1
|
Jin YY, Guo Y, Xiong SW, Zhang N, Chen JH, Liu F. BALF editome profiling reveals A-to-I RNA editing associated with severity and complications of Mycoplasma pneumoniae pneumonia in children. mSphere 2025; 10:e0101224. [PMID: 39998235 PMCID: PMC11934315 DOI: 10.1128/msphere.01012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/26/2025] Open
Abstract
Mycoplasma pneumoniae is an important human respiratory pathogen that causes mild-to-moderate community-acquired M. pneumoniae pneumonia (MPP), particularly in children. RNA editing plays a vital role in pathogen infection and host immune response, but it remains largely unknown how it could be involved in the epigenetic regulation of host response to M. pneumoniae infection. In the present study, we performed an epitranscriptomic analysis of adenosine to inosine (A-to-I) editing in 39 bronchoalveolar lavage fluid (BALF) samples from the severe side (SS) and the opposite side (OS) of patients with MPP. Our editome profiling identified 87 differential RNA editing (DRE) events in 50 genes, especially missense editing events that recoded C-C motif chemokine receptor-like 2 (CCRL2, p.K147R) and cyclin I (CCNI, p.R75G). The expression of adenosine deaminase acting on RNA (ADAR) significantly increased on SS compared to OS and positively correlated with the average RNA editing level and individual DRE events. Meanwhile, functional enrichment analysis showed that DRE was observed in genes primarily associated with the negative regulation of innate immune response, type I interferon production, and cytokine production. Further comparison of SS between complicated MPP (CMPP) and non-complicated MPP (NCMPP) revealed RNA editing events associated with MPP complications, with a higher ADAR expression in CMPP than NCMPP. By identifying DRE events as biomarkers associated with MPP severity and complications, our editome profiling provides new insight into the potential role played by A-to-I RNA editing in modulating the host's immune system during M. pneumoniae infection.IMPORTANCEOur research investigates how Mycoplasma pneumoniae, a common respiratory pathogen, influences how our cells modify their genetic instructions. By studying RNA editing changes in bronchoalveolar lavage fluid from patients with M. pneumoniae pneumonia, we aim to investigate how M. pneumoniae infection alters epigenetics and contributes to the disease severity and complications. Understanding such epigenetic alterations not only sheds light on the mechanisms underlying M. pneumoniae infection but also holds potential implications for developing better diagnostic tools and therapies. Ultimately, this work may facilitate the design of more targeted treatments to alleviate the impact of respiratory infections caused by the pathogen. Our findings may also offer broader insights into how microbial infections reshape immune processes, highlighting the importance of RNA editing in host-pathogen interactions.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yun Guo
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi, Jiangsu, China
| | - Su-Wan Xiong
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi, Jiangsu, China
| | - Na Zhang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Liu
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Zhang C, Song Y, Yang H, Wu K. Myeloid cells are involved in tumor immunity, metastasis and metabolism in tumor microenvironment. Cell Biol Toxicol 2025; 41:62. [PMID: 40131539 PMCID: PMC11937113 DOI: 10.1007/s10565-025-10012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Bone marrow-derived cells in the tumor microenvironment, including macrophages, neutrophils, dendritic cells, myeloid-derived suppressor cells, eosinophils and basophils, participate in the generation, development, invasion and metastasis of tumors by producing different cytokines and interacting with other cell types, and play a pro-tumor or anti-tumor role in regulating tumor immunity. Due to the complexity of cell types in the tumor microenvironment and the unknown process of tumor development and metastasis, cancer treatment to achieve better survival status remains challenging. In this article, we summarize the effects of myeloid cells in tumor microenvironment on tumor immunity, cancer migration, and crosstalk with metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism), which will help to further study the tumor microenvironment and seek targeted therapeutic strategies for patients.
Collapse
Affiliation(s)
- Chenbo Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ying Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Huanming Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Kui Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310000, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- BGI Genomics, Harbin, 150023, Heilongjiang, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
3
|
Tang S, Zhang Y, Song L, Hui K, Jiang X. High CXCL8 expression predicting poor prognosis in triple-negative breast cancer. Anticancer Drugs 2025; 36:246-252. [PMID: 39761194 PMCID: PMC11781556 DOI: 10.1097/cad.0000000000001678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/08/2024] [Indexed: 02/01/2025]
Abstract
Triple-negative breast cancer (TNBC) is highly prone to early relapse and metastasis following standard treatment. CXCL8 is a key factor in tumor invasion and metastasis, but its role in TNBC prognosis and clinicopathological correlations remains poorly understood. This study investigated CXCL8 expression and its clinical significance in TNBC to develop a prognostic nomogram for guiding intensive treatment and follow-up strategies. Public datasets from the gene expression omnibus public datasets platform were analyzed to assess CXCL8 expression. Additionally, paraffin-embedded TNBC specimens collected from our hospital were examined using immunohistochemistry to explore the relationship between CXCL8 expression and clinicopathological features. Survival analysis was performed to evaluate whether CXCL8 serves as an unfavorable prognostic biomarker for TNBC patients. Univariate Cox regression analysis was conducted to identify prognostic factors. Based on these findings, a nomogram was developed to predict TNBC progression risk. CXCL8 expression was significantly higher in TNBC tissues than in adjacent normal tissues ( P < 0.05). Among 122 TNBC patients, 46 were CXCL8-positive and 76 were CXCL8-negative. CXCL8 expression was significantly associated with N stage ( P < 0.05). Progression-free survival (PFS) was markedly shorter in the CXCL8-positive group compared with the CXCL8-negative group ( P < 0.001). Univariate Cox regression identified N1-3, M1, and CXCL8 positivity as significant risk factors for disease progression. A nomogram incorporating these variables (N, M, and CXCL8) was constructed to predict PFS. Time-dependent receiver operating characteristic curve analysis at 12-, 36-, and 48-month demonstrated strong predictive performance, with area under the curve values of 0.857, 0.839, and 0.795, respectively. CXCL8 is highly expressed in TNBC and promotes lymphatic metastasis, serving as an unfavorable prognostic factor. The developed nomogram offers a valuable tool for guiding personalized treatment and follow-up strategies in TNBC patients.
Collapse
Affiliation(s)
- Sumin Tang
- Department of Thyroid and Breast Tumor Surgery
| | - Yuqing Zhang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang
| | - Liying Song
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang
| | - Kaiyuan Hui
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang
| | - Xiaodong Jiang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu Province, China
| |
Collapse
|
4
|
Wang C, Liu Y, Zhang R, Gong H, Jiang X, Xia S. Targeting the tumor immune microenvironment: GPCRs as key regulators in triple-negative breast cancer. Int Immunopharmacol 2025; 147:113930. [PMID: 39740508 DOI: 10.1016/j.intimp.2024.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. Recent research underscores the pivotal role of G protein-coupled receptors (GPCRs) in shaping the tumor immune microenvironment (TIME) within TNBC. This review focuses on four principal GPCRs-chemokine receptors, sphingosine-1-phosphate receptors, prostaglandin E2 receptors, and lactate receptors-that have garnered substantial attention in TNBC studies. GPCRs modulate immune cell recruitment, polarization, and function, thereby fostering an immunosuppressive milieu conducive to tumor progression and metastasis. The review examines how alterations in GPCR expression on immune cells influence the pathogenesis and advancement of TNBC. Further, it discusses emerging therapeutic strategies targeting GPCR signaling pathways to remodel the immunosuppressive TIME in TNBC. These insights into GPCR-mediated immune regulation not only deepen our comprehension of TNBC's pathophysiology but also offer promising avenues for developing novel immunotherapies aimed at enhancing clinical outcomes for TNBC patients.
Collapse
Affiliation(s)
- Chengyi Wang
- Clinical Medical School, Jining Medical University, Jining, China
| | - Yanyan Liu
- Clinical Medical School, Jining Medical University, Jining, China
| | - Ru Zhang
- Clinical Medical School, Jining Medical University, Jining, China
| | - Hao Gong
- Clinical Medical School, Jining Medical University, Jining, China
| | - Xinnong Jiang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shuai Xia
- Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, China.
| |
Collapse
|
5
|
Cao W, Jin D, Min W, Li H, Wang R, Zhang J, Gou Y. Prognostic values of intracellular cell-related genes in esophageal cancer and their regulatory mechanisms. BMC Cancer 2025; 25:105. [PMID: 39833728 PMCID: PMC11744837 DOI: 10.1186/s12885-025-13483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Esophageal cancer is a grave malignant condition. While radiotherapy, often in conjunction with chemotherapy, serves as a cornerstone in the management of locally advanced or metastatic cases, patient tolerance and treatment resistance frequently hinder its efficacy. Cell-in-cell structures, prevalent in various tumors, have been linked to prognosis. Hence, investigating the prognostic significance and regulatory mechanisms of genes related to these intracellular structures in esophageal cancer is imperative. The Cancer Genome Atlas (TCGA) Esophageal Cancer (ESCA) dataset served as the training set for the analysis. Differentially expressed genes (DEGs) in ESCA samples were identified, with those related to intercellular structures designated cell-in-cell-related differential expression genes (CIC-related DEGs). Cox regression analysis was employed to identify prognostic genes, categorizing samples into high- and low-risk groups based on median risk scores. Validation was conducted using the GSE53624 risk model. Established methodologies included morphological mapping, enrichment analysis, immune infiltration analysis, prognostic gene expression validation, molecular docking, and Reverse Transcription Polymerase Chain Reaction (RT-PCR) validation. Thirty-eight intersecting genes were identified between the disease and normal groups in ESCA samples. Stepwise multivariate Cox analysis pinpointed three prognostic genes: androgen receptor (AR), C-X-C motif chemokine ligand 8 (CXCL8), and epidermal growth factor receptor (EGFR). The risk model's applicability was confirmed in the GSE53624 dataset, revealing eight significantly different immune-related gene sets. Prognostic gene expression validation demonstrated significant differences between the disease and normal groups in both datasets. The proteins corresponding to the three prognostic genes interacted with gefitinib and osimertinib. RT-PCR results corroborated the differential expression of prognostic genes in esophageal cancer tissues. This study identified AR, CXCL8, and EGFR as prognostic genes and demonstrated their molecular interactions with gefitinib and osimertinib, providing a foundation for ESCA diagnosis and treatment.
Collapse
Affiliation(s)
- Wei Cao
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, China
- Chest Clinic Center, Gansu Provincial People's Hospital, Lanzhou, China
- First Department of Thoracic Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Dacheng Jin
- Chest Clinic Center, Gansu Provincial People's Hospital, Lanzhou, China
- First Department of Thoracic Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Weirun Min
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, China
- Chest Clinic Center, Gansu Provincial People's Hospital, Lanzhou, China
- First Department of Thoracic Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Haochi Li
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, China
- Chest Clinic Center, Gansu Provincial People's Hospital, Lanzhou, China
- First Department of Thoracic Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Rong Wang
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinlong Zhang
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, China
- Chest Clinic Center, Gansu Provincial People's Hospital, Lanzhou, China
- First Department of Thoracic Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yunjiu Gou
- Chest Clinic Center, Gansu Provincial People's Hospital, Lanzhou, China.
- First Department of Thoracic Surgery, Gansu Provincial People's Hospital, Lanzhou, China.
| |
Collapse
|
6
|
Yang L, Li A, Yu W, Wang H, Zhang L, Wang D, Wang Y, Zhang R, Lei Q, Liu Z, Zhen S, Qin H, Liu Y, Yang Y, Song XL, Zhang Y. Blockade of purine metabolism reverses macrophage immunosuppression and enhances anti-tumor immunity in non-small cell lung cancer. Drug Resist Updat 2025; 78:101175. [PMID: 39608215 DOI: 10.1016/j.drup.2024.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
AIMS Immune checkpoint blockade therapy is not effective in most patients with non-small cell lung cancer (NSCLC) due to the immunosuppressive tumor microenvironment. Macrophages are key components of tumor-infiltrating immune cells and play a critical role in immunosuppression, which can be mediated by cell-intrinsic metabolism. This study aimed to evaluate whether macrophages regulate NSCLC progression through metabolic crosstalk with cancer cells and affect immunotherapy efficacy. METHODS The macrophage landscape of NSCLC tissues were analyzed by single-cell sequencing and verified through flow cytometry and immunofluorescence. Multiplex assay, single-cell sequencing data, ELISA, immunofluorescence, and RNA-seq et al. were used to investigate and verify the mechanism of macrophage-mediated metabolic regulation on immunosuppression. The tumor-bearing model was established in C57BL/6 J mice to explore in vivo efficacy. RESULTS We found that tumor tissue-derived macrophages exhibited an anti-inflammatory phenotype and had a prognostic value for NSCLC. NSCLC cell-secreted CXCL8 recruited macrophages from peritumor tissues to tumor sites and promoted programmed death-ligand 1 (PD-L1) expression by activating purine metabolism with increasing xanthine dehydrogenase and uric acid production. Moreover, purine metabolism-mediated macrophage immunosuppression was dependent on NLRP3/caspase-1/IL-1β signaling. Blockade of purine metabolism signaling enhanced anti-tumor immunity and the efficacy of anti-PD-L1 therapy. CONCLUSIONS Collectively, our findings reveal a key role of purine metabolism in macrophage immunosuppression and suggest that blockade of purine metabolism combined with immune checkpoint blockade could provide synergistic effects in NSCLC treatment.
Collapse
Affiliation(s)
- Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Aitian Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huishang Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ru Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhangnan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shanshan Zhen
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiming Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqing Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Yang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xian-Lu Song
- Department of Radiotherapy, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Jiang Z, Yan M, Qin Y, Liu Z, Duan Y, Wang Y, Zhang R, Lin W, Li Y, Xie T, Ke J. Quercetin alleviates ulcerative colitis through inhibiting CXCL8-CXCR1/2 axis: a network and transcriptome analysis. Front Pharmacol 2024; 15:1485255. [PMID: 39717557 PMCID: PMC11663639 DOI: 10.3389/fphar.2024.1485255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Ulcerative colitis (UC) is a chronic inflammatory condition of the intestinal tract in which mucosal healing is a crucial measure of therapeutic efficacy. Quercetin, a flavonoid prevalent in various foods and traditional Chinese medicines, exhibits notable pharmacological properties, including antioxidant and anti-inflammatory activities. Consequently, it warrants investigation to determine its potential therapeutic effects on UC. The objective of this study was to investigate the effects and underlying mechanisms of quercetin in a murine model of UC. Methods A comprehensive approach integrating network predictions with transcriptomic analyses was employed to identify the potential targets and enriched pathways associated with quercetin in UC. Subsequently, the effects of quercetin on pathological morphology, inflammatory mediators, and mucosal barrier-associated proteins, as well as the identified potential targets and enriched pathways, were systematically investigated in a murine model of dextran sulfate sodium (DSS)-induced UC. Results Network analyses identified CXCL8 and its receptors, CXCR1 and CXCR2, as primary target genes for therapeutic intervention in UC. Further validation through transcriptomic analysis and immunofluorescence staining demonstrated significant upregulation of the CXCL8-CXCR1/2 axis in the intestinal tissues of patients with UC. Experimental investigations in animal models have shown that quercetin markedly alleviates DSS-induced symptoms in mice. This effect includes the restoration of colonic crypt architecture, normalization of goblet cell structure and density, reduction of inflammatory cell infiltration, and decreased concentrations of inflammatory mediators. Quercetin enhanced the expression of tight junction (TJ) proteins, including ZO-1, MUC2 (Mucin 2), and occludin, thereby preserving the integrity of the intestinal mucosal barrier. Additionally, it significantly diminished the levels of IL-17A, NF-κB, CXCL8, CXCR1, and CXCR2 in the colonic tissues of mice with UC. Discussion The ameliorative effects of quercetin on colon tissue damage in DSS-induced UC mice were significant, possibly due to its ability to inhibit the CXCL8-CXCR1/2 signaling axis. These findings provide a solid foundation for the clinical application and pharmaceutical advancement of quercetin.
Collapse
Affiliation(s)
- Zhangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingjuan Yan
- Department of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanmi Qin
- Department of Cardiology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhenglin Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yilin Duan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingju Wang
- Foshan Chancheng Center Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Ruisen Zhang
- Department of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Lin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian Xie
- Department of Cardiology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junyu Ke
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, China
| |
Collapse
|
8
|
Bao Y, Tong C, Xiong X. CXCL3: A key player in tumor microenvironment and inflammatory diseases. Life Sci 2024; 348:122691. [PMID: 38714265 DOI: 10.1016/j.lfs.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
CXCL3 (C-X-C Motif Chemokine 3), a member of the C-X-C chemokine subfamily, operates as a potent chemoattractant for neutrophils, thereby orchestrating the recruitment and migration of leukocytes alongside eliciting an inflammatory response. Recent inquiries have shed light on the pivotal roles of CXCL3 in the context of carcinogenesis. In the tumor microenvironment, CXCL3 emanating from both tumor and stromal cells intricately modulates cellular behaviors through autocrine and paracrine actions, primarily via interaction with its receptor CXCR2. Activation of signaling cascades such as ERK/MAPK, AKT, and JAK2/STAT3 underscores CXCL3's propensity to favor tumorigenic processes. However, CXCL3 exhibits dualistic behaviors, as evidenced by its capacity to exert anti-tumor effects under specific conditions. Additionally, the involvement of CXCL3 extends to inflammatory disorders like eclampsia, obesity, and asthma. This review encapsulates the structural attributes, biological functionalities, and molecular underpinnings of CXCL3 across both tumorigenesis and inflammatory diseases.
Collapse
Affiliation(s)
- Yuxuan Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School of Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
9
|
Stępień S, Smycz-Kubańska M, Kruszniewska-Rajs C, Gola JM, Kabut J, Olczyk P, Mielczarek-Palacz A. Clinical significance of the CXCL8/CXCR1/R2 signalling axis in patients with invasive breast cancer. Oncol Lett 2024; 27:260. [PMID: 38646491 PMCID: PMC11027109 DOI: 10.3892/ol.2024.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/08/2024] [Indexed: 04/23/2024] Open
Abstract
The C-X-C motif chemokine ligand 8 (CXCL8)-C-X-C chemokine receptor (CXCR)1/2 signalling axis is among numerous mechanisms which stimulate the immune system to defend against tumour growth and influence the tumour microenvironment to promote tumour growth. This pathway plays an important role in the development of a number of cancers including breast cancer (BC). The aim of the present study was to analyse the levels of the chemokine CXCL8 and its receptors, CXCR1 and CXCR2, in the serum of female patients with invasive BC and to assess the expression of these parameters at the mRNA level, considering molecular subtypes and degrees of cancer malignancy. The study group consisted of 62 patients with histopathologically confirmed invasive BC. The control group consisted of 18 patients with histopathologically confirmed fibroadenoma, a benign breast tumour. The levels of CXCL8, CXCR1 and CXCR2 were determined by sandwich ELISA using the CLOUD-CLONE ELISA kit. CXCL8, CXCR1 and CXCR2 transcript levels were analysed using reverse transcription-quantitative PCR. Results showed that serum CXCL8 levels in female patients with invasive BC were significantly higher compared with those in the control group (P<0.05). In addition, significantly elevated CXCR1 levels were observed in luminal B human epidermal growth factor receptor 2+ carcinoma compared with those in the control group. Analysis of CXCL8 in the serum of female patients with BC showed a statistically significant difference between clinical stage G1 and G2 (P<0.05), G2 and G3 (P<0.01), and G1 and G3 (P<0.0001). On the other hand, the analysis of CXCR1 and CXCR2 levels in the serum of the patients revealed a statistically significant difference between G2 and G3 (P<0.05). The current study showed that abnormalities in the immune response involving the CXCL8-CXCR1/2 signalling axis in patients with invasive BC are involved in the development of these tumours. Moreover, the demonstrated severity of changes occurring at protein level may suggest the potential usefulness of their determination as potential diagnostic markers in the clinic.
Collapse
Affiliation(s)
- Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
10
|
Sampaio MCPD, Santos RVC, Albuquerque APDB, Soares AKDA, Cordeiro MF, da Rosa MM, Pereira MC, da Rocha Pitta MG, Rêgo MJBDM. Induction of SK-MEL-28 Invasion by Brain Cortical Cell-Conditioned Medium Through CXCL10 Signaling. J Interferon Cytokine Res 2024; 44:198-207. [PMID: 38512222 DOI: 10.1089/jir.2023.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Melanoma, an infrequent yet significant variant of skin cancer, emerges as a primary cause of brain metastasis among various malignancies. Despite recognizing the involvement of inflammatory molecules, particularly chemokines, in shaping the metastatic microenvironment, the intricate cellular signaling mechanisms underlying cerebral metastasis remain elusive. In our pursuit to unravel the role of cytokines in melanoma metastasis, we devised a protocol utilizing mixed cerebral cortical cells and SK-MEL-28 melanoma cell lines. Contrary to expectations, we observed no discernible morphological change in melanoma cells exposed to a cerebral conditioned medium (CM). However, a substantial increase in both migration and proliferation was quantitatively noted. Profiling the chemokine secretion by melanoma in response to the cerebral CM unveiled the pivotal role of interferon gamma-induced protein 10 (CXCL10), inhibiting the secretion of interleukin 8 (CXCL8). Furthermore, through a transwell assay, we demonstrated that knockdown CXCL10 led to a significant decrease in the migration of the SK-MEL-28 cell line. In conclusion, our findings suggest that a cerebral CM induces melanoma cell migration, while modulating the secretion of CXCL10 and CXCL8 in the context of brain metastases. These insights advance our understanding of the underlying mechanisms in melanoma cerebral metastasis, paving the way for further exploration and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Clara Pinheiro Duarte Sampaio
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Renata Virgínia Cavalcanti Santos
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Amanda Pinheiro de Barros Albuquerque
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | | | - Marina Ferraz Cordeiro
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Michelle Melgarejo da Rosa
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Michelly Cristiny Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
11
|
Coperchini F, Greco A, Croce L, Pignatti P, Muzza M, Petrosino E, Teliti M, Magri F, Rotondi M. Canagliflozin reduces thyroid cancer cells migration in vitro by inhibiting CXCL8 and CCL2: An additional anti-tumor effect of the drug. Biomed Pharmacother 2024; 170:115974. [PMID: 38056240 DOI: 10.1016/j.biopha.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Canagliflozin exert anti-cancer effects in several types of cancer including thyroid cancer (TC). However, whether it could modulate chemokines secreted in TC microenvironment is still unknown. The aim of the present study is to evaluate whether Canagliflozin could inhibit pro-tumorigenic chemokines CXCL8 and CCL2 and/or the TC cell migration induced by them. EXPERIMENTAL DESIGN TC cell lines, TPC-1 and 8505C, HUVEC and normal thyroid cells NHT were treated with increasing concentrations of Canagliflozin. Viability was assessed by WST-1 and colony formation/proliferation by cristal violet. Chemokines were measured in cell supernatants by ELISA. mRNAs were evaluated by RT-PCR. TC migration (trans-well) and HUVEC proliferation (cristal violet) were assessed by treating cells with Canagliflozin alone or in combination with CXCL8 or CCL2. RESULTS Canagliflozin reduced TC, HUVEC and NHT cells viability. The ability to form colonies of TC and the HUVEC proliferation (basal and CXCL8 or CCL2-induced) was also inhibited. mRNA and the secretion of CXCL8 was reduced in all cell types. The secretion of CCL2 was reduced by Canagliflozin in all cell types whereas its mRNA levels were reduced only in TPC-1. IL-6 was reduced in all cell types, while CXCL10 increased. More interestingly the CXCL8 and CCL2-induced TC cell migration as well as HUVEC proliferation was inhibited by Canagliflozin in both cell types. CONCLUSION Canagliflozin exerts anti-cancer effects not only by reducing TC viability or colonies formation, but also by modulating two pro-tumorigenic chemokines resulting in reduced TC cells migration. These results expand the spectrum of canagliflozin-promoted anti-cancer effects.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Marina Muzza
- Department of Endocrine and Metabolic Diseases, Endocrine Oncology Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elena Petrosino
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy.
| |
Collapse
|
12
|
Yan S, Wang J, Chen H, Zhang D, Imam M. Divergent features of ERβ isoforms in triple negative breast cancer: progress and implications for further research. Front Cell Dev Biol 2023; 11:1240386. [PMID: 37936981 PMCID: PMC10626554 DOI: 10.3389/fcell.2023.1240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Estrogen receptor β (ERβ) was discovered more than 20 years ago. However, the extent and role of ERβ expression in breast cancer remain controversial, especially in the context of triple-negative breast cancer (TNBC). ERβ exists as multiple isoforms, and a series of studies has revealed an inconsistent role of ERβ isoforms in TNBC. Our recent results demonstrated contrasting functions of ERβ1 and ERβ2/β5 in TNBC. Additional research should be conducted to explore the functions of individual ERβ isoforms and develop targeted drugs according to the relevant mechanisms. Consequently, a systematic review of ERβ isoforms is necessary. In this review, we overview the structure of ERβ isoforms and detail what is known about the function of ERβ isoforms in normal mammary tissue and breast cancer. Moreover, this review highlights the divergent features of ERβ isoforms in TNBC. This review also provides insights into the implications of targeting ERβ isoforms for clinical treatment. In conclusion, this review provides a framework delineating the roles and mechanisms of different ERβ isoforms in TNBC and sheds light on future directions for basic and clinical research.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
13
|
Ishimoto N, Park JH, Kawakami K, Tajiri M, Mizutani K, Akashi S, Tame JRH, Inoue A, Park SY. Structural basis of CXC chemokine receptor 1 ligand binding and activation. Nat Commun 2023; 14:4107. [PMID: 37433790 PMCID: PMC10336096 DOI: 10.1038/s41467-023-39799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Neutrophil granulocytes play key roles in innate immunity and shaping adaptive immune responses. They are attracted by chemokines to sites of infection and tissue damage, where they kill and phagocytose bacteria. The chemokine CXCL8 (also known as interleukin-8, abbreviated IL-8) and its G-protein-coupled receptors CXCR1 and CXCR2 are crucial elements in this process, and also the development of many cancers. These GPCRs have therefore been the target of many drug development campaigns and structural studies. Here, we solve the structure of CXCR1 complexed with CXCL8 and cognate G-proteins using cryo-EM, showing the detailed interactions between the receptor, the chemokine and Gαi protein. Unlike the closely related CXCR2, CXCR1 strongly prefers to bind CXCL8 in its monomeric form. The model shows that steric clashes would form between dimeric CXCL8 and extracellular loop 2 (ECL2) of CXCR1. Consistently, transplanting ECL2 of CXCR2 onto CXCR1 abolishes the selectivity for the monomeric chemokine. Our model and functional analysis of various CXCR1 mutants will assist efforts in structure-based drug design targeting specific CXC chemokine receptor subtypes.
Collapse
Affiliation(s)
- Naito Ishimoto
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Jae-Hyun Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Michiko Tajiri
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Kenji Mizutani
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoko Akashi
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
14
|
Zhou C, Gao Y, Ding P, Wu T, Ji G. The role of CXCL family members in different diseases. Cell Death Discov 2023; 9:212. [PMID: 37393391 PMCID: PMC10314943 DOI: 10.1038/s41420-023-01524-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Chemokines are a large family mediating a lot of biological behaviors including chemotaxis, tumor growth, angiogenesis and so on. As one member of this family, CXC subfamily possesses the same ability. CXC chemokines can recruit and migrate different categories of immune cells, regulate tumor's pathological behaviors like proliferation, invasion and metastasis, activate angiogenesis, etc. Due to these characteristics, CXCL subfamily is extensively and closely associated with tumors and inflammatory diseases. As studies are becoming more and more intensive, CXCLs' concrete roles are better described, and CXCLs' therapeutic applications including biomarkers and targets are also deeply explained. In this review, the role of CXCL family members in various diseases is summarized.
Collapse
Affiliation(s)
- Chenjia Zhou
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| |
Collapse
|
15
|
Wilson BE, Shen Q, Cescon DW, Reedijk M. Exploring immune interactions in triple negative breast cancer: IL-1β inhibition and its therapeutic potential. Front Genet 2023; 14:1086163. [PMID: 37065483 PMCID: PMC10095561 DOI: 10.3389/fgene.2023.1086163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Triple negative breast cancer (TNBC) has poor prognosis when compared to other breast cancer subtypes. Despite pre-clinical data supporting an immune targeted approach for TNBCs, immunotherapy has failed to demonstrate the impressive responses seen in other solid tumor malignancies. Additional strategies to modify the tumor immune microenvironment and potentiate response to immunotherapy are needed. In this review, we summarise phase III data supporting the use of immunotherapy for TNBC. We discuss the role of IL-1β in tumorigenesis and summarize pre-clinical data supporting IL-1β inhibition as a potential therapeutic strategy in TNBC. Finally, we present current trials evaluating IL-1β in breast cancer and other solid tumor malignancies and discuss future studies that may provide a strong scientific rationale for the combination of IL-1β and immunotherapy in the neoadjuvant and metastatic setting for people with TNBC.
Collapse
Affiliation(s)
- Brooke E. Wilson
- Department of Oncology, Queen’s University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen’s Cancer Research Institute, Kingston, ON, Canada
| | - Qiang Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
| | - Michael Reedijk
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
- Department of Surgical Oncology, University Health Network, Toronto, ON, Canada
- *Correspondence: Michael Reedijk,
| |
Collapse
|
16
|
Molczyk C, Singh RK. CXCR1: A Cancer Stem Cell Marker and Therapeutic Target in Solid Tumors. Biomedicines 2023; 11:biomedicines11020576. [PMID: 36831112 PMCID: PMC9953306 DOI: 10.3390/biomedicines11020576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Therapy resistance is a significant concern while treating malignant disease. Accumulating evidence suggests that a subset of cancer cells potentiates tumor survival, therapy resistance, and relapse. Several different pathways regulate these purported cancer stem cells (CSCs). Evidence shows that the inflammatory tumor microenvironment plays a crucial role in maintaining the cancer stem cell pool. Typically, in the case of the tumor microenvironment, inflammatory pathways can be utilized by the tumor to aid in tumor progression; one such pathway is the CXCR1/2 pathway. The CXCR1 and CXCR2 receptors are intricately related, with CXCR1 binding two ligands that also bind CXCR2. They have the same downstream pathways but potentially separate roles in the tumor microenvironment. CXCR1 is becoming more well known for its role as a cancer stem cell identifier and therapeutic target. This review elucidates the role of the CXCR1 axis as a CSC marker in several solid tumors and discusses the utility of CXCR1 as a therapeutic target.
Collapse
|
17
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
18
|
Motyka J, Gacuta E, Kicman A, Kulesza M, Ławicki P, Ławicki S. Plasma Levels of CXC Motif Chemokine 1 (CXCL1) and Chemokine 8 (CXCL8) as Diagnostic Biomarkers in Luminal A and B Breast Cancer. J Clin Med 2022; 11:jcm11226694. [PMID: 36431173 PMCID: PMC9693547 DOI: 10.3390/jcm11226694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chemokines are involved in the regulation of immune balance and in triggering an immune response. CXCL1 and CXCL8 belong to the ELR-motif-containing group of CXC chemokines, which, in breast cancer (BC), stimulate angiogenesis and increase migration and invasiveness of tumor cells. The aim of this study was to evaluate CXCL1, CXCL8 and comparative marker CA 15-3 plasma concentrations in BC patients with luminal subtypes A and B. The study group consisted of 100 patients with BC, and the control group of 50 subjects with benign breast lesions and 50 healthy women. Chemokines concentrations were determined by ELISA method; CA15-3-by CMIA. Concentrations of CXCL8 and CA15-3 were significantly higher in BC total group and luminal B (for CA15-3 also in luminal A) subtype of BC than in healthy controls and subjects with benign lesions. In the total BC group, the highest SE, PPV and NPV were observed for CXCL8 (70%, 77.78%, 50%, resp.). A combined analysis of tested chemokines with CA 15-3 increased SE and NPV values (96%, 69.23%, resp.). The diagnostic power of the test (measured by area under ROC curve (AUC)) showed the highest value for CXCL8 in the total BC group (0.6410), luminal A (0.6120) and B subgroup of BC (0.6700). For the combined parameter, the AUC was increasing and reached the highest value for CXCL1 + CXCL8 + CA15-3 combination (0.7024). In light of these results, we suggest that CXCL8 could be used as an additional diagnostic marker that would positively influence the diagnostic utility of CA 15-3, especially in luminal B subtype of BC.
Collapse
Affiliation(s)
- Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence:
| | - Ewa Gacuta
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland
| | - Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Paweł Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
19
|
Raza S, Rajak S, Tewari A, Gupta P, Chattopadhyay N, Sinha RA, Chakravarti B. Multifaceted role of chemokines in solid tumors: From biology to therapy. Semin Cancer Biol 2022; 86:1105-1121. [PMID: 34979274 PMCID: PMC7613720 DOI: 10.1016/j.semcancer.2021.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Chemokines are small secretory chemotactic cytokines that control the directed migration of immune cells. Chemokines are involved in both anti-and pro-tumorigenic immune responses. Accumulating evidence suggests that the balance between these responses is influenced by several factors such as the stage of tumorigenesis, immune cell activation, recruitment of immune activating or immunosuppressive cells in the tumor microenvironment (TME), and chemokine receptor expression on effector and regulatory target cells. Cancer cells engage in a complex network with their TME components via several factors including growth factors, cytokines and chemokines that are critical for the growth of primary tumor and metastasis. However, chemokines show a multifaceted role in tumor progression including maintenance of stem-like properties, tumor cell proliferation/survival/senescence, angiogenesis, and metastasis. The heterogeneity of solid tumors in primary and metastatic cancers presents a challenge to the development of successful cancer therapy. Despite extensive research on how solid tumors escape immune cell-mediated anti-tumor response, finding an effective therapy for metastatic cancer still remains a challenge. This review discusses the multifarious roles of chemokines in solid tumors including various chemokine signaling pathways such as CXCL8-CXCR1/2, CXCL9, 10, 11-CXCR3, CXCR4-CXCL12, CCL(X)-CCR(X) in primary and metastatic cancers. We further discuss the novel therapeutic approaches that have been developed by major breakthroughs in chemokine research to treat cancer patients by the strategic blockade/activation of these signaling axes alone or in combination with immunotherapies.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
20
|
Targeting IL8 as a sequential therapy strategy to overcome chemotherapy resistance in advanced gastric cancer. Cell Death Dis 2022; 8:235. [PMID: 35487914 PMCID: PMC9055054 DOI: 10.1038/s41420-022-01033-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Systemic chemotherapy with multiple drug regimens is the main therapy option for advanced gastric cancer (GC) patients. However, many patients develop relapse soon. Here, we evaluated the therapeutic potential of targeting interleukin-8 (IL8) to overcome resistance to chemotherapy in advanced GC. RNA sequencing revealed crucial molecular changes after chemotherapy resistance, in which the expression of IL8 was significantly activated with the increase in drug resistance. Subsequently, the clinical significance of IL8 expression was determined in GC population specimens. IL8-targeted by RNA interference or reparixin reversed chemotherapy resistance with limited toxicity in vivo and vitro experiments. Sequential treatment with first-line, second-line chemotherapy and reparixin inhibited GC growth, reduced toxicity and prolonged survival. Collectively, our study provides a therapeutic strategy that targeting IL8 as a sequential therapy after chemotherapy resistance in advanced GC.
Collapse
|
21
|
Karin N. Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones? Cancers (Basel) 2021; 13:6317. [PMID: 34944943 PMCID: PMC8699256 DOI: 10.3390/cancers13246317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, monoclonal antibodies to immune checkpoint inhibitors (ICI), also known as immune checkpoint blockers (ICB), have been the most successful approach for cancer therapy. Starting with mAb to cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors in metastatic melanoma and continuing with blockers of the interactions between program cell death 1 (PD-1) and its ligand program cell death ligand 1 (PDL-1) or program cell death ligand 2 (PDL-2), that have been approved for about 20 different indications. Yet for many cancers, ICI shows limited success. Several lines of evidence imply that the limited success in cancer immunotherapy is associated with attempts to treat patients with "cold tumors" that either lack effector T cells, or in which these cells are markedly suppressed by regulatory T cells (Tregs). Chemokines are a well-defined group of proteins that were so named due to their chemotactic properties. The current review focuses on key chemokines that not only attract leukocytes but also shape their biological properties. CXCR3 is a chemokine receptor with 3 ligands. We suggest using Ig-based fusion proteins of two of them: CXL9 and CXCL10, to enhance anti-tumor immunity and perhaps transform cold tumors into hot tumors. Potential differences between CXCL9 and CXCL10 regarding ICI are discussed. We also discuss the possibility of targeting the function or deleting a key subset of Tregs that are CCR8+ by monoclonal antibodies to CCR8. These cells are preferentially abundant in several tumors and are likely to be the key drivers in suppressing anti-cancer immune reactivity.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
22
|
Impacts of Chemokine (C-X-C Motif) Receptor 2 C1208T Polymorphism on Cancer Susceptibility. J Immunol Res 2021; 2021:8727924. [PMID: 34692853 PMCID: PMC8531794 DOI: 10.1155/2021/8727924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background The CXC chemokines belong to a unique family of cytokines that participates in the progression and development of many malignant tumors. Evidence for the relationship between chemokine (C-X-C motif) receptor 2 (CXCR2) C1208T polymorphism and susceptibility to cancer remains inconsistent. Methods Odds ratios (ORs), 95% confidence intervals (CIs), and combined analysis were used to investigate the effect of CXCR2 variation on cancer risk. Gene Set Enrichment Analysis (GSEA) and enzyme-linked immunosorbent assay (ELISA) were also used to evaluate the expression of CXCR2 in prostate cancer (PCA). Results Across 11 case-control studies, 4,909 cases and 5,884 controls were involved in the current analysis. Individuals with a TT genotype were associated with increased risk of digestive cancer, compared to those with a TC+CC genotype (OR = 1.16, 95%CI = 1.02-1.31, P = 0.025). Individuals carrying the TT genotype had a 39% higher risk of urinary cancer than those carrying CC genotype (OR = 1.39, 95%CI = 1.04-1.87, P = 0.025). Individuals with a TT genotype showed a 56% augmented breast cancer risk, compared to those with a CC genotype (OR = 1.56, 95%CI = 1.03-2.35, P = 0.034). It was found that CXCR2 expression was downregulated in PCA. Compared with PCA subjects carrying the CC genotype, the expression of CXCR2 was decreased in patients with the TT genotype. Conclusions The CXCR2 C1208T variation was associated with elevated risk of urinary, breast, and digestive cancer. However, the C1208T polymorphism was correlated with attenuated risk of lung cancer.
Collapse
|