1
|
López-Goerne T, Padilla-Godínez FJ. Catalytic Nanomedicine as a Therapeutic Approach to Brain Tumors: Main Hypotheses for Mechanisms of Action. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091541. [PMID: 37177086 PMCID: PMC10180296 DOI: 10.3390/nano13091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumor of the brain. Although there are currently a wide variety of therapeutic approaches focused on tumor elimination, such as radiotherapy, chemotherapy, and tumor field therapy, among others, the main approach involves surgery to remove the GBM. However, since tumor growth occurs in normal brain tissue, complete removal is impossible, and patients end up requiring additional treatments after surgery. In this line, Catalytic Nanomedicine has achieved important advances in developing bionanocatalysts, brain-tissue-biocompatible catalytic nanostructures capable of destabilizing the genetic material of malignant cells, causing their apoptosis. Previous work has demonstrated the efficacy of bionanocatalysts and their selectivity for cancer cells without affecting surrounding healthy tissue cells. The present review provides a detailed description of these nanoparticles and their potential mechanisms of action as antineoplastic agents, covering the most recent research and hypotheses from their incorporation into the tumor bed, internalization via endocytosis, specific chemotaxis by mitochondrial and nuclear genetic material, and activation of programmed cell death. In addition, a case report of a patient with GBM treated with the bionanocatalysts following tumor removal surgery is described. Finally, the gaps in knowledge that must be bridged before the clinical translation of these compounds with such a promising future are detailed.
Collapse
Affiliation(s)
- Tessy López-Goerne
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| | - Francisco J Padilla-Godínez
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
2
|
The use of radiosensitizing agents in the therapy of glioblastoma multiforme-a comprehensive review. Strahlenther Onkol 2022; 198:507-526. [PMID: 35503461 PMCID: PMC9165247 DOI: 10.1007/s00066-022-01942-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/30/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Glioblastoma is the most common malignant brain tumor in human adults. Despite several improvements in resective as well as adjuvant therapy over the last decades, its overall prognosis remains poor. As a means of improving patient outcome, the possibility of enhancing radiation response by using radiosensitizing agents has been tested in an array of studies. METHODS A comprehensive review of clinical trials involving radiation therapy in combination with radiosensitizing agents on patients diagnosed with glioblastoma was performed in the National Center for Biotechnology Information's PubMed database. RESULTS A total of 96 papers addressing this matter were published between 1976 and 2021, of which 63 matched the subject of this paper. All papers were reviewed, and their findings discussed in the context of their underlining mechanisms of radiosensitization. CONCLUSION In the history of glioblastoma treatment, several approaches of optimizing radiation-effectiveness using radiosensitizers have been made. Even though several different strategies and agents have been explored, clear evidence of improved patient outcome is still missing. Tissue-selectiveness and penetration of the blood-brain barrier seem to be major roadblocks; nevertheless, modern strategies try to circumvent these obstacles, using novel sensitizers based on preclinical data or alternative ways of delivery.
Collapse
|
3
|
Blood-Brain Barrier Permeability Following Conventional Photon Radiotherapy - A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. Clin Transl Radiat Oncol 2022; 35:44-55. [PMID: 35601799 PMCID: PMC9117815 DOI: 10.1016/j.ctro.2022.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 01/16/2023] Open
Abstract
Radiotherapy (RT) is a cornerstone treatment strategy for brain tumours. Besides cytotoxicity, RT can cause disruption of the blood–brain barrier (BBB), resulting in an increased permeability into the surrounding brain parenchyma. Although this effect is generally acknowledged, it remains unclear how and to what extent different radiation schemes affect BBB integrity. The aim of this systematic review and meta-analysis is to investigate the effect of photon RT regimens on BBB permeability, including its reversibility, in clinical and preclinical studies. We systematically reviewed relevant clinical and preclinical literature in PubMed, Embase, and Cochrane search engines. A total of 69 included studies (20 clinical, 49 preclinical) were qualitatively and quantitatively analysed by meta-analysis and evaluated on key determinants of RT-induced BBB permeability in different disease types and RT protocols. Qualitative data synthesis showed that 35% of the included clinical studies reported BBB disruption following RT, whereas 30% were inconclusive. Interestingly, no compelling differences were observed between studies with different calculated biological effective doses based on the fractionation schemes and cumulative doses; however, increased BBB disruption was noted during patient follow-up after treatment. Qualitative analysis of preclinical studies showed RT BBB disruption in 78% of the included studies, which was significantly confirmed by meta-analysis (p < 0.01). Of note, a high risk of bias, publication bias and a high heterogeneity across the studies was observed. This systematic review and meta-analysis sheds light on the impact of RT protocols on BBB integrity and opens the discussion for integrating this factor in the decision-making process of future RT, with better study of its occurrence and influence on concomitant or adjuvant therapies.
Collapse
|
4
|
Choi J, Kim G, Cho SB, Im HJ. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnology 2020; 18:122. [PMID: 32883290 PMCID: PMC7470617 DOI: 10.1186/s12951-020-00684-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is an essential step during the treatment of glioblastoma multiforme (GBM), one of the most lethal malignancies. The survival in patients with GBM was improved by the current standard of care for GBM established in 2005 but has stagnated since then. Since GBM is a radioresistant malignancy and the most of GBM recurrences occur in the radiotherapy field, increasing the effectiveness of radiotherapy using high-Z metal nanoparticles (NPs) has recently attracted attention. This review summarizes the progress in radiotherapy approaches for the current treatment of GBM, the physical and biological mechanisms of radiosensitization through high-Z metal NPs, and the results of studies on radiosensitization in the in vitro and in vivo GBM models using high-Z metal NPs to date.
Collapse
Affiliation(s)
- Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Gaeun Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Su Bin Cho
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Leclerc P, Ray C, Mahieu-Williame L, Alston L, Frindel C, Brevet PF, Meyronet D, Guyotat J, Montcel B, Rousseau D. Machine learning-based prediction of glioma margin from 5-ALA induced PpIX fluorescence spectroscopy. Sci Rep 2020; 10:1462. [PMID: 31996727 PMCID: PMC6989497 DOI: 10.1038/s41598-020-58299-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Gliomas are infiltrative brain tumors with a margin difficult to identify. 5-ALA induced PpIX fluorescence measurements are a clinical standard, but expert-based classification models still lack sensitivity and specificity. Here a fully automatic clustering method is proposed to discriminate glioma margin. This is obtained from spectroscopic fluorescent measurements acquired with a recently introduced intraoperative set up. We describe a data-driven selection of best spectral features and show how this improves results of margin prediction from healthy tissue by comparison with the standard biomarker-based prediction. This pilot study based on 10 patients and 50 samples shows promising results with a best performance of 77% of accuracy in healthy tissue prediction from margin tissue.
Collapse
Affiliation(s)
- Pierre Leclerc
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France, 10 Rue Ada Byron, 69622, Villeurbanne, France.,CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France
| | - Cedric Ray
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France, 10 Rue Ada Byron, 69622, Villeurbanne, France
| | - Laurent Mahieu-Williame
- CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France
| | - Laure Alston
- CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France
| | - Carole Frindel
- CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France
| | - Pierre-François Brevet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France, 10 Rue Ada Byron, 69622, Villeurbanne, France
| | - David Meyronet
- Hospices Civils de Lyon, Centre de Pathologie et de Neuropathologie Est, Lyon, F-69003, France.,Cancer Research Centre of Lyon, Univ Lyon, INSERM U1052, CNRS UMR5286, Lyon, France, Université Claude Bernard Lyon 1, Lyon, France
| | - Jacques Guyotat
- Hospices Civils de Lyon, Centre de Pathologie et de Neuropathologie Est, Lyon, F-69003, France
| | - Bruno Montcel
- CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France.
| | - David Rousseau
- CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France.,Laboratoire Angevin de Recherche en Ingénierie des Systèmes, UMR INRA IRHS, Université d'Angers, 62 avenue Notre Dame du Lac, 49000, Angers, France
| |
Collapse
|
6
|
Alston L, Mahieu-Williame L, Hebert M, Kantapareddy P, Meyronet D, Rousseau D, Guyotat J, Montcel B. Spectral complexity of 5-ALA induced PpIX fluorescence in guided surgery: a clinical study towards the discrimination of healthy tissue and margin boundaries in high and low grade gliomas. BIOMEDICAL OPTICS EXPRESS 2019; 10:2478-2492. [PMID: 31149380 PMCID: PMC6524587 DOI: 10.1364/boe.10.002478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/09/2019] [Accepted: 03/21/2019] [Indexed: 05/06/2023]
Abstract
Gliomas are diffuse and hard to cure brain tumors. A major reason for their aggressive behavior is their property to infiltrate the brain. The gross appearance of the infiltrative component is comparable to normal brain, constituting an obstacle to extended surgical resection. 5-ALA induced PpIX fluorescence measurements enable gains in sensitivity to detect infiltrated cells, but still lack sensitivity to get accurate discrimination between the tumor margin and healthy tissue. In this fluorescence spectroscopic study, we assume that two states of PpIX contribute to total fluorescence to get better discrimination of healthy tissues against tumor margins. We reveal that fluorescence in low-density margins of high-grade gliomas or in low-grade gliomas is mainly influenced by the second state of PpIX centered at 620 nm. We thus conclude that consideration of the contributions of both states to total fluorescence can help to improve fluorescence-guided resection of gliomas by discriminating healthy tissues from tumor margins.
Collapse
Affiliation(s)
- L. Alston
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| | - L. Mahieu-Williame
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| | - M. Hebert
- Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School, Lab. Hubert Curien UMR5516, F-42023, St Etienne, France
| | - P. Kantapareddy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d’anatomopathologie, 59 Bvd Pinel, 69394, Lyon, Cedex, France
| | - D. Meyronet
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d’anatomopathologie, 59 Bvd Pinel, 69394, Lyon, Cedex, France
- Department of Cancer Cell Plasticity, Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France, Université Claude Bernard Lyon 1, Lyon, France
| | - D. Rousseau
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| | - J. Guyotat
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d’anatomopathologie, 59 Bvd Pinel, 69394, Lyon, Cedex, France
| | - B. Montcel
- Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR5220, U1206, F-69616, Lyon, France
| |
Collapse
|
7
|
Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res 2018; 22:25. [PMID: 30275968 PMCID: PMC6158913 DOI: 10.1186/s40824-018-0140-z] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Background Photodynamic therapy (PDT) is photo-treatment of malignant or benign diseases using photosensitizing agents, light, and oxygen which generates cytotoxic reactive oxygens and induces tumour regressions. Several photodynamic treatments have been extensively studied and the photosensitizers (PS) are key to their biological efficacy, while laser and oxygen allow to appropriate and flexible delivery for treatment of diseases. Introduction In presence of oxygen and the specific light triggering, PS is activated from its ground state into an excited singlet state, generates reactive oxygen species (ROS) and induces apoptosis of cancer tissues. Those PS can be divided by its specific efficiency of ROS generation, absorption wavelength and chemical structure. Main body Up to dates, several PS were approved for clinical applications or under clinical trials. Photofrin® is the first clinically approved photosensitizer for the treatment of cancer. The second generation of PS, Porfimer sodium (Photofrin®), Temoporfin (Foscan®), Motexafin lutetium, Palladium bacteriopheophorbide, Purlytin®, Verteporfin (Visudyne®), Talaporfin (Laserphyrin®) are clinically approved or under-clinical trials. Now, third generation of PS, which can dramatically improve cancer-targeting efficiency by chemical modification, nano-delivery system or antibody conjugation, are extensively studied for clinical development. Conclusion Here, we discuss up-to-date information on FDA-approved photodynamic agents, the clinical benefits of these agents. However, PDT is still dearth for the treatment of diseases in specifically deep tissue cancer. Next generation PS will be addressed in the future for PDT. We also provide clinical unmet need for the design of new photosensitizers.
Collapse
Affiliation(s)
- Rengarajan Baskaran
- World Class Smart Lab, Department of New Drug Development, Inha University College of Medicine, 366, Seohae-daero, Jung-gu, Incheon, 22332 Republic of Korea
| | - Junghan Lee
- World Class Smart Lab, Department of New Drug Development, Inha University College of Medicine, 366, Seohae-daero, Jung-gu, Incheon, 22332 Republic of Korea
| | - Su-Geun Yang
- World Class Smart Lab, Department of New Drug Development, Inha University College of Medicine, 366, Seohae-daero, Jung-gu, Incheon, 22332 Republic of Korea
| |
Collapse
|
8
|
Zhang X, Liu X, Zhou W, Yang M, Ding Y, Wang Q, Hu R. Fasudil increases temozolomide sensitivity and suppresses temozolomide-resistant glioma growth via inhibiting ROCK2/ABCG2. Cell Death Dis 2018; 9:190. [PMID: 29416017 PMCID: PMC5833824 DOI: 10.1038/s41419-017-0251-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Resistance to temozolomide (TMZ) is a major clinical challenge in glioma treatment, but the mechanisms of TMZ resistance are poorly understood. Here, we provided evidence that ROCK2 acted redundantly to maintain resistance of TMZ in TMZ-resistant gliomas, and as a ROCK2 phosphorylation inhibitor, fasudil significantly suppressed proliferation of TMZ-resistant gliomas in vivo and vitro via enhancing the chemosensitivity of TMZ. Additionally, the membrane translocation of ABCG2 was decreased with fasudil by ROCK2/moesin pathway. We also showed that fasudil suppressed the expression of ABCG2 via ROCK2/moesin/β-catenin pathway. Our results reveal an indispensable role for ROCK2 and provide strong evidence for the therapeutic use of fasudil in the clinical setting for TMZ-resistant gliomas.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Xiuting Liu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Qing Wang
- Department of Neurosurgery, Wuxi Second Hospital Affiliated Nanjing Medical University, Wuxi, Jiangsu, 214002, China.
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
9
|
Guishard AF, Yakisich JS, Azad N, Iyer AKV. Translational gap in ongoing clinical trials for glioma. J Clin Neurosci 2018; 47:28-42. [PMID: 29066236 PMCID: PMC5733731 DOI: 10.1016/j.jocn.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022]
Abstract
Despite the vast amounts of information gathered about gliomas, the overall survival of glioma patients has not improved in the last four decades. This could partially be due to an apparent failure to include basic concepts of glioma biology into clinical trials. Specifically, attempts to overcome the limitations of the blood brain barrier (BBB) and the chemoresistance of glioma stem cells (GSCs) were seldom included (a phenomenon known as the translational gap, TG) in a study involving 29 Phase I/II clinical trials (P2CT) published in 2011. The aim of this study was to re-evaluate this finding with a new series of 100 ongoing, but still unpublished, P2CT in order to determine if there is a TG reduction. As indicators, we evaluated in each P2CT the number of drugs tested, concomitant radiotherapy, and the ability of drugs to pass the BBB and to target GSCs. Compared to clinical trials published in 2011, we found that while in OCT there is an increase in the number of P2CT using two drugs (from 24.1% to 44.9%), and an increase in the number of drugs able to pass the BBB (7.14% versus 64.29%) and target GSCs (0% versus 16.3%), there was a decrease in the number of P2CT using concomitant radiotherapy (34.5% versus 18.37%). Overall our results suggest that there is only a modest improvement regarding reducing the TG because the vast majority of ongoing P2CT are still not including well known concepts of glioma biology important for a successful treatment.
Collapse
Affiliation(s)
| | - Juan Sebastian Yakisich
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, VA 23668, USA
| | - Neelam Azad
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, VA 23668, USA
| | - Anand Krishnan V Iyer
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, VA 23668, USA.
| |
Collapse
|
10
|
Ahmad SB, Paudel MR, Sarfehnia A, Kim A, Pang G, Ruschin M, Sahgal A, Keller BM. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1361-6560/aa7acb] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
|
12
|
Qiu L, Zhang F, Shi Y, Bai Z, Wang J, Li Y, Lee D, Ingraham C, Feng X, Yang X. Gliomas: Motexafin Gadolinium-enhanced Molecular MR Imaging and Optical Imaging for Potential Intraoperative Delineation of Tumor Margins. Radiology 2015; 279:400-9. [PMID: 26599802 DOI: 10.1148/radiol.2015150895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate the possibility of using motexafin gadolinium (MGd)-enhanced molecular magnetic resonance (MR) imaging and optical imaging to identify the true margins of gliomas. MATERIALS AND METHODS The animal protocol was approved by the institutional animal care and use committee. Thirty-six Sprague-Dawley rats with gliomas were randomized into six groups of six rats. Five groups were euthanized 15, 30, 60, 120, and 240 minutes after intravenous administration of 6 mg/kg of MGd, while one group received only saline solution as a control group. After craniotomy, optical imaging and T1-weighted MR imaging were performed to identify the tumor margins. One-way analysis of variance was used to compare optical photon intensity and MR imaging signal-to-noise ratios. Histologic analysis was performed to confirm the intracellular uptake of MGd by tumor cells and to correlate the tumor margins delineated on both optical and MR images. RESULTS Both optical imaging and T1-weighted MR imaging showed tumor margins. The highest optical photon intensity (2.6 × 10(8) photons per second per mm(2) ± 2.3 × 10(7); analysis of variance, P < .001) and MR signal-to-noise ratio (77.61 ± 2.52; analysis of variance, P = .006) were reached at 15-30 minutes after administration of MGd, with continued tumor visibility at 2-4 hours. Examination with confocal microscopy allowed confirmation that the fluorescence of optical images and MR imaging T1 enhancement exclusively originated from MGd that accumulated in the cytoplasm of tumor cells. CONCLUSION MGd-enhanced optical and MR imaging can allow determination of glioma tumor margins at the optimal time of 15-120 minutes after administration of MGd. Clinical application of these results may allow complete removal of gliomas in a hybrid surgical setting in which intraoperative optical and MR imaging are available.
Collapse
Affiliation(s)
- Longhua Qiu
- From the Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109 (L.Q., F.Z., Y.S., Z.B., J.W., Y.L., D.L., C.I., X.Y.); and Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (L.Q., X.F.)
| | - Feng Zhang
- From the Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109 (L.Q., F.Z., Y.S., Z.B., J.W., Y.L., D.L., C.I., X.Y.); and Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (L.Q., X.F.)
| | - Yaoping Shi
- From the Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109 (L.Q., F.Z., Y.S., Z.B., J.W., Y.L., D.L., C.I., X.Y.); and Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (L.Q., X.F.)
| | - Zhibin Bai
- From the Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109 (L.Q., F.Z., Y.S., Z.B., J.W., Y.L., D.L., C.I., X.Y.); and Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (L.Q., X.F.)
| | - Jianfeng Wang
- From the Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109 (L.Q., F.Z., Y.S., Z.B., J.W., Y.L., D.L., C.I., X.Y.); and Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (L.Q., X.F.)
| | - Yonggang Li
- From the Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109 (L.Q., F.Z., Y.S., Z.B., J.W., Y.L., D.L., C.I., X.Y.); and Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (L.Q., X.F.)
| | - Donghoon Lee
- From the Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109 (L.Q., F.Z., Y.S., Z.B., J.W., Y.L., D.L., C.I., X.Y.); and Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (L.Q., X.F.)
| | - Christopher Ingraham
- From the Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109 (L.Q., F.Z., Y.S., Z.B., J.W., Y.L., D.L., C.I., X.Y.); and Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (L.Q., X.F.)
| | - Xiaoyuan Feng
- From the Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109 (L.Q., F.Z., Y.S., Z.B., J.W., Y.L., D.L., C.I., X.Y.); and Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (L.Q., X.F.)
| | - Xiaoming Yang
- From the Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109 (L.Q., F.Z., Y.S., Z.B., J.W., Y.L., D.L., C.I., X.Y.); and Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (L.Q., X.F.)
| |
Collapse
|
13
|
Whisenhunt TR, Rajneesh KF, Hackney JR, Markert JM. Extended disease-free interval of 6 years in a recurrent glioblastoma multiforme patient treated with G207 oncolytic viral therapy. Oncolytic Virother 2015; 4:33-8. [PMID: 27512668 PMCID: PMC4918376 DOI: 10.2147/ov.s62461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a relentless primary central nervous system malignancy that remains resistant to conventional therapy despite major advances in clinical neurooncology. This report details the case of a patient who had failed conventional treatment for recurrent GBM and was ultimately treated with a genetically engineered herpes simplex virus (HSV) type 1 vector, G207. METHODS Case report detailing the outcomes of one patient enrolled into the gene therapy arm of the Neurovir G207 protocol whereby stereotactic injection of 120 µL G207 viral suspension containing 1×10(7) plaque-forming units (or active viral particles) was made into the enhancing region of the tumor. RESULTS In this patient, despite aggressive surgical resection, adjuvant radiotherapy and chemotherapy, tumor progression occurred. However, with G207 oncolytic therapy and brief exposures to second and third treatments, this patient had an extended survival time of 7.5 years and a 6-year apparent disease-free interval, an extraordinarily unusual finding in the pretemozolomide era. CONCLUSION With minimal adjunctive chemotherapy, including one course of temozolomide, one course of procarbazine, and four cycles of irinotecan, the patient survived over 7 years before the next recurrence. Addition of G207 to this patient's traditional therapy may have been the critical treatment producing her prolonged survival. This report demonstrates the potential for long-term response to a one-time treatment with oncolytic HSV and encourages continued research on oncolytic viral therapy for GBM.
Collapse
Affiliation(s)
- Thomas R Whisenhunt
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kiran F Rajneesh
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James R Hackney
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Thomas SR, Khuntia D. Motexafin gadolinium: a promising radiation sensitizer in brain metastasis. Expert Opin Drug Discov 2012; 6:195-203. [PMID: 22647136 DOI: 10.1517/17460441.2011.546395] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Motexafin gadolinium is a radiation sensitizer that is in the class of drugs known as texaphyrins. Though this drug is currently not FDA approved in the management of brain tumors, several prospective studies have been done showing promise with this agent, which this review highlights. AREAS COVERED This paper provides a clinical context by reviewing the background of radiosensitizers, followed by a review of the preclinical discovery of motexafin gadolinium and its clinical testing. We also highlight its most promising applications and comment on the reasons for the observed clinical outcomes. EXPERT OPINION Motexafin gadolinium is a novel radiosensitizer with clearly documented efficacy, particularly in patients with brain metastases. If this agent had been tested upfront in patients diagnosed with brain metastases from NSCLC who had not been delayed by the administration of systemic chemotherapy, it may have become part of the standard of care in this setting. Continued investigations using this agent are under way and remain promising.
Collapse
|
15
|
McHaffie DR, Chabot P, Dagnault A, Suh JH, Fortin MA, Chang E, Timmerman R, Souhami L, Grecula J, Nabid A, Schultz C, Werner-Wasik M, Gaspar LE, Brachman D, Mody T, Mehta MP. Safety and feasibility of motexafin gadolinium administration with whole brain radiation therapy and stereotactic radiosurgery boost in the treatment of ≤ 6 brain metastases: a multi-institutional phase II trial. J Neurooncol 2011; 105:301-8. [PMID: 21523486 DOI: 10.1007/s11060-011-0590-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 04/18/2011] [Indexed: 01/03/2023]
Abstract
To determine the safety, tolerability, and report on secondary efficacy endpoints of motexafin gadolinium (MGd) in combination with whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS) for patients with ≤ 6 brain metastases. We conducted an international study of WBRT (37.5 Gy in 15 fractions) and SRS (15-21 Gy) with the addition of MGd (5 mg/kg preceding each fraction beginning week 2). The primary endpoint was to evaluate the rate of irreversible grade 3 or any grade ≥ 4 neurotoxicity and establish feasibility in preparation for a phase III trial. Sixty-five patients were enrolled from 14 institutions, of which 45 (69%) received SRS with MGd as intended and were available for evaluation. Grade ≥ 3 neurotoxicity attributable to radiation therapy within 3 months of SRS was seen in 2 patients (4.4%), including generalized weakness and radionecrosis requiring surgical management. Immediately following the course of MGd plus WBRT, new brain metastases were detected in 11 patients (24.4%) at the time of the SRS treatment planning MRI. The actuarial incidence of neurologic progression at 6 months and 1 year was 17 and 20%, respectively. The median investigator-determined neurologic progression free survival and overall survival times were 8 (95% CI: 5-14) and 9 months (95% CI: 6-not reached), respectively. We observed a low rate of neurotoxicity, demonstrating that the addition of MGd does not increase the incidence or severity of neurologic complications from WBRT with SRS boost.
Collapse
Affiliation(s)
- Derek R McHaffie
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, K4/B100, Madison, WI 53792, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chaichana KL, Chaichana KK, Olivi A, Weingart JD, Bennett R, Brem H, Quiñones-Hinojosa A. Surgical outcomes for older patients with glioblastoma multiforme: preoperative factors associated with decreased survival. Clinical article. J Neurosurg 2010; 114:587-94. [PMID: 20887095 DOI: 10.3171/2010.8.jns1081] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT As the population ages, the incidence of glioblastoma multiforme (GBM) among older patients (age > 65 years) will increase. Older patients, unlike their younger counterparts, are not often offered aggressive surgery because of their age, comorbidities, and potential inability to tolerate surgery. The goal of this study was to identify preoperative factors associated with decreased survival for older patients who underwent resection of a GBM. The identification of these factors may provide insight into which patients would benefit most from aggressive surgery. METHODS All patients older than 65 years who underwent nonbiopsy resection of an intracranial GBM at a single institution between 1997 and 2007 were retrospectively reviewed. Factors associated with overall survival were assessed using multivariate proportional hazards regression analysis after controlling for peri- and postoperative factors known to be associated with outcome (extent of resection, carmustine wafer implantation, temozolomide chemotherapy, and radiation therapy). Variables with p < 0.05 were considered statistically significant. RESULTS A total of 129 patients with an average age of 73 ± 5 years met the inclusion/exclusion criteria. At last follow-up, all 129 patients had died, with a median survival of 7.9 months. The preoperative factors that were independently associated with decreased survival were Karnofsky Performance Scale (KPS) score less than 80 (p = 0.001), chronic obstructive pulmonary disease (p = 0.01), motor deficit (p = 0.01), language deficit (p = 0.005), cognitive deficit (p = 0.02), and tumor size larger than 4 cm (p = 0.002). Patients with 0-1 (Group 1), 2-3 (Group 2), and 4-6 (Group 3) of these factors had statistically different survival times, where the median survival was 9.2, 5.5, and 4.4 months, respectively. In log-rank analysis, the median survival for Group 1 was significantly longer than that for Group 2 (p = 0.004) and Group 3 (p < 0.0001), while Group 2 had longer survival than Group 3 (p = 0.02). CONCLUSIONS Older patients with an increasing number of these factors may not benefit as much from aggressive surgery as patients with fewer factors. This may provide insight into identifying which patients older than 65 years of age may benefit from aggressive surgery.
Collapse
Affiliation(s)
- Kaisorn L Chaichana
- Department of Neurosurgery, Johns Hopkins University and School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Chaichana KL, Garzon-Muvdi T, Parker S, Weingart JD, Olivi A, Bennett R, Brem H, Quiñones-Hinojosa A. Supratentorial glioblastoma multiforme: the role of surgical resection versus biopsy among older patients. Ann Surg Oncol 2010; 18:239-45. [PMID: 20697823 DOI: 10.1245/s10434-010-1242-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND The peak incidence of glioblastoma multiforme (GBM) occurs in those aged 65 years and older. However, studies on this patient group remain limited. The goal of this study is to evaluate the efficacy of surgery versus biopsy for older patients with these lesions. METHODS 133 and 72 consecutive patients aged 65 years and older who underwent surgery and needle biopsy for intracranial primary (de novo) GBM between 1997 and 2007 were retrospectively reviewed. Among these patients, 40 who underwent surgical resection were matched with 40 who underwent needle biopsy alone for factors consistently shown to be associated with survival [age, Karnofsky Performance Scale (KPS) indexing, eloquent involvement, radiation, temozolomide]. Survival was expressed as estimated Kaplan-Meier plots, and log-rank analysis was used to compare survival curves. RESULTS Mean ± standard deviation age was 73 ± 5 years, and median survival was 4.9 months. There were no significant differences in perioperative outcomes among patients who underwent surgical resection versus needle biopsy. Patients who underwent resection had median survival of 5.7 months as compared with 4.0 months for patients who underwent needle biopsy (P = 0.02). Likewise, for patients aged 70 years and older, median survival was 4.5 months for 26 patients who underwent surgical resection as compared with 3.0 months for 26 patients who underwent needle biopsy (P = 0.03). CONCLUSION This study demonstrates that older patients tolerate aggressive surgery without increased surgery-related morbidity and have prolonged survival as compared with similar patients undergoing needle biopsy. These findings may help guide treatment decisions for patients, their families, and their physicians.
Collapse
Affiliation(s)
- Kaisorn L Chaichana
- The Johns Hopkins Neuro-Oncology Surgical Outcomes Research Laboratory, Department of Neurosurgery, The Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Francis D, Richards GM, Forouzannia A, Mehta MP, Khuntia D. Motexafin gadolinium: a novel radiosensitizer for brain tumors. Expert Opin Pharmacother 2009; 10:2171-80. [PMID: 19640206 DOI: 10.1517/14656560903179325] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
For a variety of reasons, the management of brain tumors, both primary and metastatic, remains a considerable challenge. As most systemic therapies do not cross the BBB at therapeutic doses, radiation and surgery have played primary roles in the management of these diseases. Despite significant advances in surgical techniques and radiation delivery, outcomes for most adult brain tumors continue to be poor. In an effort to enhance the effects of radiation in the brain, a variety of radiation sensitizers, including motexafin gadolinium, have been investigated. In the following manuscript, we summarize motexafin gadolinium and its role in brain tumors.
Collapse
Affiliation(s)
- Dave Francis
- University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, K4-B100 Madison, WI 53717, USA
| | | | | | | | | |
Collapse
|
19
|
Madsen SJ, Mathews MS, Angell-Petersen E, Sun CH, Vo V, Sanchez R, Hirschberg H. Motexafin gadolinium enhances the efficacy of aminolevulinic acid mediated-photodynamic therapy in human glioma spheroids. J Neurooncol 2009; 91:141-9. [PMID: 18777009 PMCID: PMC4116194 DOI: 10.1007/s11060-008-9692-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 08/25/2008] [Indexed: 01/29/2023]
Abstract
Photodynamic therapy (PDT) has been investigated as a postoperative treatment in patients with high grade gliomas. The purpose of this in vitro investigation was to determine whether motexafin gadolinium (MGd), a known radiation sensitizer, could potentiate the effects of 5-aminolevulinic acid (ALA)-PDT. Human glioma (ACBT) spheroids (250 microm diameter) were incubated in 5-aminolevulinic acid (ALA) with and without MGd and irradiated with 635 nm light for a total light fluence of 6, 12, or 18 J cm(-2) delivered at a fluence rate of 5 mW cm(-2). Spheroid growth was monitored for a period of 4 weeks following each treatment. In another set of experiments, 400-500 microm diameter ACBT spheroids were implanted into a gel collagen matrix and subjected to ALA-PDT (fluence: 3 or 6 J cm(-2)), MGd, or a combination of ALA-PDT and MGd. The migration distance of surviving glioma cells in each treatment group was recorded over a 5-day period. The results showed that MGd interacted with PDT in a synergistic manner resulting in greater cytotoxicity than that achievable with either treatment modality alone. The degree of synergism was shown to increase with increasing light fluence. At the highest light fluence investigated (18 J cm(-2)), the percentage of spheroids demonstrating growth 4 weeks following exposure to MGd, ALA-PDT, or MGd + ALA-PDT was 100%, 75%, and 15%, respectively. The results of cell migration studies revealed that the combination of PDT and MGd produced a significant inhibitory effect on glioma cell migration: the addition of MGd resulted in an approximately three times reduction in migration distance compared with PDT alone. Overall, the results suggest that MGd can potentiate both the cytotoxic and migration inhibitory effects of ALA-PDT and hence, this combined therapeutic approach has the potential to extend treatment volumes in patients with malignant gliomas.
Collapse
Affiliation(s)
- Steen J Madsen
- Department of Health Physics, University of Nevada, Las Vegas, NV 89154-3037, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zahedi Avval F, Berndt C, Pramanik A, Holmgren A. Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd). Biochem Biophys Res Commun 2009; 379:775-9. [PMID: 19121624 DOI: 10.1016/j.bbrc.2008.12.128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 12/21/2022]
Abstract
Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.
Collapse
Affiliation(s)
- Farnaz Zahedi Avval
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
21
|
Abstract
A prerequisite for the efficacy of any cancer drug is that it reaches the tumor in therapeutic concentrations. This is difficult to accomplish in most systemic solid tumors because of factors such as variable hypoxia, intratumoral pressure gradients, and abnormal vasculature within the tumors. In brain cancer, the situation is complicated by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier, which serve as physical and physiologic obstacles for delivery of drugs to the central nervous system. Many approaches to overcome, circumvent, disrupt, or manipulate the BBB to enhance delivery of drugs to brain tumors have been devised and are in active investigation. These approaches include high-dose intravenous chemotherapy, intra-arterial drug delivery, local drug delivery via implanted polymers or catheters, BBB disruption, and biochemical modulation of drugs.
Collapse
Affiliation(s)
- Jaishri Blakeley
- Johns Hopkins University, Cancer Research Building II, Suite 1M16, 1550 Orleans Street, Baltimore, MD 21231, USA.
| |
Collapse
|
22
|
Ford JM, Seiferheld W, Alger JR, Wu G, Endicott TJ, Mehta M, Curran W, Phan SC. Results of the phase I dose-escalating study of motexafin gadolinium with standard radiotherapy in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2007; 69:831-8. [PMID: 17560737 DOI: 10.1016/j.ijrobp.2007.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 04/04/2007] [Accepted: 04/13/2007] [Indexed: 11/27/2022]
Abstract
PURPOSE Motexafin gadolinium (MGd) is a putative radiation enhancer initially evaluated in patients with brain metastases. This Phase I trial studied the safety and tolerability of a 2-6-week course (10-22 doses) of MGd with radiotherapy for glioblastoma multiforme. METHODS AND MATERIALS A total of 33 glioblastoma multiforme patients received one of seven MGd regimens starting at 10 doses of 4 mg/kg/d MGd and escalating to 22 doses of 5.3 mg/kg/d MGd (5 or 10 daily doses then three times per week). The National Cancer Institute Cancer Therapy Evaluation Program toxicity and stopping rules were applied. RESULTS The maximal tolerated dose was 5.0 mg/kg/d MGd (5 d/wk for 2 weeks, then three times per week) for 22 doses. The dose-limiting toxicity was reversible transaminase elevation. Adverse reactions included rash/pruritus (45%), chills/fever (30%), and self-limiting vesiculobullous rash of the thumb and fingers (42%). The median survival of 17.6 months prompted a case-matched analysis. In the case-matched analysis, the MGd patients had a median survival of 16.1 months (n = 31) compared with the matched Radiation Therapy Oncology Group database patients with a median survival of 11.8 months (hazard ratio, 0.43; 95% confidence interval, 0.20-0.94). CONCLUSION The maximal tolerated dose of MGd with radiotherapy for glioblastoma multiforme in this study was 5 mg/kg/d for 22 doses (daily for 2 weeks, then three times weekly). The baseline survival calculations suggest progression to Phase II trials is appropriate, with the addition of MGd to radiotherapy with concurrent and adjuvant temozolomide.
Collapse
Affiliation(s)
- Judith M Ford
- Department of Radiation Oncology, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095-6951, USA.
| | | | | | | | | | | | | | | |
Collapse
|