1
|
Yang Y, Liu C, Chen P, Sun S, Zhang H, Wang M, Zhang W. Independent, Multiplicative, and Cumulative Effects of Recent Stressful Life Events and Adverse Childhood Events on Depressive Symptoms among College Students: Moderation by the HPA-axis Multilocus Genetic Variation. J Youth Adolesc 2025:10.1007/s10964-025-02195-8. [PMID: 40358668 DOI: 10.1007/s10964-025-02195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Previous research has explored the effects of early and recent stress on depressive symptoms, yielding meaningful findings. However, no research has yet comprehensively verified and compared the independent, multiplicative (interactive), and cumulative (additive) effects of these stresses on depressive symptoms. Consequently, the mechanisms by which early and recent stress contribute to depressive symptoms, as well as the extent of individual differences in these processes, remain poorly understood. This study aimed to address this gap by simultaneously examining the independent, multiplicative, and cumulative effects of recent stressful life events and adverse childhood events on depressive symptoms in late adolescence. Additionally, it investigated the moderating role of multilocus genetic variations related to the hypothalamic-pituitary-adrenal (HPA) axis within these models. A theory-driven multilocus genetic profile score (MGPS) was calculated using FKBP5 rs1360780, NR3C1 rs41423247, and CRHR1 rs110402 polymorphisms. The study recruited a sample of 1227 adolescents (Mage = 18.94 ± 0.70 years, 56.8% girls) from one vocational college, two general colleges and two universities. Results showed that both the independent and cumulative effects of recent stressful life events and adverse childhood events on depressive symptoms were significant, while the multiplicative effects were non-significant. Moreover, the independent effects model was more explanatory than the cumulative effects model, with recent stressful life events being the primary contributor. A significant moderating effect of MGPS on the association between recent stressful life events and depressive symptoms was also observed. Specifically, those with higher MGPS, i.e., with higher susceptibility, exhibited more depressive symptoms when exposed to higher levels of recent stressful life events but fewer symptoms when exposed to lower levels. These findings deepen the understanding of how early and recent stress, along with genetic factors, influence depressive symptoms. It also provides valuable insights for targeted interventions to reduce depressive symptoms among college students.
Collapse
Affiliation(s)
- Yang Yang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Chunyu Liu
- Department of Student Affairs Management, Yantai University, Yantai, China
| | - Pian Chen
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Shan Sun
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Hongmei Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Meiping Wang
- Department of Psychology, Shandong Normal University, Jinan, China.
| | - Wenxin Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
2
|
Bordes J, Bajaj T, Miranda L, van Doeselaar L, Brix LM, Narayan S, Yang H, Mitra S, Kovarova V, Springer M, Kleigrewe K, Müller-Myhsok B, Gassen NC, Schmidt MV. Sex-specific fear acquisition following early life stress is linked to amygdala and hippocampal purine and glutamate metabolism. Commun Biol 2024; 7:1684. [PMID: 39702524 DOI: 10.1038/s42003-024-07396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
Early life stress (ELS) can negatively impact health, increasing the risk of stress-related disorders, such as post-traumatic stress disorder (PTSD). Importantly, PTSD disproportionately affects women, emphasizing the critical need to explore how sex differences influence the genetic and metabolic neurobiological pathways underlying trauma-related behaviors. This study uses the limited bedding and nesting (LBN) paradigm to model ELS and investigate its sex-specific effects on fear memory formation. Employing innovative unsupervised behavioral classification, the current study reveals distinct behavioral patterns associated with fear acquisition and retrieval in male and female mice following ELS. Females exposed to LBN display heightened active fear responses, contrasting with males. Furthermore, the study examined the crucial link between behavioral regulation and cellular metabolism in key brain regions involved in fear and stress processing. Sex-specific and stress-dependent alterations were observed in purine, pyrimidine, and glutamate metabolism within the basolateral amygdala, the dorsal hippocampus, and the ventral hippocampus. These findings provide crucial insights into the complex interplay between metabolic pathways, the neurobiological underpinnings of fear memory, and stress responses. Importantly, they emphasize the significance of considering sex-specific metabolic alterations when investigating stress-related disorders, opening potential avenues for the development of targeted interventions.
Collapse
Affiliation(s)
- Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Thomas Bajaj
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127, Bonn, Germany
| | - Lucas Miranda
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Lotte van Doeselaar
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Lea Maria Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Veronika Kovarova
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Margherita Springer
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bertram Müller-Myhsok
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127, Bonn, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
3
|
Pereira SC, Coeli-Lacchini FB, Pereira DA, Ferezin LP, Menezes IC, Baes CVW, Luizon MR, Juruena MF, Cleare AJ, Young AH, Lacchini R. Early life stress unravels epistatic genetic associations of cortisol pathway genes with depression. J Psychiatr Res 2024; 175:323-332. [PMID: 38759498 DOI: 10.1016/j.jpsychires.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis represents one of the most consistent pathophysiological findings in depressive disorders. Cortisol signaling is affected by proteins that mediate its cellular responses or alters its availability to mineralocorticoid and glucocorticoid receptors. In our study, we evaluated candidate genes that may influence the risk for depression and suicide due to its involvement in cortisol signaling. The aim of the study was to assess whether the genotypes of these genes are associated with the risk for depression, severity of depressive symptoms, suicidal ideation, and suicide attempts. And whether there is interaction between genes and early-life stress. In this study, 100 healthy controls and 140 individuals with depression were included. The subjects were clinically assessed using the 21-item GRID-Hamilton questionnaires (GRID-HAMD-21), Beck Scale for Suicidal Ideation (BSI), and the Childhood Trauma Questionnaire (CTQ). A robust multifactorial dimensionality reduction analysis was used to characterize the interactions between the genes HSD11B1, NR3C1, NR3C2, and MDR1 and early-life stress. It was found a significant association of the heterozygous genotype of the MDR1 gene rs1128503 polymorphism with reduced risk of at least one suicide attempt (OR: 0.08, p = 0.003*) and a reduction in the number of suicide attempts (β = -0.79, p = 0.006*). Furthermore, it was found that the MDR1 rs1228503 and NR3C2 rs2070951 genes interact with early-life stress resulting in a strong association with depression (p = 0.001). Our findings suggest that polymorphisms in the MDR1 and NR3C2 genes and their interaction with childhood trauma may be important biomarkers for depression and suicidal behaviors.
Collapse
Affiliation(s)
- Sherliane Carla Pereira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Daniela Alves Pereira
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Letícia Perticarrara Ferezin
- Department of Public Health Nursing, Ribeirão Preto Nursing School, University of São Paulo, Ribeirão Preto, Brazil
| | - Itiana Castro Menezes
- Department of Neuroscience and Behavior, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Cristiane von Werne Baes
- Department of Neuroscience and Behavior, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcelo Rizzatti Luizon
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mario F Juruena
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, United Kingdom
| | - Anthony J Cleare
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, United Kingdom
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
4
|
Oyaci Y, Yildirim YE, Aytac HM, Pehlivan S, Aydin PC. The relationship of the methylation status and polymorphism of glucocorticoid receptor gene ( NR3C1) with attempted suicide or non-suicidal self-injury patients in schizophrenia. J Investig Med 2024; 72:449-456. [PMID: 38494341 DOI: 10.1177/10815589241242715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We aim to investigate the methylation of NR3C1 gene promotor and NR3C1 BclI polymorphism in schizophrenia (SCZ) patients with attempted suicide or non-suicidal self-injury (NSSI). A sample of 112 patients with SCZ was included in the study. Structured Clinical Interview for Diagnostic and Statistical Manual-Fourth Edition Axis I Disorders was used to confirm the diagnosis according to The Diagnostic and Statistical Manual of Mental Disorders, fourth edition, text revision criteria. The patients were evaluated by data forms that had sociodemographic, suicidal behavior, and NSSI information. Methylation-specific polymerase chain reaction (PCR) was used to identify the methylation of the NR3C1 gene. The analysis of the BclI polymorphism of the NR3C1 gene was evaluated by using the PCR restriction fragment length polymorphism. Our results revealed that although the NR3C1 gene methylation was not statistically significantly different, there was a significant difference in NR3C1 genotype distribution among the SCZ groups with and without attempted suicide. SCZ patients carrying the CC genotype had a lower risk of attempted suicide (Odds Ratio [OR]: 0.421; 95% Confidence Interval [CI]: 0.183-0.970; p = 0.040), while having the GG genotype in SCZ patients was associated with a higher risk of attempted suicide (OR: 3.785; 95% Cl: 1.107-12.945; p = 0.042). Additionally, due to NSSI in SCZ patients, there were no significant differences in NR3C1 gene methylation and NR3C1 genotype distribution among the groups. We propose that the NR3C1 BclI polymorphism may be associated with attempted suicide in Turkish patients diagnosed with SCZ.
Collapse
Affiliation(s)
- Yasemin Oyaci
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Yusuf Ezel Yildirim
- University of Health Sciences Department of Psychiatry, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Hasan Mervan Aytac
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sacide Pehlivan
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Pinar Cetinay Aydin
- University of Health Sciences Department of Psychiatry, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
5
|
Chiș A, Oltean LE, Bîlc M, Vulturar R, Șoflău R, David D, Szentágotai-Tătar A, Miu AC. Gene-Environment Interactions in Irrational Beliefs: The Roles of Childhood Adversity and Multiple Candidate Genes. Int J Mol Sci 2024; 25:4206. [PMID: 38673790 PMCID: PMC11050227 DOI: 10.3390/ijms25084206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Cognitive behavioral therapy is based on the view that maladaptive thinking is the causal mechanism of mental disorders. While this view is supported by extensive evidence, very limited work has addressed the factors that contribute to the development of maladaptive thinking. The present study aimed to uncover interactions between childhood maltreatment and multiple genetic differences in irrational beliefs. Childhood maltreatment and irrational beliefs were assessed using multiple self-report instruments in a sample of healthy volunteers (N = 452). Eighteen single-nucleotide polymorphisms were genotyped in six candidate genes related to neurotransmitter function (COMT; SLC6A4; OXTR), neurotrophic factors (BDNF), and the hypothalamic-pituitary-adrenal axis (NR3C1; CRHR1). Gene-environment interactions (G×E) were first explored in models that employed one measure of childhood maltreatment and one measure of irrational beliefs. These effects were then followed up in models in which either the childhood maltreatment measure, the irrational belief measure, or both were substituted by parallel measures. Consistent results across models indicated that childhood maltreatment was positively associated with irrational beliefs, and these relations were significantly influenced by COMT rs165774 and OXTR rs53576. These results remain preliminary until independent replication, but they represent the best available evidence to date on G×E in a fundamental mechanism of psychopathology.
Collapse
Affiliation(s)
- Adina Chiș
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania; (A.C.); (R.V.)
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lia-Ecaterina Oltean
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania; (L.-E.O.); (R.Ș.); (D.D.)
- The International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania
| | - Mirela Bîlc
- Institute for General Practice and Interprofessional Care, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Romana Vulturar
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania; (A.C.); (R.V.)
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Radu Șoflău
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania; (L.-E.O.); (R.Ș.); (D.D.)
- The International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania
| | - Daniel David
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania; (L.-E.O.); (R.Ș.); (D.D.)
- The International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania
| | - Aurora Szentágotai-Tătar
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania; (L.-E.O.); (R.Ș.); (D.D.)
- The International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania
| | - Andrei C. Miu
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania; (A.C.); (R.V.)
| |
Collapse
|
6
|
Zhang Z, Yang Y, Kong W, Huang S, Tan Y, Huang S, Zhang M, Lu H, Li Y, Li X, Liu S, Wen Y, Shang D. A Bibliometric and Visual Analysis of Single Nucleotide Polymorphism Studies in Depression. Curr Neuropharmacol 2024; 22:302-322. [PMID: 37581520 PMCID: PMC10788886 DOI: 10.2174/1570159x21666230815125430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Genetic polymorphism has been proven to have an important association with depression, which can influence the risk of developing depression, the efficacy of medications, and adverse effects via metabolic and neurological pathways. Nonetheless, aspects of the association between single nucleotide polymorphisms and depression have not been systematically investigated by bibliometric analysis. OBJECTIVE The aim of this study was to analyze the current status and trends of single nucleotide polymorphism research on depression through bibliometric and visual analysis. METHODS The Web of Science Core Collection was used to retrieve 10,043 articles that were published between 1998 and 2021. CiteSpace (6.1 R4) was used to perform collaborative network analysis, co-citation analysis, co-occurrence analysis, and citation burst detection. RESULTS The most productive and co-cited journals were the Journal of Affective Disorders and Biological Psychiatry, respectively, and an analysis of the references showed that the most recent research focused on the largest thematic cluster, "5-HT", reflecting the important research base in this area. "CYP2D6" has been in the spotlight since its emergence in 2009 and has become a research hotspot since its outbreak in 2019. However, "BDNF ", "COMT ", "older adults", "loci", and "DNA methylation" are also the new frontier of research, and some of them are currently in the process of exploration. CONCLUSION These findings offer a useful perspective on existing research and potential future approaches in the study of the association between single nucleotide polymorphisms and depression, which may assist researchers in selecting appropriate collaborators or journals.
Collapse
Affiliation(s)
- Zi Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Ye Yang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Wan Kong
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Shanshan Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhua Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xiaolin Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Shujing Liu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| |
Collapse
|
7
|
Singh P, Srivastava A, Guin D, Thakran S, Yadav J, Chandna P, Sood M, Chadda RK, Kukreti R. Genetic Landscape of Major Depressive Disorder: Assessment of Potential Diagnostic and Antidepressant Response Markers. Int J Neuropsychopharmacol 2023; 26:692-738. [PMID: 36655406 PMCID: PMC10586057 DOI: 10.1093/ijnp/pyad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The clinical heterogeneity in major depressive disorder (MDD), variable treatment response, and conflicting findings limit the ability of genomics toward the discovery of evidence-based diagnosis and treatment regimen. This study attempts to curate all genetic association findings to evaluate potential variants for clinical translation. METHODS We systematically reviewed all candidates and genome-wide association studies for both MDD susceptibility and antidepressant response, independently, using MEDLINE, particularly to identify replicated findings. These variants were evaluated for functional consequences using different in silico tools and further estimated their diagnostic predictability by calculating positive predictive values. RESULTS A total of 217 significantly associated studies comprising 1200 variants across 545 genes and 128 studies including 921 variants across 412 genes were included with MDD susceptibility and antidepressant response, respectively. Although the majority of associations were confirmed by a single study, we identified 31 and 18 replicated variants (in at least 2 studies) for MDD and antidepressant response. Functional annotation of these 31 variants predicted 20% coding variants as deleterious/damaging and 80.6% variants with regulatory effect. Similarly, the response-related 18 variants revealed 25% coding variant as damaging and 88.2% with substantial regulatory potential. Finally, we could calculate the diagnostic predictability of 19 and 5 variants whose positive predictive values ranges from 0.49 to 0.66 for MDD and 0.36 to 0.66 for response. CONCLUSIONS The replicated variants presented in our data are promising for disease diagnosis and improved response outcomes. Although these quantitative assessment measures are solely directive of available observational evidence, robust homogenous validation studies are required to strengthen these variants for molecular diagnostic application.
Collapse
Affiliation(s)
- Priyanka Singh
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ankit Srivastava
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Yadav
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Puneet Chandna
- Indian Society of Colposcopy and Cervical Pathology (ISCCP), Safdarjung Hospital, New Delhi, India
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Menezes IC, von Werne Baes C, Fígaro-Drumond FV, Dias Macedo BB, Bueno AC, Lacchini R, Feijó de Mello M, de Castro M, Juruena MF. Differential Diagnosis of Major Depressive Disorder and Bipolar Disorder: Genetic and Hormonal Assessment and the Influence of Early-Life Stress. Brain Sci 2022; 12:1476. [PMID: 36358401 PMCID: PMC9688727 DOI: 10.3390/brainsci12111476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
Few studies have assessed biomarkers for the differentiation of major depressive disorder (MDD) and bipolar disorder (BD). However, some elements of depression such as hormones and receptors of the renin-angiotensin-adrenal system (RAAS), the hypothalamus-pituitary-adrenal (HPA) axis, and history of early-life stress (ELS) could be considered for differential diagnosis. Therefore, this study aimed to assess aldosterone and cortisol levels, MR and GR gene polymorphisms, and ELS as potential biomarkers for differentiating MDD and BD. This study presents a case-control design. Groups comprised samples for genetic, cortisol, and aldosterone analysis: healthy control (HC; n = 113/97/103), MDD (n = 78/69/67) and BD (n = 82/68/65) subjects. Furthermore, all subjects were assessed for diagnostic screening, the severity of depression, and history of ELS by applying MINI-PLUS, GRID-HDRS, and CTQ, respectively. In addition, genotype and allelic frequencies of GR (N363S, R22/23K and BclI) and MR (MI180V and -2G/C) polymorphisms were evaluated via PCR. Our findings demonstrate that basal aldosterone levels may be a biomarker for differentiating BD and MDD. Furthermore, ELS affects the HPA axis in BD, cortisol may be considered a biomarker for distinguishing BD and MDD, but only in the absence of ELS, and, finally, history of ELS and MR-2G/C variant alleles are factors that contribute to the severity of depressive symptoms in MDD and BD.
Collapse
Affiliation(s)
- Itiana Castro Menezes
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14015-130, Brazil
| | - Cristiane von Werne Baes
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14015-130, Brazil
| | - Fernanda Viana Fígaro-Drumond
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil
| | - Brisa Burgos Dias Macedo
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14015-130, Brazil
| | - Ana Carolina Bueno
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14015-130, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil
| | | | - Margaret de Castro
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14015-130, Brazil
| | - Mario Francisco Juruena
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
9
|
Norkeviciene A, Gocentiene R, Sestokaite A, Sabaliauskaite R, Dabkeviciene D, Jarmalaite S, Bulotiene G. A Systematic Review of Candidate Genes for Major Depression. Medicina (B Aires) 2022; 58:medicina58020285. [PMID: 35208605 PMCID: PMC8875554 DOI: 10.3390/medicina58020285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The aim of this systematic review was to analyse which candidate genes were examined in genetic association studies and their association with major depressive disorder (MDD). Materials and Methods: We searched PUBMED for relevant studies published between 1 July 2012 and 31 March 2019, using combinations of keywords: “major depressive disorder” OR “major depression” AND “gene candidate”, “major depressive disorder” OR “major depression” AND “polymorphism”. Synthesis focused on assessing the likelihood of bias and investigating factors that may explain differences between the results of studies. For selected gene list after literature overview, functional enrichment analysis and gene ontology term enrichment analysis were conducted. Results: 141 studies were included in the qualitative review of gene association studies focusing on MDD. 86 studies declared significant results (p < 0.05) for 172 SNPs in 85 genes. The 13 SNPs associations were confirmed by at least two studies. The 18 genetic polymorphism associations were confirmed in both the previous and this systematic analysis by at least one study. The majority of the studies (68.79 %) did not use or describe power analysis, which may have had an impact over the significance of their results. Almost a third of studies (N = 54) were conducted in Chinese Han population. Conclusion: Unfortunately, there is still insufficient data on the links between genes and depression. Despite the reported genetic associations, most studies were lacking in statistical power analysis, research samples were small, and most gene polymorphisms have been confirmed in only one study. Further genetic research with larger research samples is needed to discern whether the relationship is random or causal. Summations: This systematic review had summarized all reported genetic associations and has highlighted the genetic associations that have been replicated. Limitations: Unfortunately, most gene polymorphisms have been confirmed only once, so further studies are warranted for replicating these genetic associations. In addition, most studies included a small number of MDD cases that could be indicative for false positive. Considering that polymorphism loci and associations with MDD is also vastly dependent on interpersonal variation, extensive studies of gene interaction pathways could provide more answers to the complexity of MDD.
Collapse
Affiliation(s)
- Audrone Norkeviciene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Romena Gocentiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Agne Sestokaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Rasa Sabaliauskaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Daiva Dabkeviciene
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Sonata Jarmalaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Giedre Bulotiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
- Correspondence:
| |
Collapse
|
10
|
Pehlivan S, Aytac HM, Cetinay Aydin P, Nursal AF, Pehlivan M. Global and glucocorticoid receptor gene-specific (NR3C1) DNA methylation analysis in patients with cannabinoid or synthetic cannabinoid use disorder. Psychiatry Res 2021; 298:113774. [PMID: 33556690 DOI: 10.1016/j.psychres.2021.113774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022]
Abstract
This study investigates the relationship between cannabinoid use disorder (CUD) or synthetic cannabinoid use disorder (SCUD) and the global methylation, methylation of NR3C1 gene promotor, and NR3C1 BclI polymorphism, considering clinical parameters. Based on the DSM-5 criteria, 172 SCUD patients' and 44 CUD patients' diagnoses were confirmed with a positive urine test; 88 healthy volunteers were also included in the study. Global DNA methylation was measured using a 5-methylcytosine (5-mC) DNA ELISA Kit. Methylation-specific PCR was used to identify the methylation of the NR3C1 gene. The analysis of the BclI polymorphism of the NR3C1 gene was evaluated by using the PCR-RFLP. Our results demonstrated that the mean of 5-mC percentages of SCUD patients differed significantly from those of the control group. When comparing NR3C1 gene methylation and clinical parameters due to NR3C1 genotype distribution in patients, the genotype distribution was significantly different between the groups, due to the former polysubstance abuse. Additionally, there was a significantly positive correlation between the 5-mC percentages of SCUD patients and the reported durations of their disorders. In summary, whereas global DNA methylation may be associated with SCUD, the methylation of the NR3C1 gene and NR3C1 BclI polymorphism were not related to CUD or SCUD.
Collapse
Affiliation(s)
- Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Turkey.
| | | | - Pinar Cetinay Aydin
- University of Health Sciences Department of Psychiatry, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, 12. Psychiatry Clinic, Istanbul, Turkey.
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey.
| | - Mustafa Pehlivan
- Department of Hematology, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey.
| |
Collapse
|
11
|
Hwang H, Cho G, Jin MJ, Ryoo JH, Choi Y, Lee SH. A knowledge-based multivariate statistical method for examining gene-brain-behavioral/cognitive relationships: Imaging genetics generalized structured component analysis. PLoS One 2021; 16:e0247592. [PMID: 33690643 PMCID: PMC7946325 DOI: 10.1371/journal.pone.0247592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022] Open
Abstract
With advances in neuroimaging and genetics, imaging genetics is a naturally emerging field that combines genetic and neuroimaging data with behavioral or cognitive outcomes to examine genetic influence on altered brain functions associated with behavioral or cognitive variation. We propose a statistical approach, termed imaging genetics generalized structured component analysis (IG-GSCA), which allows researchers to investigate such gene-brain-behavior/cognitive associations, taking into account well-documented biological characteristics (e.g., genetic pathways, gene-environment interactions, etc.) and methodological complexities (e.g., multicollinearity) in imaging genetic studies. We begin by describing the conceptual and technical underpinnings of IG-GSCA. We then apply the approach for investigating how nine depression-related genes and their interactions with an environmental variable (experience of potentially traumatic events) influence the thickness variations of 53 brain regions, which in turn affect depression severity in a sample of Korean participants. Our analysis shows that a dopamine receptor gene and an interaction between a serotonin transporter gene and the environment variable have statistically significant effects on a few brain regions' variations that have statistically significant negative impacts on depression severity. These relationships are largely supported by previous studies. We also conduct a simulation study to safeguard whether IG-GSCA can recover parameters as expected in a similar situation.
Collapse
Affiliation(s)
- Heungsun Hwang
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Gyeongcheol Cho
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Min Jin Jin
- Institute of Liberal Education, Kongju National University, Gongju, Korea
| | - Ji Hoon Ryoo
- Department of Education, Yonsei University, Seoul, Korea
| | - Younyoung Choi
- Department of Counseling Psychology, Hanyang Cyber University, Seoul, Korea
| | - Seung Hwan Lee
- Department of Psychiatry, Inje University Ilsan-Paik Hospital and Inje University, Goyang, Korea
| |
Collapse
|
12
|
Owalla TJ, Ssebajjwe WJ, Muhanguzi D, Womersley JS, Kinyanda E, Kalungi A. Association of Stress, Glucocorticoid Receptor, and FK506 Binding Protein Gene Polymorphisms With Internalizing Disorders Among HIV-Infected Children and Adolescents From Kampala and Masaka Districts-Uganda. Front Pediatr 2021; 9:666426. [PMID: 34765574 PMCID: PMC8576357 DOI: 10.3389/fped.2021.666426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Children and adolescents living with human immunodeficiency virus (CA-HIV) suffer a considerable burden of internalizing disorders (IDs; depressive and anxiety disorders). Environmental and genetic factors have been reported to influence the vulnerability to IDs in western settings; however, their role among African populations remains inadequately explored. We investigated the individual and interactive effects of stress and single-nucleotide polymorphisms within the FK506 binding protein 5 (rs1360780) and glucocorticoid receptor (rs10482605) genes on ID status in a cohort of CA-HIV in Uganda. We genotyped rs10482605 (309 cases and 315 controls) and rs1360780 (350 cases and 335 controls) among CA-HIV with and without IDs using Kompetitive Allele-Specific PCR. Socio-demographic variables, as well as allele and genotype distributions, were compared between cases and controls using chi-square tests. Genotypes were assessed for Hardy-Weinberg equilibrium. Composite indices of recent and chronic stress classes were also generated. A hierarchical cluster analysis was used to generate cutoff points within each of the indices of recent and chronic stress. Logistic regression was used to assess the association between IDs and each of recent stress, chronic stress, and the investigated genotypes. The interaction effect of chronic/recent stress on the association between each of the polymorphisms and IDs was determined using a likelihood ratio test. We observed no significant association between IDs and rs1360780 and rs10482605 polymorphisms within the FKBP5 and glucocorticoid receptor genes, respectively (P > 0.050). Severe recent stress increased the vulnerability to IDs among CA-HIV (P = 0.001). We did not observe any gene-environment effect on vulnerability to IDs in this population. These findings support the currently held opinion that polymorphisms at single genetic loci only contribute a very small effect to the genetic vulnerability to IDs.
Collapse
Affiliation(s)
- Tonny Jimmy Owalla
- Mental Health Unit, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Med Biotech Laboratories, Kampala, Uganda
| | - Wilber Joseph Ssebajjwe
- Mental Health Unit, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Dennis Muhanguzi
- Department of Bio-Molecular Resources and Bio-Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Jacqueline Samantha Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eugene Kinyanda
- Mental Health Unit, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Allan Kalungi
- Mental Health Unit, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Department of Immunology and Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
13
|
Plieger T, Reuter M. Stress & executive functioning: A review considering moderating factors. Neurobiol Learn Mem 2020; 173:107254. [PMID: 32485224 DOI: 10.1016/j.nlm.2020.107254] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
A multitude of studies investigating the effects of stress on cognition has produced an inconsistent picture on whether - and under which conditions - stress has advantageous or disadvantageous effects on executive functions (EF). This review provides a short introduction to the concept of stress and its neurobiology, before discussing the need to consider moderating factors in the association between stress and EF. Three core domains are described and discussed in relation to the interplay between stress and cognition: the influence of different paradigms on physiological stress reactivity, individual differences in demographic and biological factors, and task-related features of cognitive tasks. Although some moderating variables such as the endocrine stress response have frequently been considered in single studies, no attempt of a holistic overview has been made so far. Therefore, we propose a more nuanced and systematic framework to study the effects of stress on executive functioning, comprising a holistic overview from the induction of stress, via biological mechanisms and interactions with individual differences, to the influence of stress on cognitive performance.
Collapse
Affiliation(s)
- Thomas Plieger
- Department of Psychology, Laboratory of Neurogenetics University of Bonn, Kaiser-Karl-Ring 9, D-53111 Bonn, Germany.
| | - Martin Reuter
- Department of Psychology, Laboratory of Neurogenetics University of Bonn, Kaiser-Karl-Ring 9, D-53111 Bonn, Germany
| |
Collapse
|
14
|
Dual biomarkers long non-coding RNA GAS5 and its target, NR3C1, contribute to acute myeloid leukemia. Exp Mol Pathol 2020; 114:104399. [PMID: 32032633 DOI: 10.1016/j.yexmp.2020.104399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is a complex hematological neoplasm with poor prognosis. At present, overwhelming evidence indicates that different genetic abnormalities are relevant to the pathogenesis of AML. Nevertheless, its exact molecular mechanism is still unknown. Recently, it was reported that lncRNAs play crucial roles in tumorigenesis. But, their role in the molecular pathogenesis of AML has not been extensively explored. GAS5, one of the earliest known lncRNAs, has an essential role in the formation and progression of multiple human cancers. It was recently demonstrated that GAS5 acts as a riborepressor of the Glucocorticoid receptor) GR) and abnormal levels of GAS5 may alter response of hematopoietic cells to glucocorticoids. GAS5 can have interaction with the GR that encoded by NR3C1 gene and inhibit its transcriptional activity. To test whether the genetic variants can be associated with AML risk, we genotyped rs55829688 (T > C) polymorphism in GAS5 and three NR3C1 SNPs namely rs6195, rs41423247 and rs6189/rs6190 in a population of 100 Iranian AML patients and 100 healthy subjects. The analysis of the data showed the frequency of alleles and genotypes of rs55829688 and rs6189/rs6190 polymorphisms did not differ between patients and healthy subjects. But, rs41423247 and rs6195 demonstrated a significant correlation with AML risk. The rs6195 was associated with higher AML susceptibility in the co-dominant (OR = 4.58, 95% CI = 2.11-9.981, P < .0001), dominant (OR = 4.55, 95% CI = 2.155-9.613, P < .0001), and over-dominant (OR = 4.43, 95% CI = 2.042-9.621, P < .0001) models. Also, the rs41423247 polymorphism was associated with higher risk of AML in co-dominant (OR = 2.07, 95% CI = 1.171-4.242, P = .012) and dominant (OR = 2.47, 95% CI = 1.192-5.142, P = .010) models. Furthermore, haplotype analysis (rs41423247, rs6189.rs6190, rs6195, and rs55829688 respectively) demonstrated that GGAT, CGGT, and GGGT haplotypes were associated with higher risk of AML in the studied population (p-values = .007, 0.042 and 0.044, respectively). The present study reveals a possible role for NR3C1 in the pathogenesis of AML.
Collapse
|
15
|
Firouzabadi N, Nouraei H, Mandegary A. Genetic Variant of Glucocorticoid Receptor Gene at rs41423247 and Its Association with Major Depressive Disorder: A Case-Control Study. Galen Med J 2018; 7:e1181. [PMID: 34466443 PMCID: PMC8344155 DOI: 10.22086/gmj.v0i0.1181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/13/2018] [Accepted: 05/21/2018] [Indexed: 11/30/2022] Open
Abstract
Background Extensive distribution of glucocorticoid receptors (GCRs) in different brain areas along with disruption of hypothalamic-pituitary-adrenal (HPA) axis in major depressive disorder (MDD) and the cross talk between GCRs and HPA proposes genetic variants of GC receptor genes as potential contributors in MDD. Among the GCR polymorphisms, rs41423247, rs6195 and rs6189/rs6190 are suggested to be involved in MDD. Materials and Methods We investigated the association between rs41423247, rs6195 and rs6189/rs6190 and MDD in a case-control study. One hundred MDD patients along with 100 healthy individuals were enrolled in this study. genetic variants of rs41423247, rs6195 and rs6189/rs6190 were determined in extracted DNAs using PCR-RFLP. Result The prevalence of heterozygote and mutant carriers of rs41423247 were significantly and by 1.9 fold greater in cases versus controls (P=0.033; OR; 95%CI=1.9; 1.1-3.3). Moreover, carriers of the mutant (G) allele were by 1.8 fold more prevalent in MDD group (P=0.013; OR;95%CI=1.8; 1.1-2.8). Conclusion Specific carriers of rs41423247 might be more susceptible to developing MDD. This supports the hypothesis of the involvement of GCRs in pathophysiology of MDD.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasti Nouraei
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Peng Q, Yan H, Wen Y, Lai C, Shi L. Association between NR3C1 rs41423247 polymorphism and depression: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2018; 97:e12541. [PMID: 30278546 PMCID: PMC6181539 DOI: 10.1097/md.0000000000012541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis is closely related to the occurrence of depression. The glucocorticoid receptor, also known as the nuclear receptor subfamily 3, group C, member 1 (NR3C1), provides negative feedback to the HPA axis by binding to glucocorticoids. Some studies have demonstrated an association between the NR3C1 rs41423247 polymorphism and depression, but results from other studies have been controversial. METHOD In this study, the association between the NR3C1 rs41423247 polymorphism and depression was evaluated by a meta-analysis using the RevMan 5.3 software, and the Stata 10.0 software was used for sensitivity analysis and publication bias test. According to the inclusion criteria, related studies in databases were retrieved and screened. RESULTS In total, 9 articles were selected, including 1630 depressed patients and 3362 controls. The meta-analysis showed that homozygous mutation of NR3C1 rs41423247 was associated with depression in the total population (OR = 0.77, 95% CI = 0.64-0.94, P = .01) and in Caucasians (OR = 0.78, 95% CI = 0.63-0.96, P = .02). CONCLUSION This meta-analysis demonstrates that the NR3C1 rs41423247 homozygous mutation may be a risk factor for depression.
Collapse
Affiliation(s)
- Qiuju Peng
- College of Pharmacy, Guangdong Pharmaceutical University
- Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command
| | - Huacheng Yan
- Center for Disease Control and Prevention of Guangzhou Military Command
| | - Yuguan Wen
- Department of Pharmacy, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chongfa Lai
- Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command
| | - Lei Shi
- College of Pharmacy, Guangdong Pharmaceutical University
- Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command
| |
Collapse
|
17
|
Lee KE, Chung JE, Yi B, Cho YJ, Kim HJ, Lee GY, Kim JH, Chang BC, Gwak HS. Influence of NR3C1 and VDR polymorphisms on stable warfarin dose in patients with mechanical cardiac valves. Int J Cardiol 2017; 236:393-397. [PMID: 28262345 DOI: 10.1016/j.ijcard.2017.02.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/30/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the associations between polymorphisms of VKORC1, CYP2C9, CYP4F2, NR3C1 and VDR genes and stable warfarin doses in Korean patients with mechanical heart valves. METHODS Seventeen single-nucleotide polymorphisms (SNPs) in 204 patients with stable warfarin dose were analyzed: VKORC1 (rs9934438), CYP2C9 (rs1057910), CYP4F2 (rs2108622), NR3C1 (rs41423247, rs1800445, rs56149945, rs10052957, rs6198, rs33388, rs6196, and rs244465), and VDR (rs1544410, rs11568820, rs731236, rs757343, rs7975232, and rs2228570). Statistical analyses were conducted to evaluate the associations of gene variations with stable warfarin dose. Number needed to genotype was obtained by calculating the percentage of patients whose predicted dose was at least 20% higher or lower than the actual stable dose. RESULTS The combined genotypes of rs7975232 and rs2228570 of the VDR gene revealed a significant association with stable warfarin dose, along with VKORC1, CYP2C9, and CYP4F2 polymorphisms. Patients with the genotype combination GT,TT/CT,CC of VDR rs7975232/rs2228570 required significantly higher stable warfarin dose (5.79±2.02mg) than those with the other genotypic combinations (5.19±1.78mg, p=0.034). Multivariate analysis showed that VDR rs7975232/rs2228570 explained 2.0% of the 47.5% variability in overall warfarin dose. Adding VDR SNP combinations to the base model including non-genetic variables (age, sex, and body weight) and genetic variables (VKORC1 rs9934438, CYP2C9 rs1057910, and CYP4F2 rs2108622) gave a number needed to genotype of 41. CONCLUSIONS This study showed that stable warfarin dose is associated with VDR SNPs along with VKORC1, CYP2C9, and CYP4F2 SNPs.
Collapse
Affiliation(s)
- Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jee Eun Chung
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Boram Yi
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yoon Jeong Cho
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Jeong Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gwan Yung Lee
- College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joo Hee Kim
- College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Byung Chul Chang
- Department of Thoracic & Cardiovascular Surgery, Yonsei University Medical Center, Seoul 03722, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
18
|
Pytka K, Młyniec K, Podkowa K, Podkowa A, Jakubczyk M, Żmudzka E, Lustyk K, Sapa J, Filipek B. The role of melatonin, neurokinin, neurotrophic tyrosine kinase and glucocorticoid receptors in antidepressant-like effect. Pharmacol Rep 2017; 69:546-554. [DOI: 10.1016/j.pharep.2017.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
|
19
|
Zhao Z, Xue Y, Hong D, Zhang H, Hu Z, Fan S, Chen H. Polymorphisms in the Glucocorticoid Receptor Gene and Associations with Glucocorticoid-Induced Avascular Osteonecrosis of the Femoral Head. Genet Test Mol Biomarkers 2017; 21:322-327. [PMID: 28346829 DOI: 10.1089/gtmb.2016.0260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhanqin Zhao
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Taizhou, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yun Xue
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Taizhou, China
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Dun Hong
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Hongjun Zhang
- Department of Orthopedics, Bone-Setting Hospital of Luoyang, Luoyang, China
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Shunwu Fan
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Haixiao Chen
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Taizhou, China
| |
Collapse
|
20
|
|
21
|
Rovaris DL, Aroche AP, da Silva BS, Kappel DB, Pezzi JC, Levandowski ML, Hess ARB, Schuch JB, de Almeida RMM, Grassi-Oliveira R, Bau CHD. Glucocorticoid receptor gene modulates severity of depression in women with crack cocaine addiction. Eur Neuropsychopharmacol 2016; 26:1438-1447. [PMID: 27397864 DOI: 10.1016/j.euroneuro.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/03/2016] [Accepted: 06/18/2016] [Indexed: 12/12/2022]
Abstract
Crack cocaine addicted inpatients that present more severe withdrawal symptoms also exhibit higher rates of depressive symptoms. There is strong evidence that the identification of genetic variants in depression is potentialized when reducing phenotypic heterogeneity by studying selected groups. Since depression has been associated to dysregulation of the hypothalamic-pituitary-adrenal axis, this study evaluated the effects of SNPs in stress-related genes on depressive symptoms of crack cocaine addicts at early abstinence and over the detoxification treatment (4th, 11th and 18th day post admission). Also, the role of these SNPs on the re-hospitalization rates after 2.5 years of follow-up was studied. One hundred eight-two women were enrolled and eight SNPs in four genes (NR3C2, NR3C1, FKBP5 and CRHR1) were genotyped. A significant main effect of NR3C1-rs41423247 was found, where the C minor allele increased depressive symptoms at early abstinence. This effect remained significant after 10,000 permutations to account for multiple SNPs tested (P=0.0077). There was no effect of rs41423247 on the course of detoxification treatment, but a slight effect of rs41423247 at late abstinence was detected (P=0.0463). This analysis suggests that the presence of at least one C allele is worse at early abstinence, while only CC genotype appears to increase depressive symptoms at late abstinence. Also, a slight effect of rs41423247 C minor allele increasing the number of re-hospitalizations after 2.5 years was found (P=0.0413). These findings are in agreement with previous studies reporting an influence of rs41423247 on sensitivity to glucocorticoids and further elucidate its resulting effects on depressive-related traits.
Collapse
Affiliation(s)
- Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angelita P Aroche
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Health Sciences Institute, Universidade Feevale, Novo Hamburgo, Brazil
| | - Bruna S da Silva
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Djenifer B Kappel
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlio C Pezzi
- Postgraduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Mateus L Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brazil
| | - Adriana R B Hess
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior (LPNeC), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosa M M de Almeida
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior (LPNeC), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
22
|
Some GCR Polymorphisms (N363S, ER22/23EK, and Bcl-1) May Influence Steroid-induced Toxicities and Survival Rates in Children With ALL. J Pediatr Hematol Oncol 2016; 38:334-40. [PMID: 27050122 DOI: 10.1097/mph.0000000000000535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated whether an altered individual glucocorticoid sensitivity due to particular glucocorticoid receptor single-nucleotide polymorphisms (SNPs) (N363S, ER22/23EK, and Bcl-1) influences the susceptibility to steroid-related toxicities, prognostic factors, and survival rates in children with acute lymphoblastic leukemia. In total, 346 pediatric patients with acute lymphoblastic leukemia were enrolled in our study. Their carrier status was investigated by allele-specific polymerase chain reaction analysis. Clinical and laboratory signs of glucocorticoid-related toxicities, day-8 prednisone response, 5-year event-free survival, and 5-year overall survival rates were analyzed and compared retrospectively. Hepatotoxicity occurred significantly more often in 363S carriers (P=0.004), and glucose metabolism abnormalities were more common in 363S carriers (P=0.001), but did not occur in patients with the ER22/23EK SNP. Hypertension and central nervous system/behavioral changes did not occur in patients with the ER22/23EK SNP. None of the patients with the N363S SNP, the ER22/23EK polymorphism, or the GG genotype for the Bcl-1 polymorphism had a poor prednisone response. The 363S carriers had significantly better 5-year event-free survival (P=0.012) and 5-year overall survival (P=0.013) rates compared with noncarriers. The Bcl-1 SNP was not associated with any of the toxicities investigated or survival. Children with the N363S polymorphism in the glucocorticoid receptor gene were more prone to steroid-related toxicities, whereas those with the ER22/23EK polymorphism were less susceptible. Children with the N363S polymorphism may have more favorable survival rates.
Collapse
|
23
|
Interactions between inflammatory mediators and corticosteroids regulate transcription of genes within the Kynurenine Pathway in the mouse hippocampus. J Neuroinflammation 2016; 13:98. [PMID: 27142940 PMCID: PMC4855471 DOI: 10.1186/s12974-016-0563-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 11/24/2022] Open
Abstract
Background Increased tryptophan metabolism towards the production of kynurenine via indoleamine/tryptophan-2,3-dioxygenases (DOs: Ido1, Ido2, and Tdo2) is strongly associated with the prevalence of major depressive disorder in patients and the induction of depression-like behaviors in animal models. Several studies have suggested that activation of the immune system or elevated corticosteroids drive DO expression; however, mechanisms linking cytokines, corticosteroids, and DOs to psychiatric diseases remain unclear. Various attempts have been made to correlate DO gene expression within the brain to behavior, but disparate results have been obtained. We believe that discrepancies arise as a result of the under-recognized existence of multiple mRNA transcripts for each DO. Unfortunately, there are no reports regarding how the multiple transcripts are distributed or regulated. Here, we used organotypic hippocampal slice cultures (OHSCs) to directly test the ability of inflammatory and stress mediators to differentially regulate DO transcripts. Methods OHSCs were treated with pro-inflammatory mediators (interferon-gamma (IFNγ), lipopolysaccharide (LPS), and polyinosine-polycytidylic acid (pI:C)) with or without corticosteroids (dexamethasone (Dex: glucocorticoid receptor (GR) agonist), aldosterone (Aldo: mineralocorticoid receptor (MR) agonist), or corticosterone (Cort: GR/MR agonist)). Results IFNγ induced Ido1-full length (FL) and Ido1-variant (v) expression, and surprisingly, Dex, Cort, and Aldo interacted with IFNγ to further elevate expression of Ido1, importantly, in a transcript dependent manner. IFNγ, LPS, and pI:C increased expression of Ido2-v1 and Ido2-v3 transcripts, whereas only IFNγ increased expression of Ido2-v2. Overall Ido2 transcripts were relatively unaffected by GR or MR activation. Naïve mouse brain expresses multiple Tdo2 transcripts. Dex and Cort induced expression of only one of the three Tdo2 transcripts (Tdo2-FL) in OHSCs. Conclusions These results establish that multiple transcripts for all three DOs are expressed within the mouse hippocampus, under the control of distinct regulatory pathways. These data identify a previously unrecognized interaction between corticosteroid receptor activation and inflammatory signals on DO gene expression, which suggest that corticosteroids act to differentially enhance gene expression of Ido1, Ido2, and Tdo2.
Collapse
|
24
|
Udina M, Navinés R, Egmond E, Oriolo G, Langohr K, Gimenez D, Valdés M, Gómez-Gil E, Grande I, Gratacós M, Kapczinski F, Artigas F, Vieta E, Solà R, Martín-Santos R. Glucocorticoid Receptors, Brain-Derived Neurotrophic Factor, Serotonin and Dopamine Neurotransmission are Associated with Interferon-Induced Depression. Int J Neuropsychopharmacol 2016; 19:pyv135. [PMID: 26721949 PMCID: PMC4851270 DOI: 10.1093/ijnp/pyv135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/24/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The role of inflammation in mood disorders has received increased attention. There is substantial evidence that cytokine therapies, such as interferon alpha (IFN-alpha), can induce depressive symptoms. Indeed, proinflammatory cytokines change brain function in several ways, such as altering neurotransmitters, the glucocorticoid axis, and apoptotic mechanisms. This study aimed to evaluate the impact on mood of initiating IFN-alpha and ribavirin treatment in a cohort of patients with chronic hepatitis C. We investigated clinical, personality, and functional genetic variants associated with cytokine-induced depression. METHODS We recruited 344 Caucasian outpatients with chronic hepatitis C, initiating IFN-alpha and ribavirin therapy. All patients were euthymic at baseline according to DSM-IV-R criteria. Patients were assessed at baseline and 4, 12, 24, and 48 weeks after treatment initiation using the Patient Health Questionnaire (PHQ), the Hospital Anxiety and Depression Scale (HADS), and the Temperament and Character Inventory (TCI). We genotyped several functional polymorphisms of interleukin-28 (IL28B), indoleamine 2,3-dioxygenase (IDO-1), serotonin receptor-1A (HTR1A), catechol-O-methyl transferase (COMT), glucocorticoid receptors (GCR1 and GCR2), brain-derived neurotrophic factor (BDNF), and FK506 binding protein 5 (FKBP5) genes. A survival analysis was performed, and the Cox proportional hazards model was used for the multivariate analysis. RESULTS The cumulative incidence of depression was 0.35 at week 24 and 0.46 at week 48. The genotypic distributions were in Hardy-Weinberg equilibrium. Older age (p = 0.018, hazard ratio [HR] per 5 years = 1.21), presence of depression history (p = 0.0001, HR = 2.38), and subthreshold depressive symptoms at baseline (p = 0.005, HR = 1.13) increased the risk of IFN-induced depression. So too did TCI personality traits, with high scores on fatigability (p = 0.0037, HR = 1.17), impulsiveness (p = 0.0200 HR = 1.14), disorderliness (p = 0.0339, HR = 1.11), and low scores on extravagance (p = 0.0040, HR = 0.85). An interaction between HTR1A and COMT genes was found. Patients carrying the G allele of HTR1A plus the Met substitution of the COMT polymorphism had a greater risk for depression during antiviral treatment (HR = 3.83) than patients with the CC (HTR1A) and Met allele (COMT) genotypes. Patients carrying the HTR1A CC genotype and the COMT Val/Val genotype (HR = 3.25) had a higher risk of depression than patients with the G allele (HTR1A) and the Val/Val genotype. Moreover, functional variants of the GCR1 (GG genotype: p = 0.0436, HR = 1.88) and BDNF genes (Val/Val genotype: p = 0.0453, HR = 0.55) were associated with depression. CONCLUSIONS The results of the study support the theory that IFN-induced depression is associated with a complex pathophysiological background, including serotonergic and dopaminergic neurotransmission as well as glucocorticoid and neurotrophic factors. These findings may help to improve the management of patients on antiviral treatment and broaden our understanding of the pathogenesis of mood disorders.
Collapse
MESH Headings
- Adult
- Antiviral Agents/therapeutic use
- Brain-Derived Neurotrophic Factor/genetics
- Catechol O-Methyltransferase/genetics
- Depression/chemically induced
- Depression/epidemiology
- Depression/genetics
- Depression/immunology
- Female
- Genetic Predisposition to Disease
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/epidemiology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/psychology
- Humans
- Incidence
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Interferon-alpha/adverse effects
- Interferon-alpha/therapeutic use
- Interferons
- Interleukins/genetics
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Prospective Studies
- Receptor, Serotonin, 5-HT1A/genetics
- Receptors, Glucocorticoid/genetics
- Ribavirin/therapeutic use
- Tacrolimus Binding Proteins/genetics
- Treatment Outcome
- White People/genetics
Collapse
Affiliation(s)
- M Udina
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - R Navinés
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - E Egmond
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - G Oriolo
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - K Langohr
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - D Gimenez
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - M Valdés
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - E Gómez-Gil
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - I Grande
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - M Gratacós
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - F Kapczinski
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - F Artigas
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - E Vieta
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - R Solà
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - R Martín-Santos
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| |
Collapse
|
25
|
Burke MT, Isbel N, Barraclough KA, Jung JW, Wells JW, Staatz CE. Genetics and nonmelanoma skin cancer in kidney transplant recipients. Pharmacogenomics 2016; 16:161-72. [PMID: 25616102 DOI: 10.2217/pgs.14.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Kidney transplant recipients (KTRs) have a 65- to 250-fold greater risk than the general population of developing nonmelanoma skin cancer. Immunosuppressive drugs combined with traditional risk factors such as UV radiation exposure are the main modifiable risk factors for skin cancer development in transplant recipients. Genetic variation affecting immunosuppressive drug pharmacokinetics and pharmacodynamics has been associated with other transplant complications and may contribute to differences in skin cancer rates between KTRs. Genetic polymorphisms in genes encoding the prednisolone receptor, GST enzyme, MC1R, MTHFR enzyme and COX-2 enzyme have been shown to increase the risk of nonmelanoma skin cancer in KTRs. Genetic association studies may improve our understanding of how genetic variation affects skin cancer risk and potentially guide immunosuppressive treatment and skin cancer screening in at risk individuals.
Collapse
Affiliation(s)
- Michael T Burke
- Department of Nephrology, University of Queensland at the Princess Alexandra Hospital, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Walther A, Rice T, Kufert Y, Ehlert U. Neuroendocrinology of a Male-Specific Pattern for Depression Linked to Alcohol Use Disorder and Suicidal Behavior. Front Psychiatry 2016; 7:206. [PMID: 28096796 PMCID: PMC5206577 DOI: 10.3389/fpsyt.2016.00206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
Epidemiological studies show low rates of diagnosed depression in men compared to women. At the same time, high rates of alcohol use disorders (AUDs) and completed suicide are found among men. These data suggest that a male-specific pattern for depression may exist that is linked to AUDs and suicidal behavior. To date, no underlying neuroendocrine model for this specific pattern of male depression has been suggested. In this paper, we integrate findings related to this specific pattern of depression with underlying steroid secretion patterns, polymorphisms, and methylation profiles of key genes in order to detail an original neuroendocrine model of male-specific depression. Low circulating levels of sex steroids seem to increase the vulnerability for male depression, while concomitant high levels of glucocorticoids further intensify this vulnerability. Interactions of hypothalamus-pituitary-gonadal (HPG) and hypothalamus-pituitary-adrenocortical (HPA) axis-related hormones seem to be highly relevant for a male-specific pattern of depression linked to AUDs and suicidal behavior. Moreover, genetic variants and the epigenetic profiles of the androgen receptor gene, well-known depression related genes, and HPA axis-related genes were shown to further interact with men's steroid secretion and thus may further contribute to the proposed male-specific pattern for depression. This mini-review points out the multilevel interactions between the HPG and HPA axis for a male-specific pattern of depression linked to AUDs and suicidal behavior. An integration of multilevel interactions within the three-hit concept of vulnerability and resilience concludes the review.
Collapse
Affiliation(s)
- Andreas Walther
- Clinical Psychology and Psychotherapy, University of Zurich , Zurich , Switzerland
| | - Timothy Rice
- Department of Psychiatry - Child and Adolescent Inpatient Service, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Yael Kufert
- Department of Psychiatry - Child and Adolescent Inpatient Service, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Ulrike Ehlert
- Clinical Psychology and Psychotherapy, University of Zurich , Zurich , Switzerland
| |
Collapse
|
27
|
Smart C, Strathdee G, Watson S, Murgatroyd C, McAllister-Williams RH. Early life trauma, depression and the glucocorticoid receptor gene--an epigenetic perspective. Psychol Med 2015; 45:3393-3410. [PMID: 26387521 DOI: 10.1017/s0033291715001555] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Hopes to identify genetic susceptibility loci accounting for the heritability seen in unipolar depression have not been fully realized. Family history remains the 'gold standard' for both risk stratification and prognosis in complex phenotypes such as depression. Meanwhile, the physiological mechanisms underlying life-event triggers for depression remain opaque. Epigenetics, comprising heritable changes in gene expression other than alterations of the nucleotide sequence, may offer a way to deepen our understanding of the aetiology and pathophysiology of unipolar depression and optimize treatments. A heuristic target for exploring the relevance of epigenetic changes in unipolar depression is the hypothalamic-pituitary-adrenal (HPA) axis. The glucocorticoid receptor (GR) gene (NR3C1) has been found to be susceptible to epigenetic modification, specifically DNA methylation, in the context of environmental stress such as early life trauma, which is an established risk for depression later in life. METHOD In this paper we discuss the progress that has been made by studies that have investigated the relationship between depression, early trauma, the HPA axis and the NR3C1 gene. Difficulties with the design of these studies are also explored. RESULTS Future efforts will need to comprehensively address epigenetic natural histories at the population, tissue, cell and gene levels. The complex interactions between the epigenome, genome and environment, as well as ongoing nosological difficulties, also pose significant challenges. CONCLUSIONS The work that has been done so far is nevertheless encouraging and suggests potential mechanistic and biomarker roles for differential DNA methylation patterns in NR3C1 as well as novel therapeutic targets.
Collapse
Affiliation(s)
- C Smart
- Institute of Neuroscience,Newcastle University,Newcastle upon Tyne,UK
| | - G Strathdee
- Northern Institute for Cancer Research,Newcastle University,Newcastle upon Tyne,UK
| | - S Watson
- Institute of Neuroscience,Newcastle University,Newcastle upon Tyne,UK
| | - C Murgatroyd
- School of Healthcare Science,Manchester Metropolitan University,Manchester,UK
| | | |
Collapse
|
28
|
Tan EC, Chua TE, Lee TMY, Tan HS, Ting JLY, Chen HY. Case-control study of glucocorticoid receptor and corticotrophin-releasing hormone receptor gene variants and risk of perinatal depression. BMC Pregnancy Childbirth 2015; 15:283. [PMID: 26518448 PMCID: PMC4628323 DOI: 10.1186/s12884-015-0720-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 10/23/2015] [Indexed: 01/04/2023] Open
Abstract
Background Depression during pregnancy or after childbirth is the most frequent perinatal illness affecting women of reproductive age. It could result in unfavourable outcomes for both women and their newborns. The incidence of perinatal depression is higher for those with family history of depression and other mental illness, suggesting the contribution of genetic factors. There is postulation that disruption or fluctuation of reproductive hormones could play a part in women who are sensitive to such changes. Methods This is a case-control study comparing the frequencies of candidate gene variants in patients with perinatal depression with controls. Patients of Chinese descent (N = 725) were recruited from the outpatient clinics of the hospital between 2010 and 2013. Controls were patients who came for postnatal consultations at the obstetrics clinics and scored ≤ 7 on the Edinburgh Postnatal Depression Scale (EPDS) at the postnatal screening programme of the hospital. Cases with confirmed diagnosis of clinical (major) depression related to pregnancy/postpartum were recruited from the hospital’s outpatient clinic. Genomic DNA was extracted from saliva samples and genotyped for the polymorphisms of interest. Differences between groups were assessed by chi-square analysis. Results CRHR1 rs242939 and rs1876828 were not polymorphic in the study population. There was no statistically significant association of perinatal depression for CRHR1 rs242941 and GR rs41423247 (BclI). When all subjects were grouped based on family history of mental illness, there was a statistically significant association of CRHR1 rs242941 with family history regardless of depression status (P = 0.043). There was also a statistically significant difference for GR rs41423247 and regularity of menstrual periods (P < 0.000). Although not statistically significant, women with perinatal depression showed a trend towards higher frequency of self-reported menstrual irregularity. Conclusions No evidence was found for the association of any of the genetic markers with perinatal depression in this study cohort. Instead, the possible genetic links were found in women with positive family history of mental illness and menstrual irregularity, suggesting these could be identifying risk markers for women.
Collapse
Affiliation(s)
- Ene-Choo Tan
- KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore. .,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Tze-Ern Chua
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Psychological Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Theresa M Y Lee
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Psychological Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Hui-San Tan
- KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Joe L Y Ting
- KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| | - Helen Y Chen
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Psychological Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore.
| |
Collapse
|
29
|
Zou YF, Xu JH, Pan FM, Tao JH, Xu SQ, Xiao H, Liu S, Cai J, Lian L, Chen PL, Wang DG, Liu SX, Liang CM, Ye QL, Tian G, Wu M, Gu YY, Pan HF, Su H, Ye DQ. Glucocorticoid receptor genetic polymorphisms is associated with improvement of health-related quality of life in Chinese population with systemic lupus erythematosus. Clin Rheumatol 2015; 34:1537-44. [DOI: 10.1007/s10067-015-3027-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 06/15/2015] [Accepted: 07/17/2015] [Indexed: 01/09/2023]
|
30
|
Hardeveld F, Spijker J, Peyrot WJ, de Graaf R, Hendriks SM, Nolen WA, Penninx BWJH, Beekman ATF. Glucocorticoid and mineralocorticoid receptor polymorphisms and recurrence of major depressive disorder. Psychoneuroendocrinology 2015; 55:154-63. [PMID: 25765757 DOI: 10.1016/j.psyneuen.2015.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Previous research found that variants of the glucocorticoid receptor (GR) (9β, ER22/23EK, BclI, TthIIIl, NR3C1-1 and N363S) and mineralocorticoid receptor (MR) gene polymorphism (-2 C/G and I180V) are associated with both glucocorticoid (GC) sensitivity and major depressive disorder (MDD). There are no data which investigated prospectively whether these variants are associated with recurrence of MDD. METHODS Data were derived from the Netherlands Study of Depression and Anxiety (NESDA) which used the Composite International Diagnostic Interview (CIDI) to determine MDD. Polymorphisms in the GR and MR gene were determined and haplotypes were characterized. We analyzed in retrospect whether recurrent MDD (n=951) in comparison with first onset MDD (n=919) was associated with polymorphisms in the GR and MR gene. Furthermore, we analyzed prospectively for 4 years the time to recurrence among 683 subjects with a remitted MDD diagnosis. Time to recurrence of MDD was assessed using the CIDI and a life chart interview. Additionally, we analyzed interactions of the investigated polymorphisms with childhood trauma and recent negative life events. RESULTS GR and MR gene polymorphisms and derived haplotypes were not associated with recurrence of depression in both retrospective and prospective analyses. In addition, no consistent interactions between GR and MR polymorphisms and childhood trauma or life events were found. CONCLUSION This study did not find consistent associations between GR and MR gene polymorphisms, interactions between GR and MR haplotypes and stressful conditions and recurrence of MDD.
Collapse
Affiliation(s)
- Florian Hardeveld
- Pro Persona, Institute for Mental Health Care, PO Box 70, 6710 RR Ede, The Netherlands.
| | - Jan Spijker
- Pro Persona, Institute for Mental Health Care, PO Box 70, 6710 RR Ede, The Netherlands; Netherlands Institute of Mental Health and Addiction, PO Box 725, 3500 AS Utrecht, The Netherlands; Behavioral Science Institute, Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Wouter J Peyrot
- Department of Psychiatry/EMGO Institute for Health and Care Research/Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Ron de Graaf
- Netherlands Institute of Mental Health and Addiction, PO Box 725, 3500 AS Utrecht, The Netherlands
| | - Sanne M Hendriks
- Pro Persona, Institute for Mental Health Care, PO Box 70, 6710 RR Ede, The Netherlands
| | - Willem A Nolen
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, PO Box 72, 9700 AB Groningen, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry/EMGO Institute for Health and Care Research/Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Aartjan T F Beekman
- Department of Psychiatry/EMGO Institute for Health and Care Research/Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
31
|
Teraishi T, Hori H, Sasayama D, Matsuo J, Ogawa S, Ishida I, Nagashima A, Kinoshita Y, Ota M, Hattori K, Higuchi T, Kunugi H. Personality in remitted major depressive disorder with single and recurrent episodes assessed with the Temperament and Character Inventory. Psychiatry Clin Neurosci 2015; 69:3-11. [PMID: 25041061 DOI: 10.1111/pcn.12218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/21/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
Abstract
AIM Previous studies consistently reported increased harm avoidance (HA) assessed with the Temperament and Character Inventory (TCI) in patients with major depressive disorder (MDD). However, such findings may have been related with depression severity and number of depressive episodes. The aims of the present study were twofold: to examine TCI personality profile in remitted MDD (DSM-IV) patients and to compare TCI personality between MDD patients with single episode (SGL-MDD) and those with recurrent episodes (REC-MDD) in order to elucidate personality profile associated with recurrence. METHODS TCI was administered to 86 outpatients with remitted SGL-MDD (12 male and 17 female patients; mean age 43.2 ± 12.1 years) and REC-MDD (26 male and 31 female patients; 40.3 ± 11.6 years), and 529 healthy controls (225 men and 304 women; 43.4 ± 15.5 years), matched for age, sex and education years. Logistic regression analyses were performed in which single/recurrent episodes of depression were the dependent variable and age, sex, age of onset, family history of psychiatric disease and TCI scores were entered as possible predictors. RESULTS The remitted MDD patients had significantly higher scores on HA (P < 0.001) and lower scores on self-directedness (P < 0.001), compared with the controls. HA (P = 0.03), its subscore, fatigability (P = 0.03), and family history of psychiatric disease were found to be positive predictors for recurrence. CONCLUSION There are differences in personality profile between remitted MDD patients and controls, and between remitted REC-MDD and SGL-MDD patients, suggesting that they are trait markers. HA and fatigability might be useful to assess risk for recurrence of depression.
Collapse
Affiliation(s)
- Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ventura-Juncá R, Symon A, López P, Fiedler JL, Rojas G, Heskia C, Lara P, Marín F, Guajardo V, Araya AV, Sasso J, Herrera L. Relationship of cortisol levels and genetic polymorphisms to antidepressant response to placebo and fluoxetine in patients with major depressive disorder: a prospective study. BMC Psychiatry 2014; 14:220. [PMID: 25086452 PMCID: PMC4149200 DOI: 10.1186/s12888-014-0220-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/23/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Increased cortisol levels and genetic polymorphisms have been related to both major depressive disorder and antidepressant treatment outcome. The aim of this study is to evaluate the relationship between circadian salivary cortisol levels, cortisol suppression by dexamethasone and genetic polymorphisms in some HPA axis-related genes to the response to placebo and fluoxetine in depressed patients. METHODS The diagnosis and severity of depression were performed using the Mini International Neuropsychiatric Interview (M.I.N.I.) and Hamilton depression scale (HAM-D17), respectively. Euthyroid patients were treated with placebo (one week) followed by fluoxetine (20 mg) (two months). Severity of depression was re-evaluated after placebo, three weeks and two months of fluoxetine treatments. Placebo response was defined as HAM-D17 score reductions of at least 25% and to < 15. Early response and response were reductions of at least 50% after three weeks and two months, and remission with ≤ 7 after two months. Plasma TSH, free-T4, circadian salivary cortisol levels and cortisol suppression by dexamethasone were evaluated. Seven genetic polymorphisms located in the Corticotrophin-releasing-hormone-receptor-1 (rs242939, rs242941, rs1876828), Corticotrophin-releasing-hormone-receptor-2 (rs2270007), Glucocorticoid-receptor (rs41423247), FK506-binding-protein-5 (rs1360780), and Arginine-vasopressin (rs3729965) genes were determined. Association analyses between response to placebo/fluoxetine and polymorphism were performed by chi-square or Fisher exact test. Cortisol levels were compared by t-test, ANOVA and the general linear model for repeated measures. RESULTS 208 depressed patients were recruited, 187 of whom were euthyroid. Placebo responders, fluoxetine responders and remitters exhibited significantly lower circadian cortisol levels than those who did not respond (p-values of 0.014, 0.008 and 0.021 respectively). Patients who abandoned treatment before the third week also exhibited a trend to low cortisol levels (p = 0.057). The polymorphisms rs242939 (CRHR1) and rs2270007 (CRHR2) were not in Hardy-Weinberg equilibrium. Only the rs242939 polymorphism (CRHR1) exhibited association with early response (three weeks) to fluoxetine (p-value = 0.043). No other association between outcomes and polymorphisms was observed. CONCLUSIONS These results support the clinical relevance of low salivary cortisol levels as a predictor of antidepressant response, either to placebo or to fluoxetine. Only one polymorphism in the CRHR1 gene was associated with the early response. Other factors may be involved in antidepressant response, although further studies are needed to identify them.
Collapse
Affiliation(s)
- Raúl Ventura-Juncá
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia, Santiago Chile ,Escuela de Psicología, Universidad de Los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Adriana Symon
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia, Santiago Chile
| | - Pamela López
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia, Santiago Chile
| | - Jenny L Fiedler
- Laboratorio de Neuroplasticidad y Neurogenética, Departamento de Bioquímica y Biología Molecular, Universidad de Chile, Calle Sergio Livingstone Pohlhammer 1007 (ex Olivos), Independencia, Santiago, Chile
| | - Graciela Rojas
- Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile, Av. La Paz 1003, Recoleta, Santiago, Chile
| | - Cristóbal Heskia
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia, Santiago Chile
| | - Pamela Lara
- Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile, Av. La Paz 1003, Recoleta, Santiago, Chile
| | - Felipe Marín
- Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile, Av. La Paz 1003, Recoleta, Santiago, Chile
| | - Viviana Guajardo
- Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile, Av. La Paz 1003, Recoleta, Santiago, Chile
| | - A Verónica Araya
- Departamento de Endocrinología, Universidad de Chile, Santos Dumont 999, Independencia, Santiago, Chile
| | - Jaime Sasso
- Instituto de Investigaciones Farmacológicas y Toxicológicas (IFT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luisa Herrera
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia, Santiago Chile
| |
Collapse
|
33
|
Jacob CP, Weber H, Retz W, Kittel-Schneider S, Heupel J, Renner T, Lesch KP, Reif A. Acetylcholine-metabolizing butyrylcholinesterase (BCHE) copy number and single nucleotide polymorphisms and their role in attention-deficit/hyperactivity syndrome. J Psychiatr Res 2013; 47:1902-8. [PMID: 24041656 DOI: 10.1016/j.jpsychires.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 07/12/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022]
Abstract
A previous genome-wide screen for copy number variations (CNVs) in attention deficit/hyperactivity disorder (ADHD) revealed a de novo chromosome 3q26.1 deletion in one of the patients. Candidate genes at this locus include the acetylcholine-metabolizing butyrylcholinesterase (BCHE) expressing gene (OMIM #177400), which is of particular interest. The present study investigates the hypothesis that the heterozygous deletion of the BCHE gene is associated with adult ADHD (aADHD). Ina first step, we screened 348 aADHD patients and 352 controls for stretches of loss of heterozygosity (LOH) across the entire BCHE gene to screen for the deletion. Our second aim was to clarify whether BCHE single nucleotide polymorphisms (SNPs) themselves influence the risk towards ADHD. Putative functional consequences of associated SNPs as well as their un-typed proxies were predicted by several bioinformatic tools. 96 individuals displayed entirely homozygous genotype reads in all 12 examined SNPs, making them possible candidates to harbor a heterozygous BCHE deletion. DNA from these 96 probands was further analyzed by real-time PCR using a BCHE-specific CNV assay. However, no deletion was found. Of the 12 tag SNPs that passed inclusion criteria, rs4680612 and rs829508 were significantly associated with aADHD, as their minor alleles occurred more often in cases than in controls (p = 0.018 and p = 0.039, respectively). The risk variant rs4680612 is located in the transcriptional control region of the gene and predicted to disrupt a binding site for MYT-1, which has previously been associated with mental disorders. However, when examining a second independent adult ADHD sample of 353 cases, the association did not replicate. When looking up the deletion in three genome-wide screens for CNV in ADHD and combining it with the present study, it became apparent that 3 from a total of 1030 ADHD patients, but none of 5787 controls, featured a deletion of the BCHE promoter region including rs4680612 (p = 0.00004). Taken together, there are several lines of evidence suggesting a potential involvement of BCHE in the etiopathology of ADHD, as a rare hemizygous deletion as well as a common SNP in the same region are associated with disease, although with different penetrance. Both variations result in the disruption of the binding site of the transcription factor MYT-1 suggesting epistatic effects of BCHE and MYT-1 in the pathogenesis of ADHD. As we were not able to replicate the SNP association, our findings should be considered preliminary and call for larger studies in extended phenotypes.
Collapse
Affiliation(s)
- Christian P Jacob
- Department of Psychiatry and Psychotherapy, University of Wuerzburg, Fuechsleinstr. 15, 97080 Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 2013; 34:518-30. [PMID: 23953592 PMCID: PMC3951203 DOI: 10.1016/j.tips.2013.07.003] [Citation(s) in RCA: 592] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are steroid hormones regulated in a circadian and stress-associated manner to maintain various metabolic and homeostatic functions that are necessary for life. Synthetic glucocorticoids are widely prescribed drugs for many conditions including asthma, chronic obstructive pulmonary disease (COPD), and inflammatory disorders of the eye. Research in the past few years has begun to unravel the profound complexity of glucocorticoid signaling and has contributed remarkably to improved therapeutic strategies. Glucocorticoids signal through the glucocorticoid receptor (GR), a member of the superfamily of nuclear receptors, in both genomic and non-genomic ways in almost every tissue in the human body. In this review, we provide an update on glucocorticoid receptor signaling and highlight the role of GR signaling in physiological and pathophysiological conditions in the major organ systems in the human body.
Collapse
Affiliation(s)
- Mahita Kadmiel
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T.W. Alexander Dr., MD F3-07, Research Triangle Park, NC 27709
| | - John A. Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T.W. Alexander Dr., MD F3-07, Research Triangle Park, NC 27709
| |
Collapse
|