1
|
Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact 2025; 413:111489. [PMID: 40147618 DOI: 10.1016/j.cbi.2025.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Richard Valko
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jan Liska
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic; Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 5005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
2
|
Khan AN, Jawarkar RD, Zaki MEA, Al Mutairi AA. Natural compounds for oxidative stress and neuroprotection in schizophrenia: composition, mechanisms, and therapeutic potential. Nutr Neurosci 2024; 27:1306-1320. [PMID: 38462971 DOI: 10.1080/1028415x.2024.2325233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE An imbalance between the generation of reactive oxygen species (ROS) and the body's antioxidant defense mechanisms is believed to be a critical factor in the development of schizophrenia (SCZ) like neurological illnesses. Understanding the roles of ROS in the development of SCZ and the potential activity of natural antioxidants against SCZ could lead to more effective therapeutic options for the prevention and treatment of the illness. METHODS SCZ is a mental disorder characterised by progressive impairments in working memory, attention, and executive functioning. In present investigation, we summarized the experimental findings for understanding the role of oxidative stress (OS) in the development of SCZ and the potential neuroprotective effects of natural antioxidants in the treatment of SCZ. RESULTS Current study supports the use of the mentioned antioxidant natural compounds as a potential therapeutic candidates for the treatment of OS mediated neurodegeneration in SCZ. DISCUSSION Elevated levels of harmful ROS and reduced antioxidant defense mechanisms are indicative of increased oxidative stress (OS), which is associated with SCZ. Previous research has shown that individuals with SCZ, including non-medicated, medicated, first-episode, and chronic patients, exhibit decreased levels of total antioxidants and GSH. Additionally, they have reduced antioxidant enzyme levels such as catalase (CAT), glutathione (GPx), and, superoxide dismutase (SOD) and lower serum levels of brain-derived neurotrophic factor (BDNF) in their brain tissue. The mentioned natural antioxidants may assist in reducing oxidative damage in individuals with SCZ and increasing BDNF expression in the brain, potentially improving cognitive function and learning ability.
Collapse
Affiliation(s)
- Anam N Khan
- Department of Pharamacognosy, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Aamal A Al Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Weinstein JJ, Moeller SJ, Perlman G, Gil R, Van Snellenberg JX, Wengler K, Meng J, Slifstein M, Abi-Dargham A. Imaging the Vesicular Acetylcholine Transporter in Schizophrenia: A Positron Emission Tomography Study Using [ 18F]-VAT. Biol Psychiatry 2024; 96:352-364. [PMID: 38309322 DOI: 10.1016/j.biopsych.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Despite longstanding interest in the central cholinergic system in schizophrenia (SCZ), cholinergic imaging studies with patients have been limited to receptors. Here, we conducted a proof-of-concept positron emission tomography study using [18F]-VAT, a new radiotracer that targets the vesicular acetylcholine transporter as a proxy measure of acetylcholine transmission capacity, in patients with SCZ and explored relationships of vesicular acetylcholine transporter with clinical symptoms and cognition. METHODS A total of 18 adult patients with SCZ or schizoaffective disorder (the SCZ group) and 14 healthy control participants underwent a positron emission tomography scan with [18F]-VAT. Distribution volume (VT) for [18F]-VAT was derived for each region of interest, and group differences in VT were assessed with 2-sample t tests. Functional significance was explored through correlations between VT and scores on the Positive and Negative Syndrome Scale and a computerized neurocognitive battery (PennCNB). RESULTS No group differences in [18F]-VAT VT were observed. However, within the SCZ group, psychosis symptom severity was positively associated with VT in multiple regions of interest, with the strongest effects in the hippocampus, thalamus, midbrain, cerebellum, and cortex. In addition, in the SCZ group, working memory performance was negatively associated with VT in the substantia innominata and several cortical regions of interest including the dorsolateral prefrontal cortex. CONCLUSIONS In this initial study, the severity of 2 important features of SCZ-psychosis and working memory deficit-was strongly associated with [18F]-VAT VT in several cortical and subcortical regions. These correlations provide preliminary evidence of cholinergic activity involvement in SCZ and, if replicated in larger samples, could lead to a more complete mechanistic understanding of psychosis and cognitive deficits in SCZ and the development of therapeutic targets.
Collapse
Affiliation(s)
- Jodi J Weinstein
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York.
| | - Scott J Moeller
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Roberto Gil
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jared X Van Snellenberg
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Kenneth Wengler
- Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York; Department of Radiology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jiayan Meng
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York
| |
Collapse
|
4
|
Ben-Azu B, Adebayo OG, Fokoua AR, Oritsemuelebi B, Chidebe EO, Nwogueze CB, Kumanwee L, Uyere GE, Emuakpeje MT. Antipsychotic effect of diosgenin in ketamine-induced murine model of schizophrenia: Involvement of oxidative stress and cholinergic transmission. IBRO Neurosci Rep 2024; 16:86-97. [PMID: 38282757 PMCID: PMC10818187 DOI: 10.1016/j.ibneur.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
A decrease in the levels of antioxidant arsenals exacerbate generation of reactive oxygen/nitrogen species, leading to neurochemical dysfunction, with significant impact on the pathogenesis of psychotic disorders such as schizophrenia. This study examined the preventive and reversal effects of diosgenin, a phyto-steroidal saponin with antioxidant functions in mice treated with ketamine which closely replicates schizophrenia-like symptoms in human and laboratory animals. In the preventive phase, adult mice cohorts were clustered into 5 groups (n = 9). Groups 1 and 2 received saline (10 mL/kg, i.p.), groups 3 and 4 were pretreated with diosgenin (25 and 50 mg/kg), and group 5 received risperidone (0.5 mg/kg) orally for 14 days. Mice in groups 2-5 additionally received a daily dose of ketamine (20 mg/kg, i.p.) or saline (10 mL/kg/day, i.p.). In the reversal phase, mice received intraperitoneal injection of ketamine or saline for 14 consecutive days prior to diosgenin (25 and 50 mg/kg/p.o./day) and risperidone (0.5 mg/kg/p.o./day) treatment from days 8-14. Mice were assessed for behavioral changes. Oxidative, nitrergic markers, and cholinergic (acetylcholinesterase activity) transmission were examined in the striatum, prefrontal-cortex and hippocampus. Diosgenin prevented and reversed hyperlocomotion, cognitive and social deficits in mice treated with ketamine relative to ketamine groups. The increased acetylcholinesterase, malondialdehyde and nitrite levels produced by ketamine were reduced by diosgenin in the striatum, prefrontal-cortex and hippocampus, but did not reverse striatal nitrite level. Diosgenin increased glutathione, and catalase levels, except for hippocampal catalase activity when compared with ketamine controls. Conclusively, these biochemical changes might be related to the behavioral deficits in ketamine-treated mice, which were prevented and reversed by diosgenin.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Olusegun G. Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aliance Romain Fokoua
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
- Research unit of Neuroinflammatory and Cardiovascular Pharmacology, Department of Animal Biology, Faculty of Sciences, University of Dschang, Cameroon
| | - Benjamin Oritsemuelebi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuel O. Chidebe
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Chukwuebuka B. Nwogueze
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Lenatababari Kumanwee
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - God'swill E. Uyere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Micheal T. Emuakpeje
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
5
|
Rodrigues T, Bressan GN, Krum BN, Soares FAA, Fachinetto R. Influence of the dose of ketamine used on schizophrenia-like symptoms in mice: A correlation study with TH, GAD 67, and PPAR-γ. Pharmacol Biochem Behav 2023; 233:173658. [PMID: 37804866 DOI: 10.1016/j.pbb.2023.173658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Schizophrenia is a chronic, debilitating mental illness that has not yet been completely understood. In this study, we aimed to investigate the effects of different doses of ketamine, a non-competitive NMDA receptor antagonist, on the positive- and negative-like symptoms of schizophrenia. We also explored whether these effects are related to changes in the immunoreactivity of GAD67, TH, and PPAR-γ in brain structures. To conduct the study, male mice received ketamine (20-40 mg/kg) or its vehicle (0.9 % NaCl) intraperitoneally for 14 consecutive days. We quantified stereotyped behavior, the time of immobility in the forced swimming test (FST), and locomotor activity after 7 or 14 days. In addition, we performed ex vivo analysis of the immunoreactivity of GAD, TH, and PPAR-γ, in brain tissues after 14 days. The results showed that ketamine administration for 14 days increased the grooming time in the nose region at all tested doses. It also increased immobility in the FST at 30 mg/kg doses and decreased the number of rearing cycles during stereotyped behavior at 40 mg/kg. These behavioral effects were not associated with changes in locomotor activity. We did not observe any significant alterations regarding the immunoreactivity of brain proteins. However, we found that GAD and TH were positively correlated with the number of rearing during the stereotyped behavior at doses of 20 and 30 mg/kg ketamine, respectively. GAD was positively correlated with the number of rearing in the open field test at a dose of 20 mg/kg. TH was inversely correlated with immobility time in the FST at a dose of 30 mg/kg. PPAR-γ was inversely correlated with the number of bouts of stereotyped behavior at a dose of 40 mg/kg of ketamine. In conclusion, the behavioral alterations induced by ketamine in positive-like symptoms were reproduced with all doses tested and appear to depend on the modulatory effects of TH, GAD, and PPAR-γ. Conversely, negative-like symptoms were associated with a specific dose of ketamine.
Collapse
Affiliation(s)
- Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|
7
|
Omeiza NA, Bakre A, Ben-Azu B, Sowunmi AA, Abdulrahim HA, Chimezie J, Lawal SO, Adebayo OG, Alagbonsi AI, Akinola O, Abolaji AO, Aderibigbe AO. Mechanisms underpinning Carpolobia lutea G. Don ethanol extract's neurorestorative and antipsychotic-like activities in an NMDA receptor antagonist model of schizophrenia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115767. [PMID: 36206872 DOI: 10.1016/j.jep.2022.115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persistent ketamine insults to the central nervous system block NMDA receptors and disrupt putative neurotransmission, oxido-nitrosative, and inflammatory pathways, resulting in schizophrenia-like symptoms in animals. Previously, the ethnomedicinal benefits of Carpolobia lutea against insomnia, migraine headache, and insanity has been documented, but the mechanisms of action remain incomplete. AIM OF THE STUDY Presently, we explored the neuro-therapeutic role of Carpolobia lutea ethanol extract (C. lutea) in ketamine-induced schizophrenia-like symptoms in mice. MATERIALS AND METHODS Sixty-four male Swiss (22 ± 2 g) mice were randomly assigned into eight groups (n = 8/group) and exposed to a reversal ketamine model of schizophrenia. For 14 days, either distilled water (10 mL/kg; p.o.) or ketamine (20 mg/kg; i.p.) was administered, following possible reversal treatments with C. lutea (100, 200, 400, and 800 mg/kg; p.o.), haloperidol (1 mg/kg, p.o.), or clozapine (5 mg/kg; p.o.) beginning on days 8-14. During the experiment, a battery of behavioral characterizations defining schizophrenia-like symptoms were obtained using ANY-maze software, followed by neurochemical, oxido-inflammatory and histological assessments in the mice brains. RESULTS A 7-day reversal treatment with C. lutea reversed predictors of positive, negative and cognitive symptoms of schizophrenia. C. lutea also mitigated ketamine-induced neurochemical derangements as evidenced by modulations of dopamine, glutamate, norepinephrine and serotonin neurotransmission. Also, the increased acetylcholinesterase activity, malondialdehyde nitrite, interleukin-6 and tumor necrosis-factor-α concentrations were reversed by C. lutea accompanied with elevated levels of catalase, superoxide dismutase and reduced glutathione. Furthermore, C. lutea reversed ketamine-induced neuronal alterations in the prefrontal cortex, hippocampus and cerebellum sections of the brain. CONCLUSION These findings suggest that C. lutea reverses the cardinal symptoms of ketamine-induced schizophrenia in a dose-dependent fashion by modulating the oxido-inflammatory and neurotransmitter-related mechanisms.
Collapse
Affiliation(s)
- Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adewale Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sodiq O Lawal
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Neurophysiology Unit, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Abdullateef I Alagbonsi
- Department of Clinical Biology (Physiology), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Rwanda
| | - Olugbenga Akinola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Lipopolysaccharide Exacerbates Ketamine-Induced Psychotic-Like Behavior, Oxidative Stress, and Neuroinflammation in Mice: Ameliorative Effect of Diosmin. J Mol Neurosci 2023; 73:129-142. [PMID: 36652038 DOI: 10.1007/s12031-022-02077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023]
Abstract
Schizophrenia, a neuropsychiatric disorder has been associated with aberrant neurotransmission affecting behaviors, social preference, and cognition. Limitations in understanding its pathogenesis via the dopamine hypothesis have engendered other hypotheses such as the glutamate hypothesis. That antagonism of the N-methyl-D-aspartate receptor (NMDAR) elicits schizophrenia-like behaviors indistinguishable from the disorder in animal and human models. There are growing concerns that redox imbalance and neuro-immuno dysfunction may play role in aggravating the symptomologies of this disorder. This 14-day treatment study was designed to investigate the effect of diosmin on lipopolysaccharide (LPS) plus ketamine (NMDAR antagonist). Mice were divided into 4 groups (n = 6). Group 1 was administered 5% DMSO (10 mL/kg, i.p) while group 2-4 received LPS (0.1 mg/kg, i.p) daily for 14 days. Diosmin (50 mg/kg, i.p) and risperidone (0.5 mg/kg, i.p) were given to groups 3 and 4 respectively. Groups 2-4 were given KET (20 mg/kg, i.p.) daily from days 8-14. Behavioral tests were done 30 min after the last dose, and oxidative stress and neuroinflammatory maker were assayed. LPS plus ketamine-induced hyperlocomotion, stereotypy, decreased social preference, and memory impairment. Furthermore, LPS plus-ketamine-induced oxidative stress (reduced GSH, CAT, SOD, and increased MDA and nitrite levels) and marked pro-inflammatory cytokines TNF-α and IL-6 suggesting neuroinflammation. However, diosmin attenuated behavioral deficits and improved memory. Additionally, diosmin potentiated antioxidant level via increased GSH, CAT, and SOD while reducing MDA and nitrite levels. Finally, diosmin reduced TNF-α and IL-6 suggesting anti-neuro-immuno activity. Conclusively, diosmin attenuated LPS plus ketamine-induced behavioral deficits, oxidative stress, neuroinflammation, and improved memory.
Collapse
|
9
|
Normalization of HPA Axis, Cholinergic Neurotransmission, and Inhibiting Brain Oxidative and Inflammatory Dynamics Are Associated with The Adaptogenic-like Effect of Rutin Against Psychosocial Defeat Stress. J Mol Neurosci 2023; 73:60-75. [PMID: 36580190 DOI: 10.1007/s12031-022-02084-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022]
Abstract
Social defeat stress (SDS) due to changes in biochemical functions has been implicated in the pathogenesis of affective and cognitive disorders. Employing pharmacological approach with adaptogens in the management and treatment of psychosocial stress is increasingly receiving scientific attention. In this study, we investigated the neuroprotective effect of rutin, a bioflavonoid with neuroprotective and anti-inflammatory functions on neurobehavioral and neuro-biochemical changes in mice exposed to SDS. Groups of mice named the intruder mice received normal saline (10 mL/kg), rutin (5, 10, and 20 mg/kg, i.p.), and ginseng (50 mg/kg, i.p.) daily for 14 days, and then followed by 10 min daily SDS (physical/psychological) exposures to aggressor mice from days 7-14. Investigations consisting of neurobehavioral (locomotion, memory, anxiety, and depression) phenotypes, neuro-biochemical (oxidative, nitrergic, cholinergic, and pro-inflammatory cytokines) levels in discrete brain regions, and hypothalamic-pituitary-adrenal (HPA) axis consisting adrenal weight, corticosterone, and glucose concentrations were assessed. Rutin restored the neurobehavioral deficits and reduced the activity of acetylcholinesterase in the brains. Adrenal hypertrophy, increased serum glucose and corticosterone levels were significantly attenuated by rutin. SDS-induced release of tumor necrosis factor-alpha and interleukin-6 in the striatum, prefrontal cortex, and hippocampus were also suppressed by rutin in a brain-region-dependent manner. Moreover, SDS-induced oxidative stress characterized by low antioxidants (glutathione, superoxide-dismutase, catalase) and lipid peroxidation and nitrergic stress were reversed by rutin in discrete brain regions. Collectively, our data suggest that rutin possesses an adoptogenic potential in mice exposed to SDS via normalization of HPA, oxidative/nitrergic, and neuroinflammatory inhibitions. Thus, may be adopted in the management of neuropsychiatric syndrome due to psychosocial stress.
Collapse
|
10
|
Matrisciano F. Functional Nutrition as Integrated Intervention for In- and Outpatient with Schizophrenia. Curr Neuropharmacol 2023; 21:2409-2423. [PMID: 36946488 PMCID: PMC10616917 DOI: 10.2174/1570159x21666230322160259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 03/23/2023] Open
Abstract
Schizophrenia is a chronic and progressive disorder characterized by cognitive, emotional, and behavioral abnormalities associated with neuronal development and synaptic plasticity alterations. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons and consequent alterations in glutamate-mediated excitatory neurotransmission during early neurodevelopment underlie schizophrenia manifestation and progression. Also, epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability and inflammatory processes, which are at the basis of brain pathology and a higher risk of comorbidities, including cardiovascular diseases and metabolic syndrome. In addition, schizophrenia patients adopt an unhealthy lifestyle and poor nutrition, leading to premature death. Here, I explored the role of functional nutrition as an integrated intervention for the long-term management of patients with schizophrenia. Several natural bioactive compounds in plant-based whole foods, including flavonoids, phytonutrients, vitamins, fatty acids, and minerals, modulate brain functioning by targeting neuroinflammation and improving cognitive decline. Although further clinical studies are needed, a functional diet rich in natural bioactive compounds might be effective in synergism with standard treatments to improve schizophrenia symptoms and reduce the risk of comorbidities.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
11
|
Ben-Azu B, Adebayo OG, Jarikre TA, Oyovwi MO, Edje KE, Omogbiya IA, Eduviere AT, Moke EG, Chijioke BS, Odili OS, Omondiabge OP, Oyovbaire A, Esuku DT, Ozah EO, Japhet K. Taurine, an essential β-amino acid insulates against ketamine-induced experimental psychosis by enhancement of cholinergic neurotransmission, inhibition of oxidative/nitrergic imbalances, and suppression of COX-2/iNOS immunoreactions in mice. Metab Brain Dis 2022; 37:2807-2826. [PMID: 36057735 DOI: 10.1007/s11011-022-01075-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/23/2022] [Indexed: 12/22/2022]
Abstract
Cholinergic, oxidative, nitrergic alterations, and neuroinflammation are some key neuropathological features common in schizophrenia disease. They involve complex biological processes that alter normal behavior. The present treatments used in the management of the disorder remain ineffective together with some serious side effects as one of their setbacks. Taurine is a naturally occurring essential β-amino acid reported to elicit antipsychotic property in first episode psychosis in clinical setting, thus require preclinical investigation. Hence, we set out to investigate the effects of taurine in the prevention and reversal of ketamine-induced psychotic-like behaviors and the associated putative neurobiological mechanisms underlying its effects. Adult male Swiss mice were sheared into three separate cohorts of experiments (n = 7): drug alone, preventive and reversal studies. Treatments consisted of saline (10 mL/kg/p.o./day), taurine (50 and 100 mg/kg/p.o./day) and risperidone (0.5 mg/kg/p.o./day) with concomitant ketamine (20 mg/kg/i.p./day) injections between days 8-14, or 14 days entirely. Behavioral hyperactivity, despair, cognitive impairment, and catalepsy were measured. Brain oxidative/nitrergic imbalance, immunoreactivity (COX-2 and iNOS), and cholinergic markers were determined in the striatum, prefrontal-cortex, and hippocampus. Taurine abates ketamine-mediated psychotic-like episodes without cataleptogenic potential. Taurine attenuated ketamine-induced decrease in glutathione, superoxide-dismutase and catalase levels in the striatum, prefrontal-cortex and hippocampus. Also, taurine prevented and reversed ketamine-mediated elevation of malondialdehyde, nitrite contents, acetylcholinesterase activity, and suppressed COX-2 and iNOS expressions in a brain-region dependent manner. Conclusively, taurine insulates against ketamine-mediated psychotic phenotype by normalizing brain central cholinergic neurotransmissions, oxidative, nitrergic and suppression of immunoreactive proteins in mice brains.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Thiophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mega O Oyovwi
- Department of Basic Medical Science, Achievers University, Owo, Ondo State, Nigeria
| | - Kesiena Emmanuel Edje
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Itivere Adrian Omogbiya
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Anthony T Eduviere
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emuesiri Goodies Moke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Bienose S Chijioke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Onyebuchi S Odili
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Osemudiame P Omondiabge
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Aghogho Oyovbaire
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Daniel T Esuku
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Esther O Ozah
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Kelvin Japhet
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
12
|
Omeiza NA, Bakre AG, Abdulrahim HA, Isibor H, Ezurike PU, Sowunmi AA, Ben-Azu B, Aderibigbe AO. Pretreatment with Carpolobia lutea ethanol extract prevents schizophrenia-like behavior in mice models of psychosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115432. [PMID: 35659625 DOI: 10.1016/j.jep.2022.115432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carpolobia lutea decoction is widely used as a phytotherapeutic against central nervous system-related disorders including insomnia, migraine headache, and mental illness in West and Central Tropical Africa. AIM This study was designed to investigate the antipsychotic activity of Carpolobia lutea (EECL) in mice models of psychosis. METHODS Male Swiss mice (n = 5/group) were given EECL (100, 200, 400, and 800 mg/kg), haloperidol (1 mg/kg), clozapine (5 mg/kg) and vehicle (10 mL/kg) orally before amphetamine (5 mg/kg)-induced hyperlocomotion and stereotypy, apomorphine (2 mg/kg)-induced stereotypy, or ketamine (10, 30, and 100 mg/kg)-induced hyperlocomotion, enhancement of immobility and cognitive impairment. RESULTS EECL (200, 400, and 800 mg/kg) prevented amphetamine- and apomorphine-induced stereotypies, as well as reduced hyperlocomotion induced by amphetamine and ketamine, all of which are predictors of positive symptoms. Regardless of the dose administered, EECL prevented the index of negative symptoms induced by ketamine. Furthermore, higher doses of EECL (400 and 800 mg/kg) also prevented ketamine-induced cognitive impairment, a behavioral phenotype of cognitive symptoms. CONCLUSION Pretreatment with EECL demonstrated antipsychotic activity in mice, preventing amphetamine-, apomorphine-, and ketamine-induced schizophrenia-like symptoms, with 800 mg/kg being the most effective dose.
Collapse
Affiliation(s)
- Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adewale G Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Happy Isibor
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Precious U Ezurike
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
13
|
Omar S, El Borolossy RM, Elsaid T, Sabri NA. Evaluation of the combination effect of rutin and vitamin C supplementation on the oxidative stress and inflammation in hemodialysis patients. Front Pharmacol 2022; 13:961590. [PMID: 36160426 PMCID: PMC9493033 DOI: 10.3389/fphar.2022.961590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hemodialysis (HD) patients are at risk of malnutrition, cardiovascular complications, and all-cause mortality due to oxidative stress and inflammation. Some studies have demonstrated that rutin attenuates oxidative stress and inflammation in CKD rats, but its effects in HD patients are unknown to date. Aim: The aim of this study was to evaluate the effect of rutin and vitamin C versus vitamin C alone on oxidative stress and inflammation in HD patients. Methods: A prospective randomized, open-label, controlled trial enrolled on hundred and five HD patients divided into three groups as follows: patients in group 1 were given a rutin/vitamin C combination (Ruta C group as the combination trade name is known as Ruta C 60 tablets), patients in group 2 were given vitamin C (1 g) (vitamin C group), and group 3 was the control group; the study period was 16 weeks. The following were assessed at baseline and at the end of the study: serum malondialdehyde (MDA), glutathione peroxidase (GPx), high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), lipid profile levels, and erythrocyte sedimentation rate. Results: It was found that vitamin C significantly increased serum GPx in group 2 (p = 0.001) compared to a non-significant result in both group 1 and 3; in addition, serum MDA and TNF-α values had decreased significantly in the three groups compared to their baselines; however, a non-significant difference was seen among the studied groups at the end of the study. On the other hand, MDA levels were reduced by 50% in interventional groups compared to 28% in the control group, while the Ruta C group showed an 80% reduction in the level of TNF α compared to the 78% reduction observed in the vitamin C group, and finally, the interventional drugs showed a significant improvement in the lipid profile. Conclusion: Vitamin C supplementation alone for 16 weeks had a potential effect on the antioxidant's GPx activity. Moreover, it was reported that both vitamin C alone or the rutin/vitamin C combination (Ruta C) showed a protective role against lipid peroxidation, evidenced by the reduced levels of MDA. Finally, rutin had a favorable synergistic effect with vitamin C in reducing TG and TNF-α levels and increasing HDL-C level.
Collapse
Affiliation(s)
- Samia Omar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Tamer Elsaid
- Department of Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nagwa A. Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Ariyo OO, Ajayi AM, Ben-Azu B, Aderibigbe AO. Morus mesozygia leaf extract ameliorates behavioral deficits, oxidative stress and inflammation in Complete Freund's adjuvant-induced arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115202. [PMID: 35331880 DOI: 10.1016/j.jep.2022.115202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus mesozygia Stapf (Moraceae), otherwise referred to as African mulberry, is utilized domestically as a remedy for a variety of inflammatory disorders including rheumatism. AIM The anti-arthritic effect of the ethylacetate fraction of M. mesozygia leaf extract (EAFMm) was assessed on complete Freund's adjuvant (CFA)-induced arthritis in male Wistar rats. METHOD Groups of male Wistar rats were injected with CFA (0.2 mL; 10 mg/mL) in the plantar surface of their right hind paws and treated orally with EAFMm (50 and 100 mg/kg) or its vehicle daily for 28 days. The effect on joint inflammation and mechanical nociception threshold, behavioral deficits (spontaneous motor activity in the open field test and depressive-like symptoms in the forced swim test) was evaluated. The levels and activities of the biomarkers of oxidative-nitrosative stress (reduced glutathione, superoxide dismutase, nitrite, and malondialdehyde) and inflammatory markers [TNF-α, IL-6, COX-2, NFκB and myeloperoxidase] were also analysed. RESULTS The EAFMm at the doses of 50 and 100 mg/kg produced a dose dependent reduction in joint inflammation and mechanical hyperalgesia, and as well improved behavioral deficits like spontaneous motor activity and depressive-like behavior. The EAFMm also significantly reduced oxido-nitrosative stress response in the joint and brain tissues. It also decreased TNF-α, interleukin-6 levels and myeloperoxidase enzyme activities in joints and brain tissues of rats. Furthermore, EAFMm attenuated the activity of NFκB and reduced the cyclooxygenase -2 protein expression level in joint tissues. CONCLUSION The ethylacetate fraction of Morus mesozygia leaf extract demonstrated anti-arthritic activity and ameliorated co-morbid depressive-like behavior via inhibition of oxidative stress and inflammation in a rat model of arthritis.
Collapse
Affiliation(s)
- Oluwakemi O Ariyo
- Neuropharmacology Unit, Department of Pharmacology & Therapeutics, University of Ibadan, Oyo-State, Nigeria.
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology & Therapeutics, University of Ibadan, Oyo-State, Nigeria.
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology & Therapeutics, University of Ibadan, Oyo-State, Nigeria; Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Adegbuyi O Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology & Therapeutics, University of Ibadan, Oyo-State, Nigeria.
| |
Collapse
|
15
|
Białoń M, Wąsik A. Advantages and Limitations of Animal Schizophrenia Models. Int J Mol Sci 2022; 23:5968. [PMID: 35682647 PMCID: PMC9181262 DOI: 10.3390/ijms23115968] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Mental illness modeling is still a major challenge for scientists. Animal models of schizophrenia are essential to gain a better understanding of the disease etiopathology and mechanism of action of currently used antipsychotic drugs and help in the search for new and more effective therapies. We can distinguish among pharmacological, genetic, and neurodevelopmental models offering various neuroanatomical disorders and a different spectrum of symptoms of schizophrenia. Modeling schizophrenia is based on inducing damage or changes in the activity of relevant regions in the rodent brain (mainly the prefrontal cortex and hippocampus). Such artificially induced dysfunctions approximately correspond to the lesions found in patients with schizophrenia. However, notably, animal models of mental illness have numerous limitations and never fully reflect the disease state observed in humans.
Collapse
Affiliation(s)
| | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Cracow, Poland;
| |
Collapse
|
16
|
Ishola IO, Ben-Azu B, Adebayo OA, Ajayi AM, Omorodion IL, Edje KE, Adeyemi OO. Prevention and reversal of ketamine-induced experimental psychosis in mice by the neuroactive flavonoid, hesperidin: The role of oxidative and cholinergic mechanisms. Brain Res Bull 2021; 177:239-251. [PMID: 34653559 DOI: 10.1016/j.brainresbull.2021.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Currently, prevailing evidence have identified cholinergic and oxidative pathways as important therapeutic targets for abating ketamine-induced schizophrenia-like behavior. Thus, this study evaluated the ability of hesperidin, a naturally occurring antioxidant and neuroprotective flavonoid, to prevent and reverse ketamine-induced schizophrenia-like behaviors and changes in cholinergic, oxidative and nitrergic status in mice. Forty-eight male Swiss mice were allotted into the preventive and reversal studies with 4 groups (n = 6) each. In the preventive study, groups 1 and 2 received vehicle (10 mL/kg/p.o./day), while groups 3 and 4 had hesperidin (100 mg/kg/p.o./day) for 14 days, but ketamine (20 mg/kg/i.p./day) was concurrently given to groups 2 and 4 from days 8-14. In the reversal study, groups 1 and 3 received vehicle, groups 2 and 4 were pretreated with ketamine for 14 days. Nevertheless, groups 3 and 4 additionally received hesperidin from days 8-14. Thereafter, schizophrenia-like behavior from exploratory activity, open-field (positive symptoms), Y-maze (cognitive symptoms) and social interaction (negative symptoms) tests were evaluated. Brain levels of oxidative/nitrergic (glutathione, superoxide-dismutase, malondialdehyde and nitrite levels) and cholinergic (acetylcholinesterase activity) markers were measured in the prefrontal-cortex, striatum and hippocampus. Hesperidin prevents and reverses ketamine-induced hyperactivities, social withdrawal and cognitive impairment. Also, hesperidin prevented and reversed ketamine-induced decrease in glutathione and superoxide-dismutase levels in the prefrontal-cortical, striatal and hippocampal brain regions in mice. Consequently, hesperidin attenuated ketamine-induced increase in malondialdehyde, nitrite levels and acetylcholinesterase activities in the prefrontal-cortex, striatum and hippocampus, respectively. The study showed that hesperidin prevents and reverses ketamine-induced schizophrenia-like behavior through inhibition of oxidative/nitrergic stress and acetylcholinesterase activity in mice brains. Therefore, these findings suggest that hesperidin dietary supplementation could provide natural nutritional intervention to protect against epigenetic-induced mental ill-health like schizophrenia, and thus serve as an important agent for nutritional psychiatry.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Oluwatosin A Adebayo
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Iziegbe Lisa Omorodion
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Graduate Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Kesiena Emmanuel Edje
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Department of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, United Kingdom
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos State, Nigeria
| |
Collapse
|