1
|
Xiao X, Ran Z, Yan C, Gu W, Li Z. Mitochondrial genome assembly of the Chinese endemic species of Camellia luteoflora and revealing its repetitive sequence mediated recombination, codon preferences and MTPTs. BMC PLANT BIOLOGY 2025; 25:435. [PMID: 40186100 PMCID: PMC11971748 DOI: 10.1186/s12870-025-06461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Camellia luteoflora Y.K. Li ex Hung T. Chang & F.A. Zeng belongs to the Camellia L. genus (Theaceae Mirb.). As an endemic, rare, and critically endangered species in China, it holds significant ornamental and economic value, garnering global attention due to its ecological rarity. Despite its conservation importance, genomic investigations on this species remain limited, particularly in organelle genomics, hindering progress in phylogenetic classification and population identification. In this study, we employed high-throughput sequencing to assemble the first complete mitochondrial genome of C. luteoflora and reannotated its chloroplast genome. Through integrated bioinformatics analyses, we systematically characterized the mitochondrial genome's structural organization, gene content, interorganellar DNA transfer, sequence variation, and evolutionary relationships.Key findings revealed a circular mitochondrial genome spanning 587,847 bp with a GC content of 44.63%. The genome harbors70 unique functional genes, including 40 protein-coding genes (PCGs), 27 tRNA genes, and 3 rRNA genes. Notably, 9 PCGs contained 22 intronic regions. Codon usage analysis demonstrated a pronounced A/U bias in synonymous codon selection. Structural features included 506 dispersed repeats and 240 simple sequence repeats. Comparative genomics identified 19 chloroplast-derived transfer events, contributing 29,534 bp (3.77% of total mitochondrial DNA). RNA editing prediction revealed 539 C-to-T conversion events across PCGs. Phylogenetic reconstruction using mitochondrial PCGs positioned C. luteoflora in closest evolutionary proximity to Camellia sinensis var. sinensis. Selection pressure analysis (Ka/Ks ratios < 1 for 11 PCGs) and nucleotide diversity assessment (Pi values: 0-0.00711) indicated strong purifying selection and low sequence divergence.This study provides the first comprehensive mitochondrial genomic resource for C. luteoflora, offering critical insights for germplasm conservation, comparative organelle genomics, phylogenetic resolution, and evolutionary adaptation studies in Camellia species.
Collapse
Affiliation(s)
- Xu Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chao Yan
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Weihao Gu
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Luo X, Gu C, Gao S, Li M, Zhang H, Zhu S. Complete mitochondrial genome assembly of Zizania latifolia and comparative genome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1381089. [PMID: 39184575 PMCID: PMC11341417 DOI: 10.3389/fpls.2024.1381089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 08/27/2024]
Abstract
Zizania latifolia (Griseb.) Turcz. ex Stapf has been cultivated as a popular aquatic vegetable in China due to its important nutritional, medicinal, ecological, and economic values. The complete mitochondrial genome (mitogenome) of Z. latifolia has not been previously studied and reported, which has hindered its molecular systematics and understanding of evolutionary processes. Here, we assembled the complete mitogenome of Z. latifolia and performed a comprehensive analysis including genome organization, repetitive sequences, RNA editing event, intercellular gene transfer, phylogenetic analysis, and comparative mitogenome analysis. The mitogenome of Z. latifolia was estimated to have a circular molecule of 392,219 bp and 58 genes consisting of three rRNA genes, 20 tRNA genes, and 35 protein-coding genes (PCGs). There were 46 and 20 simple sequence repeats (SSRs) with different motifs identified from the mitogenome and chloroplast genome of Z. latifolia, respectively. Furthermore, 49 homologous fragments were observed to transfer from the chloroplast genome to the mitogenome of Z. latifolia, accounting for 47,500 bp, presenting 12.1% of the whole mitogenome. In addition, there were 11 gene-containing homologous regions between the mitogenome and chloroplast genome of Z. latifolia. Also, approximately 85% of fragments from the mitogenome were duplicated in the Z. latifolia nuclear genome. Selection pressure analysis revealed that most of the mitochondrial genes were highly conserved except for ccmFc, ccmFn, matR, rps1, and rps3. A total of 93 RNA editing sites were found in the PCGs of the mitogenome. Z. latifolia and Oryza minuta are the most closely related, as shown by collinear analysis and the phylogenetic analysis. We found that repeat sequences and foreign sequences in the mitogenomes of Oryzoideae plants were associated with genome rearrangements. In general, the availability of the Z. latifolia mitogenome will contribute valuable information to our understanding of the molecular and genomic aspects of Zizania.
Collapse
Affiliation(s)
| | | | | | | | | | - Shidong Zhu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Yang J, Zhang X, Hua Z, Jia H, Li K, Ling C. High-Quality Assembly and Analysis of the Complete Mitogenomes of German Chamomile ( Matricaria recutita) and Roman Chamomile ( Chamaemelum nobile). Genes (Basel) 2024; 15:301. [PMID: 38540360 PMCID: PMC10970603 DOI: 10.3390/genes15030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 06/14/2024] Open
Abstract
German chamomile (Matricaria chamomilla L.) and Roman chamomile (Chamaemelum nobile) are the two well-known chamomile species from the Asteraceae family. Owing to their essential oils and higher medicinal value, these have been cultivated widely across Europe, Northwest Asia, North America, and Africa. Regarding medicinal applications, German chamomile is the most commonly utilized variety and is frequently recognized as the "star among medicinal species". The insufficient availability of genomic resources may negatively impact the progression of chamomile industrialization. Chamomile's mitochondrial genome is lacking in extensive empirical research. In this study, we achieved the successful sequencing and assembly of the complete mitochondrial genome of M. chamomilla and C. nobile for the first time. An analysis was conducted on codon usage, sequence repeats within the mitochondrial genome of M. chamomilla and C. nobile. The phylogenetic analysis revealed a consistent positioning of M. chamomilla and C. nobile branches within both mitochondrial and plastid-sequence-based phylogenetic trees. Furthermore, the phylogenetic analysis also showed a close relationship between M. chamomilla and C. nobile within the clade comprising species from the Asteraceae family. The results of our analyses provide valuable resources for evolutionary research and molecular barcoding in chamomile.
Collapse
Affiliation(s)
- Jun Yang
- College of Food and Bioengineering, Bengbu University, Bengbu 233030, China; (X.Z.); (Z.H.); (H.J.); (K.L.); (C.L.)
| | | | | | | | | | | |
Collapse
|
4
|
Ji H, Liu J, Chen Y, Yu X, Luo C, Sang L, Zhou J, Liao H. Bioinformatic Analysis of Codon Usage Bias of HSP20 Genes in Four Cruciferous Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:468. [PMID: 38498447 PMCID: PMC10892267 DOI: 10.3390/plants13040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Heat shock protein 20 (HSP20) serves as a chaperone and plays roles in numerous biological processes, but the codon usage bias (CUB) of its genes has remained unexplored. This study identified 140 HSP20 genes from four cruciferous species, Arabidopsis thaliana, Brassica napus, Brassica rapa, and Camelina sativa, that were identified from the Ensembl plants database, and we subsequently investigated their CUB. As a result, the base composition analysis revealed that the overall GC content of HSP20 genes was below 50%. The overall GC content significantly correlated with the constituents at three codon positions, implying that both mutation pressure and natural selection might contribute to the CUB. The relatively high ENc values suggested that the CUB of the HSP20 genes in four cruciferous species was relatively weak. Subsequently, ENc exhibited a negative correlation with gene expression levels. Analyses, including ENc-plot analysis, neutral analysis, and PR2 bias, revealed that natural selection mainly shaped the CUB patterns of HSP20 genes in these species. In addition, a total of 12 optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified across the four species. A neighbor-joining phylogenetic analysis based on coding sequences (CDS) showed that the 140 HSP20 genes were strictly and distinctly clustered into 12 subfamilies. Principal component analysis and cluster analysis based on relative synonymous codon usage (RSCU) values supported the fact that the CUB pattern was consistent with the genetic relationship at the gene level and (or) species levels. These results will not only enrich the HSP20 gene resource but also advance our understanding of the CUB of HSP20 genes, which may underlie the theoretical basis for exploration of their genetic and evolutionary pattern.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (H.J.); (J.L.); (Y.C.); (X.Y.); (C.L.); (L.S.)
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (H.J.); (J.L.); (Y.C.); (X.Y.); (C.L.); (L.S.)
| |
Collapse
|
5
|
Zhang K, Wang Y, Zhang Y, Shan X. Codon usage characterization and phylogenetic analysis of the mitochondrial genome in Hemerocallis citrina. BMC Genom Data 2024; 25:6. [PMID: 38218810 PMCID: PMC10788020 DOI: 10.1186/s12863-024-01191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Hemerocallis citrina Baroni is a traditional vegetable crop widely cultivated in eastern Asia for its high edible, medicinal, and ornamental value. The phenomenon of codon usage bias (CUB) is prevalent in various genomes and provides excellent clues for gaining insight into organism evolution and phylogeny. Comprehensive analysis of the CUB of mitochondrial (mt) genes can provide rich genetic information for improving the expression efficiency of exogenous genes and optimizing molecular-assisted breeding programmes in H. citrina. RESULTS Here, the CUB patterns in the mt genome of H. citrina were systematically analyzed, and the possible factors shaping CUB were further evaluated. Composition analysis of codons revealed that the overall GC (GCall) and GC at the third codon position (GC3) contents of mt genes were lower than 50%, presenting a preference for A/T-rich nucleotides and A/T-ending codons in H. citrina. The high values of the effective number of codons (ENC) are indicative of fairly weak CUB. Significant correlations of ENC with the GC3 and codon counts were observed, suggesting that not only compositional constraints but also gene length contributed greatly to CUB. Combined ENC-plot, neutrality plot, and Parity rule 2 (PR2)-plot analyses augmented the inference that the CUB patterns of the H. citrina mitogenome can be attributed to multiple factors. Natural selection, mutation pressure, and other factors might play a major role in shaping the CUB of mt genes, although natural selection is the decisive factor. Moreover, we identified a total of 29 high-frequency codons and 22 optimal codons, which exhibited a consistent preference for ending in A/T. Subsequent relative synonymous codon usage (RSCU)-based cluster and mt protein coding gene (PCG)-based phylogenetic analyses suggested that H. citrina is close to Asparagus officinalis, Chlorophytum comosum, Allium cepa, and Allium fistulosum in evolutionary terms, reflecting a certain correlation between CUB and evolutionary relationships. CONCLUSIONS There is weak CUB in the H. citrina mitogenome that is subject to the combined effects of multiple factors, especially natural selection. H. citrina was found to be closely related to Asparagus officinalis, Chlorophytum comosum, Allium cepa, and Allium fistulosum in terms of their evolutionary relationships as well as the CUB patterns of their mitogenomes. Our findings provide a fundamental reference for further studies on genetic modification and phylogenetic evolution in H. citrina.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China.
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China.
| | - Yiheng Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yue Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
| | - Xiaofei Shan
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
| |
Collapse
|
6
|
Yang T, Aishan S, Zhu J, Qin Y, Liu J, Liu H, Tie J, Wang J, Qin R. Chloroplast Genomes and Phylogenetic Analysis of Three Carthamus (Asteraceae) Species. Int J Mol Sci 2023; 24:15634. [PMID: 37958617 PMCID: PMC10648744 DOI: 10.3390/ijms242115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The genus Carthamus Linnaeus, which belongs to the tribe Cardueae in the Asteraceae family, originated in the Mediterranean region and consists of approximately 20 species worldwide. Understanding the phylogeny of the Carthamus is crucial for the cultivation of C. tinctorius. Although chloroplast genomes are widely used for species identification and evolutionary studies, there have been limited investigations on the chloroplast genomes of Carthamus species. In this study, we assembled the chloroplast genomes of C. persicus, C. tinctorius × C. persicus, and C. lanatus and combined them with the five chloroplast genomes of C. tinctorius for comparative genomic analysis. The sizes of the chloroplast genomes of C. lanatus, C. persicus, and C. tinctorius × C. persicus were 152,602 bp, 153,177 bp, and 153,177 bp, respectively. Comparative analysis showed that the chloroplast genome structures of the four Carthamus species were highly conserved. Additionally, the phylogenomic analysis demonstrated that the plastid genome and angiosperms353 dataset significantly improved the phylogenetic support of Carthamus species. This analysis supported Carthamus as a monophyletic taxon and its internal division into the sect. Carthamus and sect. Atractylis. The Carthamus was closely related to Carduncellus, Femeniasia, Phonus, and Centaurea. In conclusion, this study not only expands our understanding of the cp genomes of Carthamus species but also provides support for more comprehensive phylogenetic studies of Carthamus.
Collapse
Affiliation(s)
- Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Saimire Aishan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Jiale Zhu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Yonghua Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| | - Jun Tie
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - Jiangqing Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China; (T.Y.)
| |
Collapse
|
7
|
Li J, Chen Y, Liu Y, Wang C, Li L, Chao Y. Complete mitochondrial genome of Agrostis stolonifera: insights into structure, Codon usage, repeats, and RNA editing. BMC Genomics 2023; 24:466. [PMID: 37596544 PMCID: PMC10439588 DOI: 10.1186/s12864-023-09573-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Plants possess mitochondrial genomes that are large and complex compared to animals. Despite their size, plant mitochondrial genomes do not contain significantly more genes than their animal counterparts. Studies into the sequence and structure of plant mitochondrial genomes heavily imply that the main mechanism driving replication of plant mtDNA, and offer valuable insights into plant evolution, energy production, and environmental adaptation. RESULTS This study presents the first comprehensive analysis of Agrostis stolonifera's mitochondrial genome, characterized by a branched structure comprising three contiguous chromosomes, totaling 560,800 bp with a GC content of 44.07%. Annotations reveal 33 unique protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The predominant codons for alanine and glutamine are GCU and CAA, respectively, while cysteine and phenylalanine exhibit weaker codon usage biases. The mitogenome contains 73, 34, and 23 simple sequence repeats (SSRs) on chromosomes 1, 2, and 3, respectively. Chromosome 1 exhibits the most frequent A-repeat monomeric SSR, whereas chromosome 2 displays the most common U-repeat monomeric SSR. DNA transformation analysis identifies 48 homologous fragments between the mitogenome and chloroplast genome, representing 3.41% of the mitogenome's total length. The PREP suite detects 460 C-U RNA editing events across 33 mitochondrial PCGs, with the highest count in the ccmFn gene and the lowest in the rps7 gene. Phylogenetic analysis confirms A. stolonifera's placement within the Pooideae subfamily, showing a close relationship to Lolium perenne, consistent with the APG IV classification system. Numerous homologous co-linear blocks are observed in A. stolonifera's mitogenomes and those of related species, while certain regions lack homology. CONCLUSIONS The unique features and complexities of the A. stolonifera mitochondrial genome, along with its similarities and differences to related species, provide valuable insights into plant evolution, energy production, and environmental adaptation. The findings from this study significantly contribute to the growing body of knowledge on plant mitochondrial genomes and their role in plant biology.
Collapse
Affiliation(s)
- Jiaxing Li
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Yaling Liu
- Inner Mongolia M-Grass Ecology And Environment (Group) Co., Ltd, Hohhot, 010010, China
| | - Chen Wang
- Mentougou District Bureau of Ecological and Environment of Beijing Municipality, Beijing, 102300, China
| | - Ling Li
- Mentougou District Bureau of Ecological and Environment of Beijing Municipality, Beijing, 102300, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Ding H, Bi D, Zhang S, Han S, Ye Y, Yi R, Yang J, Liu B, Wu L, Zhuo R, Kan X. The Mitogenome of Sedum plumbizincicola (Crassulaceae): Insights into RNA Editing, Lateral Gene Transfer, and Phylogenetic Implications. BIOLOGY 2022; 11:1661. [PMID: 36421375 PMCID: PMC9687357 DOI: 10.3390/biology11111661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2024]
Abstract
As the largest family within the order Saxifragales, Crassulaceae contains about 34 genera with 1400 species. Mitochondria play a critical role in cellular energy production. Since the first land plant mitogenome was reported in Arabidopsis, more than 400 mitogenomic sequences have been deposited in a public database. However, no entire mitogenome data have been available for species of Crassulaceae to date. To better understand the evolutionary history of the organelles of Crassulaceae, we sequenced and performed comprehensive analyses on the mitogenome of Sedum plumbizincicola. The master mitogenomic circle is 212,159 bp in length, including 31 protein-coding genes (PCGs), 14 tRNA genes, and 3 rRNA genes. We further identified totally 508 RNA editing sites in PCGs, and demonstrated that the second codon positions of mitochondrial genes are most prone to RNA editing events. Notably, by neutrality plot analyses, we observed that the mitochondrial RNA editing events have large effects on the driving forces of plant evolution. Additionally, 4 MTPTs and 686 NUMTs were detected in the mitochondrial and nuclear genomes of S. plumbizincicola, respectively. Additionally, we conducted further analyses on gene transfer, secondary structures of mitochondrial RNAs, and phylogenetic implications. Therefore, the findings presented here will be helpful for future investigations on plant mitogenomes.
Collapse
Affiliation(s)
- Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Birong Liu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
9
|
Yang J, Ling C, Zhang H, Hussain Q, Lyu S, Zheng G, Liu Y. A Comparative Genomics Approach for Analysis of Complete Mitogenomes of Five Actinidiaceae Plants. Genes (Basel) 2022; 13:genes13101827. [PMID: 36292711 PMCID: PMC9601400 DOI: 10.3390/genes13101827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022] Open
Abstract
Actinidiaceae, an economically important plant family, includes the Actinidia, Clematoclethra and Saurauia genus. Kiwifruit, with remarkably high vitamin C content, is an endemic species widely distributed in China with high economic value. Although many Actinidiaceae chloroplast genomes have been reported, few complete mitogenomes of Actinidiaceae have been studied. Here, complete circular mitogenomes of the four kiwifruit species and Saurauia tristyla were assembled. Codon usage, sequence repeats, RNA editing, gene transfers, selective pressure, and phylogenetic relationships in the four kiwifruit species and S. tristyla were comparatively analyzed. This research will contribute to the study of phylogenetic relationships within Actiniaceae and molecular barcoding in kiwifruit.
Collapse
Affiliation(s)
- Jun Yang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Chengcheng Ling
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Huamin Zhang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Guohua Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (G.Z.); (Y.L.)
| | - Yongsheng Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (G.Z.); (Y.L.)
| |
Collapse
|
10
|
Dey S, Guchhait KC, Manna T, Panda AK, Patra A, Mondal SK, Ghosh C. Evolutionary and compositional analysis of streptokinase including its interaction with plasminogen: An in silico approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies. Sci Rep 2022; 12:7028. [PMID: 35487927 PMCID: PMC9054809 DOI: 10.1038/s41598-022-10547-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Uziflies (Family: Tachinidae) are dipteran endoparasites of sericigenous insects which cause major economic loss in the silk industry globally. Here, we are presenting the first full mitogenome of Blepharipa sp. (Acc: KY644698, 15,080 bp, A + T = 78.41%), a dipteran parasitoid of Muga silkworm (Antheraea assamensis) found in the Indian states of Assam and Meghalaya. This study has confirmed that Blepharipa sp. mitogenome gene content and arrangement is similar to other Tachinidae and Sarcophagidae flies of Oestroidea superfamily, typical of ancestral Diptera. Although, Calliphoridae and Oestridae flies have undergone tRNA translocation and insertion, forming unique intergenic spacers (IGS) and overlapping regions (OL) and a few of them (IGS, OL) have been conserved across Oestroidea flies. The Tachinidae mitogenomes exhibit more AT content and AT biased codons in their protein-coding genes (PCGs) than the Oestroidea counterpart. About 92.07% of all (3722) codons in PCGs of this new species have A/T in their 3rd codon position. The high proportion of AT and repeats in the control region (CR) affects sequence coverage, resulting in a short CR (Blepharipa sp.: 168 bp) and a smaller tachinid mitogenome. Our research unveils those genes with a high AT content had a reduced effective number of codons, leading to high codon usage bias. The neutrality test shows that natural selection has a stronger influence on codon usage bias than directed mutational pressure. This study also reveals that longer PCGs (e.g., nad5, cox1) have a higher codon usage bias than shorter PCGs (e.g., atp8, nad4l). The divergence rates increase nonlinearly as AT content at the 3rd codon position increases and higher rate of synonymous divergence than nonsynonymous divergence causes strong purifying selection. The phylogenetic analysis explains that Blepharipa sp. is well suited in the family of insectivorous tachinid maggots. It's possible that biased codon usage in the Tachinidae family reduces the effective number of codons, and purifying selection retains the core functions in their mitogenome, which could help with efficient metabolism in their endo-parasitic life style and survival strategy.
Collapse
|
12
|
Andargie M, Congyi Z. Genome-wide analysis of codon usage in sesame ( Sesamum indicum L.). Heliyon 2022; 8:e08687. [PMID: 35106386 PMCID: PMC8789531 DOI: 10.1016/j.heliyon.2021.e08687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 12/24/2021] [Indexed: 10/28/2022] Open
Abstract
Sesamum indicum is an ancient oil crop grown in tropical and subtropical areas of the world. We have analyzed 23,538 coding sequences (CDS) of S. indicum to understand the factors shaping codon usage in this important oil crop plant. We identified eleven highly preferred codons in S. indicum that have AT-endings. The slope of a neutrality plot was less than one while effective number of codons (ENC) plot showed distribution above and below the standard curve. There is a significant relationship between protein length and relative synonymous codon usage (RSCU) at the primary axis while there is a weak correlation between protein length and Nc values. Correspondence analysis conducted on RSCU values differentiated CDS based on their GC content and their characteristic feature and showed a discrete distribution. Moreover, by determining codon usage, we found out that majority of the lignan biosynthesis related genes showed a weaker codon usage bias. These results provide insights into understanding codon evolution in sesame.
Collapse
Affiliation(s)
- Mebeaselassie Andargie
- University of Goettingen, Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, 37077 Goettingen, Germany
| | - Zhu Congyi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
13
|
Abstract
Codon usage bias is the preferential or non-random use of synonymous codons, a ubiquitous phenomenon observed in bacteria, plants and animals. Different species have consistent and characteristic codon biases. Codon bias varies not only with species, family or group within kingdom, but also between the genes within an organism. Codon usage bias has evolved through mutation, natural selection, and genetic drift in various organisms. Genome composition, GC content, expression level and length of genes, position and context of codons in the genes, recombination rates, mRNA folding, and tRNA abundance and interactions are some factors influencing codon bias. The factors shaping codon bias may also be involved in evolution of the universal genetic code. Codon-usage bias is critical factor determining gene expression and cellular function by influencing diverse processes such as RNA processing, protein translation and protein folding. Codon usage bias reflects the origin, mutation patterns and evolution of the species or genes. Investigations of codon bias patterns in genomes can reveal phylogenetic relationships between organisms, horizontal gene transfers, molecular evolution of genes and identify selective forces that drive their evolution. Most important application of codon bias analysis is in the design of transgenes, to increase gene expression levels through codon optimization, for development of transgenic crops. The review gives an overview of deviations of genetic code, factors influencing codon usage or bias, codon usage bias of nuclear and organellar genes, computational methods to determine codon usage and the significance as well as applications of codon usage analysis in biological research, with emphasis on plants.
Collapse
Affiliation(s)
| | - Varatharajalu Udayasuriyan
- Department of Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Vijaipal Bhadana
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India
| |
Collapse
|
14
|
Insights into molecular structure, genome evolution and phylogenetic implication through mitochondrial genome sequence of Gleditsia sinensis. Sci Rep 2021; 11:14850. [PMID: 34290263 PMCID: PMC8295344 DOI: 10.1038/s41598-021-93480-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
Gleditsia sinensis is an endemic species widely distributed in China with high economic and medicinal value. To explore the genomic evolution and phylogenetic relationships of G. sinensis, the complete mitochondrial (mt) genome of G. sinensis was sequenced and assembled, which was firstly reported in Gleditsia. The mt genome was circular and 594,121 bp in length, including 37 protein-coding genes (PCGs), 19 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. The overall base composition of the G. sinensis mt genome was 27.4% for A, 27.4% for T, 22.6% for G, 22.7% for C. The comparative analysis of PCGs in Fabaceae species showed that most of the ribosomal protein genes and succinate dehydrogenase genes were lost. In addition, we found that the rps4 gene was only lost in G. sinensis, whereas it was retained in other Fabaceae species. The phylogenetic analysis based on shared PCGs of 24 species (22 Fabaceae and 2 Solanaceae) showed that G. sinensis is evolutionarily closer to Senna species. In general, this research will provide valuable information for the evolution of G. sinensis and provide insight into the phylogenetic relationships within the family Fabaceae.
Collapse
|
15
|
Chakraborty S, Sophiarani Y, Uddin A. Free energy of mRNA positively correlates with GC content in chloroplast transcriptomes of edible legumes. Genomics 2021; 113:2826-2838. [PMID: 34147635 DOI: 10.1016/j.ygeno.2021.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/01/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
In the present study, the results of nucleotide composition analysis showed that the legume chloroplast (cp) transcriptomes were AT rich. From the neutrality plot, we observed that natural selection might have played a major role, while mutation pressure played a minor role in the CUB of cp transcriptomes. Highly significant (p < 0.05) negative correlation was found between mRNA free energy (mFE) and scaled chi-square for entire mRNA in Cicer arietinum and Lens culinaris suggesting that the release of higher energy by entire mRNA molecule might be associated with higher degree of codon usage bias in these two crop plants. Further, highly significant (p < 0.01, p < 0.05) positive correlation of mFE for entire mRNA was found with GC3 and that of mFE for 39 bases with GC, GC1, GC2 and GC3 contents among all the legumes. This indicated that higher GC content might induce the release of more free energy by cp transcriptomes.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| | | | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, India
| |
Collapse
|
16
|
Shen Z, Gan Z, Zhang F, Yi X, Zhang J, Wan X. Analysis of codon usage patterns in citrus based on coding sequence data. BMC Genomics 2020; 21:234. [PMID: 33327935 PMCID: PMC7739459 DOI: 10.1186/s12864-020-6641-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Codon usage is an important determinant of gene expression levels that can help us understand codon biology, evolution and mRNA translation of species. The majority of previous codon usage studies have focused on single species analysis, although few studies have focused on the species within the same genus. In this study, we proposed a multispecies codon usage analysis workflow to reveal the genetic features and correlation in citrus. RESULTS Our codon usage analysis workflow was based on the GC content, GC plot, and relative synonymous codon usage value of each codon in 8 citrus species. This approach allows for the comparison of codon usage bias of different citrus species. Next, we performed cluster analysis and obtained an overview of the relationship in citrus. However, traditional methods cannot conduct quantitative analysis of the correlation. To further estimate the correlation among the citrus species, we used the frequency profile to construct feature vectors of each species. The Pearson correlation coefficient was used to quantitatively analyze the distance among the citrus species. This result was consistent with the cluster analysis. CONCLUSIONS Our findings showed that the citrus species are conserved at the genetic level and demonstrated the existing genetic evolutionary relationship in citrus. This work provides new insights into codon biology and the evolution of citrus and other plant species.
Collapse
Affiliation(s)
- Zenan Shen
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Zhimeng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fa Zhang
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Xinyao Yi
- Department of Computer Science and Engineering, University of South Carolina, Colombia, 29201, USA
| | - Jinzhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohua Wan
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100000, China.
| |
Collapse
|
17
|
Plese B, Kenny NJ, Rossi ME, Cárdenas P, Schuster A, Taboada S, Koutsouveli V, Riesgo A. Mitochondrial evolution in the Demospongiae (Porifera): Phylogeny, divergence time, and genome biology. Mol Phylogenet Evol 2020; 155:107011. [PMID: 33217579 DOI: 10.1016/j.ympev.2020.107011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/01/2022]
Abstract
The sponge class Demospongiae is the most speciose and morphologically diverse in the phylum Porifera, and the species within it are vital components of a range of ecosystems worldwide. Despite their ubiquity, a number of recalcitrant problems still remain to be solved regarding their phylogenetic inter-relationships, the timing of their appearance, and their mitochondrial biology, the latter of which is only beginning to be investigated. Here we generated 14 new demosponge mitochondrial genomes which, alongside previously published mitochondrial resources, were used to address these issues. In addition to phylogenomic analysis, we have used syntenic data and analysis of coding regions to forge a framework for understanding the inter-relationships between Demospongiae sub-classes and orders. We have also leveraged our new resources to study the mitochondrial biology of these clades in terms of codon usage, optimisation and gene expression, to understand how these vital cellular components may have contributed to the success of the Porifera. Our results strongly support a sister relationship between Keratosa and (Verongimorpha + Heteroscleromorpha), contradicting previous studies using nuclear markers. Our study includes one species of Clionaida, and show for the first time support for a grouping of Suberitida+(Clionaida+(Tethyida + Poecilosclerida). The findings of our phylogenetic analyses are supported by in-depth examination of structural and coding-level evidence from our mitochondrial data. A time-calibrated phylogeny estimated the origin of Demospongiae in the Cambrian (~529 Mya), and suggests that most demosponge order crown-groups emerged in the Mesozoic. This work therefore provides a robust basis for considering demosponge phylogenetic relationships, as well as essential mitochondrial data for understanding the biological basis for their success and diversity.
Collapse
Affiliation(s)
- Bruna Plese
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Nathan James Kenny
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Faculty of Health and Life Sciences, Oxford Brookes University, Headington Rd, Oxford OX3 0BP, United Kingdom(2).
| | - Maria Eleonora Rossi
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; School of Earth Sciences, University of Bristol, Life Science Building, 24 Tyndall Ave, Bristol BS8 1TH, United Kingdom.
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Husargatan 3, Uppsala 751 23, Sweden.
| | - Astrid Schuster
- Department of Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark; CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.
| | - Sergi Taboada
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Department of Life Sciences, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Spain; Department of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, C/ José Antonio Novais, 12, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Vasiliki Koutsouveli
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Husargatan 3, Uppsala 751 23, Sweden.
| | - Ana Riesgo
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales de Madrid (CSIC), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| |
Collapse
|
18
|
Chakraborty S, Yengkhom S, Uddin A. Analysis of codon usage bias of chloroplast genes in Oryza species : Codon usage of chloroplast genes in Oryza species. PLANTA 2020; 252:67. [PMID: 32989601 DOI: 10.1007/s00425-020-03470-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/15/2020] [Indexed: 05/11/2023]
Abstract
The codon usage bias in chloroplast genes of Oryza species was low and AT rich. The pattern of codon usage was different among Oryza species and mainly influenced by mutation pressure and natural selection. Codon usage bias (CUB) is the unequal usage of synonymous codons in which some codons are more preferred to others in the coding sequences of genes. It shows a species-specific property. We studied the patterns of codon usage and the factors that influenced the CUB of protein-coding chloroplast (cp) genes in 18 Oryza species as no work was yet reported. The nucleotide composition analysis revealed that the overall GC content of cp genes in different species of Oryza was lower than 50%, i.e., Oryza cp genes were AT rich. Synonymous codon usage order (SCUO) suggested that CUB was weak in the cp genes of different Oryza species. A highly significant correlation was observed between overall nucleotides and its constituents at the third codon position suggesting that both, mutation pressure and natural selection, might influence the CUB. Correspondence analysis (COA) revealed that codon usage pattern differed across Oryza species. In the neutrality plot, a narrow range of GC3 distribution was recorded and some points were diagonally distributed in all the plots, suggesting that natural selection and mutation pressure might have influenced the CUB. The slope of the regression line was < 0.5, augmenting our inference that natural selection might have played a major role, while mutation pressure had a minor role in shaping the CUB of cp genes. The magnitudes of mutation pressure and natural selection on cp genes varied across Oryza species.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| | - Sophiarani Yengkhom
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| |
Collapse
|
19
|
Chen Z, Zhao J, Qiao J, Li W, Li J, Xu R, Wang H, Liu Z, Xing B, Wendel JF, Grover CE. Comparative analysis of codon usage between Gossypium hirsutum and G. barbadense mitochondrial genomes. Mitochondrial DNA B Resour 2020; 5:2500-2506. [PMID: 33457843 PMCID: PMC7782173 DOI: 10.1080/23802359.2020.1780969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gossypium hirsutum and G. barbadense mitochondrial genomes were analyzed to understand the factors shaping codon usage. While most analyses of codon usage suggest minimal to no bias, nucleotide composition, specifically GC content, was significantly correlated with codon usage. In general, both mitochondrial genomes favor codons that end in A or U, with a secondary preference for pyrimidine rich codons. These observations are similar to previous reports of codon usage in cotton nuclear genomes, possibly suggestive of a general bias spanning genomic compartment. Although evidence for codon usage bias is weak for most genes, we identified six genes (i.e. atp8, atp9, sdh3, sdh4, mttB and rpl2) with significant nonrandom codon usage. In general, we find multiple factors that influence cotton mitochondrial genome codon usage, which may include selection in a subset of genes.
Collapse
Affiliation(s)
- Zhiwen Chen
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, China
| | - Jianguo Zhao
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, China.,College of Chemistry and Environment Engineering, Shanxi Datong University, Datong, China
| | - Jun Qiao
- College of Chemistry and Environment Engineering, Shanxi Datong University, Datong, China
| | - Weijia Li
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, China
| | - Jingwei Li
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, China
| | - Ran Xu
- College of Chemistry and Environment Engineering, Shanxi Datong University, Datong, China
| | - Haiyan Wang
- College of Chemistry and Environment Engineering, Shanxi Datong University, Datong, China
| | - Zehui Liu
- College of Chemistry and Environment Engineering, Shanxi Datong University, Datong, China
| | - Baoyan Xing
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
20
|
Comprehensive profiling of codon usage signatures and codon context variations in the genus Ustilago. World J Microbiol Biotechnol 2019; 35:118. [DOI: 10.1007/s11274-019-2693-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/07/2019] [Indexed: 02/02/2023]
|
21
|
de Sousa F, Foster PG, Donoghue PCJ, Schneider H, Cox CJ. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.). THE NEW PHYTOLOGIST 2019; 222:565-575. [PMID: 30411803 DOI: 10.1111/nph.15587] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/31/2018] [Indexed: 05/05/2023]
Abstract
Unraveling the phylogenetic relationships between the four major lineages of terrestrial plants (mosses, liverworts, hornworts, and vascular plants) is essential for an understanding of the evolution of traits specific to land plants, such as their complex life cycles, and the evolutionary development of stomata and vascular tissue. Well supported phylogenetic hypotheses resulting from different data and methods are often incongruent due to processes of nucleotide evolution that are difficult to model, for example substitutional saturation and composition heterogeneity. We reanalysed a large published dataset of nuclear data and modelled these processes using degenerate-codon recoding and tree-heterogeneous composition substitution models. Our analyses resolved bryophytes as a monophyletic group and showed that the nonnonmonophyly of the clade that is supported by the analysis of nuclear nucleotide data is due solely to fast-evolving synonymous substitutions. The current congruence among phylogenies of both nuclear and chloroplast analyses lent considerable support to the conclusion that the bryophytes are a monophyletic group. An initial split between bryophytes and vascular plants implies that the bryophyte life cycle (with a dominant gametophyte nurturing an unbranched sporophyte) may not be ancestral to all land plants and that stomata are likely to be a symplesiomorphy among embryophytes.
Collapse
Affiliation(s)
- Filipe de Sousa
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-319, Portugal
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | | | - Harald Schneider
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
- School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-319, Portugal
| |
Collapse
|
22
|
Karumathil S, Raveendran NT, Ganesh D, Kumar Ns S, Nair RR, Dirisala VR. Evolution of Synonymous Codon Usage Bias in West African and Central African Strains of Monkeypox Virus. Evol Bioinform Online 2018; 14:1176934318761368. [PMID: 29551886 PMCID: PMC5846927 DOI: 10.1177/1176934318761368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
The evolution of bias in synonymous codon usage in chosen monkeypox viral genomes and the factors influencing its diversification have not been reported so far. In this study, various trends associated with synonymous codon usage in chosen monkeypox viral genomes were investigated, and the results are reported. Identification of factors that influence codon usage in chosen monkeypox viral genomes was done using various codon usage indices, such as the relative synonymous codon usage, the effective number of codons, and the codon adaptation index. The Spearman rank correlation analysis and a correspondence analysis were used for correlating various factors with codon usage. The results revealed that mutational pressure due to compositional constraints, gene expression level, and selection at the codon level for utilization of putative optimal codons are major factors influencing synonymous codon usage bias in monkeypox viral genomes. A cluster analysis of relative synonymous codon usage values revealed a grouping of more virulent strains as one major cluster (Central African strains) and a grouping of less virulent strains (West African strains) as another major cluster, indicating a relationship between virulence and synonymous codon usage bias. This study concluded that a balance between the mutational pressure acting at the base composition level and the selection pressure acting at the amino acid level frames synonymous codon usage bias in the chosen monkeypox viruses. The natural selection from the host does not seem to have influenced the synonymous codon usage bias in the analyzed monkeypox viral genomes.
Collapse
Affiliation(s)
- Sudeesh Karumathil
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore, India
| | - Nimal T Raveendran
- Amrita Centre for Nanosciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Doss Ganesh
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | - Rahul R Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore, India
| | | |
Collapse
|
23
|
Mazumdar P, Binti Othman R, Mebus K, Ramakrishnan N, Ann Harikrishna J. Codon usage and codon pair patterns in non-grass monocot genomes. ANNALS OF BOTANY 2017; 120:893-909. [PMID: 29155926 PMCID: PMC5710610 DOI: 10.1093/aob/mcx112] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Studies on codon usage in monocots have focused on grasses, and observed patterns of this taxon were generalized to all monocot species. Here, non-grass monocot species were analysed to investigate the differences between grass and non-grass monocots. METHODS First, studies of codon usage in monocots were reviewed. The current information was then extended regarding codon usage, as well as codon-pair context bias, using four completely sequenced non-grass monocot genomes (Musa acuminata, Musa balbisiana, Phoenix dactylifera and Spirodela polyrhiza) for which comparable transcriptome datasets are available. Measurements were taken regarding relative synonymous codon usage, effective number of codons, derived optimal codon and GC content and then the relationships investigated to infer the underlying evolutionary forces. KEY RESULTS The research identified optimal codons, rare codons and preferred codon-pair context in the non-grass monocot species studied. In contrast to the bimodal distribution of GC3 (GC content in third codon position) in grasses, non-grass monocots showed a unimodal distribution. Disproportionate use of G and C (and of A and T) in two- and four-codon amino acids detected in the analysis rules out the mutational bias hypothesis as an explanation of genomic variation in GC content. There was found to be a positive relationship between CAI (codon adaptation index; predicts the level of expression of a gene) and GC3. In addition, a strong correlation was observed between coding and genomic GC content and negative correlation of GC3 with gene length, indicating a strong impact of GC-biased gene conversion (gBGC) in shaping codon usage and nucleotide composition in non-grass monocots. CONCLUSION Optimal codons in these non-grass monocots show a preference for G/C in the third codon position. These results support the concept that codon usage and nucleotide composition in non-grass monocots are mainly driven by gBGC.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - RofinaYasmin Binti Othman
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Katharina Mebus
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - N Ramakrishnan
- Electrical and Computer System Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- For correspondence. E-mail:
| |
Collapse
|
24
|
Wen Y, Zou Z, Li H, Xiang Z, He N. Analysis of codon usage patterns in Morus notabilis based on genome and transcriptome data. Genome 2017; 60:473-484. [PMID: 28177830 DOI: 10.1139/gen-2016-0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Codons play important roles in regulating gene expression levels and mRNA half-lives. However, codon usage and related studies in multicellular organisms still lag far behind those in unicellular organisms. In this study, we describe for the first time genome-wide patterns of codon bias in Morus notabilis (mulberry tree), and analyze genome-wide codon usage in 12 other species within the order Rosales. The codon usage of M. notabilis was affected by nucleotide composition, mutation pressure, nature selection, and gene expression level. Translational selection optimal codons were identified and highly expressed genes of M. notabilis tended to use the optimal codons. Genes with higher expression levels have shorter coding region and lower amino acid complexity. Housekeeping genes showed stronger translational selection, which, notably, was not caused by the large differences between the expression level of housekeeping genes and other genes.
Collapse
Affiliation(s)
- Yan Wen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Ziliang Zou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Hongshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
25
|
Jiang W, Lv B, Wu X, Wang J, Wu G, Shi C, Tang X. Analysis of synonymous codon usage patterns in the edible fungusVolvariella volvacea. Biotechnol Appl Biochem 2016; 64:218-224. [DOI: 10.1002/bab.1538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Jiang
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| | - Beibei Lv
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| | - Xiao Wu
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| | - Jinbin Wang
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| | - Guogan Wu
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| | - Chunhui Shi
- Forestry and Fruit Tree Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| | - Xueming Tang
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Shanghai People's Republic of China
| |
Collapse
|
26
|
Karumathil S, Dirisala VR, Srinadh U, Nikhil V, Kumar NSS, Nair RR. Evolution of Synonymous Codon Usage in the Mitogenomes of Certain Species of Bilaterian Lineage with Special Reference to Chaetognatha. Bioinform Biol Insights 2016; 10:167-84. [PMID: 27688709 PMCID: PMC5034883 DOI: 10.4137/bbi.s38192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/17/2016] [Accepted: 08/28/2016] [Indexed: 11/20/2022] Open
Abstract
Chaetognatha is a minor phylum, comprising transparent marine invertebrates varying in size from 0.5 to 12 cm. The exact phylogenetic position of Chaetognatha in Metazoa has not been deciphered as some embryological characteristics place chaetognaths among deuterostomes and some morphological characteristics place these among protostomes. In this study, the major factors that drive synonymous codon usage bias (SCUB) in the mitogenomes of representative species of Chaetognatha and chosen species of other closely related phyla were analyzed. Spearman’s rank correlation analyses of nucleotide contents suggested that mutational pressure and selection were acting in all examined mitogenomes but with varying intensities. The quantification of SCUB using effective number of codons vs. GC composition at the third codon position (GC3) plot suggested that mutational pressure due to GC compositional constraints might be one of the major influencing forces driving the SCUB in all chaetognaths except Sagitta enflata. However, neutrality plots revealed no significant correlation between GC3 and cumulative GC content at first and second codon positions (GC12) in all other species, except in Daphnia pulex. The parity rule 2 bias plot showed that significant compositional differences existed between C and G, as well as between A and T, contents in most of the protein-coding genes (PCGs) and, comparatively, A and T contents were used more proportionally than C and G contents in all chosen mitogenomes. Chi-square analysis revealed the presence of putative optimal codons in all species, except in S. enflata. The correspondence analysis identified that mutational pressure and selection act on the mitogenomes of the selected chaetognaths and other phyla with varying intensities. The cluster analysis based on relative synonymous codon usage (RSCU) values revealed that RSCU variations in the PCGs of mitogenomes of chaetognaths are more comparable with those of protostomes. Apart from mutational pressure and selection, certain unknown selective forces might be acting on the PCGs in the analyzed mitogenomes as the phenomenon of SCUB could not be explained by mutational pressure, by selection, or by both.
Collapse
Affiliation(s)
- Sudeesh Karumathil
- Aushmath Biosciences, Administrative office, Devaraj Corner, Vadavalli Post, Coimbatore, Tamil Nadu, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's University (Vignan's Foundation for Science, Technology and Research University), Guntur, Andhra Pradesh, India
| | - Uthpala Srinadh
- Department of Biotechnology, Vignan's University (Vignan's Foundation for Science, Technology and Research University), Guntur, Andhra Pradesh, India
| | - Valaboju Nikhil
- Department of Biotechnology, Vignan's University (Vignan's Foundation for Science, Technology and Research University), Guntur, Andhra Pradesh, India
| | - N Satya Sampath Kumar
- Department of Biotechnology, Vignan's University (Vignan's Foundation for Science, Technology and Research University), Guntur, Andhra Pradesh, India
| | - Rahul R Nair
- Aushmath Biosciences, Administrative office, Devaraj Corner, Vadavalli Post, Coimbatore, Tamil Nadu, India
| |
Collapse
|
27
|
Hu S, Sablok G, Wang B, Qu D, Barbaro E, Viola R, Li M, Varotto C. Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics 2015; 16:306. [PMID: 25887666 PMCID: PMC4446112 DOI: 10.1186/s12864-015-1498-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Plastid genomes, also known as plastomes, are shaped by the selective forces acting on the fundamental cellular functions they code for and thus they are expected to preserve signatures of the adaptive path undertaken by different plant species during evolution. To identify molecular signatures of positive selection associated to adaptation to contrasting ecological niches, we sequenced with Solexa technology the plastomes of two congeneric Brassicaceae species with different habitat preference, Cardamine resedifolia and Cardamine impatiens. Results Following in-depth characterization of plastome organization, repeat patterns and gene space, the comparison of the newly sequenced plastomes between each other and with 15 fully sequenced Brassicaceae plastomes publically available in GenBank uncovered dynamic variation of the IR boundaries in the Cardamine lineage. We further detected signatures of positive selection in ten of the 75 protein-coding genes of the examined plastomes, identifying a range of chloroplast functions putatively involved in adaptive processes within the family. For instance, the three residues found to be under positive selection in RUBISCO could possibly be involved in the modulation of RUBISCO aggregation/activation and enzymatic specificty in Brassicaceae. In addition, our results points to differential evolutionary rates in Cardamine plastomes. Conclusions Overall our results support the existence of wider signatures of positive selection in the plastome of C. resedifolia, possibly as a consequence of adaptation to high altitude environments. We further provide a first characterization of the selective patterns shaping the Brassicaceae plastomes, which could help elucidate the driving forces underlying adaptation and evolution in this important plant family. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1498-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiliang Hu
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Gaurav Sablok
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Bo Wang
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Dong Qu
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy. .,College of Horticulture, Northwest Agricultural and Forest University, 712100, Yangling, Shaanxi, PR China.
| | - Enrico Barbaro
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Roberto Viola
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Mingai Li
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Claudio Varotto
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| |
Collapse
|
28
|
Roy A, Mukhopadhyay S, Sarkar I, Sen A. Comparative investigation of the various determinants that influence the codon and amino acid usage patterns in the genus Bifidobacterium. World J Microbiol Biotechnol 2015; 31:959-81. [DOI: 10.1007/s11274-015-1850-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022]
|
29
|
Liu Y, Cox CJ, Wang W, Goffinet B. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Syst Biol 2014; 63:862-78. [PMID: 25070972 DOI: 10.1093/sysbio/syu049] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic analyses using concatenation of genomic-scale data have been seen as the panacea for resolving the incongruences among inferences from few or single genes. However, phylogenomics may also suffer from systematic errors, due to the, perhaps cumulative, effects of saturation, among-taxa compositional (GC content) heterogeneity, or codon-usage bias plaguing the individual nucleotide loci that are concatenated. Here, we provide an example of how these factors affect the inferences of the phylogeny of early land plants based on mitochondrial genomic data. Mitochondrial sequences evolve slowly in plants and hence are thought to be suitable for resolving deep relationships. We newly assembled mitochondrial genomes from 20 bryophytes, complemented these with 40 other streptophytes (land plants plus algal outgroups), compiling a data matrix of 60 taxa and 41 mitochondrial genes. Homogeneous analyses of the concatenated nucleotide data resolve mosses as sister-group to the remaining land plants. However, the corresponding translated amino acid data support the liverwort lineage in this position. Both results receive weak to moderate support in maximum-likelihood analyses, but strong support in Bayesian inferences. Tests of alternative hypotheses using either nucleotide or amino acid data provide implicit support for their respective optimal topologies, and clearly reject the hypotheses that bryophytes are monophyletic, liverworts and mosses share a unique common ancestor, or hornworts are sister to the remaining land plants. We determined that land plant lineages differ in their nucleotide composition, and in their usage of synonymous codon variants. Composition heterogeneous Bayesian analyses employing a nonstationary model that accounts for variation in among-lineage composition, and inferences from degenerated nucleotide data that avoid the effects of synonymous substitutions that underlie codon-usage bias, again recovered liverworts being sister to the remaining land plants but without support. These analyses indicate that the inference of an early-branching moss lineage based on the nucleotide data is caused by convergent compositional biases. Accommodating among-site amino acid compositional heterogeneity (CAT-model) yields no support for the optimal resolution of liverwort as sister to the rest of land plants, suggesting that the robust inference of the liverwort position in homogeneous analyses may be due in part to compositional biases among sites. All analyses support a paraphyletic bryophytes with hornworts composing the sister-group to tracheophytes. We conclude that while genomic data may generate highly supported phylogenetic trees, these inferences may be artifacts. We suggest that phylogenomic analyses should assess the possible impact of potential biases through comparisons of protein-coding gene data and their amino acid translations by evaluating the impact of substitutional saturation, synonymous substitutions, and compositional biases through data deletion strategies and by analyzing the data using heterogeneous composition models. We caution against relying on any one presentation of the data (nucleotide or amino acid) or any one type of analysis even when analyzing large-scale data sets, no matter how well-supported, without fully exploring the effects of substitution models.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal; and State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cymon J Cox
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal; and State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Wang
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal; and State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal; and State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
30
|
Nair RR, Nandhini MB, Sethuraman T, Doss G. Mutational pressure dictates synonymous codon usage in freshwater unicellular α - cyanobacterial descendant Paulinella chromatophora and β - cyanobacterium Synechococcus elongatus PCC6301. SPRINGERPLUS 2013; 2:492. [PMID: 24255825 PMCID: PMC3825069 DOI: 10.1186/2193-1801-2-492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Abstract
Background Comparative study of synonymous codon usage variations and factors influencing its diversification in α - cyanobacterial descendant Paulinella chromatophora and β - cyanobacterium Synechococcus elongatus PCC6301 has not been reported so far. In the present study, we investigated various factors associated with synonymous codon usage in the genomes of P. chromatophora and S. elongatus PCC6301 and findings were discussed. Results Mutational pressure was identified as the major force behind codon usage variation in both genomes. However, correspondence analysis revealed that intensity of mutational pressure was higher in S. elongatus than in P. chromatophora. Living habitats were also found to determine synonymous codon usage variations across the genomes of P. chromatophora and S. elongatus. Conclusions Whole genome sequencing of α-cyanobacteria in the cyanobium clade would certainly facilitate the understanding of synonymous codon usage patterns and factors contributing its diversification in presumed ancestors of photosynthetic endosymbionts of P. chromatophora.
Collapse
Affiliation(s)
- Rahul Raveendran Nair
- Department of Biotechnology, Vignan University, Vadlamudi, 522 213 Guntur, Andhra Pradesh India
| | | | | | | |
Collapse
|
31
|
Chen L, Yang D, Liu T, Nong X, Huang X, Xie Y, Fu Y, Zheng W, Zhang R, Wu X, Gu X, Wang S, Peng X, Yang G. Synonymous codon usage patterns in different parasitic platyhelminth mitochondrial genomes. GENETICS AND MOLECULAR RESEARCH 2013; 12:587-96. [DOI: 10.4238/2013.february.27.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Nayak KC. Comparative genome sequence analysis of Sulfolobus acidocaldarius and 9 other isolates of its genus for factors influencing codon and amino acid usage. Gene 2013; 513:163-73. [DOI: 10.1016/j.gene.2012.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/08/2012] [Accepted: 10/21/2012] [Indexed: 11/17/2022]
|
33
|
Shi SL, Jiang YR, Liu YQ, Xia RX, Qin L. Selective pressure dominates the synonymous codon usage in parvoviridae. Virus Genes 2012; 46:10-9. [PMID: 22996735 DOI: 10.1007/s11262-012-0818-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022]
Abstract
Parvoviridae is a family of small non-enveloped viruses and divided into two subfamilies. The family members infect a wide range of organisms from insects to humans and some of the members (e.g., nonpathogenic adeno-associated viruses) are effective gene therapy delivery vectors. We detailed the synonymous codon usage pattern of Parvoviridae family from the available 58 sequenced genomes through multivariate statistical methods. Our results revealed that nine viruses showed some degree of strong codon bias, and the others possessed a general weak trend of codon bias. ENc-plot and neutrality plot results showed that selective pressure dominated over mutation in shapes coding sequence's composition. The overall GC content and GC content at the third synonymous codon position were the principal determinants behind the variations within the codon usage patterns, as they both significantly correlated with the first axis of correspondence analysis. In addition, gene length had no direct influence on the codon usage pattern. Densovirinae subfamily and Parvovirinae subfamily possessed nine identical preferred codons, though most of the two subfamilies codon usage frequencies were significantly different. The result of cluster analysis based on synonymous codon usage was discordant with that of taxonomic classification. Adeno-associated viruses formed a separated clade far from other Parvoviridae members in the dendrogram. Thus, we concluded that natural selection rather than mutation pressure accounts for the main factor that affects the codon bias in Parvoviridae family.
Collapse
Affiliation(s)
- Sheng-Lin Shi
- Postdoctoral Station of Plant Protection, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, P.R.China.
| | | | | | | | | |
Collapse
|
34
|
Meganathan P, Pagan HJ, McCulloch ES, Stevens RD, Ray DA. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera. Gene 2012; 492:121-9. [DOI: 10.1016/j.gene.2011.10.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 11/26/2022]
|
35
|
Analysis of codon usage in type 1 and the new genotypes of duck hepatitis virus. Biosystems 2011; 106:45-50. [PMID: 21708221 PMCID: PMC7117032 DOI: 10.1016/j.biosystems.2011.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/08/2011] [Accepted: 06/12/2011] [Indexed: 11/23/2022]
Abstract
In this study, an abundant (A + U)% and low codon bias were revealed in duck hepatitis virus type 1 (DHV-1) and the new serotype strains isolated from Taiwan, South Korea and Mainland China (DHV-N). The general correlation between base composition and codon usage bias suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in these samples. By comparative analysis of the codon usage patterns of 40 ORFs of DHV, we found that all of DHV-1 strains grouped in genotype C; the DHV-N strains isolated in South Korea and China clustered into genotypes B; and the DHV-N strains isolated from Taiwan clustered into genotypes A. The findings revealed that more than one subtype of DHV-1 circulated in East Asia. Furthermore, the results of phylogenetic analyses based on RSCU values and Clustal W method indicated obvious phylogenetic congruities. This suggested that better genome consistency of DHV may exist in nature and phylogenetic analyses based on RSCU values maybe a good method in classifying genotypes of the virus. Our work might give some clues to the features and some evolutionary information of DHV.
Collapse
|
36
|
Angov E. Codon usage: nature's roadmap to expression and folding of proteins. Biotechnol J 2011; 6:650-9. [PMID: 21567958 PMCID: PMC3166658 DOI: 10.1002/biot.201000332] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 02/06/2023]
Abstract
Biomedical and biotechnological research relies on processes leading to the successful expression and production of key biological products. High-quality proteins are required for many purposes, including protein structural and functional studies. Protein expression is the culmination of multistep processes involving regulation at the level of transcription, mRNA turnover, protein translation, and post-translational modifications leading to the formation of a stable product. Although significant strides have been achieved over the past decade, advances toward integrating genomic and proteomic information are essential, and until such time, many target genes and their products may not be fully realized. Thus, the focus of this review is to provide some experimental support and a brief overview of how codon usage bias has evolved relative to regulating gene expression levels.
Collapse
Affiliation(s)
- Evelina Angov
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
37
|
Nayak KC. Comparative study on factors influencing the codon and amino acid usage in Lactobacillus sakei 23K and 13 other lactobacilli. Mol Biol Rep 2011; 39:535-45. [DOI: 10.1007/s11033-011-0768-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 04/27/2011] [Indexed: 11/24/2022]
|
38
|
Malys N. Shine-Dalgarno sequence of bacteriophage T4: GAGG prevails in early genes. Mol Biol Rep 2011; 39:33-9. [PMID: 21533668 DOI: 10.1007/s11033-011-0707-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
Translation initiation is governed by a limited number of mRNA sequence motifs within the translation initiation region (TIR). In bacteria and bacteriophages, one of the most important determinants is a Shine-Dalgarno (SD) sequence that base pairs with the anti-SD sequence GAUCACCUCCUUA localized in the 3' end of 16S rRNA. This work assesses a diversity of TIR features in phage T4, focusing on the SD sequence, its spacing to the start codon and relationship to gene expression and essentiality patterns. Analysis shows that GAGG is predominant of all core SD motifs in T4 and its related phages, particularly in early genes. Possible implication of the RegB activity is discussed.
Collapse
Affiliation(s)
- Naglis Malys
- Faculty of Life Sciences, MCISB, MIB, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
39
|
Wang B, Yuan J, Liu J, Jin L, Chen JQ. Codon usage bias and determining forces in green plant mitochondrial genomes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:324-334. [PMID: 21332641 DOI: 10.1111/j.1744-7909.2011.01033.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The phenomenon of codon usage bias has been observed in a wide range of organisms. As organisms evolve, how their codon usage pattern change is still an intriguing question. In this article, we focused on the green plant mitochondrial genomes to analyze the codon usage patterns in different lineages, and more importantly, to investigate the possible change of determining forces during the plant evolution. Two patterns were observed between the separate lineages of green plants: Chlorophyta and Streptophyta. In Chlorophyta lineages, their codon usages showed substantial variation (from strongly A, T-biased to strongly G, C-biased); while in Streptophyta lineages, especially in the land plants, the overall codon usages are interestingly stable. Further, based on the Nc-GC3s plots and Akashi's scaled χ(2) -tests, we found that lineages within Chlorophyta exhibit much stronger evidence of deviating from neutrality; while lineages within Streptophyta rarely do so. Such differences, together with previous reports based on the chloroplast data, suggests that after plants colonized the land, their codon usages in organellar genomes are more reluctant to be shaped by selection force.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
40
|
Wang B, Liu J, Jin L, Feng XY, Chen JQ. Complex mutation and weak selection together determined the codon usage bias in bryophyte mitochondrial genomes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:1100-1108. [PMID: 21106008 DOI: 10.1111/j.1744-7909.2010.00998.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mutation and selection are two major forces causing codon usage biases. How these two forces influence the codon usages in green plant mitochondrial genomes has not been well investigated. In the present study, we surveyed five bryophyte mitochondrial genomes to reveal their codon usage patterns as well as the determining forces. Three interesting findings were made. First, comparing to Chara vulgaris, an algal species sister to all extant land plants, bryophytes have more G, C-ending codon usages in their mitochondrial genes. This is consistent with the generally higher genomic GC content in bryophyte mitochondria, suggesting an increased mutational pressure toward GC. Second, as indicated by Wright's Nc-GC3s plot, mutation, not selection, is the major force affecting codon usages of bryophyte mitochondrial genes. However, the real mutational dynamics seem very complex. Context-dependent analysis indicated that nucleotide at the 2nd codon position would slightly affect synonymous codon choices. Finally, in bryophyte mitochondria, tRNA genes would apply a weak selection force to fine-tune the synonymous codon frequencies, as revealed by data of Ser4-Pro-Thr-Val families. In summary, complex mutation and weak selection together determined the codon usages in bryophyte mitochondrial genomes.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
41
|
Cuenca A, Petersen G, Seberg O, Davis JI, Stevenson DW. Are substitution rates and RNA editing correlated? BMC Evol Biol 2010; 10:349. [PMID: 21070620 PMCID: PMC2989974 DOI: 10.1186/1471-2148-10-349] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 11/11/2010] [Indexed: 11/19/2022] Open
Abstract
Background RNA editing is a post-transcriptional process that, in seed plants, involves a cytosine to uracil change in messenger RNA, causing the translated protein to differ from that predicted by the DNA sequence. RNA editing occurs extensively in plant mitochondria, but large differences in editing frequencies are found in some groups. The underlying processes responsible for the distribution of edited sites are largely unknown, but gene function, substitution rate, and gene conversion have been proposed to influence editing frequencies. Results We studied five mitochondrial genes in the monocot order Alismatales, all showing marked differences in editing frequencies among taxa. A general tendency to lose edited sites was observed in all taxa, but this tendency was particularly strong in two clades, with most of the edited sites lost in parallel in two different areas of the phylogeny. This pattern is observed in at least four of the five genes analyzed. Except in the groups that show an unusually low editing frequency, the rate of C-to-T changes in edited sites was not significantly higher that in non-edited 3rd codon positions. This may indicate that selection is not actively removing edited sites in nine of the 12 families of the core Alismatales. In all genes but ccmB, a significant correlation was found between frequency of change in edited sites and synonymous substitution rate. In general, taxa with higher substitution rates tend to have fewer edited sites, as indicated by the phylogenetically independent correlation analyses. The elimination of edited sites in groups that lack or have reduced levels of editing could be a result of gene conversion involving a cDNA copy (retroprocessing). If so, this phenomenon could be relatively common in the Alismatales, and may have affected some groups recurrently. Indirect evidence of retroprocessing without a necessary correlation with substitution rate was found mostly in families Alismataceae and Hydrocharitaceae (e.g., groups that suffered a rapid elimination of all their edited sites, without a change in substitution rate). Conclusions The effects of substitution rate, selection, and/or gene conversion on the dynamics of edited sites in plant mitochondria remain poorly understood. Although we found an inverse correlation between substitution rate and editing frequency, this correlation is partially obscured by gene retroprocessing in lineages that have lost most of their edited sites. The presence of processed paralogs in plant mitochondria deserves further study, since most evidence of their occurrence is circumstantial.
Collapse
Affiliation(s)
- Argelia Cuenca
- The Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83 Opg, S, DK-1307 Copenhagen C, Denmark.
| | | | | | | | | |
Collapse
|
42
|
Sloan DB, Taylor DR. Testing for selection on synonymous sites in plant mitochondrial DNA: the role of codon bias and RNA editing. J Mol Evol 2010; 70:479-91. [PMID: 20424833 DOI: 10.1007/s00239-010-9346-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/13/2010] [Indexed: 11/26/2022]
Abstract
Since plant mitochondrial genomes exhibit some of the slowest known synonymous substitution rates, it is generally believed that they experience exceptionally low mutation rates. However, the use of synonymous substitution rates to infer mutation rates depends on the implicit assumption that synonymous sites are evolving neutrally (or nearly so). To assess the validity of this assumption in plant mitochondrial genomes, we examined coding sequence for footprints of selection acting at synonymous sites. We found that synonymous sites exhibit an AT rich and pyrimidine skewed nucleotide composition compared to both non-synonymous sites and non-coding regions. We also found some evidence for selection associated with both biased codon usage and conservation of regulatory sequences involved in mRNA processing, although some of these findings are subject to alternative non-adaptive interpretations. Regardless, the inferred strength of selection appears too weak to account for the variation in substitution rates between the mitochondrial genomes of plants and other multicellular eukaryotes. Therefore, these results are consistent with the interpretation that plant mitochondrial genomes experience a substantially lower mutation rate rather than increased functional constraints acting on synonymous sites. Nevertheless, there are important nucleotide composition patterns (particularly the differences between synonymous sites and non-coding DNA) that remain largely unexplained.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|