1
|
Long D, Mao C, Zhang W, Zhu Y, Xu Y. Natural products for the treatment of ulcerative colitis: focus on the JAK/STAT pathway. Front Immunol 2025; 16:1538302. [PMID: 40078988 PMCID: PMC11897526 DOI: 10.3389/fimmu.2025.1538302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease with an incompletely understood pathogenesis. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway plays a key role in immune response and inflammation. More and more studies demonstrated that JAK/STAT signaling pathway is associated with the pathogenesis of UC. The JAK/STAT pathway affects UC in multiple ways by regulating intestinal inflammatory response, affecting intestinal mucosal barrier, modulating T cell homeostasis, and regulating macrophages. Encouragingly, natural products are promising candidates for the treatment of UC. Natural products have the advantage of being multi-targeted and rich in therapeutic modalities. This review summarized the research progress of JAK/STAT pathway-mediated UC. Furthermore, the latest studies on natural products targeting the JAK/STAT pathway for the treatment of UC were systematically summarized, including active ingredients such as arbutin, aloe polysaccharide, berberine, matrine, curcumin, Ginsenoside Rh2, and so on. The aim of this paper is to provide new ideas for drug development to regulate JAK/STAT signaling for treating UC.
Collapse
Affiliation(s)
- Dan Long
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Yang S, Zheng Y, Pu Z, Nian H, Li J. The multiple roles of macrophages in peritoneal adhesion. Immunol Cell Biol 2025; 103:31-44. [PMID: 39471989 DOI: 10.1111/imcb.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 12/03/2024]
Abstract
Peritoneal adhesion (PA) refers to the abnormal adhesion of the peritoneum either with the peritoneum itself or with tissues and organs that is caused by abdominopelvic surgery, abdominal infection or peritoneal inflammation. PA is associated with various clinical complications, such as abdominal pain and distension, intestinal obstruction, gastrointestinal disorders and female infertility, and adversely affects the quality of life of patients. Macrophages are essential for PA formation and can undergo polarization into classically activated macrophages (M1) and alternatively activated macrophages (M2), which are influenced by the peritoneal microenvironment. By releasing proinflammatory cytokines and reactive oxygen species, M1 macrophages promote peritoneal inflammatory reactions and the resultant formation of adhesion. In contrast, M2 macrophages secrete anti-inflammatory cytokines and growth factors to inhibit PA formation and to promote repair and healing of peritoneal tissues, and thereby play a significant anti-inflammatory role. This review comprehensively explores the function and mechanism of macrophages and their subtypes in PA formation to gain insight into the prevention and treatment of PA based on the modulation of macrophages.
Collapse
Affiliation(s)
- Shangwei Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanhe Zheng
- Digestive Department, The First People's Hospital of Lanzhou New Area, Lanzhou, China
| | - Zhenjun Pu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Hongyu Nian
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Junliang Li
- Gansu University of Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
3
|
Wang H, Sun N, Sun P, Zhang H, Yin W, Zheng X, Fan K, Sun Y, Li H. Matrine regulates autophagy in ileal epithelial cells in a porcine circovirus type 2-infected murine model. Front Microbiol 2024; 15:1455049. [PMID: 39588099 PMCID: PMC11587598 DOI: 10.3389/fmicb.2024.1455049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Porcine circovirus type 2 (PCV2) is an important pathogen that causes diarrhea in nursery and fattening pigs, resulting in huge economic losses for commercial pig farms. Protective efficacy of vaccines is compromised by mutations in pathogens. There is an urgent need to articulate the mechanism by which PCV2 destroys the host's intestinal mucosal barrier and to find effective therapeutic drugs. Increasing attention has been paid to the natural antiviral compounds extracted from traditional Chinese medicines. In the present study, we investigated the role of Matrine in mitigating PCV2-induced intestinal damage and enhancing autophagy as a potential therapeutic strategy in mice. Methods A total of 40 female, specific-pathogen-free-grade Kunming mice were randomly divided into four groups with 10 mice in each group: control, PCV2 infection, Matrine treatment (40 mg/kg Matrine), and Ribavirin treatment (40 mg/kg Ribavirin). Except for the control group, all mice were injected intraperitoneally with 0.5 mL 105.4 50% tissue culture infectious dose (TCID50)/mL PCV2. Results While attenuating PCV2-induced downregulation of ZO-1 and occludin and restoring intestinal barrier function in a PCV2 Kunming mouse model, treatment with Matrine (40 mg/kg) attenuated ultrastructural damage and improved intestinal morphology. Mechanistically, Matrine reversed PCV2-induced autophagosome accumulation by inhibiting signal transducer and activator of transcription 3 (STAT3) phosphorylation and upregulating Beclin1 protein expression, thus resisting viral hijacking of enterocyte autophagy. Discussion Our findings demonstrate that Matrine may be a novel, potential antiviral agent against PCV2 by activating intestine cellular autophagy, which provides a new strategy for host-directed drug discovery.
Collapse
Affiliation(s)
- Hong Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
- Department of Sports, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Hua Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kuohai Fan
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
- Laboratory Animal Center, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yaogui Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
4
|
Wu Q, Chen Q, Liang S, Nie J, Wang Y, Fan C, Liu Z, Zhang X. Dexmedetomidine alleviates intestinal ischemia/reperfusion injury by modulating intestinal neuron autophagy and mitochondrial homeostasis via Nupr1 regulation. Mol Med 2024; 30:203. [PMID: 39508252 PMCID: PMC11542338 DOI: 10.1186/s10020-024-00952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Intestinal ischemia/reperfusion injury (I/R) is a common yet challenging-to-treat condition, presenting a significant clinical challenge. This study aims to investigate the protective mechanisms of Dexmedetomidine (Dex) against I/R injury, with a particular focus on its role in regulating autophagy activity in intestinal neurons and maintaining mitochondrial homeostasis. Experimental findings demonstrate that Dex can mitigate intestinal damage induced by I/R through the modulation of autophagy activity and mitochondrial function in intestinal neurons by suppressing the expression of Nupr1. This discovery sheds light on a new molecular mechanism underlying the potential efficacy of Dex in treating intestinal I/R injury, offering valuable insights for clinical therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qiuhong Chen
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Sisi Liang
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jinping Nie
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yingjie Wang
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Chenlu Fan
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Zhen Liu
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xuekang Zhang
- Department of Surgery and Anesthesia, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
5
|
Shi Y, Liu J, Hou M, Tan Z, Chen F, Zhang J, Liu Y, Leng Y. Ursolic acid improves necroptosis via STAT3 signaling in intestinal ischemia/reperfusion injury. Int Immunopharmacol 2024; 138:112463. [PMID: 38971110 DOI: 10.1016/j.intimp.2024.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
Intestinal ischemia/reperfusion injury (IRI) poses a serious threat to human survival and quality of life with high mortality and morbidity rates. The current absence of effective treatments for intestinal IRI highlights the urgent need to identify new therapeutic targets. Ursolic acid (UA), a pentacyclic triterpene natural compound, has been shown to possess various pharmacological properties including intestinal protection. However, its potential protective efficacy on intestinal IRI remains elusive. This study aimed to investigate the effect of UA on intestinal IRI and explore the underlying mechanisms. To achieve this, we utilized network pharmacology to analyze the mechanism of UA in intestinal IRI and assessed UA's effects on intestinal IRI using a mouse model of superior mesenteric artery occlusion/reperfusion and an in vitro model of oxygen-glucose deprivation and reperfusion-induced IEC-6 cells. Our results demonstrated that UA improved necroptosis through the RIP1/RIP3/MLKL pathway, reduced necroinflammation via the HMGB1/TLR4/NF-κB pathway, attenuated morphological damage, and enhanced intestinal barrier function. Furthermore, UA pretreatment downregulated the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). The effects of UA were attenuated by the STAT3 agonist Colivelin. In conclusion, our study suggests that UA can improve intestinal IRI by inhibiting necroptosis in enterocytes via the suppression of STAT3 activation. These results provide a theoretical basis for UA treatment of intestinal IRI and related clinical diseases.
Collapse
Affiliation(s)
- Yajing Shi
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, PR China
| | - Jie Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Min Hou
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Zhiguo Tan
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Feng Chen
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Jianmin Zhang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Yongqiang Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yufang Leng
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
6
|
Liang JF, Qin XD, Huang XH, Fan ZP, Zhi YY, Xu JW, Chen F, Pan ZL, Chen YF, Zheng CB, Lu J. Glycyrrhetinic acid triggers a protective autophagy by inhibiting the JAK2/STAT3 pathway in cerebral ischemia/reperfusion injury. Neuroscience 2024; 554:96-106. [PMID: 38964451 DOI: 10.1016/j.neuroscience.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is a common feature of ischemic stroke leading to a poor prognosis. Effective treatments targeting I/R injury are still insufficient. The study aimed to investigate the mechanisms, by which glycyrrhizic acid (18β-GA) in ameliorates CIRI. Our results showed that 18β-GA significantly decreased the infarct volume, neurological deficit scores, and pathological changes in the brain tissue of rats after middle cerebral artery occlusion. Western blotting showed that 18β-GA inhibited the expression levels of phosphorylated JAK2 and phosphorylated STAT3. Meanwhile, 18β-GA increased LC3-II protein levels in a reperfusion duration-dependent manner, which was accompanied by an increase in the Bcl-2/Bax ratio. Inhibition of 18β-GA-induced autophagy by 3-methyladenine (3-MA) enhanced apoptotic cell death. In addition, 18β-GA inhibited the JAK2/STAT3 pathway, which was largely activated in response to oxygen-glucose deprivation/reoxygenation. However, the JAK2/STAT3 activator colivelin TFA abolished the inhibitory effect of 18β-GA, suppressed autophagy, and significantly decreased the Bcl-2/Bax ratio. Taken together, these findings suggested that 18β-GA pretreatment ameliorated CIRI partly by triggering a protective autophagy via the JAK2/STAT3 pathway. Therefore might be a potential drug candidate for treating ischemic stroke.
Collapse
Affiliation(s)
- Jian-Feng Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Lushan Rehabilitation and Recuperation Center, Jiujiang 332000, China
| | - Xiao-Dan Qin
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; The First Affiliated Hospital of Traditional Chinese Medicine of Guangzhou University, Ghuangzhou 510405, China
| | - Xue-Hong Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zi-Ping Fan
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yong-Ying Zhi
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jia-Wei Xu
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Fangmei Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zhi-Li Pan
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yi-Fei Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Chang-Bo Zheng
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Jun Lu
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
7
|
Song S, Li R, Wu C, Dong J, Wang P. EFFECTS OF HYPERBARIC OXYGEN THERAPY ON INTESTINAL ISCHEMIA-REPERFUSION AND ITS MECHANISM. Shock 2024; 61:650-659. [PMID: 38113056 DOI: 10.1097/shk.0000000000002287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
ABSTRACT Ischemia can cause reversible or irreversible cell or tissue damage, and reperfusion after ischemia not only has no therapeutic effect but also aggravates cell damage. Notably, gut tissue is highly susceptible to ischemia-reperfusion (IR) injury under many adverse health conditions. Intestinal IR (IIR) is an important pathophysiological process in critical clinical diseases. Therefore, it is necessary to identify better therapeutic methods for relieving intestinal ischemia and hypoxia. Hyperbaric oxygenation refers to the intermittent inhalation of 100% oxygen in an environment greater than 1 atm pressure, which can better increase the oxygen level in the tissue and change the inflammatory pathway. Currently, it can have a positive effect on hypoxia and ischemic diseases. Related studies have suggested that hyperbaric oxygen can significantly reduce ischemia-hypoxic injury to the brain, spinal cord, kidney, and myocardium. This article reviews the pathogenesis of IR and the current treatment measures, and further points out that hyperbaric oxygen has a better effect in IR. We found that not only improved hypoxia but also regulated IR induced injury in a certain way. From the perspective of clinical application, these changes and the application of hyperbaric oxygen therapy have important implications for treatment, especially IIR.
Collapse
Affiliation(s)
- Shurui Song
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| | - Ruojing Li
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| | - Changliang Wu
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| | | | - Peige Wang
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| |
Collapse
|
8
|
Luo L, Ni J, Zhang J, Lin J, Chen S, Shen F, Huang Z. Toosendanin induces hepatotoxicity by restraining autophagy and lysosomal function through inhibiting STAT3/CTSC axis. Toxicol Lett 2024; 394:102-113. [PMID: 38460807 DOI: 10.1016/j.toxlet.2024.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Toosendanin (TSN) is the main active component in the traditional herb Melia toosendan Siebold & Zucc, which exhibits promising potential for development due to its diverse pharmacological properties. However, the hepatotoxicity associated with TSN needs further investigation. Previous research has implicated autophagy dysregulation in TSN-induced hepatotoxicity, yet the underlying mechanisms remain elusive. In this study, the mechanisms of signal transducer and activator of transcription 3 (STAT3) in TSN-induced autophagy inhibition and liver injury were explored using Stat3 knockout C57BL/6 mice and HepG2 cells. TSN decreased cell viability, increased lactate dehydrogenase (LDH) production in vitro, and elevated serum aspartate transaminase (AST) and alanine aminotransferase (ALT) levels as well as liver lesions in vivo, suggesting TSN had significant hepatotoxicity. TSN inhibited Janus kinase 2 (JAK2)/STAT3 pathway and the expression of cathepsin C (CTSC). Inhibition of STAT3 exacerbated TSN-induced autophagy inhibition and hepatic injury, whereas activation of STAT3 attenuated these effects of TSN. Mechanistically, STAT3 transcriptionally regulated the level of CTSC gene, which in turn affected autophagy and the process of liver injury. TSN-administered Stat3 knockout mice showed more severe hepatotoxicity, CTSC downregulation, and autophagy blockade than wildtype mice. In summary, TSN caused hepatotoxicity by inhibiting STAT3/CTSC axis-dependent autophagy and lysosomal function.
Collapse
Affiliation(s)
- Li Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiajie Ni
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiahui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jinxian Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feihai Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
10
|
Chen W, Ma L, Shao J, Bi C, Li J, Yang W. miR-185-5p / ATG101 axis alleviated intestinal barrier damage in intestinal ischemia reperfusion through autophagy. Heliyon 2023; 9:e18325. [PMID: 37539299 PMCID: PMC10395547 DOI: 10.1016/j.heliyon.2023.e18325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Intestinal ischemia-reperfusion (II/R) is a common pathological injury in clinic, and the systemic inflammatory response it causes will lead to multiple organ damage and functional failure. miR-185-5p has been reported to be a regulator of inflammatory response and autophagy, but whether it participates in the regulation of autophagy in II/R is still unclear. Therefore, we aimed to explore the mechanism of miR-185-5p regulating intestinal barrier injury in (II/R). Methods Caco-2 cells was induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to establish II/R model. The superior mesenteric artery of C57BL/6 mice was clamped for 45 min and then subjected to reperfusion for 4 h for the establishment of II/R mice model. miR-185-5p mimic, miR-185-5p inhibitor, pcDNA-autophagy-related 101 (ATG101) were respectively transfected into Caco-2 cells. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to assess miR-185-5p expression. Western blot detected the level of ATG101 and tight junction-associated proteins ZO1, Occludin, E-cadherin, β-catenin, as well as autophagy markers ATG5, ATG12, LC3Ⅰ/Ⅱ, Beclin1 and SQSTM1. Transepithelial electrical resistance (TEER) values was detected by a resistance meter. FITC-Dextran was performed to measure cell permeability. 5-ethynyl-2'-deoxyuridine (EDU) staining measured cell proliferation. Transmission electron microscope was conducted to observe autophagosomes. Hematoxylin & eosin (H&E) staining observed the damage of mice intestinal. Immunohistochemistry (IHC) measured the percentage of ki67 positive cells. TdT-mediated dUTP nick-end labeling (TUNEL) assay assessed cell apoptosis in intestinal tissues of II/R. Dual-luciferase assay verified the targeting relationship between miR-185-5p and ATG101.Results miR-185-5p was overexpressed in OGD/R-induced Caco-2 cells and intestinal tissues of II/R mice. Knocking down miR-185-5p markedly promoted autophagy and TEER values, reduced cell permeability, and alleviated intestinal barrier damage. ATG101 was a target of miR-185-5p, and overexpression of ATG101 promoted autophagy and dampened OGD/R-induced intestinal barrier damage. Overexpression of miR-185-5p reversed the effect of overexpressed ATG101 on OGD/R-induced Caco-2 cells. Conclusion Knockdown of miR-185-5p enhanced autophagy and alleviated II/R intestinal barrier damage by targeting ATG101.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yang
- Corresponding author. Department of Anesthesiology, The first affiliated hospital of Kunming medical University, No.295 Xichang Rd, Kunming 650032, Yunnan Province, China
| |
Collapse
|
11
|
Tang B, Luo Z, Zhang R, Zhang D, Nie G, Li M, Dai Y. An update on the molecular mechanism and pharmacological interventions for Ischemia-reperfusion injury by regulating AMPK/mTOR signaling pathway in autophagy. Cell Signal 2023; 107:110665. [PMID: 37004834 DOI: 10.1016/j.cellsig.2023.110665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
AMP-activated protein kinase (5'-adenosine monophosphate-activated protein kinase, AMPK)/mammalian target of rapamycin (mTOR) is an important signaling pathway maintaining normal cell function and homeostasis in vivo. The AMPK/mTOR pathway regulates cellular proliferation, autophagy, and apoptosis. Ischemia-reperfusion injury (IRI) is secondary damage that frequently occurs clinically in various disease processes and treatments, and the exacerbated injury during tissue reperfusion increases disease-associated morbidity and mortality. IRI arises from multiple complex pathological mechanisms, among which cell autophagy is a focus of recent research and a new therapeutic target. The activation of AMPK/mTOR signaling in IRI can modulate cellular metabolism and regulate cell proliferation and immune cell differentiation by adjusting gene transcription and protein synthesis. Thus, the AMPK/mTOR signaling pathway has been intensively investigated in studies focused on IRI prevention and treatment. In recent years, AMPK/mTOR pathway-mediated autophagy has been found to play a crucial role in IRI treatment. This article aims to elaborate the action mechanisms of AMPK/mTOR signaling pathway activation in IRI and summarize the progress of AMPK/mTOR-mediated autophagy research in the field of IRI therapy.
Collapse
Affiliation(s)
- Bin Tang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Zhijian Luo
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Rong Zhang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Dongmei Zhang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Guojun Nie
- The First Outpatient Department of People's Liberation Army Western Theater General Hospital, Cheng Du, Sichuan Province 61000, China
| | - Mingxing Li
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Yan Dai
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
12
|
Marzoog BA. Autophagy Behavior in Post-myocardial Infarction Injury. Cardiovasc Hematol Disord Drug Targets 2023; 23:2-10. [PMID: 37138481 DOI: 10.2174/1871529x23666230503123612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 05/05/2023]
Abstract
Myocardial infarction and its sequalae remain the leading cause of death worldwide. Myocardial infarction (MI) survivors continue to live a poor quality of life due to extinguished heart failure. The post-MI period involves several changes at the cellular and subcellular levels, of which autophagy dysfunction. Autophagy is involved in the regulation of post-MI changes. Physiologically, autophagy preserves intracellular homeostasis by regulating energy expenditure and sources. Furthermore, dysregulated autophagy is considered the hallmark of the post-MI pathophysiological changes, which leads to the known short and long post-MI reperfusion injury sequalae. Autophagy induction strengthens self-defense mechanisms of protection against energy deprivation through economic energy sources and uses alternative sources of energy through the degradation of intracellular components of the cardiomyocyte. The protective mechanism against post-MI injury includes the enhancement of autophagy combined with hypothermia, which induces autophagy. However, several factors regulate autophagy, including starvation, nicotinamide adenine dinucleotide (NAD+), Sirtuins, other natural foods and pharmacological agents. Autophagy dysregulation involves genetics, epigenetics, transcription factors, small noncoding RNAs, small molecules, and special microenvironment. Autophagy therapeutic effects are signaling pathway-dependent and MI stage dependent. The paper covers recent advances in the molecular physiopathology of autophagy in post-MI injury and its potential target as a future therapeutic strategy.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- National Research Mordovia State University, Bolshevitskaya Street, 68, Saransk, 430005, Mordovia Republic, Russia
| |
Collapse
|
13
|
Wan Y, Dong P, Zhu X, Lei Y, Shen J, Liu W, Liu K, Zhang X. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022. Front Med (Lausanne) 2022; 9:963104. [PMID: 36052333 PMCID: PMC9426633 DOI: 10.3389/fmed.2022.963104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury is a common tissue-organ damage occurring in surgical practice. This study aims to comprehensively review the collaboration and impact of countries, institutions, authors, subject areas, journals, keywords, and critical literature on intestinal I/R injury from a bibliometric perspective, and to assess the evolution of clustering of knowledge structures and identify hot trends and emerging topics. Methods Articles and reviews related to intestinal I/R were retrieved through subject search from Web of Science Core Collection. Bibliometric analyses were conducted on Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 1069 articles and reviews were included from 2004 to 2022. The number of articles on intestinal I/R injury gradually plateaued, but the number of citations increased. These publications were mainly from 985 institutions in 46 countries, led by China and the United States. Liu Kx published the most papers, while Chiu Cj had the largest number of co-citations. Analysis of the journals with the most outputs showed that most journals focused on surgical sciences, cell biology, and immunology. Macroscopic sketch and microscopic characterization of the entire knowledge domain were achieved through co-citation analysis. The roles of cell death, exosomes, intestinal flora, and anesthetics in intestinal I/R injury are the current and developing research focuses. The keywords "dexmedetomidine", "proliferation", and "ferroptosis" may also become new trends and focus of future research. Conclusion This study comprehensively reviews the research on intestinal I/R injury using bibliometric and visualization methods, and will help scholars better understand the dynamic evolution of intestinal I/R injury and provide directions for future research.
Collapse
Affiliation(s)
- Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Xiaobing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhongshan City, Zhongshan, China
| | - Yuqiong Lei
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Kexuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiyang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|