1
|
Ding J, Yan Z, Peng L, Li J, Yang F, Zheng D. Inhibitory effects of berberine on fungal growth, biofilm formation, virulence, and drug resistance as an antifungal drug and adjuvant with prospects for future applications. World J Microbiol Biotechnol 2024; 41:5. [PMID: 39690297 DOI: 10.1007/s11274-024-04223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Berberine (BBR), an isoquinoline alkaloid found in medicinal plants such as Coptidis rhizoma, Berberis sp., and Hydrastis canadensis, is a distinctive compound known for its dual ability to exhibit broad-spectrum antifungal activity while offering beneficial effects to the host. These attributes make it a highly valuable candidate for antifungal therapy and as an antibiotic adjuvant. This review provides a comprehensive evaluation of BBR's antifungal properties, focusing on its in vitro and in vivo activity, underlying mechanisms, and its influence on fungal pathogenicity, including virulence, biofilm formation, and resistance. Additionally, the antifungal potential of BBR extracts, derivatives, and nanoformulations is examined in detail. BBR demonstrates fungicidal effects through multiple mechanisms. It targets critical fungal components such as mitochondria, cell membranes, and cell walls, while also inhibiting enzymatic activity and transcription processes. Furthermore, it suppresses the expression of virulence factors, effectively diminishing fungal pathogenicity. Beyond its direct antifungal activity, BBR exerts beneficial effects on the host by modulating gut microbiota, thereby bolstering host defenses against fungal infections and reducing potential adverse effects. BBR's interaction with conventional antifungal drugs presents a unique complexity, particularly in the context of resistance mechanisms. When used in combination therapies, conventional antifungal drugs enhance the intracellular accumulation of BBR, thereby amplifying its antifungal potency as the primary active agent. These synergistic effects position BBR as a promising candidate for combination strategies, especially in addressing drug-resistant fungal infections and persistent biofilms. As antifungal resistance and biofilm-associated infections continue to rise, the multifaceted properties of BBR and its advanced formulations highlight their significant therapeutic potential. However, the scarcity of robust in vivo and clinical studies limits a full understanding of its efficacy and safety profile. To bridge this gap, future investigations should prioritize well-designed in vivo and clinical trials to thoroughly evaluate the therapeutic effectiveness and safety of BBR in diverse clinical settings. This approach could pave the way for its broader application in combating fungal infections.
Collapse
Affiliation(s)
- Junping Ding
- Department of Pharmacy, Second People's Hospital of Ya'an City, Ya'an, 625000, China
| | - Zhong Yan
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China
| | - Liang Peng
- Ya'an Polytechnic College Affiliated Hospital, Ya'an, 625000, China
| | - Jing Li
- Department of Wellness and Nursing, Tianfu College of SWUFE, Deyang, 618000, China
| | - Fuzhou Yang
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China.
| | - Dongming Zheng
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China.
| |
Collapse
|
2
|
Mohana P, Singh A, Rashid F, Singh S, Kaur K, Rana R, Bedi PMS, Bedi N, Kaur R, Arora S. Inhibition of Virulence Associated Traits by β-Sitosterol Isolated from Hibiscus rosa-sinensis Flowers Against Candida albicans: Mechanistic Insight and Molecular Docking Studies. J Microbiol 2024; 62:1165-1175. [PMID: 39503955 DOI: 10.1007/s12275-024-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 12/18/2024]
Abstract
The emerging drug resistance and lack of safer and more potent antifungal agents make Candida infections another hot topic in the healthcare system. At the same time, the potential of plant products in developing novel antifungal drugs is also in the limelight. Considering these facts, we have investigated the different extracts of the flowers of Hibiscus rosa-sinensis of the Malvaceae family for their antifungal efficacy against five different pathogenic Candida strains. Among the various extracts, the chloroform extract showed the maximum zone of inhibition (26.6 ± 0.5 mm) against the Candida albicans strain. Furthermore, the chloroform fraction was isolated, and a sterol compound was identified as β-sitosterol. Mechanistic studies were conducted to understand the mechanism of action, and the results showed that β-sitosterol has significant antifungal activity and is capable of interrupting biofilm formation and acts by inhibiting ergosterol biosynthesis in Candida albicans cells. Microscopic and molecular docking studies confirmed these findings. Overall, the study validates the antifungal efficacy of Candida albicans due to the presence of β-sitosterol which can act as an effective constituent for antifungal drug development individually or in combination.
Collapse
Affiliation(s)
- Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
3
|
Zhao W, Chen M, Zhao YL. [Infection of Aspergillus fumigatus after allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia: 2 cases report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:848-850. [PMID: 39414609 PMCID: PMC11518902 DOI: 10.3760/cma.j.cn121090-20240319-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 10/18/2024]
Abstract
Rare yeast infections have been slowly increasing, given the increasing numbers of patients who are immunocompromised after hematopoietic stem cell transplantation. A considered approach to the complex, multidisciplinary management of infections that are caused by these pathogens is essential to optimize patient outcomes. We reported the management of two patients with combined rare yeast Trichosporon asahii infections, that suggested we should perform timely multivisceral screening for systemic dissemination of infection, and early treatment and combination of medications may improve prognosis.
Collapse
Affiliation(s)
- W Zhao
- Department of Transplantation, Beijing Ludaopei Hospital, Beijing 100176, China
| | - M Chen
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang 065201, China
| | - Y L Zhao
- Department of Transplantation, Beijing Ludaopei Hospital, Beijing 100176, China
| |
Collapse
|
4
|
de Andrade IB, Figueiredo-Carvalho MHG, Chaves ALDS, Coelho RA, Almeida-Silva F, Zancopé-Oliveira RM, Frases S, Brito-Santos F, Almeida-Paes R. Metabolic and phenotypic plasticity may contribute for the higher virulence of Trichosporon asahii over other Trichosporonaceae members. Mycoses 2022; 66:430-440. [PMID: 36564594 DOI: 10.1111/myc.13562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND The Trichosporonaceae family comprises a large number of basidiomycetes widely distributed in nature. Some of its members, especially Trichosporon asahii, have the ability to cause human infections. This ability is related to a series of virulence factors, which include lytic enzymes production, biofilm formation, resistance to oxidising agents, melanin and glucuronoxylomannan in the cell wall, metabolic plasticity and phenotypic switching. The last two are poorly addressed within human pathogenic Trichosporonaceae. OBJECTIVE These factors were herein studied to contribute with the knowledge of these emerging pathogens and to uncover mechanisms that would explain the higher frequency of T. asahii in human infections. METHODS We included 79 clinical isolates phenotypically identified as Trichosporon spp. and performed their molecular identification. Lactate and N-acetyl glucosamine were the carbon sources of metabolic plasticity studies. Morphologically altered colonies after subcultures and incubation at 37°C indicated phenotypic switching. RESULTS AND CONCLUSION The predominant species was T. asahii (n = 65), followed by Trichosporon inkin (n = 4), Apiotrichum montevideense (n = 3), Trichosporon japonicum (n = 2), Trichosporon faecale (n = 2), Cutaneotrichosporon debeurmannianum (n = 1), Trichosporon ovoides (n = 1) and Cutaneotrichosporon arboriforme (n = 1). T. asahii isolates had statistically higher growth on lactate and N-acetylglucosamine and on glucose during the first 72 h of culture. T. asahii, T. inkin and T. japonicum isolates were able to perform phenotypic switching. These results expand the virulence knowledge of Trichosporonaceae members and point for a role for metabolic plasticity and phenotypic switching on the trichosporonosis pathogenesis.
Collapse
Affiliation(s)
- Iara Bastos de Andrade
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos agas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alessandra Leal da Silva Chaves
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Análises Clínicas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos agas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| | | | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Malacrida AM, Salci TP, Negri M, Svidzinski TIE. Insight into the antifungals used to address human infection due to Trichosporon spp.: a scoping review. Future Microbiol 2021; 16:1277-1288. [PMID: 34689610 PMCID: PMC8544482 DOI: 10.2217/fmb-2021-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
Trichosporonosis infections have been increasing worldwide. Providing adequate treatment for these infections remains a challenge. This scoping review contains information about potential antifungals to treat this pathology. Using online databases, we found 76 articles published between 2010 and 2020 related to this topic. Classic antifungals, molecules and biomolecules, repositioned drugs and natural products have been tested against species of Trichosporon. Experimental research has lacked depth or was limited to in vitro and in vivo tests, so there are no promising new candidates for the clinical treatment of patients with trichosporonosis. Furthermore, most studies did not present appropriate scientific criteria for drug tests, compromising their quality.
Collapse
Affiliation(s)
- Amanda M Malacrida
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| | - Tânia P Salci
- Departament of Pharmacy and Science, Faculdade Integrado de Campo Mourão, Campo Mourão, Paraná, CEP, 87300-970, Brazil
| | - Melyssa Negri
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| | - Terezinha IE Svidzinski
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| |
Collapse
|
6
|
In Vitro Antifungal Activity and Mechanism of Ag 3PW 12O 40 Composites against Candida Species. Molecules 2020; 25:molecules25246012. [PMID: 33353184 PMCID: PMC7766586 DOI: 10.3390/molecules25246012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Fungal infections pose a serious threat to human health. Polyoxometalates (POMs) are metal–oxygen clusters with potential application in the control of microbial infections. Herein, the Ag3PW12O40 composites have been synthesized and verified by Fourier transform infrared (FT-IR) spectrum, transmission electron microscopy (TEM), scanning electron microscope (SEM), elemental analysis, and X-ray diffraction (XRD). The antifungal activities of Ag3PW12O40 were screened in 19 Candida species strains through the determination of minimum inhibitory concentration (MIC) by the microdilution checkerboard technique. The minimum inhibitory concentration (MIC50) values of Ag3PW12O40 are 2~32 μg/mL to the Candida species. The MIC80 value of Ag3PW12O40 to resistant clinical isolates C. albicans HL963 is 8 μg/mL, which is lower than the positive control, fluconazole (FLC). The mechanism against C. albicans HL963 results show that Ag3PW12O40 can decrease the ergosterol content. The expressions of ERG1, ERG7, and ERG11, which impact on the synthesis of ergosterol, are all prominently upregulated by Ag3PW12O40. It indicates that Ag3PW12O40 is a candidate in the development of new antifungal agents.
Collapse
|
7
|
Padovan ACB, Rocha WPDS, Toti ACDM, Freitas de Jesus DF, Chaves GM, Colombo AL. Exploring the resistance mechanisms in Trichosporon asahii: Triazoles as the last defense for invasive trichosporonosis. Fungal Genet Biol 2019; 133:103267. [PMID: 31513917 DOI: 10.1016/j.fgb.2019.103267] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
Abstract
Trichosporon asahii has recently been recognized as an emergent fungal pathogen able to cause invasive infections in neutropenic cancer patients as well as in critically ill patients submitted to invasive medical procedures and broad-spectrum antibiotic therapy. T. asahii is the main pathogen associated with invasive trichosporonosis worldwide. Treatment of patients with invasive trichosporonosis remains a controversial issue, but triazoles are mentioned by most authors as the best first-line antifungal therapy. There is mounting evidence supporting the claim that fluconazole (FLC) resistance in T. asahii is emerging worldwide. Since 2000, 15 publications involving large collections of T. asahii isolates described non-wild type isolates for FLC and/or voriconazole. However, very few papers have addressed the epidemiology and molecular mechanism of antifungal resistance in Trichosporon spp. Data available suggest that continuous exposure to azoles can induce mutations in the ERG11 gene, resulting in resistance to this class of antifungal drugs. A recent report characterizing T. asahii azole-resistant strains found several genes differentially expressed and highly mutated, including genes related to the Target of Rapamycin (TOR) pathway, indicating that evolutionary modifications on this pathway induced by FLC stress may be involved in developing azole resistance. Finally, we provided new data suggesting that hyperactive efflux pumps may play a role as drug transporters in FLC resistant T. asahii strains.
Collapse
Affiliation(s)
| | - Walicyranison Plinio da Silva Rocha
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Caroline de Moraes Toti
- Laboratório Especial de Micologia, Disciplina de Infectologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Guilherme Maranhão Chaves
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Arnaldo Lopes Colombo
- Laboratório Especial de Micologia, Disciplina de Infectologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Guo S, Yang W, Zhao M, Tian R, Zhang B, Qi Y. In Vitro Anticandidal Activity and Mechanism of a Polyoxovanadate Functionalized by Zn-Fluconazole Complexes. Molecules 2018; 23:molecules23051122. [PMID: 29747400 PMCID: PMC6100367 DOI: 10.3390/molecules23051122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
The rise in the number of fungal infections is requiring the rapid development of novel antifungal agents. A new polyoxovanadate functionalized by Zn-fluconazole coordination complexes, Zn3(FLC)6V10O28·10H2O (ZnFLC) (FLC = fluconazole) has been synthesized and evaluated for in vitro antifungal against Candida species. The identity of ZnFLC were confirmed by elemental analysis, IR spectrum, and single-crystal X-ray diffraction. The antifungal activities of ZnFLC was screened in 19 Candida species strains using the microdilution checkerboard technique. The minimum inhibitory concentration (MIC80) value of ZnFLC is 4 μg/mL on the azole-resistant clinical isolates of C. albicans HL973, which is lower than the positive control, FLC. The mechanism of ZnFLC against C. albicans HL973 showed that ZnFLC damaged the fungal cell membrane and reduced the ergosterol content. The expression of ERG1, ERG7, ERG11 ERG27, and ERG28, which have effects on the synthesis of ergosterol, were all significantly upregulated by ZnFLC.
Collapse
Affiliation(s)
- Shuanli Guo
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Wei Yang
- College of Basic Medical Science, Jilin University, Changchun 130021, China.
| | - Mingming Zhao
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Rui Tian
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Boyu Zhang
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Cordeiro RDA, Serpa R, Mendes PBL, Evangelista AJDJ, Andrade ARC, Franco JDS, Pereira VDS, Alencar LPD, Oliveira JSD, Camargo ZPD, Lima Neto RGD, Castelo-Branco DDSCM, Brilhante RSN, Rocha MFG, Sidrim JJC. The HIV aspartyl protease inhibitor ritonavir impairs planktonic growth, biofilm formation and proteolytic activity in Trichosporon spp. BIOFOULING 2017; 33:640-650. [PMID: 28871863 DOI: 10.1080/08927014.2017.1350947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the effect of the protease inhibitor ritonavir (RIT) on Trichosporon asahii and Trichosporon inkin. Susceptibility to RIT was assessed by the broth microdilution assay and the effect of RIT on protease activity was evaluated using azoalbumin as substrate. RIT was tested for its anti-biofilm properties and RIT-treated biofilms were assessed regarding protease activity, ultrastructure and matrix composition. In addition, antifungal susceptibility, surface hydrophobicity and biofilm formation were evaluated after pre-incubation of planktonic cells with RIT for 15 days. RIT (200 μg ml-1) inhibited Trichosporon growth. RIT (100 μg ml-1) also reduced protease activity of planktonic and biofilm cells, decreased cell adhesion and biofilm formation, and altered the structure of the biofilm and the protein composition of the biofilm matrix. Pre-incubation with RIT (100 μg ml-1) increased the susceptibility to amphotericin B, and reduced surface hydrophobicity and cell adhesion. These results highlight the importance of proteases as promising therapeutic targets and reinforce the antifungal potential of protease inhibitors.
Collapse
Affiliation(s)
| | - Rosana Serpa
- a Medical Mycology Specialized Center , Federal University of Ceará , Fortaleza , Brazil
| | | | | | | | | | | | | | | | - Zoilo Pires de Camargo
- b Department of Microbiology, Immunology and Parasitology , Federal University of São Paulo , São Paulo , Brazil
| | | | | | | | - Marcos Fabio Gadelha Rocha
- a Medical Mycology Specialized Center , Federal University of Ceará , Fortaleza , Brazil
- d Post Graduate Program in Veterinary Sciences, College of Veterinary Medicine , State University of Ceará , Fortaleza , Brazil
| | | |
Collapse
|
10
|
Gao R, Kong C, Li H, Huang L, Qu X, Qin N, Qin H. Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. Eur J Clin Microbiol Infect Dis 2017; 36:2457-2468. [DOI: 10.1007/s10096-017-3085-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
|