1
|
Hajheidari N, Lorigooini Z, Mohseni R, Amini-Khoei H. Umbelliprenin attenuates comorbid behavioral disorders in acetic acid-induced colitis in mice: mechanistic insights into hippocampal oxidative stress and neuroinflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2039-2051. [PMID: 39230587 DOI: 10.1007/s00210-024-03416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Inflammatory bowel disease (IBD) is often accompanied by psychiatric disorders. Emerging evidence suggests that neuroinflammation and oxidative stress contribute to the psychiatric symptoms associated with IBD. Umbelliprenin (UMB) possesses several pharmacological properties, including anti-inflammatory and antioxidant effects. This study aimed to investigate the protective effects of UMB on comorbid behavioral disorders in a mouse model of experimental colitis, focusing on its potential anti-neuroinflammatory and antioxidant activities. After inducing colitis with acetic acid, male NMRI mice were treated for 7 consecutive days with UMB, saline, or dexamethasone. Behavioral assessments included the forced swimming test (FST), splash test, open field test (OFT), and elevated plus maze (EPM). Histopathological changes in the colon were evaluated, and total antioxidant capacity (TAC), malondialdehyde (MDA) levels, and the expression of inflammatory genes (TNFα, IL1β, and TLR4) were measured in the hippocampus. Colitis was associated with increased immobility time in the FST, reduced entries and time spent in the open arms of the EPM, decreased grooming behavior in the splash test, and reduced time spent in the central zone of the OFT. Colitis also resulted in a reduction in TAC and an increase in MDA levels and inflammatory gene expression in the hippocampus. UMB treatment mitigated the behavioral disorders associated with colitis, reduced neuroinflammation and oxidative stress in the hippocampus, and alleviated histopathological alterations in the colon. In conclusion, UMB may reduce behavioral disorders induced by colitis by decreasing oxidative stress and neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Negar Hajheidari
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
2
|
Bijani S, Naserzadeh P, Hosseini MJ. Protective impact of Betanin against noise and scrotal hyperthermia on testicular toxicity in Wistar rat: Role of apoptosis, oxidative stress and inflammation. Heliyon 2024; 10:e38289. [PMID: 39386871 PMCID: PMC11461989 DOI: 10.1016/j.heliyon.2024.e38289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
The heat exposure and white noise can induce damage on reproductive organs. The main objective of this study is to observe, if betanin administration could ameliorate oxidative stress, apoptosis and inflammation in testis of rodents following noise and scrotal hyperthermia exposure. Wistar rats were divided into 6 groups; control, betanin, noise, hyperthermia and two treatment groups. Scrotal hyperthermia model was performed by heat exposure of rat testicular (43 °C) for 15 min and 3 times per weeks for 14 days. Noise induction model was done following exposure of rats with 100-dB noise level for 14 days and 8 h daily similar to real exposure condition in human. Betanin was administrated at the sub-effective dose (15 mg/kg) by gavage route for 4 weeks (5 times a week) to male rats. The animals were euthanized and testis were dissected and stored at -80 °C. Then, the oxidative stress biomarkers (MDA and GSH), apoptosis (cytochrome c & Annexin V), and inflammatory cytokines (TNF-α & IL-6) were measured by the real time polymerase chain reaction (RT-PCR) of testis collected samples. The data output demonstrates the impact of noise and hyperthermia in testicular toxicity induction by mitigating oxidative damage, apoptosis and inflammatory mediators. Following treatment with 15 mg/kg per day of betanin, lipid peroxidation and GSH content have been modulated, and TNF-α and IL-6 gene expression has been declined. Our results revealed that in Wistar rats, betanin displays protective effects against noise and scrotal hyperthermia-induced acute testicular toxicity through the inhibition of oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parvaneh Naserzadeh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Gholami M, Ghelichkhani Z, Aghakhani R, Klionsky DJ, Motaghinejad O, Motaghinejad M, Koohi MK, Hassan J. Minocycline Acts as a Neuroprotective Agent Against Tramadol-Induced Neurodegeneration: Behavioral and Molecular Evidence. Int J Prev Med 2024; 15:47. [PMID: 39539580 PMCID: PMC11559692 DOI: 10.4103/ijpvm.ijpvm_10_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024] Open
Abstract
Background Previous evidence indicates that tramadol (TRA) can lead to neurodegenerative events and minocycline (MIN) has neuroprotective properties. Aim of the Study The current research evaluated the neuroprotective effects of MIN for TRA-promoted neurodegeneration. Methods Sixty adult male rats were placed into the following groups: 1 (received 0.7 ml/rat of normal saline, IP), 2 (received 50 mg/kg of TRA, i.p.), 3, 4, 5 (administered TRA as 50 mg/kg simultaneously with MIN at 20, 40, and 60 mg/kg, IP, respectively), and 6 (received MIN alone as 60 mg/kg, IP). The treatment procedure was 21 days. An open field test (OFT) was used to measure motor activity and anxiety-related behavior. Furthermore, oxidative stress; hippocampal inflammation; apoptotic parameters as well as activity of mitochondrial complexes I, II, III, and IV; ATP levels; and mitochondrial membrane potential (MMP) were evaluated. In addition, histomorphological alteration was assessed in two regions of the hippocampus: Cornu Ammonis (CA1) and dentate gyrus (DG). Results MIN treatment could inhibit TRA-induced anxiety and motor activity disturbances (P < 0.05). In addition, MIN could attenuate reactive oxygen species (ROS), H2O2, oxidized glutathione (GSSG), and malondialdehyde (MDA) level (P < 0.05), while there was increased reduced glutathione (GSH), total antioxidant capacity (TAC), ATP, MMP, and BCL2 levels (P < 0.05) and also elevation of SOD, GPX, GSR (P < 0.05), and mitochondrial complexes I, II, III, and IV activity (P < 0.05) in TRA-treated rats. In consistence with these findings, MIN could reduce TNF/TNF-α, IL1B/IL1-β, BAX, and CASP3 levels (P < 0.05) in TRA-treated rats. MIN also restored the quantitative (P < 0.05) and qualitative histomorphological sequels of TRA in both CA1 and DG areas of the hippocampus. Conclusions MIN probably has repositioning capability for inhibition of TRA-induced neurodegeneration via modulation of inflammation, oxidative stress, apoptosis, and mitochondrial disorders.
Collapse
Affiliation(s)
- Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Aghakhani
- Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | | | - Ozra Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalal Hassan
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Wang K, Huang S, Fu D, Yang X, Ma L, Zhang T, Zhao W, Deng D, Ding Y, Zhang Y, Huang L, Chen X. The neurobiological mechanisms and therapeutic prospect of extracellular ATP in depression. CNS Neurosci Ther 2024; 30:e14536. [PMID: 38375982 PMCID: PMC10877668 DOI: 10.1111/cns.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Depression is a prevalent psychiatric disorder with high long-term morbidities, recurrences, and mortalities. Despite extensive research efforts spanning decades, the cellular and molecular mechanisms of depression remain largely unknown. What's more, about one third of patients do not have effective anti-depressant therapies, so there is an urgent need to uncover more mechanisms to guide the development of novel therapeutic strategies. Adenosine triphosphate (ATP) plays an important role in maintaining ion gradients essential for neuronal activities, as well as in the transport and release of neurotransmitters. Additionally, ATP could also participate in signaling pathways following the activation of postsynaptic receptors. By searching the website PubMed for articles about "ATP and depression" especially focusing on the role of extracellular ATP (eATP) in depression in the last 5 years, we found that numerous studies have implied that the insufficient ATP release from astrocytes could lead to depression and exogenous supply of eATP or endogenously stimulating the release of ATP from astrocytes could alleviate depression, highlighting the potential therapeutic role of eATP in alleviating depression. AIM Currently, there are few reviews discussing the relationship between eATP and depression. Therefore, the aim of our review is to conclude the role of eATP in depression, especially focusing on the evidence and mechanisms of eATP in alleviating depression. CONCLUSION We will provide insights into the prospects of leveraging eATP as a novel avenue for the treatment of depression.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xinxin Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yanyan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| |
Collapse
|
5
|
Wu X, Zhang Y, Wang P, Li X, Song Z, Wei C, Zhang Q, Luo B, Liu Z, Yang Y, Ren Z, Liu H. Clinical and preclinical evaluation of miR-144-5p as a key target for major depressive disorder. CNS Neurosci Ther 2023; 29:3598-3611. [PMID: 37308778 PMCID: PMC10580367 DOI: 10.1111/cns.14291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Neuronal abnormalities are closely associated with major depressive disorder (MDD). Available evidence suggests a role for microRNAs (miRNAs) in regulating the expression of genes involved in MDD. Hence, miRNAs that can be potential therapeutic targets need to be identified. METHODS A mouse model of chronic unpredictable stress (CUS) was used to evaluate the function of miRNAs in MDD. miR-144-5p was screened from the hippocampi of CUS mice based on sequencing results. Adenovirus-associated vectors were used to overexpress or knockdown miR-144-5p in mice. BpV(pic) and LY294002 were used to determine the relationship between miR-144-5p target genes PTEN and TLR4 in neuronal impairment caused by miR-144-5p deficiency. Western blotting, immunofluorescence, ELISA immunosorbent assay, and Golgi staining were used to detect neuronal abnormalities. Serum samples from healthy individuals and patients with MDD were used to detect miR-144-5p levels in the serum and serum exosomes using qRT-PCR. RESULTS miR-144-5p expression was significantly decreased within the hippocampal dentate gyrus (DG) of CUS mice. Upregulation of miR-144-5p in the DG ameliorated depression-like behavior in CUS mice and attenuated neuronal abnormalities by directly targeting PTEN and TLR4 expression. Furthermore, miR-144-5p knockdown in normal mice led to depression-like behavior via inducing neuronal abnormalities, including abnormal neurogenesis, neuronal apoptosis, altered synaptic plasticity, and neuroinflammation. miR-144-5p deficiency-mediated neuronal impairment was mediated by PI3K/Akt/FoxO1 signaling. Furthermore, miR-144-5p levels were downregulated in the sera of patients with MDD and associated with depressive symptoms. Consistently, serum exosome-derived miR-144-5p levels were decreased in patients with MDD. CONCLUSION miR-144-5p plays a vital role in regulating neuronal abnormalities in depression. Our findings provide translational evidence that miR-144-5p is a new potential therapeutic target for MDD.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Yulong Zhang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Ping Wang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Xiaohui Li
- Department of AnatomyAnhui Medical UniversityHefeiChina
| | - Zhen Song
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Chuke Wei
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Qing Zhang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Bei Luo
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Zhichun Liu
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Yingying Yang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Zhenhua Ren
- Department of AnatomyAnhui Medical UniversityHefeiChina
| | - Huanzhong Liu
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| |
Collapse
|
6
|
Yang Y, Chen R, Che Y, Yao X, Fang M, Wang Y, Zhou D, Li N, Hou Y. Isoamericanin A improves lipopolysaccharide-induced memory impairment in mice through suppression of the nicotinamide adenine dinucleotide phosphateoxidase-dependent nuclear factor kappa B signaling pathway. Phytother Res 2023; 37:3982-4001. [PMID: 37209001 DOI: 10.1002/ptr.7858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia in the elderly. Isoamericanin A (ISOA) is a natural lignan possessing great potential for AD treatment. This study investigated the efficacy of ISOA on memory impairments in the mice intrahippocampal injected with lipopolysaccharide (LPS) and the underlying mechanism. Y-maze and Morris Water Maze data suggested that ISOA (5 and 10 mg/kg) ameliorated short- and long-term memory impairments, and attenuated neuronal loss and lactate dehydrogenase activity. ISOA exerted anti-inflammatory effect demonstrating by the reduction of ionized calcium-binding adapter molecule 1 positive cells and suppression of marker protein and pro-inflammation cytokines expressions induced by LPS. ISOA suppressed the nuclear factor kappa B (NF-κB) signaling pathway by inhibiting IκBα phosphorylation and NF-κB p65 phosphorylation and nuclear translocation. ISOA inhibited superoxide and intracellular reactive oxygen species accumulation by reducing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, demonstrating by suppressing NADP+ and NADPH contents, gp91phox expression, and p47phox expression and membrane translocation. These effects were enhanced in combination with NADPH oxidase inhibitor apocynin. The neuroprotective effect of ISOA was further proved in the in vitro models. Overall, our data revealed a novel pharmacological activity of ISOA: ameliorating memory impairment in AD via inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yanqiu Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Ru Chen
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yue Che
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Xiaohu Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Mingxia Fang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| |
Collapse
|
7
|
Wang S, Liu Y, Wu Z, Jin Y, Zhang T, Yang Z, Liu C. Inhibition of xCT by sulfasalazine alleviates the depression-like behavior of adult male mice subjected to maternal separation stress. Behav Brain Res 2023; 452:114559. [PMID: 37392785 DOI: 10.1016/j.bbr.2023.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Maternal separation (MS) can induce emotional disorders. Our previous study reported that MS resulted in depression-like behavior. In this study, we aimed to explore the role of xCT in depression-like behavior in adult mice subjected to MS stress. Pups were divided into the control group, the control + sulfasalazine (SSZ, 75 mg/kg/day, i.p.) group, the MS group, and the MS+SSZ group. After MS, all pups were raised until PD60. Then, the depression-like behavior was detected by the novelty suppressed feeding (NSF) test, the forced swimming test (FST), and the tail suspension test (TST). The synaptic plasticity was examined by electrophysiological recordings and molecular biotechnology. The data showed that, compared with the control group, the mice in the MS group presented depression-like behavior, impairment of long-term potentiation (LTP), a reduction in the number of astrocytes, and activation of the microglia. Moreover, the expression of xCT was increased in the prefrontal cortex of MS mice, the EAAT2 and the Group Ⅱ metabotropic glutamate receptors (mGluR2/3) were decreased, and the level of pro-inflammatory factors was increased in the prefrontal cortex. After the administration with SSZ, the depression-like behavior and the impairment of LTP were alleviated, the number of astrocytes was increased, and the microglial activation was inhibited. Moreover, the levels of EAAT2 and mGluR2/3 were ameliorated, the over-activation of the microglia was mitigated, and the levels of glutamate and pro-inflammatory factors were decreased. In conclusion, the inhibition of xCT by SSZ could alleviate depression-like behavior partly via modulating the homeostasis of the glutamate system and dampening neuroinflammation.
Collapse
Affiliation(s)
- Shengwen Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ye Liu
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Neurological Institute, Tianjin 300052, China; Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zekang Wu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuwen Jin
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tao Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhuo Yang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Chunhua Liu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
8
|
Mazrooei Z, Dehkordi HT, Shahraki MH, Lorigooini Z, Zarean E, Amini-khoei H. Ellagic acid through attenuation of neuro-inflammatory response exerted antidepressant-like effects in socially isolated mice. Heliyon 2023; 9:e15550. [PMID: 37151621 PMCID: PMC10161705 DOI: 10.1016/j.heliyon.2023.e15550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Recent studies have been demonstrated that neuroinflammation plays a crucial role in the pathophysiology of depression. Therefore, anti-inflammatory medications could be regarded as a potentially effective treatments for depression. Ellagic acid (EA) is a natural polyphenol with antioxidant and anti-inflammatory properties. This study aimed to evaluate the antidepressant-like effect of EA in a mouse model of social isolation stress (SIS), considering its potential anti-neuroinflammatory properties. In this study, 48 male mice were divided into six groups (n = 8), including saline-treated control (socially conditioned (SC)) group and SIS (isolation conditioned (IC)) groups treated with saline or EA at doses of 12.5, 25, 50, and 100 mg/kg, respectively. Saline and EA were administrated intraperitoneally for 14 constant days. Immobility time in the forced swimming test (FST) and grooming activity time in the splash test were measured. The gene expression of inflammatory cytokines relevant to neuroinflammation was assessed in the hippocampus by real-time PCR. Results showed that SIS significantly increased immobility time in the FST and reduced grooming activity time in the splash test. In addition, the expression of inflammatory genes, including TNF-α, IL-1β, and TLR4 increased in IC mice's hippocampi. Findings showed that EA decreased immobility time in the FST and increased grooming activity time in the splash test. Moreover, EA attenuated neuroimmune-response in the hippocampus. In conclusion, finding determined that EA, through attenuation of neuroinflammation in the hippocampus, partially at least, exerted an antidepressant-like effect in the mouse model of SIS.
Collapse
|
9
|
Liu H, Zhang X, Shi P, Yuan J, Jia Q, Pi C, Chen T, Xiong L, Chen J, Tang J, Yue R, Liu Z, Shen H, Zuo Y, Wei Y, Zhao L. α7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation 2023; 20:84. [PMID: 36973813 PMCID: PMC10041767 DOI: 10.1186/s12974-023-02768-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
Depression is a common mental illness, which is related to monoamine neurotransmitters and the dysfunction of the cholinergic, immune, glutamatergic, and neuroendocrine systems. The hypothesis of monoamine neurotransmitters is one of the commonly recognized pathogenic mechanisms of depression; however, the drugs designed based on this hypothesis have not achieved good clinical results. A recent study demonstrated that depression and inflammation were strongly correlated, and the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR)-mediated cholinergic anti-inflammatory pathway (CAP) in the cholinergic system exhibited good therapeutic effects against depression. Therefore, anti-inflammation might be a potential direction for the treatment of depression. Moreover, it is also necessary to further reveal the key role of inflammation and α7 nAChR in the pathogenesis of depression. This review focused on the correlations between inflammation and depression as well-discussed the crucial role of α7 nAChR in the CAP.
Collapse
Affiliation(s)
- Huiyang Liu
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Xiaomei Zhang
- grid.469520.c0000 0004 1757 8917Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 People’s Republic of China
| | - Peng Shi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jiyuan Yuan
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qiang Jia
- grid.488387.8Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chao Pi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
| | - Tao Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Linjin Xiong
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jinglin Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jia Tang
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ruxu Yue
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000 Sichuan China
- grid.190737.b0000 0001 0154 0904Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Hongping Shen
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ying Zuo
- grid.488387.8Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan China
| | - Yumeng Wei
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ling Zhao
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
10
|
Enhancing the Neuroprotection Potential of Edaravone in Transient Global Ischemia Treatment with Glutathione- (GSH-) Conjugated Poly(methacrylic acid) Nanogel as a Promising Carrier for Targeted Brain Drug Delivery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7643280. [PMID: 36865347 PMCID: PMC9974254 DOI: 10.1155/2023/7643280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023]
Abstract
Ischemic stroke is the most common among various stroke types and the second leading cause of death, worldwide. Edaravone (EDV) is one of the cardinal antioxidants that is capable of scavenging reactive oxygen species, especially hydroxyl molecules, and has been already used for ischemic stroke treatment. However, poor water solubility, low stability, and bioavailability in aqueous media are major EDV drawbacks. Thus, to overcome the aforementioned drawbacks, nanogel was exploited as a drug carrier of EDV. Furthermore, decorating the nanogel surface with glutathione as targeting ligands would potentiate the therapeutic efficacy. Nanovehicle characterization was assessed with various analytical techniques. Size (199 nm, hydrodynamic diameter) and zeta potential (-25 mV) of optimum formulation were assessed. The outcome demonstrated a diameter of around 100 nm, sphere shape, and homogenous morphology. Encapsulation efficiency and drug loading were determined to be 99.9% and 37.5%, respectively. In vitro drug release profile depicted a sustained release process. EDV and glutathione presence in one vehicle simultaneously made the possibility of antioxidant effects on the brain in specific doses, which resulted in elevated spatial memory and learning along with cognitive function in Wistar rats. In addition, significantly lower MDA and PCO and higher levels of neural GSH and antioxidant levels were observed, while histopathological improvement was approved. The developed nanogel can be a suited vehicle for drug delivery of EDV to the brain and improve ischemia-induced oxidative stress cell damage.
Collapse
|
11
|
Motafeghi F, Bagheri A, Seyedabadi M, Shaki F, Shokrzadeh M. Antidepressant-Like Effects of Edaravone and Minocycline: Investigation of Oxidative Stress, Neuroinflammation, Neurotrophic, and Apoptotic Pathways. Neurotox Res 2022; 40:1838-1858. [PMID: 36522510 DOI: 10.1007/s12640-022-00603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 12/23/2022]
Abstract
Depression is a very common mental disorder and mechanism that is associated with mitochondrial dysfunction. In the present study, we examined the mechanisms of action of isolated brain mitochondria in rats with depression for the first time. This will help identify the mitochondrial protective pathways of the two drugs and shed light on new therapeutic goals for developing antidepressants. Forced swimming, tail suspension, and sucrose preference tests were used to assess depressive-like behaviors and the oxidative stress factors of brain tissue, and measure the gene expression of apoptotic and anti-apoptotic, neuroplasticity, and neuroinflammatory factors by RT-PCR and acetylcholinesterase (AChE) activity in brain tissue (hippocampus and prefrontal) and the serum levels of corticosterone and fasting blood sugar. The results showed that the separation of neonatal rats from their mothers induced depressive-like behaviors, weight loss, mitochondrial dysfunction, increased expression of genes involved in neuroinflammation, apoptosis, genes involved in the depressive process, and decreased expression of genes involved in mood in both the hippocampus and prefrontal cortex. Maternal separation increased serum corticosterone levels, caused dysfunction of the cholinergic system, and also increased AChE activity. Treatment with different concentrations of minocycline and edaravone (1, 20, and 50 mg/kg), 5MTHF, and citalopram for 14 days showed that these drugs improved depression-like behaviors and mitochondrial function. It also reduced the expression of genes involved in neuroinflammation, apoptosis, and depression and increased the expression of genes involved in mood. In conclusion, minocycline and edaravone have neuroprotective, mitochondrial protective, antioxidant, anti-inflammatory, and anti-apoptotic effects against depressive-like behaviors caused by chronic stress.
Collapse
Affiliation(s)
- Farzaneh Motafeghi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran. .,Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran. .,Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
12
|
Pexidartinib (PLX3397) through restoring hippocampal synaptic plasticity ameliorates social isolation-induced mood disorders. Int Immunopharmacol 2022; 113:109436. [PMID: 36395673 PMCID: PMC9661988 DOI: 10.1016/j.intimp.2022.109436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Social behavior is essential for the well-being and survival of individuals. However, social isolation is a serious public health issue, especially during the COVID-19 pandemic, affecting a significant number of people worldwide, and can lead to serious psychological crises. Microglia, innate immune cells in the brain, are strongly implicated in the development of psychiatry. Although many microglial inhibitors have been used to treat depression, there is no literature report on pexidartinib (PLX3397) and social isolation. Herein, we adopted PLX3397 to investigate the role of microglia in the modulation of social isolation. Our results found that social isolation during adolescence caused depressive-like, but not anxiety-like behavior in mice in adulthood, with enhanced expression of the microglial marker Iba1 in the hippocampus. In addition, treatment with PLX3397 reduced the expression of the microglial marker Iba1, decreased the mRNA expression of IL-1β, increased the mRNA expression of Arg1, elevated the protein levels of DCX and GluR1 and restored the dendritic spine branches and density, ultimately mitigating depressive-like behavior in mice. These findings suggest that inhibition of microglia in the hippocampus could ameliorate mood disorders in mice, providing a new perspective for the treatment of psychiatric disorders such as depression.
Collapse
|
13
|
Nasehi L, Morassaei B, Ghaffari M, Sharafi A, Dehpour AR, Hosseini MJ. The impacts of vorinostat on NADPH oxidase and mitochondrial biogenesis gene expression in the heart of mice model of depression. Can J Physiol Pharmacol 2022; 100:1077-1085. [PMID: 36166834 DOI: 10.1139/cjpp-2022-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The comorbidity of depression and high risk of cardiovascular diseases (CVD) have been reported as major health problems. Our previous study confirmed that fluoxetine (FLX) therapy had a significant influence on brain function but not on the heart in depression. In the present study, suberoyanilide hydroxamic acid (SAHA) was proposed as another therapeutic candidate for treatment of depression comorbid CVD in maternal separation model, following behavioral analyses and gene expression level in the heart. Our data demonstrated that SAHA significantly attenuates the NOX-4 gene expression level in treated mice with SAHA and FLX without significant change in NOX-2 expression level. SAHA decreased the gene expression level of peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and nuclear respiratory factors (Nrf2) in heart tissues of maternally separated mice. It supposed that non-effectiveness of FLX on mitochondrial biogenesis and NOX gene expression level in the heart of depressed patient can be related to recurrence of depression. It revealed that SAHA not only reversed the depressive-like behavior similar to our previous data but also recovered the heart mitochondrial function via effect on NOX-2, NOX-4, and mitochondrial biogenesis genes' (PGC-1α, Nrf-2, and peroxisome proliferator-activated receptor-α (PPAR-α)) expression levels. We suggest performing more studies to confirm SAHA as a therapeutic candidate in depression comorbid CVD.
Collapse
Affiliation(s)
- Leila Nasehi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahareh Morassaei
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Maryam Ghaffari
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical sciences, Zanjan, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| |
Collapse
|
14
|
Markulin I, Matasin M, Turk VE, Salković-Petrisic M. Challenges of repurposing tetracyclines for the treatment of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2022; 129:773-804. [PMID: 34982206 DOI: 10.1007/s00702-021-02457-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
The novel antibiotic-exploiting strategy in the treatment of Alzheimer's (AD) and Parkinson's (PD) disease has emerged as a potential breakthrough in the field. The research in animal AD/PD models provided evidence on the antiamyloidogenic, anti-inflammatory, antioxidant and antiapoptotic activity of tetracyclines, associated with cognitive improvement. The neuroprotective effects of minocycline and doxycycline in animals initiated investigation of their clinical efficacy in AD and PD patients which led to inconclusive results and additionally to insufficient safety data on a long-standing doxycycline and minocycline therapy in these patient populations. The safety issues should be considered in two levels; in AD/PD patients (particularly antibiotic-induced alteration of gut microbiota and its consequences), and as a world-wide threat of development of bacterial resistance to these antibiotics posed by a fact that AD and PD are widespread incurable diseases which require daily administered long-lasting antibiotic therapy. Recently proposed subantimicrobial doxycycline doses should be thoroughly explored for their effectiveness and long-term safety especially in AD/PD populations. Keeping in mind the antibacterial activity-related far-reaching undesirable effects both for the patients and globally, further work on repurposing these drugs for a long-standing therapy of AD/PD should consider the chemically modified tetracycline compounds tailored to lack antimicrobial but retain (or introduce) other activities effective against the AD/PD pathology. This strategy might reduce the risk of long-term therapy-related adverse effects (particularly gut-related ones) and development of bacterial resistance toward the tetracycline antibiotic agents but the therapeutic potential and desirable safety profile of such compounds in AD/PD patients need to be confirmed.
Collapse
Affiliation(s)
- Iva Markulin
- Community Health Centre Zagreb-Centre, Zagreb, Croatia
| | | | - Viktorija Erdeljic Turk
- Division of Clinical Pharmacology, Department of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Melita Salković-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
| |
Collapse
|
15
|
Bijani S, Dizaji R, Sharafi A, Hosseini MJ. Neuroprotective Effect of Apigenin on Depressive-Like Behavior: Mechanistic Approach. Neurochem Res 2021; 47:644-655. [PMID: 34705188 DOI: 10.1007/s11064-021-03473-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
Apigenin, as a natural flavonoid present in several plants is characterized with potential anticancer, antioxidant, and anti-inflammatory properties. Recent studies proposed that apigenin affects depression disorder through unknown mechanistic pathways. The effects of apigenin's anti-depressive properties on streptozocin-mediated depression have been investigated through the evaluation of behavioral tests, oxidative stress, cellular energy homeostasis and inflammatory responses. The results demonstrated anti-depressive properties of apigenin in behavioral test including forced swimming and splash tests and oxidative stress biomarkers such as reduced glutathione, lipid peroxidation, total antioxidant power and coenzyme Q10 levels. Apigenin, also, demonstrated its regulatory potency in cellular energy homeostasis and immune system gene expression through inhibiting Nlrp3 and Tlr4 overexpression. Furthermore, failure in energy production as the key factor in various psychiatric disorders was reversed by apigenin modulating effect on AMPK gene expression. Overall, 20 mg/kg of apigenin was recognized as the dose suitable for minimizing the undesirable adverse effects in the STZ-mediated depression model proposed in this study. Our data suggested that apigenin could be able to adjust behavioral dysfunction, biochemical biomarkers and recovered cellular antioxidant level in depressed animals. The surprising results were achieved by raise in COQ10 level, which could regulate the overexpression of the AMPK gene in stressful conditions. The regulatory effect of apigenin in inflammatory signaling pathways such as Nlrp3, and Tlr4 gene expression was studied at the surface part of the hippocampus.
Collapse
Affiliation(s)
- Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P.O. Box 45139-56184, Zanjan, Iran
| | - Rana Dizaji
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, P.O. Box 45139-56184, Zanjan, Iran.
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P.O. Box 45139-56184, Zanjan, Iran.
| |
Collapse
|
16
|
Wu X, Wang J, Song L, Guan Y, Cao C, Cui Y, Zhang Y, Liu C. Catalpol Weakens Depressive-like Behavior in Mice with Streptozotocin-induced Hyperglycemia via PI3K/AKT/Nrf2/HO-1 Signaling Pathway. Neuroscience 2021; 473:102-118. [PMID: 34358633 DOI: 10.1016/j.neuroscience.2021.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Depression has huge social risks of high incidence, disability, and suicide. Its prevalence and harm in people with hyperglycemia are 2-3 times higher than in normal people. However, antidepressants with precise curative effects and clear mechanisms for patients with hyperglycemia are currently lacking. Prescriptions containing Radix Rehmannia glutinosa Libosch., a traditional medicinal herb with a wide range of nutritional and medicinal values, are often used as antidepressants in Chinese clinical medicine. Catalpol is one of the main effective compounds of Radix R. glutinosa, with multiple biological activities such as hypoglycemia. Here, the antidepressant effect of catalpol on the pathological state of streptozotocin (STZ)-induced hyperglycemia and the underlying molecular mechanisms were analyzed. Results showed that administering catalpol orally to hyperglycemic mice for 21 consecutive days significantly reversed the abnormalities in tail suspension, forced swimming, and open field tests. Catalpol also reversed the abnormal phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) and the abnormal levels of nuclear factor erythroid 2-related factor 2 (Nrf2) protein, heme oxygenase-1 (HO-1), and antioxidants, including superoxide dismutase, glutathione peroxidase, glutathione-s transferase, reduced glutathione, and malondialdehyde in the hippocampus and frontal cortex of STZ-induced hyperglycemic mice. Thus, catalpol attenuates depressive-like behavior in pathological hyperglycemic state, and the antidepressant mechanism could at least be partly attributed to the upregulation of the PI3K/AKT/Nrf2/HO-1 signaling pathway in both brain regions, thus restoring the balance between oxidative and antioxidant damage. These data expanded the scientific understanding of catalpol and provided preclinical experimental evidence for its application.
Collapse
Affiliation(s)
- Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuechen Guan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Can Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ying Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chen Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
17
|
Ortiz-Valladares M, Pedraza-Medina R, Pinto-González MF, Muñiz JG, Gonzalez-Perez O, Moy-López NA. Neurobiological approaches of high-fat diet intake in early development and their impact on mood disorders in adulthood: A systematic review. Neurosci Biobehav Rev 2021; 129:218-230. [PMID: 34324919 DOI: 10.1016/j.neubiorev.2021.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 07/25/2021] [Indexed: 01/21/2023]
Abstract
The early stage of development is a vulnerable period for progeny neurodevelopment, altering cytogenetic and correct cerebral functionality. The exposure High-Fat Diet (HFD) is a factor that impacts the future mental health of individuals. This review analyzes possible mechanisms involved in the development of mood disorders in adulthood because of maternal HFD intake during gestation and lactation, considering previously reported findings in the last five years, both in humans and animal models. Maternal HFD could induce alterations in mood regulation, reported as increased stress response, anxiety-like behavior, and depressive-like behavior. These changes were mostly related to HPA axis dysregulations and neuroinflammatory responses. In conclusion, there could be a relationship between HFD consumption during the early stages of life and the development of psychopathologies during adulthood. These findings provide guidelines for the understanding of possible mechanisms involved in mood disorders, however, there is still a need for more human clinical studies that provide evidence to improve the understanding of maternal nutrition and future mental health outcomes in the offspring.
Collapse
Affiliation(s)
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima, Mexico
| | | | - Jorge Guzmán Muñiz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | | |
Collapse
|