This work demonstrates the importance of this common bean MAGIC population for genetic mapping of agronomic traits, to identify trait associations for molecular breeding tool design and as a new genetic resource for the bean research community.
Collapse
Affiliation(s)
- Santiago Diaz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Daniel Ariza-Suarez
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Paulo Izquierdo
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Juan David Lobaton
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: School of Environmental and Rural Sciences, University of New England, Armidale, SA, Australia
| | - Juan Fernando de la Hoz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Bioinformatics Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando Acevedo
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge Duitama
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Alberto F Guerrero
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Cesar Cajiao
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Victor Mayor
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Progeny Breeding, Madrid, Colombia
| | - Stephen E Beebe
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Bodo Raatz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia.
| |
Collapse
|
19
|
Valdisser PAMR, Müller BSF, de Almeida Filho JE, Morais Júnior OP, Guimarães CM, Borba TCO, de Souza IP, Zucchi MI, Neves LG, Coelho ASG, Brondani C, Vianello RP. Genome-Wide Association Studies Detect Multiple QTLs for Productivity in Mesoamerican Diversity Panel of Common Bean Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:574674. [PMID: 33343591 PMCID: PMC7738703 DOI: 10.3389/fpls.2020.574674] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/22/2020] [Indexed: 05/26/2023]
Abstract
Drought stress is an important abiotic factor limiting common bean yield, with great impact on the production worldwide. Understanding the genetic basis regulating beans' yield and seed weight (SW) is a fundamental prerequisite for the development of superior cultivars. The main objectives of this work were to conduct genome-wide marker discovery by genotyping a Mesoamerican panel of common bean germplasm, containing cultivated and landrace accessions of broad origin, followed by the identification of genomic regions associated with productivity under two water regimes using different genome-wide association study (GWAS) approaches. A total of 11,870 markers were genotyped for the 339 genotypes, of which 3,213 were SilicoDArT and 8,657 SNPs derived from DArT and CaptureSeq. The estimated linkage disequilibrium extension, corrected for structure and relatedness (r 2 sv ), was 98.63 and 124.18 kb for landraces and breeding lines, respectively. Germplasm was structured into landraces and lines/cultivars. We carried out GWASs for 100-SW and yield in field environments with and without water stress for 3 consecutive years, using single-, segment-, and gene-based models. Higher number of associations at high stringency was identified for the SW trait under irrigation, totaling ∼185 QTLs for both single- and segment-based, whereas gene-based GWASs showed ∼220 genomic regions containing ∼650 genes. For SW under drought, 18 QTLs were identified for single- and segment-based and 35 genes by gene-based GWASs. For yield, under irrigation, 25 associations were identified, whereas under drought the total was 10 using both approaches. In addition to the consistent associations detected across experiments, these GWAS approaches provided important complementary QTL information (∼221 QTLs; 650 genes; r 2 from 0.01% to 32%). Several QTLs were mined within or near candidate genes playing significant role in productivity, providing better understanding of the genetic mechanisms underlying these traits and making available molecular tools to be used in marker-assisted breeding. The findings also allowed the identification of genetic material (germplasm) with better yield performance under drought, promising to a common bean breeding program. Finally, the availability of this highly diverse Mesoamerican panel is of great scientific value for the analysis of any relevant traits in common bean.
Collapse
Affiliation(s)
- Paula Arielle Mendes Ribeiro Valdisser
- Biotechnology Laboratory, EMBRAPA Arroz e Feijão, Santo Antônio de Goiás, Brazil
- Genetics and Molecular Biology Graduate Program, Institute of Biology, UNICAMP, Campinas, Brazil
| | - Bárbara S. F. Müller
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | | | | | | | - Tereza C. O. Borba
- Biotechnology Laboratory, EMBRAPA Arroz e Feijão, Santo Antônio de Goiás, Brazil
| | - Isabela Pavanelli de Souza
- Biotechnology Laboratory, EMBRAPA Arroz e Feijão, Santo Antônio de Goiás, Brazil
- Postgraduate Program in Biological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Maria Imaculada Zucchi
- Genetics and Molecular Biology Graduate Program, Institute of Biology, UNICAMP, Campinas, Brazil
- Agribusiness Technology Agency of São Paulo State, Agriculture and Food Supply Secretary of São Paulo, Piracicaba, Brazil
| | | | | | - Claudio Brondani
- Biotechnology Laboratory, EMBRAPA Arroz e Feijão, Santo Antônio de Goiás, Brazil
| | | |
Collapse
|
20
|
Gonçalves-Vidigal MC, Gilio TAS, Valentini G, Vaz-Bisneta M, Vidigal Filho PS, Song Q, Oblessuc PR, Melotto M. New Andean source of resistance to anthracnose and angular leaf spot: Fine-mapping of disease-resistance genes in California Dark Red Kidney common bean cultivar. PLoS One 2020; 15:e0235215. [PMID: 32598372 PMCID: PMC7323968 DOI: 10.1371/journal.pone.0235215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Anthracnose (ANT) and angular leaf spot (ALS) caused by Colletotrichum lindemuthianum and Pseudocercospora griseola, respectively, are devastating diseases of common bean around the world. Therefore, breeders are constantly searching for new genes with broad-spectrum resistance against ANT and ALS. This study aimed to characterize the genetic resistance of California Dark Red Kidney (CDRK) to C. lindemuthianum races 73, 2047, and 3481 and P. griseola race 63-39 through inheritance, allelism testing, and molecular analyses. Genetic analysis of response to ANT and ALS in recombinant inbred lines (RILs) from a CDRK × Yolano cross (CY) showed that the resistance of CDRK cultivar is conferred by a single dominant loci, which we named CoPv01CDRK/PhgPv01CDRK. Allelism tests performed with race 3481showed that the resistance gene in CDRK is independent of the Co-1 and Co-AC. We conducted co-segregation analysis in genotypes of 110 CY RILs and phenotypes of the RILs in response to different races of the ANT and ALS pathogens. The results revealed that CoPv01CDRK and PhgPv01CDRK are coinherited, conferring resistance to all races. Genetic mapping of the CY population placed the CoPv01CDRK/PhgPv01CDRK loci in a 245 Kb genomic region at the end of Pv01. By genotyping 19 RILs from the CY population using three additional markers, we fine-mapped the CoPv01CDRK/PhgPv01CDRK loci to a smaller genomic region of 33 Kb. This 33 Kb region harbors five predicted genes based on the common bean reference genome. These results can be applied in breeding programs to develop bean cultivars with ANT and ALS resistance using marker-assisted selection.
Collapse
Affiliation(s)
- M. C. Gonçalves-Vidigal
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, Paraná, Brazil
| | - T. A. S. Gilio
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, Paraná, Brazil
| | - G. Valentini
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, Paraná, Brazil
| | - M. Vaz-Bisneta
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, Paraná, Brazil
| | - P. S. Vidigal Filho
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo, Maringá, Paraná, Brazil
| | - Q. Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, BARC-West, Beltsville, Maryland, United States of America
| | - P. R. Oblessuc
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - M. Melotto
- Department of Plant Sciences, University of California, Davis, California, United States of America
| |
Collapse
|
21
|
Oladzad A, Porch T, Rosas JC, Moghaddam SM, Beaver J, Beebe SE, Burridge J, Jochua CN, Miguel MA, Miklas PN, Raatz B, White JW, Lynch J, McClean PE. Single and Multi-trait GWAS Identify Genetic Factors Associated with Production Traits in Common Bean Under Abiotic Stress Environments. G3 (BETHESDA, MD.) 2019; 9:1881-1892. [PMID: 31167806 PMCID: PMC6553540 DOI: 10.1534/g3.119.400072] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 12/28/2022]
Abstract
The genetic improvement of economically important production traits of dry bean (Phaseolus vulgaris L.), for geographic regions where production is threatened by drought and high temperature stress, is challenging because of the complex genetic nature of these traits. Large scale SNP data sets for the two major gene pools of bean, Andean and Middle American, were developed by mapping multiple pools of genotype-by-sequencing reads and identifying over 200k SNPs for each gene pool against the most recent assembly of the P. vulgaris genome sequence. Moderately sized B ean A biotic S tress E valuation (BASE) panels, consisting of genotypes appropriate for production in Central America and Africa, were assembled. Phylogenetic analyses demonstrated the BASE populations represented broad genetic diversity for the appropriate races within the two gene pools. Joint mixed linear model genome-wide association studies with data from multiple locations discovered genetic factors associated with four production traits in both heat and drought stress environments using the BASE panels. Pleiotropic genetic factors were discovered using a multi-trait mixed model analysis. SNPs within or near candidate genes associated with hormone signaling, epigenetic regulation, and ROS detoxification under stress conditions were identified and can be used as genetic markers in dry bean breeding programs.
Collapse
Affiliation(s)
- Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102
| | - Timothy Porch
- USDA-ARS, Tropical Agricultural Research Station Mayaguez Puerto Rico
| | - Juan Carlos Rosas
- Department of Agricultural Engineering, Zamorano University, Zamorano, Honduras
| | - Samira Mafi Moghaddam
- Plant Resilience Institute, Department of Plant Biology, Michigan State University, East Lansing, MI, 48824
| | - James Beaver
- Department of Agronomy and Soils, University of Puerto Rico, Mayaguez, Puerto Rico 00680
| | - Steve E Beebe
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Jimmy Burridge
- Department of Plant Science, Pennsylvania State University, State Collage, PA, 16801
| | | | | | - Phillip N Miklas
- USDA-ARS, Grain Legume Genetics Physiology Research, Prosser, WA
| | - Bodo Raatz
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Jeffery W White
- USDA-ARS, Plant Physiology and Genetics Research Maricopa, AZ
| | - Jonathan Lynch
- Department of Plant Science, Pennsylvania State University, State Collage, PA, 16801
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102
| |
Collapse
|
22
|
DREB Genes from Common Bean ( Phaseolus vulgaris L.) Show Broad to Specific Abiotic Stress Responses and Distinct Levels of Nucleotide Diversity. Int J Genomics 2019; 2019:9520642. [PMID: 31249842 PMCID: PMC6525893 DOI: 10.1155/2019/9520642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
We analyzed the nucleotide variability and the expression profile of DREB genes from common bean, a crop of high economic and nutritional value throughout the world but constantly affected by abiotic stresses in cultivation areas. As DREB genes have been constantly associated with abiotic stress tolerance, we systematically categorized 54 putative PvDREB genes distributed in the common bean genome. It involved from AP2 domain location and amino acid conservation analysis (valine at the 14th position) to the identification of conserved motifs within peptide sequences representing six subgroups (A-1 to A-6) of PvDREB proteins. Four genes (PvDREB1F, PvDREB2A, PvDREB5A, and PvDREB6B) were cloned and analyzed for their expression profiles under abiotic stresses and their nucleotide and amino acid diversity in genotypes of Andean and Mesoamerican origin, showing distinct patterns of expression and nucleotide variability. PvDREB1F and PvDREB5A showed high relative inducibilities when genotypes of common bean were submitted to stresses by drought, salt, cold, and ABA. PvDREB2A inducibility was predominantly localized to the stem under drought. PvDREB6B was previously described as an A-2 (DREB2) gene, but a detailed phylogenetic analysis and its expression profile clearly indicated it belongs to group A-6. PvDREB6B was found as a cold- and dehydration-responsive gene, mainly in leaves. Interestingly, PvDREB6B also showed a high nucleotide and amino acid diversity within its coding region, in comparison to the others, implicating in several nonsynonymous amino acid substitutions between Andean and Mesoamerican genotypes. The expression patterns and nucleotide diversity of each DREB found in this study revealed fundamental characteristics for further research aimed at understanding the molecular mechanisms associated with drought, salt, and cold tolerance in common bean, which could be performed based on association mapping and functional analyses.
Collapse
|
23
|
Nabateregga M, Mukankusi C, Raatz B, Edema R, Nkalubo S, Alladassi BME. Quantitative trait loci (QTL) mapping for intermittent drought tolerance in BRB 191 × SEQ 1027 Andean Intragene cross recombinant inbred line population of common bean ( Phaseolus vulgaris L.). ACTA ACUST UNITED AC 2019; 18:AJB-18-21-452. [PMID: 33281891 PMCID: PMC7691753 DOI: 10.5897/ajb2019.16768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/08/2019] [Indexed: 11/10/2022]
Abstract
Drought is a major constraint of common bean (Phaseolus vulgaris L.) production in Uganda where irrigation for the crop is very uncommon. This study aimed to identify quantitative trait loci (QTLs) underlying drought tolerance in 128 F5 RILs derived from an Andean intra-gene cross between drought-tolerant SEQ 1027 and BRB 191. Eighteen traits were evaluated under drought stress and non-stress conditions in the field for 2 years and in the greenhouse for 1 year, respectively. A linkage map spanning 486.29 cM was constructed using 53 single nucleotide polymorphic markers (SNP) markers obtained from the KASP genotyping assay. Eleven consistent QTLs were detected on five linkage groups at a threshold of Logarithm of Odds (LOD) ≥ 3.0. Four QTLs were constitutive, seven were adaptive and were associated with 100 seed weight, grain yield, chlorophyll content, harvest index, dry weight of leaf and stem biomass and yield production efficiency. The QTL associated with a 100 seed weight (sw3.1BS) was the most consistent with the highest percentage of variation explained (21%). Co-localization of five drought-related factors QTLs was detected on pv10 suggesting pleiotropic effects on this chromosome. Identification of molecular markers closely linked to the QTLs identified in this study will facilitate marker assisted breeding for drought tolerance.
Collapse
Affiliation(s)
- M Nabateregga
- College of Agricultural and Environmental Science, Department of Agricultural Production, Makerere University, P. O. Box 7062 Kampala, Uganda
| | - C Mukankusi
- International Centre for Tropical Agriculture (CIAT), P. O. Box 6247 Kampala, Uganda
| | - B Raatz
- CIAT-International Centre for Tropical Agriculture, Cali, Colombia
| | - R Edema
- College of Agricultural and Environmental Science, Department of Agricultural Production, Makerere University, P. O. Box 7062 Kampala, Uganda
| | - S Nkalubo
- National Crops Resources Research Institute, Namulonge, P. O. Box 7084, Kampala, Uganda
| | - B M E Alladassi
- College of Agricultural and Environmental Science, Department of Agricultural Production, Makerere University, P. O. Box 7062 Kampala, Uganda
| |
Collapse
|
24
|
Diaz LM, Ricaurte J, Tovar E, Cajiao C, Terán H, Grajales M, Polanía J, Rao I, Beebe S, Raatz B. QTL analyses for tolerance to abiotic stresses in a common bean (Phaseolus vulgaris L.) population. PLoS One 2018; 13:e0202342. [PMID: 30157265 PMCID: PMC6114847 DOI: 10.1371/journal.pone.0202342] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
Common bean productivity is reduced by several abiotic stress factors like drought and low soil fertility, leading to yield losses particularly in low input smallholder farming systems in the tropics. To understand the genetics of stress tolerance, and to improve adaptation of common bean to adverse environments, the BAT 881 x G21212 population of 95 recombinant inbred lines (RILs) was evaluated under different abiotic stress conditions in 15 trials across four locations in Colombia, representing two higher altitude (Darién, Popayán) and two lower altitude (Palmira, Quilichao) locations. Stress vs non-stress treatments showed that yields were reduced in drought trials in Palmira by 13 and 31%, respectively, and observed yield reductions in low phosphorus stress were 39% in Quilichao, 16% in Popayán, and 71% in Darién, respectively. Yield components and biomass traits were also reduced. Traits linked to dry matter redistribution from stems, leaves and pods to seed, such as pod harvest index and total non-structural carbohydrates, were found to be important factors contributing to yield in all conditions. In contrast, early maturity was correlated with improved yield only in lower altitude locations, whereas in higher altitudes delayed maturity promoted yield. Superior RILs that combine stress tolerance and high cross-location productivity were identified. Lines that showed good yield under strong stress conditions also performed well under non-stress conditions, indicating that breeder's selection can be applied for both conditions at the same time. Quantitative trait loci (QTL) analyses revealed a stable yield QTL on chromosome Pv04, detected individually in all locations, several stress treatments and in best linear unbiased predictions (BLUPs) across all trials. Furthermore, two QTL hotspots for maturity traits were identified on Pv01 and Pv08, which are the most stable QTL. The constitutive yield QTL could serve as a good candidate for marker development and could be used in marker assisted selection. Increased understanding of the physiology of abiotic stress tolerance, combined with the availability of superior germplasm and molecular tools, will aid breeding efforts for further improvement of these plant traits.
Collapse
Affiliation(s)
- Lucy Milena Diaz
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Jaumer Ricaurte
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Eduardo Tovar
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Cesar Cajiao
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Henry Terán
- DuPont Pioneer, Salinas, Puerto Rico, United States of America
| | - Miguel Grajales
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Jose Polanía
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Idupulapati Rao
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Stephen Beebe
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| | - Bodo Raatz
- Biotechnology Unit and Bean Program, International Center for Tropical Agriculture (CIAT), Cali, Valle, Colombia
| |
Collapse
|
25
|
Yeken MZ, Kantar F, Çancı H, Özer G, Çiftçi V. Breeding of Dry Bean Cultivars Using Phaseolus vulgaris Landraces in Turkey. ULUSLARARASI TARIM VE YABAN HAYATI BILIMLERI DERGISI 2018. [DOI: 10.24180/ijaws.408794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Nascimento M, Nascimento ACC, Silva FFE, Barili LD, do Vale NM, Carneiro JE, Cruz CD, Carneiro PCS, Serão NVL. Quantile regression for genome-wide association study of flowering time-related traits in common bean. PLoS One 2018; 13:e0190303. [PMID: 29300788 PMCID: PMC5754186 DOI: 10.1371/journal.pone.0190303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/12/2017] [Indexed: 01/10/2023] Open
Abstract
Flowering is an important agronomic trait. Quantile regression (QR) can be used to fit models for all portions of a probability distribution. In Genome-wide association studies (GWAS), QR can estimate SNP (Single Nucleotide Polymorphism) effects on each quantile of interest. The objectives of this study were to estimate genetic parameters and to use QR to identify genomic regions for phenological traits (Days to first flower-DFF; Days for flowering-DTF; Days to end of flowering-DEF) in common bean. A total of 80 genotypes of common beans, with 3 replicates were raised at 4 locations and seasons. Plants were genotyped for 384 SNPs. Traditional single-SNP and 9 QR models, ranging from equally spaced quantiles (τ) 0.1 to 0.9, were used to associate SNPs to phenotype. Heritabilities were moderate high, ranging from 0.32 to 0.58. Genetic and phenotypic correlations were all high, averaging 0.66 and 0.98, respectively. Traditional single-SNP GWAS model was not able to find any SNP-trait association. On the other hand, when using QR methodology considering one extreme quantile (τ = 0.1) we found, respectively 1 and 7, significant SNPs associated for DFF and DTF. Significant SNPs were found on Pv01, Pv02, Pv03, Pv07, Pv10 and Pv11 chromosomes. We investigated potential candidate genes in the region around these significant SNPs. Three genes involved in the flowering pathways were identified, including Phvul.001G214500, Phvul.007G229300 and Phvul.010G142900.1 on Pv01, Pv07 and Pv10, respectively. These results indicate that GWAS-based QR was able to enhance the understanding on genetic architecture of phenological traits (DFF and DTF) in common bean.
Collapse
Affiliation(s)
- Moysés Nascimento
- Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ana Carolina Campana Nascimento
- Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | | | - Leiri Daiane Barili
- Department of Plant Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Naine Martins do Vale
- Department of Plant Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Cosme Damião Cruz
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
27
|
Liu C, Wu J, Wang L, Fan B, Cao Z, Su Q, Zhang Z, Wang Y, Tian J, Wang S. Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2375-2393. [PMID: 28831522 DOI: 10.1007/s00122-017-2965-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
A novel genetic linkage map was constructed using SSR markers and stable QTLs were identified for six drought tolerance related-traits using single-environment analysis under irrigation and drought treatments. Mungbean (Vigna radiata L.) is one of the most important leguminous food crops. However, mungbean production is seriously constrained by drought. Isolation of drought-responsive genetic elements and marker-assisted selection breeding will benefit from the detection of quantitative trait locus (QTLs) for traits related to drought tolerance. In this study, we developed a full-coverage genetic linkage map based on simple sequence repeat (SSR) markers using a recombinant inbred line (RIL) population derived from an intra-specific cross between two drought-resistant varieties. This novel map was anchored with 313 markers. The total map length was 1010.18 cM across 11 linkage groups, covering the entire genome of mungbean with a saturation of one marker every 3.23 cM. We subsequently detected 58 QTLs for plant height (PH), maximum leaf area (MLA), biomass (BM), relative water content, days to first flowering, and seed yield (Yield) and 5 for the drought tolerance index of 3 traits in irrigated and drought environments at 2 locations. Thirty-eight of these QTLs were consistently detected two or more times at similar linkage positions. Notably, qPH5A and qMLA2A were consistently identified in marker intervals from GMES5773 to MUS128 in LG05 and from Mchr11-34 to the HAAS_VR_1812 region in LG02 in four environments, contributing 6.40-20.06% and 6.97-7.94% of the observed phenotypic variation, respectively. None of these QTLs shared loci with previously identified drought-related loci from mungbean. The results of these analyses might facilitate the isolation of drought-related genes and help to clarify the mechanism of drought tolerance in mungbean.
Collapse
Affiliation(s)
- Changyou Liu
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Jing Wu
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanfen Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baojie Fan
- Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Zhimin Cao
- Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Qiuzhu Su
- Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Zhixiao Zhang
- Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Yan Wang
- Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Jing Tian
- Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China.
| | - Shumin Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
28
|
Mahajan R, Zargar SM, Salgotra RK, Singh R, Wani AA, Nazir M, Sofi PA. Linkage disequilibrium based association mapping of micronutrients in common bean ( Phaseolus vulgaris L.): a collection of Jammu & Kashmir, India. 3 Biotech 2017; 7:295. [PMID: 28868222 DOI: 10.1007/s13205-017-0928-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Micronutrient deficiencies are of major concern in human health and plant metabolism. Iron (Fe), zinc (Zn), iodine (I), selenium (Se) are regarded as micronutrients having major impact on human health. More than 50% of populations mainly from developing countries are suffering from one or the other micronutrient malnutrition. Ensuring adequate supply of these micronutrients through diet consisting of staple foods, such as common bean (Phaseolus vulgaris L.) is must. Here, we evaluated common bean genotypes that were collected from various regions of Jammu and Kashmir, India for Fe, Zn and protein contents and used SSRs to identify the markers associated with these traits. We found significant variation among genotypes for Fe, Zn and protein contents. Genotype R2 was having 7.22 mg 100 g-1 of Fe content, genotype K15 with 1.93 mg 100 g-1 of Zn content and genotype KS6 with 31.6% of protein content. Diversity study was done using both cluster and structure based approach. Further, association mapping analysis using General Linear Method (GLM) approach was done to identify SSRs associated with accumulation of Fe, Zn and protein. 13 SSRs were identified that significantly (p < 0.05) showed association with Fe, Zn and protein contents in common bean. The markers associated with Fe were located on chromosome no. 2, 5, 6, 7, 9 and 10, markers associated with Zn were located on chromosome no. 1, 3, 5, 7 and 10 whereas only one marker located on chromosome no. 4 was found associated with protein content. These findings will provide potential opportunity to improve Fe and Zn concentrations in common bean, through molecular breeding.
Collapse
Affiliation(s)
- Reetika Mahajan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir India
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir India
| | - R K Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Jammu, Chatha, Jammu, Jammu & Kashmir India
| | - Aijaz Ahmad Wani
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir India
| | - Muslima Nazir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir India
| | - Parvaze A Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Science and Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir India
| |
Collapse
|
29
|
Briñez B, Perseguini JMKC, Rosa JS, Bassi D, Gonçalves JGR, Almeida C, Paulino JFDC, Blair MW, Chioratto AF, Carbonell SAM, Valdisser PAMR, Vianello RP, Benchimol-Reis LL. Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers. Genet Mol Biol 2017; 40:813-823. [PMID: 29064511 PMCID: PMC5738610 DOI: 10.1590/1678-4685-gmb-2016-0222] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/03/2017] [Indexed: 11/21/2022] Open
Abstract
The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean.
Collapse
Affiliation(s)
- Boris Briñez
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico
(IAC), Campinas, SP, Brazil
| | - Juliana Morini Küpper Cardoso Perseguini
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico
(IAC), Campinas, SP, Brazil
- Ciências Biológicas, Universidade Tecnológica Federal do Paraná
(UTFPR), Dois Vizinhos, PR, Brazil
| | - Juliana Santa Rosa
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico
(IAC), Campinas, SP, Brazil
| | - Denis Bassi
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico
(IAC), Campinas, SP, Brazil
| | | | - Caléo Almeida
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico
(IAC), Campinas, SP, Brazil
| | | | - Matthew Ward Blair
- Department of Agriculture and Natural Sciences, Tennessee State
University, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wu J, Wang L, Wang S. MicroRNAs associated with drought response in the pulse crop common bean (Phaseolus vulgaris L.). Gene 2017; 628:78-86. [PMID: 28711666 DOI: 10.1016/j.gene.2017.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Drought stress significantly reduces common bean yields. Recently, some drought-related miRNAs were found in various plants. However, reports of miRNAs involved in drought stress in common bean are limited. Here, we obtained four sRNA samples from drought-tolerant and -sensitive cultivars of common bean that experienced with or without drought treatment. A total of 49 novel miRNAs and 120 known miRNAs were detected. Under drought treatment, 9 and 7 known miRNAs were down and up-regulated, respectively, and 5 and 3 of the novel miRNAs were increased and decreased, respectively. Among these miRNAs, four miRNAs shared the same pattern of expression between Long 22-0579 and Naihua. Target genes of these miRNAs included transcription factors, protein kinases, and nuclear transcription factors. Finally, we verified all of the differentially expressed miRNAs by RT-qPCR, and we identified 16 miRNAs that are potentially associated with the drought stress response. These miRNAs and target genes will be useful in future basic studies and in applied studies investigating how miRNA regulation can be used to enhance drought resistance in plant species.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, MOA, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, CAAS, Beijing 100081, China
| | - Lanfen Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, MOA, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, CAAS, Beijing 100081, China
| | - Shumin Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, MOA, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, CAAS, Beijing 100081, China.
| |
Collapse
|
31
|
Evaluation of common bean ( Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.06.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Burridge J, Jochua CN, Bucksch A, Lynch JP. Legume shovelomics: High—Throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. FIELD CROPS RESEARCH 2016; 192:21-32. [PMID: 0 DOI: 10.1016/j.fcr.2016.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
33
|
Pereira TS, Lima MDR, Paula LS, Lobato AKS. Tolerance to water deficit in cowpea populations resulting from breeding program: detection by gas exchange and chlorophyll fluorescence. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40502-016-0218-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Gujaria-Verma N, Ramsay L, Sharpe AG, Sanderson LA, Debouck DG, Tar'an B, Bett KE. Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 2016; 17:239. [PMID: 26979462 PMCID: PMC4793507 DOI: 10.1186/s12864-016-2499-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Common bean (Phaseolus vulgaris) is an important grain legume and there has been a recent resurgence in interest in its relative, tepary bean (P. acutifolius), owing to this species’ ability to better withstand abiotic stresses. Genomic resources are scarce for this minor crop species and a better knowledge of the genome-level relationship between these two species would facilitate improvement in both. High-throughput genotyping has facilitated large-scale single nucleotide polymorphism (SNP) identification leading to the development of molecular markers with associated sequence information that can be used to place them in the context of a full genome assembly. Results Transcript-based SNPs were identified from six common bean and two tepary bean accessions and a subset were used to generate a 768-SNP Illumina GoldenGate assay for each species. The tepary bean assay was used to assess diversity in wild and cultivated tepary bean and to generate the first gene-based map of the tepary bean genome. Genotypic analyses of the diversity panel showed a clear separation between domesticated and cultivated tepary beans, two distinct groups within the domesticated types, and P. parvifolius was confirmed to be distinct. The genetic map of tepary bean was compared to the common bean genome assembly to demonstrate high levels of collinearity between the two species with differences limited to a few intra-chromosomal rearrangements. Conclusions The development of the first set of genomic resources specifically for tepary bean has allowed for greater insight into the structure of this species and its relationship to its agriculturally more prominent relative, common bean. These resources will be helpful in the development of efficient breeding strategies for both species and will facilitate the introgression of agriculturally important traits from one crop into the other. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2499-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neha Gujaria-Verma
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Lacey-Anne Sanderson
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Daniel G Debouck
- Genetic Resources Program, International Center for Tropical Agriculture, Km 17 recta a Palmira, AA6713, Cali, Colombia
| | - Bunyamin Tar'an
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
35
|
Blair MW, Cortés AJ, This D. Identification of an ERECTA gene and its drought adaptation associations with wild and cultivated common bean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:250-259. [PMID: 26566842 DOI: 10.1016/j.plantsci.2015.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 05/25/2023]
Abstract
In this research, we cloned and accessed nucleotide diversity in the common bean ERECTA gene which has been implicated in drought tolerance and stomatal patterning. The homologous gene segment was isolated with degenerate primer and was found to be located on Chromosome 1. The gene had at least one paralog on Chromosome 9 and duplicate copies in soybean for each homolog. ERECTA-like genes were also discovered but the function of these was of less interest due to low similarity with the ERECTA gene from Arabidopsis. The diversity of the 5' end of the large Chr. 1 PvERECTA gene was evaluated in a collection of 145 wild and cultivated common beans that were also characterized by geographic source and drought tolerance, respectively. Our wild population sampled a range of wet to dry habitats, while our cultivated samples were representative of landrace diversity and the patterns of nucleotide variation differed between groups. The 5' region exhibited lower levels of diversity in the cultivated collection, which was indicative of population bottlenecks associated with the domestication process, compared to the wild collection where diversity was associated with ecological differences. We discuss associations of nucleotide diversity at PvERECTA with drought tolerance prediction for the genotypes.
Collapse
Affiliation(s)
- Matthew W Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, USA
| | - Andrés J Cortés
- Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Dominique This
- Montpellier SupAgro, UMR AGAP, CIRAD, TA96/03. Ave Agropolis, 34398 Montpellier cedex 5, France
| |
Collapse
|
36
|
Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R. Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. TRENDS IN PLANT SCIENCE 2016; 21:31-42. [PMID: 26559599 DOI: 10.1016/j.tplants.2015.10.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/24/2015] [Accepted: 10/15/2015] [Indexed: 05/19/2023]
Abstract
Plant landraces represent heterogeneous, local adaptations of domesticated species, and thereby provide genetic resources that meet current and new challenges for farming in stressful environments. These local ecotypes can show variable phenology and low-to-moderate edible yield, but are often highly nutritious. The main contributions of landraces to plant breeding have been traits for more efficient nutrient uptake and utilization, as well as useful genes for adaptation to stressful environments such as water stress, salinity, and high temperatures. We propose that a systematic landrace evaluation may define patterns of diversity, which will facilitate identifying alleles for enhancing yield and abiotic stress adaptation, thus raising the productivity and stability of staple crops in vulnerable environments.
Collapse
Affiliation(s)
- Sangam L Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | | | - Matthew W Blair
- Department of Agriculture and Natural Sciences, Lawson Hall, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN, USA
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Ashok K Are
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Department of Plant Breeding, Sundsvagen, 14 Box 101, 23053 Alnarp, Sweden.
| |
Collapse
|
37
|
Song Q, Jia G, Hyten DL, Jenkins J, Hwang EY, Schroeder SG, Osorno JM, Schmutz J, Jackson SA, McClean PE, Cregan PB. SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean. G3 (BETHESDA, MD.) 2015; 5:2285-90. [PMID: 26318155 PMCID: PMC4632048 DOI: 10.1534/g3.115.020594] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/27/2015] [Indexed: 11/28/2022]
Abstract
A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of large scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad.
Collapse
Affiliation(s)
- Qijian Song
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| | - Gaofeng Jia
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| | - David L Hyten
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Eun-Young Hwang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
| | - Steven G Schroeder
- USDA-ARS, Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, Beltsville, Maryland 20705
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102
| | - Perry B Cregan
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, Maryland 20705
| |
Collapse
|
38
|
Wu J, Wang L, Li L, Wang S. De novo assembly of the common bean transcriptome using short reads for the discovery of drought-responsive genes. PLoS One 2014; 9:e109262. [PMID: 25275443 PMCID: PMC4183588 DOI: 10.1371/journal.pone.0109262] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022] Open
Abstract
The common bean (Phaseolus vulgaris L.) is one of the most important food legumes, far ahead of other legumes. The average grain yield of the common bean worldwide is much lower than its potential yields, primarily due to drought in the field. However, the gene network that mediates plant responses to drought stress remains largely unknown in this species. The major goals of our study are to identify a large scale of genes involved in drought stress using RNA-seq. First, we assembled 270 million high-quality trimmed reads into a non-redundant set of 62,828 unigenes, representing approximately 49 Mb of unique transcriptome sequences. Of these unigenes, 26,501 (42.2%) common bean unigenes had significant similarity with unigenes/predicted proteins from other legumes or sequenced plants. All unigenes were functionally annotated within the GO, COG and KEGG pathways. The strategy for de novo assembly of transcriptome data generated here will be useful in other legume plant transcriptome studies. Second, we identified 10,482 SSRs and 4,099 SNPs in transcripts. The large number of genetic markers provides a resource for gene discovery and development of functional molecular markers. Finally, we found differential expression genes (DEGs) between terminal drought and optimal irrigation treatments and between the two different genotypes Long 22-0579 (drought tolerant) and Naihua (drought sensitive). DEGs were confirmed by quantitative real-time PCR assays, which indicated that these genes are functionally associated with the drought-stress response. These resources will be helpful for basic and applied research for genome analysis and crop drought resistance improvement in the common bean.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lanfen Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Li
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
39
|
Mukeshimana G, Butare L, Cregan PB, Blair MW, Kelly JD. Quantitative Trait Loci Associated with Drought Tolerance in Common Bean. CROP SCIENCE 2014; 54:923-938. [PMID: 0 DOI: 10.2135/cropsci2013.06.0427] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Gerardine Mukeshimana
- Dep. of Plant, Soil and Microbial SciencesMichigan State Univ.1066 Bogue St.East LansingMI48824
| | | | - Perry B. Cregan
- USDA, ARS, Soybean Genomics and Improvement Laboratory, BARCBeltsvilleMD
| | - Matthew W. Blair
- Dep. of Agriculture and Environmental SciencesTennessee State Univ.3500 John A. Merritt Blvd.NashvilleTN37209
| | - James D. Kelly
- Dep. of Plant, Soil and Microbial SciencesMichigan State Univ.1066 Bogue St.East LansingMI48824
| |
Collapse
|
40
|
DeLaat DM, Colombo CA, Chiorato AF, Carbonell SAM. Induction of ferritin synthesis by water deficit and iron excess in common bean (Phaseolus vulgaris L.). Mol Biol Rep 2014; 41:1427-35. [PMID: 24390245 DOI: 10.1007/s11033-013-2987-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 12/24/2013] [Indexed: 12/26/2022]
Abstract
Ferritins are molecules for iron storage present in most living beings. In plants, ferritin is an essential iron homeostasis regulator and therefore plays a fundamental role in control of iron induced by oxidative stress or by excess of iron ions. Ferritin gene expression is modulated by various environmental factors, including the intensity of drought, cold, light and pathogenic attack. Common bean, one of the most important species in the Brazilian diet, is also affected by insufficiency or lack of water. Thus, the present study was conducted for the purpose of determining the levels of expression of ferritins transcripts in leaf tissues of three common bean cultivars (BAT 477, Carioca Comum and IAC-Diplomata) under osmotic shock caused by polyethylene glycol 6000 and by iron excess. The expression of three ferritins genes (PvFer1, PvFer2 and PvFer3), determined by quantitative PCR, indicated a difference in the expression kinetics among the cultivars. All the ferritin genes were actively transcribed under iron excess and water deficit conditions. The cultivars most responsive to treatments were BAT 477 and IAC-Diplomata. All the cultivars responded to treatments. Nevertheless, the ferritin genes were differentially regulated according to the cultivars. Analysis of variance indicated differences among cultivars in expression of the genes PvFer1 and PvFer3. Both genes were most responsive to treatments. This result suggests that ferritin genes may be functionally important in acclimatization of common bean under iron excess or water deficit conditions.
Collapse
|
41
|
Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA. Phenotyping common beans for adaptation to drought. Front Physiol 2013; 4:35. [PMID: 23507928 PMCID: PMC3589705 DOI: 10.3389/fphys.2013.00035] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 02/12/2013] [Indexed: 11/13/2022] Open
Abstract
Common beans (Phaseolus vulgaris L.) originated in the New World and are the grain legume of greatest production for direct human consumption. Common bean production is subject to frequent droughts in highland Mexico, in the Pacific coast of Central America, in northeast Brazil, and in eastern and southern Africa from Ethiopia to South Africa. This article reviews efforts to improve common bean for drought tolerance, referring to genetic diversity for drought response, the physiology of drought tolerance mechanisms, and breeding strategies. Different races of common bean respond differently to drought, with race Durango of highland Mexico being a major source of genes. Sister species of P. vulgaris likewise have unique traits, especially P. acutifolius which is well adapted to dryland conditions. Diverse sources of tolerance may have different mechanisms of plant response, implying the need for different methods of phenotyping to recognize the relevant traits. Practical considerations of field management are discussed including: trial planning; water management; and field preparation.
Collapse
Affiliation(s)
- Stephen E. Beebe
- CIAT—International Center for Tropical AgricultureCali, Colombia
| | | | - Matthew W. Blair
- Formerly of CIAT, CIAT—International Center for Tropical AgricultureCali, Colombia
| | - Jorge A. Acosta-Gallegos
- Bean Program, INIFAP Research Station, Instituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasCelaya, Mexico
| |
Collapse
|
42
|
Cortés AJ, This D, Chavarro C, Madriñán S, Blair MW. Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1069-85. [PMID: 22772725 DOI: 10.1007/s00122-012-1896-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 05/11/2012] [Indexed: 05/25/2023]
Abstract
Common beans are an important food legume faced with a series of abiotic stresses the most severe of which is drought. The crop is interesting as a model for the analysis of gene phylogenies due to its domestication process, race structure, and origins in a group of wild common beans found along the South American Andes and the region of Mesoamerica. Meanwhile, the DREB2 transcription factors have been implicated in controlling non-ABA dependent responses to drought stress. With this in mind our objective was to study in depth the genetic diversity for two DREB2 genes as possible candidates for association with drought tolerance through a gene phylogenetic analysis. In this genetic diversity assessment, we analyzed nucleotide diversity at the two candidate genes Dreb2A and Dreb2B, in partial core collections of 104 wild and 297 cultivated common beans with a total of 401 common bean genotypes from world-wide germplasm analyzed. Our wild population sample covered a range of semi-mesic to very dry habitats, while our cultivated samples presented a wide spectrum of low to high drought tolerance. Both genes showed very different patterns of nucleotide variation. Dreb2B exhibited very low nucleotide diversity relative to neutral reference loci previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, Dreb2A exhibited higher levels of nucleotide diversity, which is indicative of adaptive selection and population expansion. These patterns were more distinct in wild compared to cultivated common beans. These approximations suggested the importance of Dreb2 genes in the context of drought tolerance, and constitute the first steps towards an association study between genetic polymorphism of this gene family and variation in drought tolerance traits. We discuss the utility of allele mining in the DREB gene family for the discovery of new drought tolerance traits from wild common bean.
Collapse
Affiliation(s)
- Andrés J Cortés
- Evolutionary Biology Centre, Uppsala University, 75105 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
43
|
Yuste-Lisbona FJ, Santalla M, Capel C, García-Alcázar M, De La Fuente M, Capel J, De Ron AM, Lozano R. Marker-based linkage map of Andean common bean (Phaseolus vulgaris L.) and mapping of QTLs underlying popping ability traits. BMC PLANT BIOLOGY 2012; 12:136. [PMID: 22873566 PMCID: PMC3490973 DOI: 10.1186/1471-2229-12-136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 08/03/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Nuña bean is a type of ancient common bean (Phaseolus vulgaris L.) native to the Andean region of South America, whose seeds possess the unusual property of popping. The nutritional features of popped seeds make them a healthy low fat and high protein snack. However, flowering of nuña bean only takes place under short-day photoperiod conditions, which means a difficulty to extend production to areas where such conditions do not prevail. Therefore, breeding programs of adaptation traits will facilitate the diversification of the bean crops and the development of new varieties with enhanced healthy properties. Although the popping trait has been profusely studied in maize (popcorn), little is known about the biology and genetic basis of the popping ability in common bean. To obtain insights into the genetics of popping ability related traits of nuña bean, a comprehensive quantitative trait loci (QTL) analysis was performed to detect single-locus and epistatic QTLs responsible for the phenotypic variance observed in these traits. RESULTS A mapping population of 185 recombinant inbred lines (RILs) derived from a cross between two Andean common bean genotypes was evaluated for three popping related traits, popping dimension index (PDI), expansion coefficient (EC), and percentage of unpopped seeds (PUS), in five different environmental conditions. The genetic map constructed included 193 loci across 12 linkage groups (LGs), covering a genetic distance of 822.1 cM, with an average of 4.3 cM per marker. Individual and multi-environment QTL analyses detected a total of nineteen single-locus QTLs, highlighting among them the co-localized QTLs for the three popping ability traits placed on LGs 3, 5, 6, and 7, which together explained 24.9, 14.5, and 25.3% of the phenotypic variance for PDI, EC, and PUS, respectively. Interestingly, epistatic interactions among QTLs have been detected, which could have a key role in the genetic control of popping. CONCLUSIONS The QTLs here reported constitute useful tools for marker assisted selection breeding programs aimed at improving nuña bean cultivars, as well as for extending our knowledge of the genetic determinants and genotype x environment interaction involved in the popping ability traits of this bean crop.
Collapse
Affiliation(s)
- Fernando J Yuste-Lisbona
- Departamento de Biología Aplicada (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Campus de Excelencia Internacional Agroalimentario, CeiA3, Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Marta Santalla
- Departamento de Recursos Fitogenéticos, Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080, Pontevedra, Spain
| | - Carmen Capel
- Departamento de Biología Aplicada (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Campus de Excelencia Internacional Agroalimentario, CeiA3, Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Manuel García-Alcázar
- Departamento de Biología Aplicada (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Campus de Excelencia Internacional Agroalimentario, CeiA3, Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - María De La Fuente
- Departamento de Recursos Fitogenéticos, Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080, Pontevedra, Spain
| | - Juan Capel
- Departamento de Biología Aplicada (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Campus de Excelencia Internacional Agroalimentario, CeiA3, Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Antonio M De Ron
- Departamento de Recursos Fitogenéticos, Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080, Pontevedra, Spain
| | - Rafael Lozano
- Departamento de Biología Aplicada (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Campus de Excelencia Internacional Agroalimentario, CeiA3, Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| |
Collapse
|
44
|
Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:625-45. [PMID: 22696006 PMCID: PMC3405239 DOI: 10.1007/s00122-012-1904-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/18/2012] [Indexed: 05/19/2023]
Abstract
Drought is one of the most serious production constraint for world agriculture and is projected to worsen with anticipated climate change. Inter-disciplinary scientists have been trying to understand and dissect the mechanisms of plant tolerance to drought stress using a variety of approaches; however, success has been limited. Modern genomics and genetic approaches coupled with advances in precise phenotyping and breeding methodologies are expected to more effectively unravel the genes and metabolic pathways that confer drought tolerance in crops. This article discusses the most recent advances in plant physiology for precision phenotyping of drought response, a vital step before implementing the genetic and molecular-physiological strategies to unravel the complex multilayered drought tolerance mechanism and further exploration using molecular breeding approaches for crop improvement. Emphasis has been given to molecular dissection of drought tolerance by QTL or gene discovery through linkage and association mapping, QTL cloning, candidate gene identification, transcriptomics and functional genomics. Molecular breeding approaches such as marker-assisted backcrossing, marker-assisted recurrent selection and genome-wide selection have been suggested to be integrated in crop improvement strategies to develop drought-tolerant cultivars that will enhance food security in the context of a changing and more variable climate.
Collapse
Affiliation(s)
- Reyazul Rouf Mir
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324 India
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, Jammu, 180 009 India
| | - Mainassara Zaman-Allah
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324 India
- Department of Biology, Faculty of Sciences, University of Maradi, BP 465, Maradi, Niger
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Richard Trethowan
- Plant Breeding Institute, University of Sydney, PMB11, Camden, NSW 2570 Australia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324 India
- CGIAR-Generation Challenge Programme (GCP), c/o CIMMYT, Int APDO Postal 6-641, 06600 Mexico, DF Mexico
- School of Plant Biology (M084), Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| |
Collapse
|
45
|
Cortés AJ, Chavarro MC, Madriñán S, This D, Blair MW. Molecular ecology and selection in the drought-related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgaris L.). BMC Genet 2012; 13:58. [PMID: 22799462 PMCID: PMC3473318 DOI: 10.1186/1471-2156-13-58] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/11/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The abscisic acid (ABA) pathway plays an important role in the plants' reaction to drought stress and ABA-stress response (Asr) genes are important in controlling this process. In this sense, we accessed nucleotide diversity at two candidate genes for drought tolerance (Asr1 and Asr2), involved in an ABA signaling pathway, in the reference collection of cultivated common bean (Phaseolus vulgaris L.) and a core collection of wild common bean accessions. RESULTS Our wild population samples covered a range of mesic (semi-arid) to very dry (desert) habitats, while our cultivated samples presented a wide spectrum of drought tolerance. Both genes showed very different patterns of nucleotide variation. Asr1 exhibited very low nucleotide diversity relative to the neutral reference loci that were previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, Asr2 exhibited higher levels of nucleotide diversity, which is indicative of adaptive selection. These patterns were more notable in wild beans than in cultivated common beans indicting that natural selection has played a role over long time periods compared to farmer selection since domestication. CONCLUSIONS Together these results suggested the importance of Asr1 in the context of drought tolerance, and constitute the first steps towards an association study between genetic polymorphism of this gene family and variation in drought tolerance traits. Furthermore, one of our major successes was to find that wild common bean is a reservoir of genetic variation and selection signatures at Asr genes, which may be useful for breeding drought tolerance in cultivated common bean.
Collapse
Affiliation(s)
- Andrés J Cortés
- Departamento de Biologia, Universidad de los Andes, Carrera 1 N° 18A - 12, J302 Bogotá, Colombia.
| | | | | | | | | |
Collapse
|
46
|
Galeano CH, Cortés AJ, Fernández AC, Soler Á, Franco-Herrera N, Makunde G, Vanderleyden J, Blair MW. Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genet 2012; 13:48. [PMID: 22734675 PMCID: PMC3464600 DOI: 10.1186/1471-2156-13-48] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022] Open
Abstract
Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron-based markers for linkage and association mapping in common bean. The utility of these markers is discussed in relation with the usefulness of microsatellites, the molecular markers by excellence in this crop.
Collapse
Affiliation(s)
- Carlos H Galeano
- Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, 3001, Heverlee, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Multienvironment quantitative trait Loci analysis for photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress. G3-GENES GENOMES GENETICS 2012; 2:579-95. [PMID: 22670228 PMCID: PMC3362941 DOI: 10.1534/g3.112.002303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 03/07/2012] [Indexed: 11/18/2022]
Abstract
Many of the world’s common bean (Phaseolus vulgaris L.) growing regions are prone to either intermittent or terminal drought stress, making drought the primary cause of yield loss under farmers’ field conditions. Improved photosynthate acquisition, accumulation, and then remobilization have been observed as important mechanisms for adaptation to drought stress. The objective of this study was to tag quantitative trait loci (QTL) for photosynthate acquisition, accumulation, and remobilization to grain by using a recombinant inbred line population developed from the Mesoamerican intragenepool cross of drought-susceptible DOR364 and drought-tolerant BAT477 grown under eight environments differing in drought stress across two continents: Africa and South America. The recombinant inbred line population expressed quantitative variation and transgressive segregation for 11 traits associated with drought tolerance. QTL were detected by both a mixed multienvironment model and by composite interval mapping for each environment using a linkage map constructed with 165 genetic markers that covered 11 linkage groups of the common bean genome. In the multienvironment, mixed model, nine QTL were detected for 10 drought stress tolerance mechanism traits found on six of the 11 linkage groups. Significant QTL × environment interaction was observed for six of the nine QTL. QTL × environment interaction was of the cross-over type for three of the six significant QTL with contrasting effect of the parental alleles across different environments. In the composite interval mapping, we found 69 QTL in total. The majority of these were found for Palmira (47) or Awassa (18), with fewer in Malawi (4). Phenotypic variation explained by QTL in single environments ranged up to 37%, and the most consistent QTL were for Soil Plant Analysis Development (SPAD) leaf chlorophyll reading and pod partitioning traits. QTL alignment between the two detection methods showed that yield QTL on b08 and stem carbohydrate QTL on b05 were most consistent between the multilocation model and the single environment detection. Our results indicate the relevance of QTL detection in the sites in which bean breeding will be undertaken and the importance of photosynthate accumulation as a trait for common bean drought tolerance.
Collapse
|
48
|
Galeano CH, Fernandez AC, Franco-Herrera N, Cichy KA, McClean PE, Vanderleyden J, Blair MW. Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean. PLoS One 2011; 6:e28135. [PMID: 22174773 PMCID: PMC3234260 DOI: 10.1371/journal.pone.0028135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/01/2011] [Indexed: 11/19/2022] Open
Abstract
Map-based cloning and fine mapping to find genes of interest and marker assisted selection (MAS) requires good genetic maps with reproducible markers. In this study, we saturated the linkage map of the intra-gene pool population of common bean DOR364 × BAT477 (DB) by evaluating 2,706 molecular markers including SSR, SNP, and gene-based markers. On average the polymorphism rate was 7.7% due to the narrow genetic base between the parents. The DB linkage map consisted of 291 markers with a total map length of 1,788 cM. A consensus map was built using the core mapping populations derived from inter-gene pool crosses: DOR364 × G19833 (DG) and BAT93 × JALO EEP558 (BJ). The consensus map consisted of a total of 1,010 markers mapped, with a total map length of 2,041 cM across 11 linkage groups. On average, each linkage group on the consensus map contained 91 markers of which 83% were single copy markers. Finally, a synteny analysis was carried out using our highly saturated consensus maps compared with the soybean pseudo-chromosome assembly. A total of 772 marker sequences were compared with the soybean genome. A total of 44 syntenic blocks were identified. The linkage group Pv6 presented the most diverse pattern of synteny with seven syntenic blocks, and Pv9 showed the most consistent relations with soybean with just two syntenic blocks. Additionally, a co-linear analysis using common bean transcript map information against soybean coding sequences (CDS) revealed the relationship with 787 soybean genes. The common bean consensus map has allowed us to map a larger number of markers, to obtain a more complete coverage of the common bean genome. Our results, combined with synteny relationships provide tools to increase marker density in selected genomic regions to identify closely linked polymorphic markers for indirect selection, fine mapping or for positional cloning.
Collapse
Affiliation(s)
- Carlos H. Galeano
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, K.U. Leuven, Heverlee, Belgium
| | - Andrea C. Fernandez
- Sugarbeet and Bean Research Unit, Agricultural Research Service, United States Department of Agriculture, East Lansing, Michigan, United States of America
| | | | - Karen A. Cichy
- Sugarbeet and Bean Research Unit, Agricultural Research Service, United States Department of Agriculture, East Lansing, Michigan, United States of America
| | - Phillip E. McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota, United States of America
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jos Vanderleyden
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, K.U. Leuven, Heverlee, Belgium
| | - Matthew W. Blair
- International Center for Tropical Agriculture (CIAT) Bean Project, Cali, Colombia
| |
Collapse
|