1
|
Wang J, Zhang X, Xing J, Gao L, Lu H. Nanomedicines in diagnosis and treatment of prostate cancers: an updated review. Front Bioeng Biotechnol 2024; 12:1444201. [PMID: 39318666 PMCID: PMC11420853 DOI: 10.3389/fbioe.2024.1444201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
Prostate cancer (PC) is the third most common male cancer in the world, which occurs due to various mutations leading to the loss of chromatin structure. There are multiple treatments for this type of cancer, of which chemotherapy is one of the most important. Sometimes, a combination of different treatments, such as chemotherapy, radiotherapy, and surgery, are used to prevent tumor recurrence. Among other treatments, androgen deprivation therapy (ADT) can be mentioned, which has had promising results. One of the drawbacks of chemotherapy and ADT treatments is that they are not targeted to the tumor tissue. For this reason, their use can cause extensive side effects. Treatments based on nanomaterials, known as nanomedicine, have attracted much attention today. Nanoparticles (NPs) are one of the main branches of nanomedicine, and they can be made of different materials such as polymer, metal, and carbon, each of which has distinct characteristics. In addition to NPs, nanovesicles (NVs) also have therapeutic applications in PC. In treating PC, synthetic NVs (liposomes, micelles, and nanobubbles) or produced from cells (exosomes) can be used. In addition to the role that NPs and NVs have in treating PC, due to being targeted, they can be used to diagnose PC and check the treatment process. Knowing the characteristics of nanomedicine-based treatments can help design new treatments and improve researchers' understanding of tumor biology and its rapid diagnosis. In this study, we will discuss conventional and nanomedicine-based treatments. The results of these studies show that the use of NPs and NVs in combination with conventional treatments has higher efficacy in tumor treatment than the individual use of each of them.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Oncology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Xuan Zhang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Jiazhen Xing
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Lijian Gao
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Hua Lu
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| |
Collapse
|
2
|
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Villate-Beitia I, Zárate J, Puras G, Pedraz JL. Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics 2024; 16:288. [PMID: 38399344 PMCID: PMC10891563 DOI: 10.3390/pharmaceutics16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial loading capacity, and tunable physicochemical characteristics, are recognized as non-viral vectors in gene therapy applications. Despite progress, current non-viral vectors exhibit notably low gene delivery efficiency. Progress in nanotechnology is essential to overcome extracellular and intracellular barriers in gene delivery. Specific nanostructures such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), nanodiamonds (NDs), and similar carbon-based structures can accommodate diverse genetic materials such as plasmid DNA (pDNA), messenger RNA (mRNA), small interference RNA (siRNA), micro RNA (miRNA), and antisense oligonucleotides (AONs). To address challenges such as high toxicity and low transfection efficiency, advancements in the features of carbon-based nanostructures (CBNs) are imperative. This overview delves into three types of CBNs employed as vectors in drug/gene delivery systems, encompassing their synthesis methods, properties, and biomedical applications. Ultimately, we present insights into the opportunities and challenges within the captivating realm of gene delivery using CBNs.
Collapse
Affiliation(s)
- Sara Yazdani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
| | - Mehrdad Mozaffarian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Naghmeh Hadidi
- Department of Clinical Research and EM Microscope, Pasteur Institute of Iran (PII), Tehran P.O. Box 131694-3551, Iran;
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jon Zárate
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Zhang Z, Yuan Y, Xue Y, Zhang W, Sun X, Xu X, Liu C. Nanomaterials for Ultrasound Imaging- Guided Sonodynamic Therapy. Technol Cancer Res Treat 2024; 23:15330338241263197. [PMID: 39051705 PMCID: PMC11273702 DOI: 10.1177/15330338241263197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024] Open
Abstract
Ultrasound examination is becoming the most popular medical imaging modality because of its low cost and high safety profile. Ultrasound contrast agents enhance the scattering of sound waves, which can improve the clarity and resolution of images. Nanoparticle Ultrasound contrast agents have the characteristics of a large specific surface area and a modifiable surface, which can increase drug loading capacity, prolong circulation time, and enable drug enrichment in specific organs or tissues. This leads to improved therapeutic effects and reducing toxic and side effects. Compared with traditional ultrasound contrast agents, Nano-ultrasound contrast agents overcome the limitation of imaging solely within blood vessels and facilitate imaging within tumor tissues, thereby extending the duration of enhanced imaging. Sonodynamic therapy is an emerging treatment method that has been developed rapidly in recent years, which has the advantages of noninvasive, high spatial and temporal resolution, and low toxicity and side effects. Sonodynamic therapy utilizes a sonosensitizer that, when excited by ultrasound at the tumor site, produces toxic reactive oxygen species, inducing apoptosis or necrosis in tumor cells. Ultrasound-guided sonodynamic therapy allows for real-time observation of lesions, is convenient and flexible, and is free of radiation exposure. With the use of nanomaterials as carriers, ultrasound-guided sonodynamic therapy has made significant strides. This study categorizes and summarizes the current research on acoustic sensitizer carrier materials, including carbon-based, silicon-based, peptide-based, iron-based, metal-organic frameworks, polymers, and liposomes. It concludes by highlighting the current challenges in the integration of ultrasound imaging with sonodynamic therapy and suggests future directions for clinical application development.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yinuo Yuan
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanzhang Xue
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjing Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiao Sun
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Cun Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
4
|
Dhamija P, Mehata AK, Setia A, Priya V, Malik AK, Bonlawar J, Verma N, Badgujar P, Randhave N, Muthu MS. Nanotheranostics: Molecular Diagnostics and Nanotherapeutic Evaluation by Photoacoustic/Ultrasound Imaging in Small Animals. Mol Pharm 2023; 20:6010-6034. [PMID: 37931040 DOI: 10.1021/acs.molpharmaceut.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Nanotheranostics is a rapidly developing field that integrates nanotechnology, diagnostics, and therapy to provide novel methods for imaging and treating wide categories of diseases. Targeted nanotheranostics offers a platform for the precise delivery of theranostic agents, and their therapeutic outcomes are monitored in real-time. Presently, in vivo magnetic resonance imaging, fluorescence imaging, ultrasound imaging, and photoacoustic imaging (PAI), etc. are noninvasive imaging techniques that are preclinically available for the imaging and tracking of therapeutic outcomes in small animals. Additionally, preclinical imaging is essential for drug development, phenotyping, and understanding disease stage progression and its associated mechanisms. Small animal ultrasound imaging is a rapidly developing imaging technique for theranostics applications due to its merits of being nonionizing, real-time, portable, and able to penetrate deep tissues. Recently, different types of ultrasound contrast agents have been explored, such as microbubbles, echogenic exosomes, gas-vesicles, and nanoparticles-based contrast agents. Moreover, an optical image obtained through photoacoustic imaging is a noninvasive imaging technique that creates ultrasonic waves when pulsed laser light is used to expose an object and creates a picture of the tissue's distribution of light energy absorption on the object. Contrast agents for photoacoustic imaging may be endogenous (hemoglobin, melanin, and DNA/RNA) or exogenous (dyes and nanomaterials-based contrast agents). The integration of nanotheranostics with photoacoustic and ultrasound imaging allows simultaneous imaging and treatment of diseases in small animals, which provides essential information about the drug response and the disease progression. In this review, we have covered various endogenous and exogenous contrast agents for ultrasound and photoacoustic imaging. Additionally, we have discussed various drug delivery systems integrated with contrast agents for theranostic application. Further, we have briefly discussed the current challenges associated with ultrasound and photoacoustic imaging.
Collapse
Affiliation(s)
- Piyush Dhamija
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Jyoti Bonlawar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
5
|
Zeng W, Yue X, Dai Z. Ultrasound contrast agents from microbubbles to biogenic gas vesicles. MEDICAL REVIEW (2021) 2023; 3:31-48. [PMID: 37724107 PMCID: PMC10471104 DOI: 10.1515/mr-2022-0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/11/2022] [Indexed: 09/20/2023]
Abstract
Microbubbles have been the earliest and most widely used ultrasound contrast agents by virtue of their unique features: such as non-toxicity, intravenous injectability, ability to cross the pulmonary capillary bed, and significant enhancement of echo signals for the duration of the examination, resulting in essential preclinical and clinical applications. The use of microbubbles functionalized with targeting ligands to bind to specific targets in the bloodstream has further enabled ultrasound molecular imaging. Nevertheless, it is very challenging to utilize targeted microbubbles for molecular imaging of extravascular targets due to their size. A series of acoustic nanomaterials have been developed for breaking free from this constraint. Especially, biogenic gas vesicles, gas-filled protein nanostructures from microorganisms, were engineered as the first biomolecular ultrasound contrast agents, opening the door for more direct visualization of cellular and molecular function by ultrasound imaging. The ordered protein shell structure and unique gas filling mechanism of biogenic gas vesicles endow them with excellent stability and attractive acoustic responses. What's more, their genetic encodability enables them to act as acoustic reporter genes. This article reviews the upgrading progresses of ultrasound contrast agents from microbubbles to biogenic gas vesicles, and the opportunities and challenges for the commercial and clinical translation of the nascent field of biomolecular ultrasound.
Collapse
Affiliation(s)
- Wenlong Zeng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
6
|
Qian Z, Zhang Y, Yuan J, Gong S, Chen B. Current applications of nanomaterials in urinary system tumors. Front Bioeng Biotechnol 2023; 11:1111977. [PMID: 36890910 PMCID: PMC9986335 DOI: 10.3389/fbioe.2023.1111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The development of nanotechnology and nanomaterials has provided insights into the treatment of urinary system tumors. Nanoparticles can be used as sensitizers or carriers to transport drugs. Some nanoparticles have intrinsic therapeutic effects on tumor cells. Poor patient prognosis and highly drug-resistant malignant urinary tumors are worrisome to clinicians. The application of nanomaterials and the associated technology against urinary system tumors offers the possibility of improving treatment. At present, many achievements have been made in the application of nanomaterials against urinary system tumors. This review summarizes the latest research on nanomaterials in the diagnosis and treatment of urinary system tumors and provides novel ideas for future research on nanotechnologies in this field.
Collapse
Affiliation(s)
- Zhounan Qian
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Yuan
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Sun Gong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Shilpi S, Gulbake AS, Chouhan S, Kumar P. Functionalized Carbon Nanotubes, Graphene Oxide, Fullerenes, and Nanodiamonds: Emerging Theranostic Nanomedicines. MULTIFUNCTIONAL AND TARGETED THERANOSTIC NANOMEDICINES 2023:187-213. [DOI: 10.1007/978-981-99-0538-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Hu X, Zhang D, Zeng Z, Huang L, Lin X, Hong S. Aptamer-Based Probes for Cancer Diagnostics and Treatment. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111937. [PMID: 36431072 PMCID: PMC9695321 DOI: 10.3390/life12111937] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers that have the ability to generate unique and diverse tertiary structures that bind to cognate molecules with high specificity. In recent years, aptamer researches have witnessed a huge surge, owing to its unique properties, such as high specificity and binding affinity, low immunogenicity and toxicity, and simplicity of synthesis with negligible batch-to-batch variation. Aptamers may bind to targets, such as various cancer biomarkers, making them applicable for a wide range of cancer diagnosis and treatment. In cancer diagnostic applications, aptamers are used as molecular probes instead of antibodies. They have the potential to detect various cancer-associated biomarkers. For cancer therapeutic purposes, aptamers can serve as therapeutic or delivery agents. The chemical stabilization and modification strategies for aptamers may expand their serum half-life and shelf life. However, aptamer-based probes for cancer diagnosis and therapy still face several challenges for successful clinical translation. A deeper understanding of nucleic acid chemistry, tissue distribution, and pharmacokinetics is required in the development of aptamer-based probes. This review summarizes their application in cancer diagnostics and treatments based on different localization of target biomarkers, as well as current challenges and future prospects.
Collapse
|
9
|
Valimukhametova AR, Zub OS, Lee BH, Fannon O, Nguyen S, Gonzalez-Rodriguez R, Akkaraju GR, Naumov AV. Dual-Mode Fluorescence/Ultrasound Imaging with Biocompatible Metal-Doped Graphene Quantum Dots. ACS Biomater Sci Eng 2022; 8:4965-4975. [PMID: 36179254 PMCID: PMC11338274 DOI: 10.1021/acsbiomaterials.2c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sonography offers many advantages over standard methods of diagnostic imaging due to its non-invasiveness, substantial tissue penetration depth, and low cost. The benefits of ultrasound imaging call for the development of ultrasound-trackable drug delivery vehicles that can address a variety of therapeutic targets. One disadvantage of the technique is the lack of high-precision imaging, which can be circumvented by complementing ultrasound contrast agents with visible and, especially, near-infrared (NIR) fluorophores. In this work, we, for the first time, develop a variety of lightly metal-doped (iron oxide, silver, thulium, neodymium, cerium oxide, cerium chloride, and molybdenum disulfide) nitrogen-containing graphene quantum dots (NGQDs) that demonstrate high-contrast properties in the ultrasound brightness mode and exhibit visible and/or near-infrared fluorescence imaging capabilities. NGQDs synthesized from glucosamine precursors with only a few percent metal doping do not introduce additional toxicity in vitro, yielding over 80% cell viability up to 2 mg/mL doses. Their small (<50 nm) sizes warrant effective cell internalization, while oxygen-containing surface functional groups decorating their surfaces render NGQDs water soluble and allow for the attachment of therapeutics and targeting agents. Utilizing visible and/or NIR fluorescence, we demonstrate that metal-doped NGQDs experience maximum accumulation within the HEK-293 cells 6-12 h after treatment. The successful 10-fold ultrasound signal enhancement is observed at 0.5-1.6 mg/mL for most metal-doped NGQDs in the vascular phantom, agarose gel, and animal tissue. A combination of non-invasive ultrasound imaging with capabilities of high-precision fluorescence tracking makes these metal-doped NGQDs a viable agent for a variety of theragnostic applications.
Collapse
Affiliation(s)
- Alina R Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Olga S Zub
- Alfa Radiology Management, Inc, Plano, Texas 75023, United States
| | - Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Olivia Fannon
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Steven Nguyen
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Roberto Gonzalez-Rodriguez
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Giridhar R Akkaraju
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
10
|
Cruz-Hernández CD, Rodríguez-Martínez G, Cortés-Ramírez SA, Morales-Pacheco M, Cruz-Burgos M, Losada-García A, Reyes-Grajeda JP, González-Ramírez I, González-Covarrubias V, Camacho-Arroyo I, Cerbón M, Rodríguez-Dorantes M. Aptamers as Theragnostic Tools in Prostate Cancer. Biomolecules 2022; 12:biom12081056. [PMID: 36008950 PMCID: PMC9406110 DOI: 10.3390/biom12081056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Despite of the capacity that several drugs have for specific inhibition of the androgen receptor (AR), in most cases, PCa progresses to an androgen-independent stage. In this context, the development of new targeted therapies for prostate cancer (PCa) has remained as a challenge. To overcome this issue, new tools, based on nucleic acids technology, have been developed. Aptamers are small oligonucleotides with a three-dimensional structure capable of interacting with practically any desired target, even large targets such as mammalian cells or viruses. Recently, aptamers have been studied for treatment and detection of many diseases including cancer. In PCa, numerous works have reported their use in the development of new approaches in diagnostics and treatment strategies. Aptamers have been joined with drugs or other specific molecules such as silencing RNAs (aptamer–siRNA chimeras) to specifically reduce the expression of oncogenes in PCa cells. Even though these studies have shown good results in the early stages, more research is still needed to demonstrate the clinical value of aptamers in PCa. The aim of this review was to compile the existing scientific literature regarding the use of aptamers in PCa in both diagnosis and treatment studies. Since Prostate-Specific Membrane Antigen (PSMA) aptamers are the most studied type of aptamers in this field, special emphasis was given to these aptamers.
Collapse
Affiliation(s)
- Carlos David Cruz-Hernández
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Juan Pablo Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana–Xochimilco, Mexico City 04960, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (I.C.-A.); (M.C.)
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (I.C.-A.); (M.C.)
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
- Correspondence:
| |
Collapse
|
11
|
Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022; 361:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded oligonucleotides that link to various substrates with great affinity and selectivity, including small molecules, peptides, proteins, cells, and tissues. For this reason, they can be used as imaging agents for cancer imaging techniques. Multifunctional nanomaterials combined with imaging probes and drugs are promising cancer diagnosis and treatment candidates. On the other hand, carbon-based nanomaterials (CNMs), including such as fullerene, carbon nanotubes, carbon-based quantum dots, carbon nanohorns, graphene oxide and its derivatives carbon nanodots, and nanodiamonds, are sort of smart materials that can be used in a variety of theranostic applications, including photo-triggered therapies. The remarkable physical characteristics, functionalizable chemistry, biocompatibility, and optical properties of these nanoparticles have enabled their utilization in less-invasive therapies. The theranostic agents that emerged by combining aptamers with CNMs have opened a novel alternative for personified medicine of cancer, target-specific imaging, and label-free diagnosis of a broad range of cancers, as well as pathogens. Aptamer-functionalized CNMs have been used as nanovesicles for targeted delivery of anti-cancer agents (i.e., doxorubicin and 5-fluorouracil) to tumor sites. Furthermore, these CNMs conjugated with aptamers have shown great advantages over standard CNMs to sensitively detect Mycobacterium tuberculosis, Escherichia coli, staphylococcus aureus, Vibrio parahaemolyticus, Salmonella typhimurium, Pseudomonas aeruginosa, and Citrobacter freundii. Regrettably, CNMs can form compounds defined as NOAA (nano-objects, and their aggregates and agglomerates larger than 100 nm), that accumulate in the body and cause toxic effects. Surface modification and pretreatment with albumin avoid agglomeration and increase the dispersibility of CNMs, so it is needed to guarantee the desirable interactions between functionalized CNMs and blood plasma proteins. This preliminary review aimed to comprehensively discuss the features and uses of aptamer-conjugated CNMs to manage cancer and bacterial infections.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 98167-43463, Iran
| | - Simge Er
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Sultan Sacide Gelen
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Narges Ebrahimi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, 65404, Greece.
| |
Collapse
|
12
|
Application Value of Contrast-Enhanced Ultrasound Combined with Enhanced MR Scanning in Patients with Intrahepatic Cholangiocarcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6402646. [PMID: 35399854 PMCID: PMC8989578 DOI: 10.1155/2022/6402646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Objective To explore the clinical application effect of contrast-enhanced ultrasound (CEUS) combined with enhanced MR scanning in patients with intrahepatic cholangiocarcinoma (ICC). Methods 90 patients with ICC admitted to Ganyu District People's Hospital of Lianyungang City from June 2017 to June 2018 were selected as the research objects and randomly divided into control group and experimental group, with 45 cases in each group. The control group was tested by CEUS, and the experimental group was tested by CEUS combined with enhanced MR scanning. The test results of the two groups were compared, and the benign and malignant indicators of the two groups were detected. Results The rate of lesion detection, accuracy of localization qualitative accuracy, and diagnosis coincidence rate of the experimental group were significantly better than those of the control group (p < 0.05). The lesion length, tube wall thickness, and enhancement ratio of triple-phase multislice CT scan of the experimental group were lower than the control group (p<0.05). Conclusions CEUS combined with enhanced MR scanning has high sensitivity and specificity and can significantly improve the accuracy of the detection results. It provides scientific and accurate scientific basis for clinical treatment and diagnosis of ICC, which is worthy of popularization and application.
Collapse
|
13
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
14
|
Freitas LF, Ferreira AH, Thipe VC, Varca GHC, Lima CSA, Batista JGS, Riello FN, Nogueira K, Cruz CPC, Mendes GOA, Rodrigues AS, Sousa TS, Alves VM, Lugão AB. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2579. [PMID: 34685018 PMCID: PMC8539690 DOI: 10.3390/nano11102579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The synthesis and engineering of nanomaterials offer more robust systems for the treatment of cancer, with technologies that combine therapy with imaging diagnostic tools in the so-called nanotheranostics. Among the most studied systems, there are quantum dots, liposomes, polymeric nanoparticles, inorganic nanoparticles, magnetic nanoparticles, dendrimers, and gold nanoparticles. Most of the advantages of nanomaterials over the classic anticancer therapies come from their optimal size, which prevents the elimination by the kidneys and enhances their permeation in the tumor due to the abnormal blood vessels present in cancer tissues. Furthermore, the drug delivery and the contrast efficiency for imaging are enhanced, especially due to the increased surface area and the selective accumulation in the desired tissues. This property leads to the reduced drug dose necessary to exert the desired effect and for a longer action within the tumor. Finally, they are made so that there is no degradation into toxic byproducts and have a lower immune response triggering. In this article, we intend to review and discuss the state-of-the-art regarding the use of nanomaterials as therapeutic and diagnostic tools for lung, breast, and prostate cancer, as they are among the most prevalent worldwide.
Collapse
Affiliation(s)
- Lucas F. Freitas
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Aryel H. Ferreira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
- MackGraphe-Graphene and Nanomaterial Research Center, Mackenzie Presbyterian University, Sao Paulo 01302-907, Brazil
| | - Velaphi C. Thipe
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Gustavo H. C. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Caroline S. A. Lima
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Jorge G. S. Batista
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Fabiane N. Riello
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Kamila Nogueira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Cassia P. C. Cruz
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Giovanna O. A. Mendes
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Adriana S. Rodrigues
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Thayna S. Sousa
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Victoria M. Alves
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| |
Collapse
|
15
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
16
|
Yang T, Wang Z, Song Y, Yang X, Chen S, Fu S, Qin X, Zhang W, Man C, Jiang Y. A novel smartphone-based colorimetric aptasensor for on-site detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2021; 104:8506-8516. [PMID: 34053767 DOI: 10.3168/jds.2020-19905] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/16/2021] [Indexed: 01/25/2023]
Abstract
Effective testing tools for Escherichia coli O157:H7 can prevent outbreaks of foodborne illness. In this paper, a smartphone-based colorimetric aptasensor was developed using functionalized gold nanoparticles (GNP) and multi-walled carbon nanotubes (MWCNT) for monitoring E. coli O157:H7 in milk. The maximum absorption peak of GNP bonded with aptamer (Apt) generated evident transformation from 518 to 524 nm. The excess GNP-Apt was removed by functionalized MWCNT magnetized with carbonyl iron powder (CIP) and hybridized with a DNA probe, whereas the GNP-Apt immobilized on E. coli O157:H7 remained in the system. In the presence of a high-salt solution, the GNP-Apt that captured E. coli O157:H7 remained red, but the free GNP-Apt aggregated and appeared blue. The chromogenic results were analyzed by a smartphone-based colorimetric device that was fabricated using acrylic plates, a light-emitting diode, and a mobile power pack. To our knowledge, this was the first attempt to use a smartphone-based colorimetric aptasensor employing the capture of GNP-Apt coupled with separation of MWCNT@CIP probe to detect E. coli O157:H7. The aptasensor exhibited good reproducibility and no cross-reaction for other bacteria. A concentration of 8.43 × 103 cfu/mL of E. coli O157:H7 could be tested in pure culture, and 5.24 × 102 cfu/mL of E. coli O157:H7 could be detected in artificially contaminated milk after 1 h of incubation. Therefore, the smartphone-based colorimetric aptasensor was an efficient tool for the detection of E. coli O157:H7 in milk.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Zhenghui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Yang Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Sihan Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
17
|
Singh G, Kaur H, Sharma A, Singh J, Alajangi HK, Kumar S, Singla N, Kaur IP, Barnwal RP. Carbon Based Nanodots in Early Diagnosis of Cancer. Front Chem 2021; 9:669169. [PMID: 34109155 PMCID: PMC8181141 DOI: 10.3389/fchem.2021.669169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Detection of cancer at an early stage is one of the principal factors associated with successful treatment outcome. However, current diagnostic methods are not capable of making sensitive and robust cancer diagnosis. Nanotechnology based products exhibit unique physical, optical and electrical properties that can be useful in diagnosis. These nanotech-enabled diagnostic representatives have proved to be generally more capable and consistent; as they selectively accumulated in the tumor site due to their miniscule size. This article rotates around the conventional imaging techniques, the use of carbon based nanodots viz Carbon Quantum Dots (CQDs), Graphene Quantum Dots (GQDs), Nanodiamonds, Fullerene, and Carbon Nanotubes that have been synthesized in recent years, along with the discovery of a wide range of biomarkers to identify cancer at early stage. Early detection of cancer using nanoconstructs is anticipated to be a distinct reality in the coming years.
Collapse
Affiliation(s)
- Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Harinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Santosh Kumar
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
18
|
Awad N, Paul V, AlSawaftah NM, ter Haar G, Allen TM, Pitt WG, Husseini GA. Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacol Transl Sci 2021; 4:589-612. [PMID: 33860189 PMCID: PMC8033618 DOI: 10.1021/acsptsci.0c00212] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 12/13/2022]
Abstract
The safe and effective delivery of anticancer agents to diseased tissues is one of the significant challenges in cancer therapy. Conventional anticancer agents are generally cytotoxins with poor pharmacokinetics and bioavailability. Nanocarriers are nanosized particles designed for the selectivity of anticancer drugs and gene transport to tumors. They are small enough to extravasate into solid tumors, where they slowly release their therapeutic load by passive leakage or biodegradation. Using smart nanocarriers, the rate of release of the entrapped therapeutic(s) can be increased, and greater exposure of the tumor cells to the therapeutics can be achieved when the nanocarriers are exposed to certain internally (enzymes, pH, and temperature) or externally (light, magnetic field, and ultrasound) applied stimuli that trigger the release of their load in a safe and controlled manner, spatially and temporally. This review gives a comprehensive overview of recent research findings on the different types of stimuli-responsive nanocarriers and their application in cancer treatment with a particular focus on ultrasound.
Collapse
Affiliation(s)
- Nahid
S. Awad
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Nour M. AlSawaftah
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Gail ter Haar
- Joint
Department of Physics, The Institute of
Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, U.K.
| | - Theresa M. Allen
- Department
of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - William G. Pitt
- Department
of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Ghaleb A. Husseini
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
19
|
Ayodele OO, Adesina AO, Pourianejad S, Averitt J, Ignatova T. Recent Advances in Nanomaterial-Based Aptasensors in Medical Diagnosis and Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:932. [PMID: 33917467 PMCID: PMC8067492 DOI: 10.3390/nano11040932] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Rapid and accurate diagnosis of various biomarkers associated with medical conditions including early detection of viruses and bacteria with highly sensitive biosensors is currently a research priority. Aptamer is a chemically derived recognition molecule capable of detecting and binding small molecules with high specificity and its fast preparation time, cost effectiveness, ease of modification, stability at high temperature and pH are some of the advantages it has over traditional detection methods such as High Performance Liquid Chromatography (HPLC), Enzyme-linked Immunosorbent Assay (ELISA), Polymerase Chain Reaction (PCR). Higher sensitivity and selectivity can further be achieved via coupling of aptamers with nanomaterials and these conjugates called "aptasensors" are receiving greater attention in early diagnosis and therapy. This review will highlight the selection protocol of aptamers based on Traditional Systematic Evolution of Ligands by EXponential enrichment (SELEX) and the various types of modified SELEX. We further identify both the advantages and drawbacks associated with the modified version of SELEX. Furthermore, we describe the current advances in aptasensor development and the quality of signal types, which are dependent on surface area and other specific properties of the selected nanomaterials, are also reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Tetyana Ignatova
- Nanoscience Department, The Joint School of Nanoscience & Nanoengineering, University of North Carolina, Greensboro, NC 27401, USA; (O.O.A.); (A.O.A.); (S.P.); (J.A.)
| |
Collapse
|
20
|
Xie S, Ai L, Cui C, Fu T, Cheng X, Qu F, Tan W. Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9542-9560. [PMID: 33595277 DOI: 10.1021/acsami.0c19562] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the past decades, various nanomaterials with unique properties have been explored for bioapplications. Meanwhile, aptamers, generated from the systematic evolution of ligands by exponential enrichment technology, are becoming an indispensable element in the design of functional nanomaterials because of their small size, high stability, and convenient modification, especially endowing nanomaterials with recognition capability to specific targets. Therefore, the incorporation of aptamers into nanomaterials offers an unprecedented opportunity in the research fields of diagnostics and therapeutics. Here, we focus on recent advances in aptamer-embedded nanomaterials for bioapplications. First, we briefly introduce the properties of nanomaterials that can be functionalized with aptamers. Then, the applications of aptamer-embedded nanomaterials in cellular analysis, imaging, targeted drug delivery, gene editing, and cancer diagnosis/therapy are discussed. Finally, we provide some perspectives on the challenges and opportunities that have arisen from this promising area.
Collapse
Affiliation(s)
- Sitao Xie
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Fengli Qu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- College of Chemistry and Chemical, Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, P. R. China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
21
|
Zhang J, Liu Z, Zhou S, Teng Y, Zhang X, Li J. Novel Span-PEG Multifunctional Ultrasound Contrast Agent Based on CNTs as a Magnetic Targeting Factor and a Drug Carrier. ACS OMEGA 2020; 5:31525-31534. [PMID: 33344804 PMCID: PMC7745219 DOI: 10.1021/acsomega.0c03325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 05/15/2023]
Abstract
Based on the targeting of ferroferric oxide (Fe3O4) and the drug-loading property of carbon nanotubes (CNTs), a novel Span-PEG-composited Fe3O4-CNTs-DOX multifunctional ultrasound contrast agent was designed and applied to tumor lesions. In situ liquid phase synthesis was employed to prepare the Fe3O4-CNTs magnetic targeting complex, and the physical method was used to obtain the Fe3O4-CNTs-DOX complex by loading doxorubicin (DOX) onto Fe3O4-CNTs. The targeted drug-loading complex Fe3O4-CNTs-DOX was combined with the membrane material of Span-PEG by the acoustic vibration cavitation method. The maximum tolerance for Span-PEG-composited Fe3O4-CNTs-DOX microbubbles was 450 times higher, which has good safety. The loading rate of DOX in the obtained composite microbubbles was 17.02%. The proliferation inhibition rate of Span-PEG-composited Fe3O4-CNTs-DOX microbubbles on liver cancer SMMC-7721 cells reached 48.3%. Span-PEG-composited Fe3O4-CNTs-DOX microbubbles could significantly enhance ultrasonic imaging and enrich at a specific location under an external magnetic field, and the extended imaging time could ensure the effective observation and diagnosis of lesions.
Collapse
Affiliation(s)
- Jie Zhang
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Zhongtao Liu
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Shujing Zhou
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Yang Teng
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Xiangyu Zhang
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Jinjing Li
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| |
Collapse
|
22
|
Li L, Guan Y, Xiong H, Deng T, Ji Q, Xu Z, Kang Y, Pang J. Fundamentals and applications of nanoparticles for ultrasound‐based imaging and therapy. NANO SELECT 2020. [DOI: 10.1002/nano.202000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Lujing Li
- Department of Urology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Yupeng Guan
- Department of Urology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Haiyun Xiong
- Department of Urology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Tian Deng
- Department of Stomatology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Qiao Ji
- Department of Ultrasound The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Zuofeng Xu
- Department of Ultrasound The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Yang Kang
- Department of Urology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| | - Jun Pang
- Department of Urology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen Guangdong 518107 China
| |
Collapse
|
23
|
Calzada V. Aptamers in Diagnostic and Molecular Imaging Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:141-160. [PMID: 31848635 DOI: 10.1007/10_2019_115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The origin of the term diagnostic comes from the Greek word gnosis, meaning "to know." In medicine, a diagnostic can predict the pathology risk, disease status, treatment, and prognosis, even following therapy. An early and correct diagnosis is necessary for an efficient treatment. Moreover, it is possible to predict if and why a therapy will be successful or fail, enabling the timely application of alternative therapeutic strategies. Available diagnostics are due to the advances in biotechnology; however, more sensitive, low-cost, and noninvasive methodologies are still a challenge. Knowledge about molecular characteristics provide personalized information, which is the goal of future medicine. Today, multiple diagnostic techniques have emerged, with which it is possible to distinguish molecular patterns.In this way, aptamers are the perfect tools to recognize molecular targets and can be easily modified to confer additional functions. Their versatile characteristics and low cost make aptamers ideal for diagnostic applications.This chapter is a review of aptamer-based diagnostics in biomedicine, with a special focus on probe design and molecular imaging. Graphical Abstract.
Collapse
Affiliation(s)
- Victoria Calzada
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
24
|
Sapna K, Tarique M, Asiamma A, Ravi Kumar TN, Shashidhar V, Arun AB, Prasad KS. Early detection of leptospirosis using Anti-LipL32 carbon nanotube immunofluorescence probe. J Biosci Bioeng 2020; 130:424-430. [PMID: 32674981 DOI: 10.1016/j.jbiosc.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Leptospirosis is a widespread zoonosis and an emerging public health problem. Leptospirosis symptoms are often confused or misdiagnosed with other febrile illness like malaria, viral hepatitis, influenza, dengue, typhoid, melioidosis, and scrub typhus as the clinical manifestations are almost similar. Therefore, early and accurate diagnosis of leptospirosis is indeed critical for proper and prompt treatment. Herein, we report the development of single-walled carbon nanotubes based immunofluorescence probe (Carbo-Lip) for the detection of leptospirosis at an early phase by utilising major outer membrane protein, LipL32 of Leptospira. The Carbo-Lip probe was fabricated through immuno recognition method with fluorescent dye functionalized LipL32 monoclonal antibodies (mAbs), secondary antibody and Leptospira. Surface characterization studies such as Fourier transform infrared spectroscopy with the attenuated total reflectance, scanning electron microscopy, transmission electron microscopy, Zeta potential, and X-ray photoelectron spectroscopy techniques were used to demonstrate the successful fabrication of Carbo-Lip probe. The sensor probe was capable of detecting the presence of leptospires at a lower concentration of 103/ml, and could detect 102 leptospires in 100 μL of sample within 3 h of the test conditions, and was stable up to 2 weeks. This Carbo-Lip probe was further tested and validated for its capacity to detect Leptospira in clinical samples, which exhibited high selectivity and specificity towards Leptospira even in the presence of malaria and dengue. Our results were consistent with microscopic agglutination test, which is known as gold standard, immunoglobulin M (IgM) enzyme-linked immunoassay (ELISA), IgM spot test, and culture tests for the diagnosis of Leptospira infection.
Collapse
Affiliation(s)
- Kannan Sapna
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore 575 018, India; Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore 575 018, India
| | - Mohammed Tarique
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore 575 018, India
| | - Ashaiba Asiamma
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore 575 018, India
| | - Terikere Nagaraj Ravi Kumar
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Vishwanath Shashidhar
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India
| | | | - Kariate Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to Be University), Deralakatte, Mangalore 575 018, India.
| |
Collapse
|
25
|
Wu R, Zhang Z, Wang B, Chen G, Zhang Y, Deng H, Tang Z, Mao J, Wang L. Combination Chemotherapy of Lung Cancer - Co-Delivery of Docetaxel Prodrug and Cisplatin Using Aptamer-Decorated Lipid-Polymer Hybrid Nanoparticles. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2249-2261. [PMID: 32606595 PMCID: PMC7293388 DOI: 10.2147/dddt.s246574] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Purpose Lung cancer is the leading cause of cancer mortality worldwide. Drug resistance is the major barrier for the treatment of non-small cell lung cancer (NSCLC). The aim of this research is to develop an aptamer-decorated hybrid nanoparticle for the co-delivery of docetaxel prodrug (DTXp) and cisplatin (DDP) and to treat lung cancer. Materials and Methods Aptamer-conjugated lipid–polymer ligands and redox-sensitive docetaxel prodrug were synthesized. DTXp and DDP were loaded into the lipid–polymer hybrid nanoparticles (LPHNs). The targeted efficiency of aptamer-decorated, DTXp and DDP co-encapsulated LPHNs (APT-DTXp/DDP-LPHNs) was determined by performing a cell uptake assay by flow cytometry-based analysis. In vivo biodistribution and anticancer efficiency of APT-DTXp/DDP-LPHNs were evaluated on NSCLC-bearing mice xenograft. Results APT-DTXp/DDP-LPHNs had a particle size of 213.5 ± 5.3 nm, with a zeta potential of 15.9 ± 1.9 mV. APT-DTXp/DDP-LPHNs exhibited a significantly enhanced cytotoxicity (drug concentration causing 50% inhibition was 0.71 ± 0.09 μg/mL), synergy antitumor effect (combination index was 0.62), and profound tumor inhibition ability (tumor inhibition ratio of 81.4%) compared with the non-aptamer-decorated LPHNs and single drug-loaded LPHNs. Conclusion Since the synergistic effect of the drugs was found in this system, it would have great potential to inhibit lung tumor cells and in vivo tumor growth.
Collapse
Affiliation(s)
- Ruifeng Wu
- Department of Thoracic Surgery, Baoding No.1 Central Hospital, Baoding, Hebei Province, People's Republic of China
| | - Zhiqiang Zhang
- Department of Thoracic Surgery, Baoding No.1 Central Hospital, Baoding, Hebei Province, People's Republic of China
| | - Baohua Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Ge Chen
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| | - Yaozhong Zhang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| | - Haowen Deng
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| | - Zilong Tang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| | - Junjie Mao
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| | - Lei Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
26
|
Chen Y, Deng Y, Zhu C, Xiang C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed Pharmacother 2020; 127:110181. [PMID: 32416561 DOI: 10.1016/j.biopha.2020.110181] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the most common type of newly diagnosed malignancy in men. Combined chemotherapy has been shown to be an effective strategy for the treatment of PC therapy. Lipid-polymer hybrid nanoparticles (LPNs) are core-shell nanoparticles composed of a polymer core and a lipid shell, which are reported to provide significant advantages for combined PC therapy. This study synthesized an aptamer conjugated ligand and designed an aptamer-functionalized, curcumin (CUR) and cabazitaxel (CTX) co-delivered LPNs (APT-CUR/CTX-LPNs). APT-CUR/CTX-LPNs had a mean size of 121.3 ± 4.2 nm and a positive surface charge (23.5 ± 2.6 mV). Both CUR and CTX were sustained released from LPNs. Aptamer-functionalized APT-CUR/CTX-LPNs exhibited good cell inhibition ability, high tumor accumulation, and remarkable tumor inhibition efficiency at the drug ratio of 2:5 (CUR:CTX). The novel LPNs offers great promise for the double drugs delivery to the prostate cancer cells and tumor xenograft in vivo, showing the potential of synergistic combination therapy for prostate cancer.
Collapse
Affiliation(s)
- Yougan Chen
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Yuanyuan Deng
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Chenyao Zhu
- Shenzhen Yuce Biotechnology Co. Ltd, Shenzhen 518000, PR China
| | - Congming Xiang
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China.
| |
Collapse
|
27
|
Salaheldin TA, Bharali DJ, Mousa SA. Functionalized nano-targeted moieties in management of prostate cancer. Future Oncol 2020; 16:869-883. [PMID: 32292071 DOI: 10.2217/fon-2019-0635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multimodal properties of nanoparticles, such as simultaneously carrying drugs and/or diagnostic probes for site-specific delivery, make them excellent carriers for diagnosis and treatment of prostate cancer. Advantages are high permeability and selectivity to malignant cells to reduce systemic toxicity of chemotherapeutic drugs. Based on a review of current literature, the lack of efficient and highly specific prostate cancer cell targeting moieties is hindering successful in vivo prostate cancer-targeted drug delivery systems. Highly specific nano-targeting moieties as drug delivery vehicles might improve chemotherapeutic delivery via targeting to specific receptors expressed on the surface of prostate cancer cells. This review describes nano-targeting moieties for management of prostate cancer and its cancer stem cells. Descriptions of targeting moieties using anti-prostate-specific membrane antigen, aptamer, anti-cluster of differentiation 24/44, folic acid and other targeting strategies are highlighted. Current research results are promising and may yield development of next-generation nanoscale theragnostic targeted modalities for prostate cancer treatment.
Collapse
Affiliation(s)
- Taher A Salaheldin
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 USA
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 USA
| |
Collapse
|
28
|
Zhong Y, Zhao J, Li J, Liao X, Chen F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 2020; 598:113620. [PMID: 32087127 DOI: 10.1016/j.ab.2020.113620] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
Aptamers are a class of short artificial single-stranded oligo(deoxy) nucleotides that can bind to different targets, which generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to excellent selectivity and high affinity to targets, aptamers hold considerable potential as molecular probe in diverse applications ranging from ensuring food safety, monitoring environment, disease diagnosis to therapy. This review highlights recent development and challenges about aptamers screened by Cell-SELEX, and its application about cancer diagnostics and therapeutics. Advances about some operation methods such as seperation method and culture method in aptamers selection procedure were summarized in this paper. Some common challenges and technological difficulties such as nonspecific binding and biostability were discussed. Up to now, the recent endeavors about cancer diagnostic and therapeutic applications of aptamers are summarized and expatiated. Most of aptamers screened by Cell-SELEX took tumor cells as target cells, and such aptamers have been assembled to various aptasensor for cancer diagnosis. Aptamers conjugated various drugs or nanomaterials are functioned for cancer target therapy to improve drugs delivery efficiency and reduce side effects. Furthermore, the duplexed aptamer is discussed to be applied for cancer cells detection and some conflicts of theories about duplexed aptamer designs are analyzed.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiayao Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiazhao Li
- Qionglai maternal&Child health care hospital, Chengdu, 611530, Sichuan, China
| | - Xin Liao
- School of laboratory medical and Life science, Wenzhou Medical University, Wenzhou, 325000, Fujian, China
| | - Fengling Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|