1
|
Bhujbal SK, Rai AN, Joshi-Saha A. Dwarfs standing tall: breeding towards the 'Yellow revolution' through insights into plant height regulation. PLANT MOLECULAR BIOLOGY 2025; 115:34. [PMID: 39971832 PMCID: PMC11839727 DOI: 10.1007/s11103-025-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
High oilseed production is an exigency due to the increasing edible oil consumption of the growing population. Rapeseed and mustard are cultivated worldwide and contribute significantly to the world's total oilseed production. Already a plateau is reached in terms of area and yield in most of the existing cultivars. Most of the commercially cultivated high yielding rapeseed and mustard varieties are tall, mainly due to a wider use of heterosis. However, they are susceptible to lodging and consequent yield losses. Plant yield is strongly dependent upon its architecture; therefore, 'ideotype breeding' is the key approach adopted to develop new varieties with enhanced yield potential, which is less explored in these crops. Dwarf/ semi dwarf plant type varieties has shown its improved yield potential over tall plant type in cereals which further leads to 'Green revolution' in Asian countries. Although, many induced dwarf mutants in rapeseed and mustard were isolated, unlike dwarf green-revolution varieties of cereals, most of them had undesirable plant types with defects including extreme dwarfism and sterility, leading to poor yield potential. Understanding the genetic and molecular mechanisms governing plant height and its correlation with yield and yield contributing characters is crucial. In this review, recent insights into genetic, molecular, and anatomical regulation of plant height have been discussed. The role of hormones, their crosstalk, and hormonal control for cell division and expansion have been delineated with respect to plant architecture. Many dwarfing genes are identified as being part of various phytohormone pathways. Parallelly, molecular links between plant height and flowering time have been explored. The overall synthesis of the review points out some key target pathways and genes that will be useful for plant breeders as well as biotechnologists for targeted genome editing for improving plant architecture without a yield penalty.
Collapse
Affiliation(s)
- Shankar K Bhujbal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Archana N Rai
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India.
| | - Archana Joshi-Saha
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India.
| |
Collapse
|
2
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Zheng WY, Zhu ZY, Sami A, Sun MY, Li Y, Hu J, Qian XZ, Ma JX, Wang MQ, Yu Y, Zhang FG, Zhou KJ, Zhu ZH. Mapping and candidate gene analysis of clustered bud on the main inflorescence in Brassica napus L. BMC PLANT BIOLOGY 2023; 23:348. [PMID: 37403046 PMCID: PMC10318724 DOI: 10.1186/s12870-023-04355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Breeding rapeseed varieties with more main inflorescence siliques is an idea for developing rapeseed varieties that are suitable for light and simplified cultivation. The Brassica napus exhibited cluster bud of the main inflorescence (Bnclib) gene. At the fruiting stage, the main inflorescence had more siliques, higher density, and more main inflorescences. Moreover, the top of the main inflorescence bifurcated. Genetic analysis showed that the separation ratio between Bnclib and the wild type in the F2 generation was 3:1, which indicated that the trait was a single-gene-dominant inheritance. Among the 24 candidate genes, only one gene, BnaA03g53930D, showed differential expression between the groups (False discovery rate, FDR ≤ 0.05, |log2FC|≤ 1). qPCR verification of the BnaA03g53930D gene between Huyou 17 and its Bnclib near-isogenic line showed that BnaA03g53930D was significantly differentially expressed in the stem tissue of Huyou 17 and its Bnclib near-isogenic line (Bnclib NIL). The determination of gibberellin (GA), brassinolide (BR), cytokinin (CTK), jasmonic acid (JA), growth hormone (IAA), and strigolactone (SL) content in the shoot apex of Huyou 17 by Bnclib NIL and wild type showed that all six hormones significantly differed between the Bnclib NIL and Huyou 17. It is necessary to conduct further research on the interactions between JA and the other five hormones and the main inflorescence bud clustering in B. napus.
Collapse
Affiliation(s)
- Wen Yin Zheng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhe Yi Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Abdul Sami
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meng Yuan Sun
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yong Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jian Hu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xing Zhi Qian
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jin Xu Ma
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mei Qi Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yan Yu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fu Gui Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Ke Jin Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zong He Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
4
|
Channaoui S, Mazouz H, Labhilili M, El Fechtali M, Nabloussi A. Inheritance of dwarfism and narrow lobed-leaf in two rapeseed ( Brassica napus L.) mutant lines. Heliyon 2022; 8:e12649. [PMID: 36619419 PMCID: PMC9813704 DOI: 10.1016/j.heliyon.2022.e12649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
There is a need for dwarf and narrow lobed-leaves rapeseed cultivars to reduce transpiration under drought prone areas. A dwarf mutant line 'H2M-1' and a mutant with reduced lobed-leaf 'H2M-2' were developed. To exploit these mutated traits properly in an effective breeding program, one should understand their mode of inheritance. There are conflicting findings for plant dwarfism and limited studies for leaf size in mutant genetic backgrounds. Therefore, the objective of this study was to investigate the inheritance of dwarfism and narrow lobed-leaf mutated traits. Plants of the wild-type variety 'INRA-CZH2' were reciprocally crossed with plants of the line 'H2M-1' and plants of the line 'H2M-2'. A genetic study was conducted by analyzing segregation of mutated traits in F1, F2 and BC1F1 generations. The results revealed that two recessive genes with dominant epistasis action controlled the heredity of plant height in the dwarf line, whereas only a single recessive gene is involved in determining reduced lobed-leaf in the line H2M-2. Thus, there is a possibility to easily and quickly transfer these characters into rapeseed breeding germplasm or varieties towards the development of suitable cultivars for areas marked by increasing drought stress.
Collapse
Affiliation(s)
- Souhail Channaoui
- Plant Breeding and Plant Genetic Resources Conservation Research Unit, Regional Agricultural Research Center of Meknes, National Institute of Agricultural Research, PO. Box 415, Rabat 10090, Morocco,Laboratory of Plant Biotechnology and Molecular Biology, Department of Biology, Faculty of Science, University Moulay Ismail, PO. Box 11201 Zitoune Meknes 50100, Morocco
| | - Hamid Mazouz
- Laboratory of Plant Biotechnology and Molecular Biology, Department of Biology, Faculty of Science, University Moulay Ismail, PO. Box 11201 Zitoune Meknes 50100, Morocco
| | - Mustapha Labhilili
- Plant Biotechnology Research Unit, Regional Agricultural Research Center of Meknes, National Institute of Agricultural Research, PO. Box 415, Rabat 10090, Morocco
| | - Mohamed El Fechtali
- Plant Breeding and Plant Genetic Resources Conservation Research Unit, Regional Agricultural Research Center of Meknes, National Institute of Agricultural Research, PO. Box 415, Rabat 10090, Morocco
| | - Abdelghani Nabloussi
- Plant Breeding and Plant Genetic Resources Conservation Research Unit, Regional Agricultural Research Center of Meknes, National Institute of Agricultural Research, PO. Box 415, Rabat 10090, Morocco,Corresponding author.
| |
Collapse
|
5
|
Ping X, Ye Q, Yan M, Zeng J, Yan X, Li H, Li J, Liu L. Integrated genetic mapping and transcriptome analysis reveal the BnaA03.IAA7 protein regulates plant architecture and gibberellin signaling in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3497-3510. [PMID: 35962210 DOI: 10.1007/s00122-022-04196-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
A novel mutation in the BnaA03.IAA7 protein reduces plant height and enhances gibberellin signaling in Brassica napus L. Rapeseed (Brassica napus) is an excellent and important source for vegetable oil production, but its production is severely affected by lodging. Lodging hinders mechanization and decreases yield, and an ideal solution is semidwarf breeding. Limited by germplasm resources, semidwarf breeding developed slowly in rapeseed. In the current study, a mutant called sdA03 was isolated from EMS-mutagenized lines of Zhongshuang 11 (ZS11). The inheritance analysis showed that phenotypes of sdA03 were controlled by a single semidominant gene. Genetic mapping, RNA-seq and candidate gene analysis identified BnaA03.IAA7 as a candidate gene, and a function test confirmed that the mutated BnaA03.iaa7 regulates plant architecture in a dose-dependent manner. Yeast two-hybrid and transient expression experiments illustrated the P87L substitution in the GWPPV/I degron motif of BnaA03.iaa7 impaired the interaction between BnaA03.IAA7 and TIR1 proteins, and BnaA03.iaa7 prevented ARF from activating the auxin signaling pathway.The gibberellin (GA) content was higher in sdA03 hypocotyls than in those of ZS11. Further expression analysis showed more active gibberellin signaling in hypocotyl and richer expression of GA synthetic genes in root and cotyledon of sdA03 seedlings. Finally, a marker was developed based on the SNP found in BnaA03.iaa7 and used in molecular breeding. The study enriched our understanding of the architectural regulation of rapeseed and provided germplasm resources for breeding.
Collapse
Affiliation(s)
- Xiaoke Ping
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Qianjun Ye
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Mei Yan
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Jianyan Zeng
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Haitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430070, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Dong D, Zhao Y, Teng K, Tan P, Liu Z, Yang Z, Han L, Chao Y. Expression of ZjPSY, a Phytoene Synthase Gene from Zoysia japonica Affects Plant Height and Photosynthetic Pigment Contents. PLANTS (BASEL, SWITZERLAND) 2022; 11:395. [PMID: 35161377 PMCID: PMC8840084 DOI: 10.3390/plants11030395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Phytoene synthase (PSY) is a key limiting enzyme in the carotenoid biosynthesis pathway for regulating phytoene synthesis. In this study, ZjPSY was isolated and identified from Zoysia japonica, an important lawn grass species. ZjPSY cDNA was 1230 bp in length, corresponding to 409 amino acids. ZjPSY showed higher expression in young leaves and was downregulated after GA3, ABA, SA, and MeJA treatments, exhibiting a sensitivity to plant hormones. Regulatory elements of light and plant hormone were found in the upstream of ZjPSY CDS. Expression of ZjPSY in Arabidopsis thaliana protein led to carotenoid accumulation and altered expression of genes involved in the carotenoid pathway. Under no-treatment condition, salt treatment, and drought treatment, transgenic plants exhibited yellowing, dwarfing phenotypes. The carotenoid content of transgenic plants was significantly higher than that of wild-type under salt stress and no-treatment condition. Yeast two-hybrid screening identified a novel interacting partner ZjJ2 (DNAJ homologue 2), which encodes heat-shock protein 40 (HSP40). Taken together, this study suggested that ZjPSY may affect plant height and play an important role in carotenoid synthesis. These results broadened the understanding of carotenoid synthesis pathways and laid a foundation for the exploration and utilization of the PSY gene.
Collapse
Affiliation(s)
- Di Dong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
| | - Yuhong Zhao
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China;
| | - Ke Teng
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100083, China
| | - Penghui Tan
- Beijing Chaoyang Foreign Language School, Beijing 100101, China;
| | - Zhuocheng Liu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
| | - Zhuoxiong Yang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
| | - Liebao Han
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (K.T.); (Z.L.); (Z.Y.)
| |
Collapse
|
7
|
Yang M, He J, Wan S, Li W, Chen W, Wang Y, Jiang X, Cheng P, Chu P, Shen W, Guan R. Fine mapping of the BnaC04.BIL1 gene controlling plant height in Brassica napus L. BMC PLANT BIOLOGY 2021; 21:359. [PMID: 34353289 PMCID: PMC8340546 DOI: 10.1186/s12870-021-03137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant height is an important architecture trait which is a fundamental yield-determining trait in crops. Variety with dwarf or semi-dwarf phenotype is a major objective in the breeding because dwarfing architecture can help to increase harvest index, increase planting density, enhance lodging resistance, and thus be suitable for mechanization harvest. Although some germplasm or genes associated with dwarfing plant type have been carried out. The molecular mechanisms underlying dwarfism in oilseed rape (Brassica napus L.) are poorly understood, restricting the progress of breeding dwarf varieties in this species. Here, we report a new dwarf mutant Bndwarf2 from our B. napus germplasm. We studied its inheritance and mapped the dwarf locus BnDWARF2. RESULTS The inheritance analysis showed that the dwarfism phenotype was controlled by one semi-dominant gene, which was mapped in an interval of 787.88 kb on the C04 chromosome of B. napus by Illumina Brassica 60 K Bead Chip Array. To fine-map BnDWARF2, 318 simple sequence repeat (SSR) primers were designed to uniformly cover the mapping interval. Among them, 15 polymorphic primers that narrowed down the BnDWARF2 locus to 34.62 kb were detected using a F2:3 family population with 889 individuals. Protein sequence analysis showed that only BnaC04.BIL1 (BnaC04g41660D) had two amino acid residues substitutions (Thr187Ser and Gln399His) between ZS11 and Bndwarf2, which encoding a GLYCOGEN SYNTHASE KINASE 3 (GSK3-like). The quantitative real-time PCR (qRT-PCR) analysis showed that the BnaC04.BIL1 gene expressed in all tissues of oilseed rape. Subcellular localization experiment showed that BnaC04.BIL1 was localized in the nucleus in tobacco leaf cells. Genetic transformation experiments confirmed that the BnaC04.BIL1 is responsible for the plant dwarf phenotype in the Bndwarf2 mutants. Overexpression of BnaC04.BIL1 reduced plant height, but also resulted in compact plant architecture. CONCLUSIONS A dominant dwarfing gene, BnaC04.BIL1, encodes an GSK3-like that negatively regulates plant height, was mapped and isolated. Our identification of a distinct gene locus may help to improve lodging resistance in oilseed rape.
Collapse
Affiliation(s)
- Mao Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenjing Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yangming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaomei Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Pu Chu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
8
|
Shuvo II. A holistic decision-making approach for identifying influential parameters affecting sustainable production process of canola bast fibres and predicting end-use textile choice using principal component analysis (PCA). Heliyon 2021; 7:e06235. [PMID: 33665420 PMCID: PMC7902552 DOI: 10.1016/j.heliyon.2021.e06235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/23/2020] [Accepted: 02/05/2021] [Indexed: 11/15/2022] Open
Abstract
Recent research has discovered and validated that canola fibre polymer has a lower density than major industrial fibres like cotton, jute, hemp, or flax. A few studies have identified key backgrounds that relate to canola fibre polymer production parameters; however, none have modelled an analytical hierarchy process to identify the influential parameters while producing the canola fibre polymers. The current study used Plackett-Burman design analysis to optimize the fibre polymer yield (%) during retting Statistical tools including Fisher's LSD, ANOVA, Pearson's correlation coefficient, and principal component analysis (PCA) were applied for a comparative analysis among four different canola cultivars (HYHEAR 1, Topas, 5440, 45H29). Physical testing and non-parametric statistical analysis tools like Chi-square (X2) test were used to investigate the effect of cultivar on the physique of the stems--the source of biomass. This holistic approach was taken to correlate key factors for the sustainable manufacturing of canola fibre polymers. Such knowledge will lay an effective foundation for future material-science research works, consumer wearable manufacturing industries, and engineering design for composite or nonwoven fabrication using this lightweight natural fibre polymer.
Collapse
|
9
|
Zhang X, Hou X, Liu Y, Zheng L, Yi Q, Zhang H, Huang X, Zhang J, Hu Y, Yu G, Liu H, Li Y, Huang H, Zhan F, Chen L, Tang J, Huang Y. Maize brachytic2 (br2) suppresses the elongation of lower internodes for excessive auxin accumulation in the intercalary meristem region. BMC PLANT BIOLOGY 2019; 19:589. [PMID: 31881837 PMCID: PMC6935237 DOI: 10.1186/s12870-019-2200-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/12/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Short internodes contribute to plant dwarfism, which is exceedingly beneficial for crop production. However, the underlying mechanisms of internode elongation are complicated and have been not fully understood. RESULTS Here, we report a maize dwarf mutant, dwarf2014 (d2014), which displays shortened lower internodes. Map-based cloning revealed that the d2014 gene is a novel br2 allele with a splicing variation, resulting in a higher expression of BR2-T02 instead of normal BR2-T01. Then, we found that the internode elongation in d2014/br2 exhibited a pattern of inhibition-normality-inhibition (transient for the ear-internode), correspondingly, at the 6-leaf, 12-leaf and 14-leaf stages. Indeed, BR2 encodes a P-glycoprotein1 (PGP1) protein that functions in auxin efflux, and our in situ hybridization assay showed that BR2 was mainly expressed in vascular bundles of the node and internode. Furthermore, significantly higher auxin concentration was detected in the stem apex of d2014 at the 6-leaf stage and strictly in the node region for the ear-internode at the 14-leaf stage. In such context, we propose that BR2/PGP1 transports auxin from node to internode through the vascular bundles, and excessive auxin accumulation in the node (immediately next to the intercalary meristem) region suppresses internode elongation of d2014. CONCLUSIONS These findings suggest that low auxin levels mediated by BR2/PGP1 in the intercalary meristem region are crucial for internode elongation.
Collapse
Affiliation(s)
- Xiangge Zhang
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xianbin Hou
- College of Agriculture and Food Engineering, Baise University, Baise, 533000, Guangxi, China
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lanjie Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiang Yi
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haojun Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinrong Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Yufeng Hu
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guowu Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Yangping Li
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huanhuan Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Feilong Zhan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450000, Henan, China.
| | - Yubi Huang
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
10
|
Cheng H, Jin F, Zaman QU, Ding B, Hao M, Wang Y, Huang Y, Wells R, Dong Y, Hu Q. Identification of Bna.IAA7.C05 as allelic gene for dwarf mutant generated from tissue culture in oilseed rape. BMC PLANT BIOLOGY 2019; 19:500. [PMID: 31729952 PMCID: PMC6857212 DOI: 10.1186/s12870-019-2094-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/21/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant height is one of the most important agronomic traits in many crops due to its influence on lodging resistance and yield performance. Although progress has been made in the use of dwarfing genes in crop improvement, identification of new dwarf germplasm is still of significant interest for breeding varieties with increased yield. RESULTS Here we describe a dominant, dwarf mutant G7 of Brassica napus with down-curved leaves derived from tissue culture. To explore the genetic variation responsible for the dwarf phenotype, the mutant was crossed to a conventional line to develop a segregating F2 population. Bulks were formed from plants with either dwarf or conventional plant height and subjected to high throughput sequencing analysis via mutation mapping (MutMap). The dwarf mutation was mapped to a 0.6 Mb interval of B. napus chromosome C05. Candidate gene analysis revealed that one SNP causing an amino acid change in the domain II of Bna.IAA7.C05 may contribute to the dwarf phenotype. This is consistent with the phenotype of a gain-of-function indole-3-acetic acid (iaa) mutant in Bna.IAA7.C05 reported recently. GO and KEGG analysis of RNA-seq data revealed the down-regulation of auxin related genes, including many other IAA and small up regulated response (SAUR) genes, in the dwarf mutant. CONCLUSION Our studies characterize a new allele of Bna.IAA7.C05 responsible for the dwarf mutant generated from tissue culture. This may provide a valuable genetic resource for breeding for lodging resistance and compact plant stature in B. napus.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Fenwei Jin
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Qamar U. Zaman
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Bingli Ding
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Yi Wang
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Yi Huang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Rachel Wells
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Yun Dong
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| |
Collapse
|
11
|
Zhao B, Wang B, Li Z, Guo T, Zhao J, Guan Z, Liu K. Identification and characterization of a new dwarf locus DS-4 encoding an Aux/IAA7 protein in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1435-1449. [PMID: 30688990 DOI: 10.1007/s00122-019-03290-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/12/2019] [Indexed: 05/20/2023]
Abstract
A dominant dwarfing gene, ds - 4 , encodes an Aux/IAA protein that negatively regulates plant stature through an auxin signaling pathway. Dwarfism is an important agronomic trait affecting yield in many crop species. The molecular mechanisms underlying dwarfism in oilseed rape (Brassica napus) are poorly understood, restricting the progress of breeding dwarf varieties in this species. Here, we identified and characterized a new dwarf locus, DS-4, in B. napus. Next-generation sequencing-assisted genetic mapping and candidate gene analysis found that DS-4 encodes a nucleus-targeted auxin/indole-3-acetic acid (Aux/IAA) protein. A substitution (P87L) was found in the highly conserved degron motif of the Aux/IAA7 protein in the ds-4 mutant. This mutation co-segregated with the phenotype of individuals in the BC1F2 population. The P87L substitution was confirmed as the cause of the extreme dwarf phenotype by ectopic expression of the mutant allele BnaC05.iaa7 (equivalent to ds-4) in Arabidopsis. The P87L substitution blocked the interaction of BnaC05.iaa7 with TRANSPORT INHIBITOR RESPONSE 1 in the presence of auxin. The BnaC05.IAA7 gene is highly expressed in the cotyledons, hypocotyls, stems and leaves, but weakly in the roots and seeds of B. napus. Our findings provide new insights into the molecular mechanisms underlying dominant (gain-of-function) dwarfism in B. napus. Our identification of a distinct gene locus controlling plant height may help to improve lodging resistance in oilseed rape.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaohong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Chen Q, Song J, Du WP, Xu LY, Jiang Y, Zhang J, Xiang XL, Yu GR. Identification and genetic mapping for rht-DM, a dominant dwarfing gene in mutant semi-dwarf maize using QTL-seq approach. Genes Genomics 2018; 40:1091-1099. [PMID: 29951965 DOI: 10.1007/s13258-018-0716-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Semi-dwarfism is an agronomically important trait in breeding for stable high yields and for resistance to damage by wind and rain (lodging resistance). Many QTLs and genes causing dwarf phenotype have been found in maize. However, because of the yield loss associated with these QTLs and genes, they have been difficult to use in breeding for dwarf stature in maize. Therefore, it is important to find the new dwarfing genes or materials without undesirable characters. The objectives of this study were: (1) to figure out the inheritance of semi-dwarfism in mutants; (2) mapping dwarfing gene or QTL. Maize inbred lines '18599' and 'DM173', which is the dwarf mutant derived from the maize inbred line '173' through 60Co-γ ray irradiation. F2 and BC1F1 population were used for genetic analysis. Whole genome resequencing-based technology (QTL-seq) were performed to map dwarfing gene and figured out the SNP markers in predicted region using dwarf bulk and tall bulk from F2 population. Based on the polymorphic SNP markers from QTL-seq, we were fine-mapping the dwarfing gene using F2 population. In F2 population, 398 were dwarf plants and 135 were tall plants. Results of χ2 tests indicated that the ratio of dwarf plants to tall plants was fitted to 3:1 ratio. Furthermore, the χ2 tests of BC1F1 population showed that the ratio was fitted to 1:1 ratio. Based on QTL-seq, the dwarfing gene was located at the region from 111.07 to 124.56 Mb of chromosome 9, and we named it rht-DM. Using traditional QTL mapping with SNP markers, the rht-DM was narrowed down to 400 kb region between SNP-21 and SNP-24. The two SNPs were located at 0.43 and 0.11 cM. Segregation analysis of F2 and BC1F1 indicated that the dwarfing gene was likely a dominant gene. This dwarfing gene was located in the region between 115.02 and 115.42 Mb on chromosome 9.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Jun Song
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Wen-Ping Du
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Li-Yuan Xu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Yun Jiang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Jie Zhang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Xiao-Li Xiang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Gui-Rong Yu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China.
| |
Collapse
|
13
|
Wei C, Zhu L, Wen J, Yi B, Ma C, Tu J, Shen J, Fu T. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:97-113. [PMID: 29576090 DOI: 10.1016/j.plantsci.2018.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 05/08/2023]
Abstract
Plant height is a key trait of plant architecture, and is responsible for both yield and lodging resistance in Brassica napus. A dwarf mutant line (bnaC.dwf) was obtained by chemical mutagenesis of an inbred line T6. However, the molecular mechanisms and changed biological processes of the dwarf mutant remain to be determined. In this study, a comparative transcriptome analysis between bnaC.dwf and T6 plants was performed to identify genome-wide differentially expressed genes (DEGs) and possible biological processes that may explain the phenotype variations in bnaC.dwf. As a result of this analysis, 60,134,746-60,301,384 clean reads were aligned to 60,074 genes in the B. napus genome, and accounted for 60.03% of the annotated genes. In total, 819 differentially expressed genes were used for GO (Gene Ontology) term and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses with a FDR (false discovery rate) criterion of <0.001, |log2Ratio| ≥ 1. We focused on plant hormone signal transduction pathways, plant-pathogen interaction pathway, protein phosphorylation and degradation pathways and sugar metabolism pathways. Taken together, the decrease in local auxin (IAA) levels, the variation in BnTCH4, BnKAN1, BnERF109, COI1-JAZ9-MYC2, auxin response genes (BnGH3.11, BnSAUR78, and AUX/IAA19), and ABA (abscisic acid) signaling genes (BnADP5, BnSnRK2.1, BnABF3.1) partially accounted for variations of cell proliferation in internodes, shoot and root apical meristem maintenance, abiotic and biotic stress resistance, and pre-harvest sprouting. As a comprehensive consequence of the cross-talk between plant hormones, sugar metabolism, plant-pathogen interactions and protein metabolism, bnaC.dwf presents distinct phenotypes from T6. These results will be helpful for shedding light on molecular mechanisms in the dwarf mutant, and give insight into further molecular breeding of semi-dwarf B. napus.
Collapse
Affiliation(s)
- Chao Wei
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Lixia Zhu
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jing Wen
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Bin Yi
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Chaozhi Ma
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jinxing Tu
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jinxiong Shen
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Tingdong Fu
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
14
|
Acheampong AK, Zheng C, Halaly T, Giacomelli L, Takebayashi Y, Jikumaru Y, Kamiya Y, Lichter A, Or E. Abnormal Endogenous Repression of GA Signaling in a Seedless Table Grape Cultivar with High Berry Growth Response to GA Application. FRONTIERS IN PLANT SCIENCE 2017; 8:850. [PMID: 28596775 PMCID: PMC5442209 DOI: 10.3389/fpls.2017.00850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/08/2017] [Indexed: 05/24/2023]
Abstract
Gibberellin (GA) application is routinely used in the table grape industry to increase berry size and cluster length. Although grapevine cultivars show a wide range of growth responsiveness to GA3 application, the reasons for these differences is unclear. To shed light on this issue, two commercial grapevine cultivars with contrasting berry response to GA were selected for comparative analysis, in which we tested if the differences in response: (1) is organ-specific or cultivar-related; (2) will be reflected in qualitative/quantitative differences in transcripts/proteins of central components of GA metabolism and signaling and levels of GA metabolites. Our results showed that in addition to the high response of its berries to GA, internodes and rachis of cv. Black finger (BF) presented a greater growth response compared to that of cv. Spring blush (SB). In agreement, the results exposed significant quantitative differences in GA signaling components in several organs of both cultivars. Exceptionally higher level of all three functional VvDELLA proteins was recorded in young BF organs, accompanied by elevated VvGID1 expression and lower VvSLY1b transcripts. Absence of seed traces, low endogenous GA quantities and lower expression of VvGA20ox4 and VvGA3ox3 were also recorded in berries of BF. Our results raise the hypothesis that, in young organs of BF, low expression of VvSLY1b may be responsible for the massive accumulation of VvDELLA proteins, which then leads to elevated VvGID1 levels. This integrated analysis suggests causal relationship between endogenous mechanisms leading to anomalous GA signaling repression in BF, manifested by high quantities of VvDELLA proteins, and greater growth response to GA application.
Collapse
Affiliation(s)
- Atiako K. Acheampong
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
- Department of Horticulture, Faculty of Agriculture Environment and Food Sciences, The Hebrew University of JerusalemRehovot, Israel
| | - Chuanlin Zheng
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| | - Tamar Halaly
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| | - Lisa Giacomelli
- Research and Innovation Centre-Fondazione Edmund MachSan Michele all’Adige, Italy
| | | | | | | | - Amnon Lichter
- Institute of Postharvest and Food Sciences, Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| | - Etti Or
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| |
Collapse
|
15
|
Zhao B, Li H, Li J, Wang B, Dai C, Wang J, Liu K. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:727-741. [PMID: 28093630 DOI: 10.1007/s00122-016-2846-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/22/2016] [Indexed: 05/20/2023]
Abstract
Identification and characterization of a semi-dwarfing gene ds-3 encoding a mutant DELLA protein regulating plant height through gibberellin signaling pathway. Lodging is one of the most important factors causing severe yield loss in oilseed rape. Utilization of semi-dwarf varieties has been proved the most effective way to increase lodging resistance and yield in many crops. To develop semi-dwarf germplasm in oilseed rape, we identified a semi-dwarf mutant ds-3 which showed a reduced response to phytohormones gibberellins (GAs). Genetic analysis indicated the dwarfism was controlled by a single semi-dominant gene, ds-3. The DS-3 gene was mapped to a genomic region on chromosome C07, which is syntenic to the region of a previously identified semi-dwarf gene ds-1 (BnaA06.RGA). In this region, DS-3 (BnaC07.RGA) gene was identified to encode a DELLA protein that functions as a repressor in GA signaling pathway. A substitution of proline to leucine was identified in ds-3 in the conserved VHYNP motif, which is essential for GA-dependent interaction between gibberellin receptor GID1 and DELLA proteins. Segregation analysis in the F2 population derived from the cross between ds-1 and ds-3 demonstrated that BnaA06.RGA displayed a stronger effect on plant height than BnaC07.RGA, indicating that different RGA genes may play different roles in stem elongation. In addition to BnaA06.RGA and BnaC07.RGA, two more RGA genes (BnaA09.RGA and BnaC09.RGA) were identified in the Brassica napus (B. napus) genome. Reverse-transcription polymerase chain reaction (RT-PCR) and yeast two-hybrid (Y2H) assays suggest that both BnaA09.RGA and BnaC09.RGA are transcribed in leaves and stems and can mediate GA signaling in vivo. These genes represent potential targets for screening ideal semi-dwarfing alleles for oilseed rape breeding.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haitao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juanjuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Wang Y, Chen W, Chu P, Wan S, Yang M, Wang M, Guan R. Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach. BMC PLANT BIOLOGY 2016; 16:178. [PMID: 27538713 PMCID: PMC4991092 DOI: 10.1186/s12870-016-0865-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/05/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Key genes related to plant type traits have played very important roles in the "green revolution" by increasing lodging resistance and elevating the harvest indices of crop cultivars. Although there have been numerous achievements in the development of dwarfism and plant type in Brassica napus breeding, exploring new materials conferring oilseed rape with efficient plant types that provide higher yields is still of significance in breeding, as well as in elucidating the mechanisms underlying plant development. Here, we report a new dwarf architecture with down-curved leaf mutant (Bndwf/dcl1) isolated from an ethyl methanesulphonate (EMS)-mutagenized B. napus line, together with its inheritance and gene mapping, and pleiotropic effects of the mapped locus on plant-type traits. RESULTS We constructed a high-density single-nucleotide polymorphism (SNP) map using a backcross population derived from the Bndwf/dcl1 mutant and the canola cultivar 'zhongshuang11' ('ZS11') and mapped the dwarf architecture with the down-curved leaf dominant locus, BnDWF/DCL1, in a 6.58-cM interval between SNP marker bins M46180 and M49962 on the linkage group (LG) C05 of B. napus. Further mapping with other materials derived from Bndwf/dcl1 narrowed the interval harbouring BnDWF/DCL1 to 175 kb in length and this interval contained 16 annotated genes. Quantitative trait locus (QTL) mappings with the backcross population for plant type traits, including plant height, branching height, main raceme length and average branching interval, indicated that the mapped QTLs for plant type traits were located at the same position as the BnDWF/DCL1 locus. CONCLUSIONS This study suggests that the BnDWF/DCL1 locus is a major pleiotropic locus/QTL in B. napus, which may reduce plant height, alter plant type traits and change leaf shape, and thus may lead to compact plant architecture. Accordingly, this locus may have substantial breeding potential for increasing planting density.
Collapse
Affiliation(s)
- Yankun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Wenjing Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Pu Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Shubei Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Mao Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Mingming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| | - Rongzhan Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu China
| |
Collapse
|
17
|
Wang Y, He J, Yang L, Wang Y, Chen W, Wan S, Chu P, Guan R. Fine mapping of a major locus controlling plant height using a high-density single-nucleotide polymorphism map in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1479-91. [PMID: 27147069 DOI: 10.1007/s00122-016-2718-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/19/2016] [Indexed: 05/08/2023]
Abstract
A saturated map was constructed using SNP markers to fine-map a Brassica napus dominant locus for dwarf mutant onto a 152-kb interval of chromosome A09 containing 14 genes. Major dwarf loci in crops may play important roles in crop improvement and developmental genetics. The present study investigated and fine-mapped a Brassica napus dwarf-dominant locus BnDWF1. Plants carrying the BnDWF1 locus in populations derived from 'zhongshuang11' and Bndwf1 have deep-green leaves and dwarf architecture that differ sharply from tall plants with normal green leaves. BnDWF1, as a major locus controlling plant height, showed a very high heritability (0.91-0.95). To map this locus, a high-density single-nucleotide polymorphism map was constructed, and the BnDWF1 locus was mapped at an interval between single-nucleotide polymorphism markers, M19704 and M19695, on linkage group A09 of B. napus, with five co-segregating single-nucleotide polymorphism markers. Furthermore, fine mapping narrowed the interval harboring BnDWF1 to 152 kb in length in B. napus. This interval contains 14 annotated or predicted genes, seven of which are candidates responsible for the dwarf trait. This study provides an effective foundation for the study of plant height regulation and plant type breeding in B. napus.
Collapse
Affiliation(s)
- Yankun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Jianbo He
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Li Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Yu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Wenjing Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Shubei Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Pu Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Rongzhan Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China.
| |
Collapse
|
18
|
Hollender CA, Hadiarto T, Srinivasan C, Scorza R, Dardick C. A brachytic dwarfism trait (dw) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c. THE NEW PHYTOLOGIST 2016; 210:227-39. [PMID: 26639453 DOI: 10.1111/nph.13772] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/15/2015] [Indexed: 05/21/2023]
Abstract
Little is known about the genetic factors controlling tree size and shape. Here, we studied the genetic basis for a recessive brachytic dwarfism trait (dw) in peach (Prunus persica) that has little or no effect on fruit development. A sequencing-based mapping strategy positioned dw on the distal end of chromosome 6. Further sequence analysis and fine mapping identified a candidate gene for dw as a non-functional allele of the gibberellic acid receptor GID1c. Expression of the two GID1-like genes found in peach, PpeGID1c and PpeGID1b, was analyzed. GID1c was predominantly expressed in actively growing vegetative tissues, whereas GID1b was more highly expressed in reproductive tissues. Silencing of GID1c in plum via transgenic expression of a hairpin construct led to a dwarf phenotype similar to that of dw/dw peaches. In general, the degree of GID1c silencing corresponded to the degree of dwarfing. The results suggest that PpeGID1c serves a primary role in vegetative growth and elongation, whereas GID1b probably functions to regulate gibberellic acid perception in reproductive organs. Modification of GID1c expression could provide a rational approach to control tree size without impairing fruit development.
Collapse
Affiliation(s)
- Courtney A Hollender
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | | | - Chinnathambi Srinivasan
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Ralph Scorza
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Chris Dardick
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| |
Collapse
|
19
|
Lou X, Li X, Li A, Pu M, Shoaib M, Liu D, Sun J, Zhang A, Yang W. The 160 bp Insertion in the Promoter of Rht-B1i Plays a Vital Role in Increasing Wheat Height. FRONTIERS IN PLANT SCIENCE 2016; 7:307. [PMID: 27014327 PMCID: PMC4792873 DOI: 10.3389/fpls.2016.00307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/27/2016] [Indexed: 05/10/2023]
Abstract
The extensive use of two alleles (Rht-B1b and Rht-D1b) at the Rht-1 locus in wheat allowed dramatic increases in yields, triggering the so-called "Green Revolution." Here, we found that a new natural allelic variation (Rht-B1i) containing a single missense SNP (A614G) in the coding region significantly increased plant height against the genetic background of both Rht-D1a (11.68%) and Rht-D1b (7.89%). To elucidate the molecular mechanism of Rht-B1i, we investigated the promoter region. Sequence analysis showed that the Rht-B1i promoter could be divided into two classes depending on the presence or absence of a specific 160 bp insertion: Rht-B1i-1 (with the 160 bp insertion) and Rht-B1i-2 (without the 160 bp insertion). The promoter of Rht-B1i-1 contained 32 more possible cis-acting elements than Rht-B1a, including a unique auxin response element AUXREPSIAA4. Quantitative RT-PCR analysis indicated that the 160 bp insertion is likely to promote the transcription of the Rht-B1i-1 gene. The coleoptile lengths of wheat varieties treated with IAA, GA3, and IAA/GA3, combined with the histochemical staining of transgenic Arabidopsis containing the Rht-B1i-1 promoter, showed that the height-increasing effect of Rht-B1i-1 may be due to the synergistic action of IAA and GA3. These results augment our understanding of the regulatory mechanisms of Rht-1 in wheat and provide new genetic resources for wheat improvement.
Collapse
Affiliation(s)
- Xueyuan Lou
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- Graduate University of Chinese Academy of SciencesBeijing, China
| | - Xin Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Aixia Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- Graduate University of Chinese Academy of SciencesBeijing, China
| | - Mingyu Pu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- Graduate University of Chinese Academy of SciencesBeijing, China
| | - Muhammad Shoaib
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Dongcheng Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Jiazhu Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- The Collaborative Innovation Center for Grain Crops in Henan, Henan Agricultural UniversityZhengzhou, China
- *Correspondence: Aimin Zhang, ; Wenlong Yang,
| | - Wenlong Yang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Aimin Zhang, ; Wenlong Yang,
| |
Collapse
|
20
|
Liu ZH, Zhu L, Shi HY, Chen Y, Zhang JM, Zheng Y, Li XB. Cotton GASL genes encoding putative gibberellin-regulated proteins are involved in response to GA signaling in fiber development. Mol Biol Rep 2013; 40:4561-70. [PMID: 23645033 DOI: 10.1007/s11033-013-2543-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/29/2013] [Indexed: 01/24/2023]
Abstract
GAST (GA-stimulated transcript)-like genes have been reported as targets of GA regulation in some plant species. In this study, we isolated seven GAST-like cDNAs from cotton (Gossypium hirsutum) cDNA libraries (designated as GhGASL1-GhGASL7). Meanwhile, the genomic DNA clones corresponding to the seven GhGASL genes were isolated by using PCR amplification technique. Analysis of gene structure revealed that four genes (GhGASL1/3/5/6) contain two exons and one intron, while the rest have four exons and three introns. All of the deduced GhGASL proteins contain a putative signal peptide in the N-terminus and a conservative cysteine-rich C-terminal domain. Quantitative RT-PCR analysis indicated that the seven GhGASL genes are differentially expressed in cotton tissues. Among them, GhGASL1/4/7 were predominantly expressed in cotyledons, while the transcripts of GhGASL2/5 were preferentially accumulated at hypocotyls. GhGASL3 mRNA was largely accumulated in fibers, while GhGASL6 transcripts were mainly detected in ovules. Furthermore, GhGASL2/3/5 displayed a relatively high expression levels during early fiber elongation stages, and were regulated by GA. These data suggested that GhGASL genes may be involved in fiber elongation and in response to GA signaling during fiber development.
Collapse
Affiliation(s)
- Zhi-Hao Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Li A, Yang W, Li S, Liu D, Guo X, Sun J, Zhang A. Molecular characterization of three GIBBERELLIN-INSENSITIVE DWARF1 homologous genes in hexaploid wheat. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:432-443. [PMID: 23261263 DOI: 10.1016/j.jplph.2012.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
GIBBERELLIN-INSENSITIVE DWARF1 (GID1) functions as a gibberellin (GA) receptor and is a key component in the GA signaling pathway. In this paper, three TaGID1 genes, orthologous to rice OsGID1 (the first identified GA receptor GID1 gene), were isolated from hexaploid wheat using homology cloning. Like OsGID1, the three homologous TaGID1 genes consisted of two exons and one intron. Physical location analyses using nullisomic-tetrasomic and deletion lines derived from the wheat cultivar Chinese Spring revealed that the three homologous TaGID1 genes reside in the chromosome bins 1AL3-0.61-1, 1BL1-0.47-0.69, and 1DL2-0.41-1. Accordingly, they were named TaGID1-A1, TaGID1-B1, and TaGID1-D1, respectively. The expression patterns of the three TaGID1 genes were determined by real-time PCR in various wheat tissues at the heading stage, including flag leaves, young spikes, peduncles, and the third and fourth internodes. The three TaGID1 genes had similar transcript patterns, and all exhibited greater expression in flag leaves than in the other tissues. Moreover, they were all down-regulated after treatment with exogenous gibberellic acid (GA(3)) in young seedlings, suggesting a feedback regulation of TaGID1 in wheat. Yeast two-hybrid assays demonstrated strong interactions between each putative TaGID1 and the wheat DELLA proteins RHT-A1, RHT-B1, and RHT-D1 in the presence of GA(3), and weak interactions in the absence of GA(3) in yeast cells. Furthermore, over-expression of each TaGID1 gene in the Arabidopsis double mutant gid1a/1c partially rescued the dwarf phenotype. These results suggest that the three TaGID1 homologous genes are all functional GA receptor genes in wheat.
Collapse
Affiliation(s)
- Aixia Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Identification, fine mapping and characterization of Rht-dp, a recessive wheat dwarfing (reduced height) gene derived from Triticum polonicum. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Zhou YF, Zhang XY, Xue QZ. Fine mapping and candidate gene prediction of the photoperiod and thermo-sensitive genic male sterile gene pms1(t) in rice. J Zhejiang Univ Sci B 2011; 12:436-47. [PMID: 21634036 DOI: 10.1631/jzus.b1000306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pei'ai64S, an indica sterile variety with photoperiod and thermo-sensitive genic male sterile (PTGMS) genes, has been widely exploited for commercial seed production for "two-line" hybrid rice in China. One PTGMS gene from Pei'ai64S, pms1(t), was mapped by a strategy of bulked-extreme and recessive-class approach with simple sequence repeat (SSR) and insert and deletion (In-Del) markers. Using linkage analysis for the F(2) mapping population consisting of 320 completely male sterile individuals derived from a cross between Pei'ai64S and 93-11 (indica restorer) lines, the pms1(t) gene was delimited to the region between the RM21242 (0.2 cM) and YF11 (0.2 cM) markers on the short arm of chromosome 7. The interval containing the pms1(t) locus, which was co-segregated with RM6776, is a 101.1 kb region based on the Nipponbare rice genome. Fourteen predicted loci were found in this region by the Institute for Genomic Research (TIGR) Genomic Annotation. Based on the function of the locus LOC_Os07g12130 by bioinformatics analysis, it is predicted to encode a protein containing a Myb-like DNA-binding domain, and may process the transcript with thermosensory response. The reverse transcription-polymerase chain reaction (RT-PCR) results revealed that the mRNA levels of LOC_Os07g12130 were altered in different photoperiod and temperature treatments. Thus, the LOC_Os07g12130 locus is the most likely candidate gene for pms1(t). These results may facilitate not only using the molecular marker assisted selection of PTGMS genes, but also cloning of the pms1(t) gene itself.
Collapse
Affiliation(s)
- Yuan-fei Zhou
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
24
|
Gao Y, Chen J, Zhao Y, Li T, Wang M. Molecular cloning and expression analysis of a RGA-like gene responsive to plant hormones in Brassica napus. Mol Biol Rep 2011; 39:1957-62. [PMID: 21643957 DOI: 10.1007/s11033-011-0943-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/26/2011] [Indexed: 01/04/2023]
Abstract
DELLA proteins are negative regulators of GA-induced growth. DELLA protein family is characterized by a DELLA domain essential for GA-dependent proteasomal degradation of DELLA repressors. A full-length cDNA encoding a putative DELLA protein with high sequence homology to Arabidopsis thaliana RGA (AtRGA), designated as BnRGA, was isolated from Brassica napus. The full-length cDNA of BnRGA contained a 1,740 bp open reading frame (ORF) encoding a precursor protein of 579 amino acid residues. Comparative and bioinformatics analyses revealed that BnRGA showed a high degree of homology with DELLA proteins and contained the DELLA domain, TVHYNP domain, VHIID domain and RVER domain. Using real-time PCR, the expression patterns of BnRGA and two our previously isolated genes, BnGID1a and BnSLY1 in B. napus, were analyzed by adding exogenous gibberellins acid-3 (GA(3)), GA biosynthetic inhibitor paclobutrazol (PAC) and abscisic acid (ABA). The results showed that the expression of BnGID1a and BnSLY1 was down-regulated after treated by GA(3) and induced by PAC and ABA. These results suggest that the expression of BnGID1a and BnSLY1 may be negatively regulated by the level of endogenous GA in B. napus. Moreover, BnRGA was not significantly regulated by GA(3), PAC and ABA in the low concentrations. These suggest that GA-GID1-SCF-DELLA complex may have a mechanism of self-regulation, thereby preserving the stability of the expression level of BnRGA in B. napus.
Collapse
Affiliation(s)
- Yong Gao
- College of Bioscience and Biotechnology, Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 Jiangsu, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Zeng X, Zhu L, Chen Y, Qi L, Pu Y, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T. Identification, fine mapping and characterisation of a dwarf mutant (bnaC.dwf) in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:421-8. [PMID: 20878141 DOI: 10.1007/s00122-010-1457-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/09/2010] [Indexed: 05/04/2023]
Abstract
In the present study, we have obtained one dwarf mutant (bnaC.dwf) from the Brassica napus inbred line T6 through chemical mutagen ethyl methanesulfonate (EMS). We have determined the phenotypic effects and genetic characteristics of dwarf mutant (bnaC.dwf). The dwarf mutant was insensitive to exogenous GA(3) for plant height, suggesting that it is significantly playing a crucial role in the gibberellins response pathway. Genetic analysis revealed that one recessive gene is responsible for controlling the phenotypic expression of dwarf mutant. Amplified Fragment Length Polymorphism (AFLP) technique was applied for selecting markers linked to the BnaC.DWF gene which assisted in screening of dwarf and normal individuals in the BC(4) population. We have screened 1,024 primer combinations and then identified nine AFLP markers linked to the BnaC.DWF gene. Identification and linkage of the markers were carried out by analysing 2,000 individuals from a larger population of the BC(4). Two markers EA10MC09 and EA12MC02 were located on the flanking region of the BnaC.DWF gene at a distance of 0.2 and 0.05 cM, respectively. Four AFLP markers EA09MG05, EA02MC07, EA01MC01 and EC04MC07 were successfully converted into Sequence Characterised Amplified Region markers namely SCA9G5, SCA2C7, SCA1C1 and SCC4C7. We further integrated BnaC.DWF linked Simple Sequence Repeat markers into two populations (Piquemal et al. Theor Appl Genet 111:1514-1523, 2005; Cheng et al. Theor Appl Genet 118:1121-1131, 2009). BnaC.DWF was mapped to the linkage region N18. The molecular markers developed from these investigations will greatly accelerate the selection process for developing dwarf varieties in B. napus by Marker Assisted Selection and genetic engineering.
Collapse
Affiliation(s)
- Xinhua Zeng
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|