1
|
Wu H, Gao W, Chen P, Wei Y, Zhao H, Wang F. Research progress of drug resistance mechanism of temozolomide in the treatment of glioblastoma. Heliyon 2024; 10:e39984. [PMID: 39568843 PMCID: PMC11577240 DOI: 10.1016/j.heliyon.2024.e39984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Glioblastoma, the most malignant primary brain tumor among gliomas, is characterized by a low cure rate, high recurrence rate, and invasive growth. Without chemotherapy, the median survival of patients is only 12.1 months. The standard treatment for glioblastoma primarily involves surgical resection, complemented by radiotherapy. Temozolomide (TMZ), a new oral alkylating agent, is currently used as the first-line chemotherapy drug for glioma. However, TMZ treatment only improves median survival by 2 months, largely because of the tumor's ability to develop resistance to the drug. The main mechanism underlying this resistance involves DNA repair processes, such as the action of O6⁃methylguanine DNA methyltransferase (MGMT), which repairs the DNA damage caused by TMZ, and other DNA repair mechanisms including mismatch repair and base excision repair. These mechanisms can effectively repair the DNA damage caused by TMZ, thereby reducing the sensitivity of tumor cells to the drug. This study summarized the recent research progress of TMZ resistance mechanism in glioblastoma, aiming to provide a theoretical basis for the development of new therapies. The mechanisms of glioma resistance to TMZ mainly involves DNA damage repair (as mentioned above), abnormal cell signaling pathways (p53-mediated signaling, reactive oxygen species-mediated signaling, endoplasmic reticulum stress and autophagy-related signaling, receptor tyrosine kinase-related signaling, transforming growth factors, β-mediated signaling pathway, Wnt/β-Catenin signaling pathway), glioma stem cells, tumor microenvironment (hypoxic microenvironment, nano-drug delivery system), epidermal growth factor receptor, and microRNAs.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| | - Wenwen Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| | - Yao Wei
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, China
| |
Collapse
|
2
|
Fan T, Shen L, Huang Y, Wang X, Zhao L, Zhong R, Wang P, Sun G. Lonidamine Increases the Cytotoxic Effect of 1-[(4-Amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea via Energy Inhibition, Disrupting Redox Homeostasis, and Downregulating MGMT Expression in Human Lung Cancer Cell Line. ACS OMEGA 2024; 9:36134-36147. [PMID: 39220482 PMCID: PMC11360010 DOI: 10.1021/acsomega.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer ranks as the second most diagnosed cancer and the leading cause of cancer-related deaths worldwide. Novel chemotherapeutic strategies are crucial to efficiently target tumor cells while minimizing toxicity to normal cells. In this study, we proposed a combination strategy using energy blocker lonidamine (LND) and cytotoxic drug nimustine (ACNU, 1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea) to enhance the killing of a human lung cancer cell line and investigated the potential chemo-sensitizing mechanism of LND. LND was found to remarkably increase the cytotoxicity of ACNU to A549 and H1299 cells without significantly affecting normal lung BEAS2B cells. The combination of LND and ACNU also produced significant effects on cell apoptosis, colony formation, cell migration, and invasion assays compared to single drug treatment. Mechanistically, LND decreased intracellular ATP levels by inhibiting glycolysis and inducing mitochondrial dysfunction. Furthermore, the combination of LND and ACNU could intensify cellular oxidative stress, decrease cellular GSH contents, and increase reactive oxygen species (ROS) production. Notably, LND alone dramatically downregulated the expression of DNA repair protein MGMT (O6-methylguanine-DNA methyltransferase), enhancing DNA interstrand cross-link formation induced by ACNU. Overall, LND represents a potential chemo-sensitizer to enhance ACNU therapy through energy inhibition, disrupting redox homeostasis and downregulating MGMT expression in human lung cancer cell line under preclinical and clinical background.
Collapse
Affiliation(s)
- Tengjiao Fan
- Department
of Medical Technology, Beijing Pharmaceutical
University of Staff and Workers, Beijing 100079, P. R. China
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Lin Shen
- Department
of Dermatology, the First Medical Center of PLA General Hospital, Beijing 100853, P. R. China
| | - Yaxin Huang
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Xin Wang
- Department
of Clinical Trials Center, National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P. R. China
| | - Lijiao Zhao
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Rugang Zhong
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Peng Wang
- Department
of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Guohui Sun
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| |
Collapse
|
3
|
Li Y. DNA Adducts in Cancer Chemotherapy. J Med Chem 2024; 67:5113-5143. [PMID: 38552031 DOI: 10.1021/acs.jmedchem.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
DNA adducting drugs, including alkylating agents and platinum-containing drugs, are prominent in cancer chemotherapy. Their mechanisms of action involve direct interaction with DNA, resulting in the formation of DNA addition products known as DNA adducts. While these adducts are well-accepted to induce cancer cell death, understanding of their specific chemotypes and their role in drug therapy response remain limited. This perspective aims to address this gap by investigating the metabolic activation and chemical characterization of DNA adducts formed by the U.S. FDA-approved drugs. Moreover, clinical studies on DNA adducts as potential biomarkers for predicting patient responses to drug efficacy are examined. The overarching goal is to engage the interest of medicinal chemists and stimulate further research into the use of DNA adducts as biomarkers for guiding personalized cancer treatment.
Collapse
|
4
|
Sun G, Bai P, Fan T, Zhao L, Zhong R, McElhinney RS, McMurry TBH, Donnelly DJ, McCormick JE, Kelly J, Margison GP. QSAR and Chemical Read-Across Analysis of 370 Potential MGMT Inactivators to Identify the Structural Features Influencing Inactivation Potency. Pharmaceutics 2023; 15:2170. [PMID: 37631385 PMCID: PMC10458236 DOI: 10.3390/pharmaceutics15082170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) constitutes an important cellular mechanism for repairing potentially cytotoxic DNA damage induced by guanine O6-alkylating agents and can render cells highly resistant to certain cancer chemotherapeutic drugs. A wide variety of potential MGMT inactivators have been designed and synthesized for the purpose of overcoming MGMT-mediated tumor resistance. We determined the inactivation potency of these compounds against human recombinant MGMT using [3H]-methylated-DNA-based MGMT inactivation assays and calculated the IC50 values. Using the results of 370 compounds, we performed quantitative structure-activity relationship (QSAR) modeling to identify the correlation between the chemical structure and MGMT-inactivating ability. Modeling was based on subdividing the sorted pIC50 values or on chemical structures or was random. A total of nine molecular descriptors were presented in the model equation, in which the mechanistic interpretation indicated that the status of nitrogen atoms, aliphatic primary amino groups, the presence of O-S at topological distance 3, the presence of Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X, the ionization potential and hydrogen bond donors are the main factors responsible for inactivation ability. The final model was of high internal robustness, goodness of fit and prediction ability (R2pr = 0.7474, Q2Fn = 0.7375-0.7437, CCCpr = 0.8530). After the best splitting model was decided, we established the full model based on the entire set of compounds using the same descriptor combination. We also used a similarity-based read-across technique to further improve the external predictive ability of the model (R2pr = 0.7528, Q2Fn = 0.7387-0.7449, CCCpr = 0.8560). The prediction quality of 66 true external compounds was checked using the "Prediction Reliability Indicator" tool. In summary, we defined key structural features associated with MGMT inactivation, thus allowing for the design of MGMT inactivators that might improve clinical outcomes in cancer treatment.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (P.B.); (T.F.); (L.Z.); (R.Z.)
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (P.B.); (T.F.); (L.Z.); (R.Z.)
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (P.B.); (T.F.); (L.Z.); (R.Z.)
- Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (P.B.); (T.F.); (L.Z.); (R.Z.)
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (P.B.); (T.F.); (L.Z.); (R.Z.)
| | - R. Stanley McElhinney
- Chemistry Department, Trinity College, D02 PN40 Dublin, Ireland; (T.B.H.M.); (D.J.D.)
| | - T. Brian H. McMurry
- Chemistry Department, Trinity College, D02 PN40 Dublin, Ireland; (T.B.H.M.); (D.J.D.)
| | - Dorothy J. Donnelly
- Chemistry Department, Trinity College, D02 PN40 Dublin, Ireland; (T.B.H.M.); (D.J.D.)
| | - Joan E. McCormick
- Chemistry Department, Trinity College, D02 PN40 Dublin, Ireland; (T.B.H.M.); (D.J.D.)
| | - Jane Kelly
- Carcinogenesis Department, Paterson Institute for Cancer Research, Manchester M20 9BX, UK;
| | - Geoffrey P. Margison
- Carcinogenesis Department, Paterson Institute for Cancer Research, Manchester M20 9BX, UK;
- Epidemiology and Public Health Group, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PG, UK
| |
Collapse
|
5
|
Li D, Wang X, Han K, Sun Y, Ren T, Sun G, Zhang N, Zhao L, Zhong R. Hypoxia and CD44 receptors dual-targeted nano-micelles with AGT-inhibitory activity for the targeting delivery of carmustine. Int J Biol Macromol 2023; 246:125657. [PMID: 37399878 DOI: 10.1016/j.ijbiomac.2023.125657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Carmustine (BCNU) is a typical chemotherapy used for treatment of cerebroma and other solid tumors, which exerts antitumor effect by inducing DNA damage at O6 position of guanine. However, the clinical application of BCNU was extremely limited due to the drug resistance mainly mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability. To overcome these limitations, we developed a hypoxia-responsive nanomicelle with AGT inhibitory activity, which was successfully loaded with BCNU. In this nano-system, hyaluronic acid (HA) acts as an active tumor-targeting ligand to bind the overexpressing CD44 receptors on the surface of tumor cells. An azo bond selectively breaks in hypoxic tumor microenvironment to release O6-benzylguanine (BG) as AGT inhibitor and BCNU as DNA alkylating agent. The obtained HA-AZO-BG NPs with shell core structure had an average particle size of 176.98 ± 11.19 nm and exhibited good stability. Meanwhile, HA-AZO-BG NPs possessed a hypoxia-responsive drug release profile. After immobilizing BCNU into HA-AZO-BG NPs, the obtained HA-AZO-BG/BCNU NPs exhibited obvious hypoxia-selectivity and superior cytotoxicity in T98G, A549, MCF-7 and SMMC-7721 cells with IC50 at 189.0, 183.2, 90.1 and 100.1 μm, respectively, under hypoxic condition. Near-infrared imaging in HeLa tumor xenograft models showed that HA-AZO-BG/DiR NPs could effectively accumulate in tumor site at 4 h of post-injection, suggesting its good tumor-targetability. In addition, in vivo anti-tumor efficacy and toxicity evaluation indicated that HA-AZO-BG/BCNU NPs was more effective and less harmful compared to the other groups. After treatment, the tumor weight of HA-AZO-BG/BCNU NPs group was 58.46 % and 63.33 % of the control group and BCNU group, respectively. Overall, HA-AZO-BG/BCNU NPs was expected to be a promising candidate for targeted delivery of BCNU and elimination of chemoresistance.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Kaishuo Han
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Yaqian Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Eckerdt F, Platanias LC. Emerging Role of Glioma Stem Cells in Mechanisms of Therapy Resistance. Cancers (Basel) 2023; 15:3458. [PMID: 37444568 PMCID: PMC10340782 DOI: 10.3390/cancers15133458] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Since their discovery at the beginning of this millennium, glioma stem cells (GSCs) have sparked extensive research and an energetic scientific debate about their contribution to glioblastoma (GBM) initiation, progression, relapse, and resistance. Different molecular subtypes of GBM coexist within the same tumor, and they display differential sensitivity to chemotherapy. GSCs contribute to tumor heterogeneity and recapitulate pathway alterations described for the three GBM subtypes found in patients. GSCs show a high degree of plasticity, allowing for interconversion between different molecular GBM subtypes, with distinct proliferative potential, and different degrees of self-renewal and differentiation. This high degree of plasticity permits adaptation to the environmental changes introduced by chemo- and radiation therapy. Evidence from mouse models indicates that GSCs repopulate brain tumors after therapeutic intervention, and due to GSC plasticity, they reconstitute heterogeneity in recurrent tumors. GSCs are also inherently resilient to standard-of-care therapy, and mechanisms of resistance include enhanced DNA damage repair, MGMT promoter demethylation, autophagy, impaired induction of apoptosis, metabolic adaptation, chemoresistance, and immune evasion. The remarkable oncogenic properties of GSCs have inspired considerable interest in better understanding GSC biology and functions, as they might represent attractive targets to advance the currently limited therapeutic options for GBM patients. This has raised expectations for the development of novel targeted therapeutic approaches, including targeting GSC plasticity, chimeric antigen receptor T (CAR T) cells, and oncolytic viruses. In this review, we focus on the role of GSCs as drivers of GBM and therapy resistance, and we discuss how insights into GSC biology and plasticity might advance GSC-directed curative approaches.
Collapse
Affiliation(s)
- Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
- Medicine Service, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Yoo W, Kim S, Garcia M, Mehta S, Sanai N. Evaluation of two-stage designs of Phase 2 single-arm trials in glioblastoma: a systematic review. BMC Med Res Methodol 2022; 22:327. [PMID: 36550391 PMCID: PMC9773486 DOI: 10.1186/s12874-022-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Due to economical and ethical reasons, the two-stage designs have been widely used for Phase 2 single-arm trials in oncology because the designs allow us to stop the trial early if the proposed treatment is likely to be ineffective. Nonetheless, none has examined the usage for published articles that had applied the two-stage designs in Phase 2 single-arm trials in brain tumor. A complete systematic review and discussions for overcoming design issues might be important to better understand why oncology trials have shown low success rates in early phase trials. METHODS We systematically reviewed published single-arm two-stage Phase 2 trials for patients with glioblastoma and high-grade gliomas (including newly diagnosed or recurrent). We also sought to understand how these two-stage trials have been implemented and discussed potential design issues which we hope will be helpful for investigators who work with Phase 2 clinical trials in rare and high-risk cancer studies including Neuro-Oncology. The systematic review was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-statement. Searches were conducted using the electronic database of PubMed, Google Scholar and ClinicalTrials.gov for potentially eligible publications from inception by two independent researchers up to May 26, 2022. The followings were key words for the literature search as index terms or free-text words: "phase II trials", "glioblastoma", and "two-stage design". We extracted disease type and setting, population, therapeutic drug, primary endpoint, input parameters and sample size results from two-stage designs, and historical control reference, and study termination status. RESULTS Among examined 29 trials, 12 trials (41%) appropriately provided key input parameters and sample size results from two-stage design implementation. Among appropriately implemented 12 trials, discouragingly only 3 trials (10%) explained the reference information of historical control rates. Most trials (90%) used Simon's two-stage designs. Only three studies have been completed for both stages and two out of the three completed studies had shown the efficacy. CONCLUSIONS Right implementation for two-stage design and sample size calculation, transparency of historical control and experimental rates, appropriate selection on primary endpoint, potential incorporation of adaptive designs, and utilization of Phase 0 paradigm might help overcoming the challenges on glioblastoma therapeutic trials in Phase 2 trials.
Collapse
Affiliation(s)
- Wonsuk Yoo
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Seongho Kim
- grid.254444.70000 0001 1456 7807Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201 USA
| | - Michael Garcia
- grid.427785.b0000 0001 0664 3531Department of Radiation Oncology, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Shwetal Mehta
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Nader Sanai
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| |
Collapse
|
8
|
Xie Y, Lu X, Wang Z, Liu M, Liu L, Wang R, Yang K, Xiao H, Li J, Tang X, Liu H. A hypoxia-dissociable siRNA nanoplatform for synergistically enhanced chemo-radiotherapy of glioblastoma. Biomater Sci 2022; 10:6791-6803. [PMID: 36314541 DOI: 10.1039/d2bm01145j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Glioblastoma (GBM), as the most aggressive adult brain tumor, seriously threatened people's lives with a low survival time. Standard postoperative treatment, chemotherapy combined with radiotherapy (RT), was the major therapeutic strategy for GBM. However, this therapeutic efficacy was hindered by chemoradiotherapy resistance of GBM. Herein, to sensitize temozolomide (TMZ)-based chemotherapy and RT, a hypoxia-radiosensitive nanoparticle for co-delivering TMZ and siMGMT (RDPP(Met)/TMZ/siMGMT) was synthesized in this study. Our nanoparticle could effectively release the encapsulated alkylating agent (TMZ) and small interfering O6-methylguanine-DNA-methyltransferase RNA (siMGMT) in the hypoxic GBM. DNA-damage repair was effectively inhibited by down-regulating MGMT expression and activating cell apoptosis, which obviously enhanced the sensitivity of TMZ as well as RT. In vitro and in vivo experiments showed that RDPP(Met)/TMZ/siMGMT could efficiently penetrate the blood-brain barrier (BBB), accurately target GBM cells and effectively inhibit GBM proliferation. Compared with traditional TMZ combined with RT, RDPP(Met)/TMZ/siMGMT remarkably improved the survival time of orthotopic GBM-bearing mice, which demonstrated that our nanoplatform was an efficient combinatorial GBM therapy.
Collapse
Affiliation(s)
- Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Xueying Lu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Zhen Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Mingxi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Xianglong Tang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
9
|
Sun Y, Huang H, Zhan Z, Gao H, Zhang C, Lai J, Cao J, Li C, Chen Y, Liu Z. Berberine inhibits glioma cell migration and invasion by suppressing TGF-β1/COL11A1 pathway. Biochem Biophys Res Commun 2022; 625:38-45. [DOI: 10.1016/j.bbrc.2022.07.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
|
10
|
Svec RL, McKee SA, Berry MR, Kelly AM, Fan TM, Hergenrother PJ. Novel Imidazotetrazine Evades Known Resistance Mechanisms and Is Effective against Temozolomide-Resistant Brain Cancer in Cell Culture. ACS Chem Biol 2022; 17:299-313. [PMID: 35119837 DOI: 10.1021/acschembio.2c00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor. Currently, frontline treatment for primary GBM includes the DNA-methylating drug temozolomide (TMZ, of the imidazotetrazine class), while the optimal treatment for recurrent GBM remains under investigation. Despite its widespread use, a majority of GBM patients do not respond to TMZ therapy; expression of the O6-methylguanine DNA methyltransferase (MGMT) enzyme and loss of mismatch repair (MMR) function as the principal clinical modes of resistance to TMZ. Here, we describe a novel imidazotetrazine designed to evade resistance by MGMT while retaining suitable hydrolytic stability, allowing for effective prodrug activation and biodistribution. This dual-substituted compound, called CPZ, exhibits activity against cancer cells irrespective of MGMT expression and MMR status. CPZ has greater blood-brain barrier penetrance and comparable hematological toxicity relative to TMZ, while also matching its maximum tolerated dose in mice when dosed once-per-day over five days. The activity of CPZ is independent of the two principal mechanisms suppressing the effectiveness of TMZ, making it a promising new candidate for the treatment of GBM, especially those that are TMZ-resistant.
Collapse
Affiliation(s)
- Riley L. Svec
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sydney A. McKee
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew R. Berry
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aya M. Kelly
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Liu Q, Wang X, Li J, Wang J, Sun G, Zhang N, Ren T, Zhao L, Zhong R. Development and biological evaluation of AzoBGNU: A novel hypoxia-activated DNA crosslinking prodrug with AGT-inhibitory activity. Biomed Pharmacother 2021; 144:112338. [PMID: 34678728 DOI: 10.1016/j.biopha.2021.112338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Chloroethylnitrosoureas (CENUs) are an important family of chemotherapies in clinical treatment of cancers, which exert antitumor activity by inducing the formation of DNA interstrand crosslinks (dG-dC ICLs). However, the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability largely decrease the antitumor efficacy of CENUs. In this study, we synthesized an azobenzene-based hypoxia-activated combi-nitrosourea prodrug, AzoBGNU, and evaluated its hypoxic selectivity and antitumor activity. The prodrug was composed of a CENU pharmacophore and an O6-benzylguanine (O6-BG) analog moiety masked by a N,N-dimethyl-4-(phenyldiazenyl)aniline segment as a hypoxia-activated trigger, which was designed to be selectively reduced via azo bond break in hypoxic tumor microenvironment, accompanied with releasing of an O6-BG analog to inhibit AGT and a chloroethylating agent to induce dG-dC ICLs. AzoBGNU exhibited significantly increased cytotoxicity and apoptosis-inducing ability toward DU145 cells under hypoxia compared with normoxia, indicating the hypoxia-responsiveness as expected. Predominant higher cytotoxicity was observed in the cells treated by AzoBGNU than those by traditional CENU chemotherapy ACNU and its combination with O6-BG. The levels of dG-dC ICLs in DU145 cells induced by AzoBGNU was remarkably enhanced under hypoxia, which was approximately 6-fold higher than those in the AzoBGNU-treated groups under normoxia and those in the ACNU-treated groups. The results demonstrated that azobenzene-based combi-nitrosourea prodrug possessed desirable tumor-hypoxia targeting ability and eliminated chemoresistance compared with the conventional CENUs.
Collapse
Affiliation(s)
- Qi Liu
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Jiaojiao Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Chen B, He A, Bi J, Sun S, Ma Y, Wang W, Guo D, Chen J, Qian Y, Shi T, Nie G, Zhao Z, Shi J, Yang H, Zhang L, Lu W. Long-range gene regulation network of the MGMT enhancer modulates glioma cell sensitivity to temozolomide. J Genet Genomics 2021; 48:946-949. [PMID: 34417124 DOI: 10.1016/j.jgg.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Bohan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Anshun He
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinfang Bi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shupeng Sun
- Department of Neurosurgery, Tianjin Huanhu Hospital, School of Medicine, Nankai University, 6 Jizhao Road, Tianjin 300350, China
| | - Yiping Ma
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Dianhao Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuyang Qian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tengfei Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Guohui Nie
- Department of Otolaryngology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hongzhen Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
13
|
From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas. Cells 2021; 10:cells10051225. [PMID: 34067729 PMCID: PMC8157002 DOI: 10.3390/cells10051225] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the use of the alkylating agent temozolomide (TMZ) in the treatment of IDH-mutant gliomas. We describe the challenges associated with TMZ in clinical (drug resistance and tumor recurrence) and preclinical settings (variabilities associated with in vitro models) in treating IDH-mutant glioma. Lastly, we summarize the emerging therapeutic targets that can potentially be used in combination with TMZ.
Collapse
|
14
|
Zhao Z, Shen J, Zhang L, Wang L, Xu H, Han Y, Jia J, Lu Y, Yu R, Liu H. Injectable postoperative enzyme-responsive hydrogels for reversing temozolomide resistance and reducing local recurrence after glioma operation. Biomater Sci 2021; 8:5306-5316. [PMID: 32573615 DOI: 10.1039/d0bm00338g] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioma is the most aggressive primary malignant brain tumor. The eradication of the gliomas by performing neurosurgery has not been successful due to the diffuse nature of malignant gliomas. Temozolomide (TMZ) is the first-line agent in treating gliomas after surgery, and its therapeutic efficacy is limited mainly due to the high activity levels of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) in glioma cells. Herein, we used an injectable matrix metalloproteinase (MMP) enzyme responsive hydrogel that loaded TMZ and O6-benzylamine (BG) (MGMT inhibitor) for eradicating residual TMZ-resistant gliomas after surgery. The hydrogels exhibited three features: (1) TMZ and BG could be encapsulated within the hydrophobic lamellae of the hydrogel to form Tm (TMZ + BG) hydrogels; (2) The hydrogels could release TMZ and BG in response to the high concentration of MMP enzymes after glioma surgery; (3) The hydrogels could increase local TMZ concentration and reduce side effects of BG. In vivo, the Tm (TMZ + BG) hydrogels inhibited the MGMT expression and sensitized TMZ-resistant glioma cells to TMZ. Moreover, the Tm (TMZ + BG) hydrogels effectively reduced the recurrence of TMZ-resistant glioma after surgery and significantly enhanced the efficiency of TMZ to inhibit glioma growth. Together, these data suggest that an MMP-responsive hydrogel is a promising localized drug delivery method to inhibit TMZ-resistant glioma recurrence after surgery.
Collapse
Affiliation(s)
- Zongren Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Jiawei Shen
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China. and Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Haoyue Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Yuhan Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Jun Jia
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Yang Lu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China.
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China. and Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, P. R. China. and Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, P. R. China
| |
Collapse
|
15
|
Hindle A, Koneru B, Makena MR, Lopez-Barcons L, Chen WH, Nguyen TH, Reynolds CP. The O6-methyguanine-DNA methyltransferase inhibitor O6-benzylguanine enhanced activity of temozolomide + irinotecan against models of high-risk neuroblastoma. Anticancer Drugs 2021; 32:233-247. [PMID: 33323683 PMCID: PMC9255907 DOI: 10.1097/cad.0000000000001020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA-damaging chemotherapy is a major component of therapy for high-risk neuroblastoma, and patients often relapse with treatment-refractory disease. We hypothesized that DNA repair genes with increased expression in alkylating agent resistant models would provide therapeutic targets for enhancing chemotherapy. In-vitro cytotoxicity of alkylating agents for 12 patient-derived neuroblastoma cell lines was assayed using DIMSCAN, and mRNA expression of 57 DNA repair, three transporter, and two glutathione synthesis genes was assessed by TaqMan low-density array (TLDA) with further validation by qRT-PCR in 26 cell lines. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was upregulated in cell lines with greater melphalan and temozolomide (TMZ) resistance. MGMT expression also correlated significantly with resistance to TMZ+irinotecan (IRN) (in-vitro as the SN38 active metabolite). Forced overexpression of MGMT (lentiviral transduction) in MGMT non-expressing cell lines significantly increased TMZ+SN38 resistance. The MGMT inhibitor O6-benzylguanine (O6BG) enhanced TMZ+SN38 in-vitro cytotoxicity, H2AX phosphorylation, caspase-3 cleavage, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. TMZ+IRN+O6BG delayed tumor growth and increased survival relative to TMZ+IRN in two of seven patient-derived xenografts established at time of death from progressive neuroblastoma. We demonstrated that high MGMT expression was associated with resistance to alkylating agents and TMZ+IRN in preclinical neuroblastoma models. The MGMT inhibitor O6BG enhanced the anticancer effect of TMZ+IRN in vitro and in vivo. These results support further preclinical studies exploring MGMT as a therapeutic target and biomarker of TMZ+IRN resistance in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Ashly Hindle
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Balakrishna Koneru
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Monish Ram Makena
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Lluis Lopez-Barcons
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Wan Hsi Chen
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Thinh H. Nguyen
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - C. Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
16
|
Goenka A, Tiek D, Song X, Huang T, Hu B, Cheng SY. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells 2021; 10:cells10030484. [PMID: 33668200 PMCID: PMC7995978 DOI: 10.3390/cells10030484] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain cancer. Standard care using chemo- and radio-therapy modestly increases the overall survival of patients; however, recurrence is inevitable, due to treatment resistance and lack of response to targeted therapies. GBM therapy resistance has been attributed to several extrinsic and intrinsic factors which affect the dynamics of tumor evolution and physiology thus creating clinical challenges. Tumor-intrinsic factors such as tumor heterogeneity, hypermutation, altered metabolomics and oncologically activated alternative splicing pathways change the tumor landscape to facilitate therapy failure and tumor progression. Moreover, tumor-extrinsic factors such as hypoxia and an immune-suppressive tumor microenvironment (TME) are the chief causes of immunotherapy failure in GBM. Amid the success of immunotherapy in other cancers, GBM has occurred as a model of resistance, thus focusing current efforts on not only alleviating the immunotolerance but also evading the escape mechanisms of tumor cells to therapy, caused by inter- and intra-tumoral heterogeneity. Here we review the various mechanisms of therapy resistance in GBM, caused by the continuously evolving tumor dynamics as well as the complex TME, which cumulatively contribute to GBM malignancy and therapy failure; in an attempt to understand and identify effective therapies for recurrent GBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Shi-Yuan Cheng
- Correspondence: ; Tel.: +1-312-503-3043; Fax: +1-312-503-5603
| |
Collapse
|
17
|
Daisy Precilla S, Kuduvalli SS, Thirugnanasambandhar Sivasubramanian A. Disentangling the therapeutic tactics in GBM: From bench to bedside and beyond. Cell Biol Int 2020; 45:18-53. [PMID: 33049091 DOI: 10.1002/cbin.11484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant form of adult brain tumor with a high mortality rate and dismal prognosis. The present standard treatment comprising surgical resection followed by radiation and chemotherapy using temozolomide can broaden patient's survival to some extent. However, the advantages are not palliative due to the development of resistance to the drug and tumor recurrence following the multimodal treatment approaches due to both intra- and intertumoral heterogeneity of GBM. One of the major contributors to temozolomide resistance is O6 -methylguanine-DNA methyltransferase. Furthermore, deficiency of mismatch repair, base excision repair, and cytoprotective autophagy adds to temozolomide obstruction. Rising proof additionally showed that a small population of cells displaying certain stem cell markers, known as glioma stem cells, adds on to the resistance and tumor progression. Collectively, these findings necessitate the discovery of novel therapeutic avenues for treating glioblastoma. As of late, after understanding the pathophysiology and biology of GBM, some novel therapeutic discoveries, such as drug repurposing, targeted molecules, immunotherapies, antimitotic therapies, and microRNAs, have been developed as new potential treatments for glioblastoma. To help illustrate, "what are the mechanisms of resistance to temozolomide" and "what kind of alternative therapeutics can be suggested" with this fatal disease, a detailed history of these has been discussed in this review article, all with a hope to develop an effective treatment strategy for GBM.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | |
Collapse
|
18
|
Das A, Henderson FC, Alshareef M, Porto GBF, Kanginakudru I, Infinger LK, Vandergrift WA, Lindhorst SM, Varma AK, Patel SJ, Cachia D. MGMT-inhibitor in combination with TGF-βRI inhibitor or CDK 4/6 inhibitor increases temozolomide sensitivity in temozolomide-resistant glioblastoma cells. Clin Transl Oncol 2020; 23:612-619. [PMID: 32710211 DOI: 10.1007/s12094-020-02456-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/09/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Glioblastoma (GB) remains an incurable and deadly brain malignancy that often proves resistant to upfront treatment with temozolomide. Nevertheless, temozolomide remains the most commonly prescribed FDA-approved chemotherapy for GB. The DNA repair protein methylguanine-DNA methyl transferase (MGMT) confers resistance to temozolomide. Unsurprisingly temozolomide-resistant tumors tend to possess elevated MGMT protein levels or lack inhibitory MGMT promotor methylation. In this study, cultured human temozolomide resistance GB (43RG) cells were introduced to the MGMT inhibitor O6-benzylguanine combined with temozolomide and either LY2835219 (CDK 4/6 inhibitor) or LY2157299 (TGF-βRI inhibitor) seeking to overcome GB treatment resistance. METHODS Treatment effects were assessed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, western blot, cell viability, and cell cycle progression. RESULTS Our in vitro study demonstrated that sequential treatment of O6-Benzylguanine with either LY2385219 or LY2157299-enhanced temozolomide enhanced sensitivity in MGMT+ 43RG cells. Importantly, normal human neurons and astrocytes remained impervious to the drug therapies under these conditions. Furthermore, LY2835219 has additional anti-proliferative effects on cell cycling, including induction of an RB-associated G (1) arrest via suppression of cyclin D-CDK4/6-Rb pathway. LY2157299 enhances anti-tumor effect by disrupting TGF-β-dependent HIF-1α signaling and by activating both Smad and PI3K-AKT pathways towards transcription of S/G2 checkpoints. CONCLUSION This study establishes the groundwork for the development of a combinatorial pharmacologic approach by using either LY2385219 or LY2157299 inhibitor plus O6-Benzylguanine to augment temozolomide response in temozolomide-resistant GB cells.
Collapse
Affiliation(s)
- A Das
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA.
| | - F C Henderson
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - M Alshareef
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - G B F Porto
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - I Kanginakudru
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - L K Infinger
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - W A Vandergrift
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - S M Lindhorst
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - A K Varma
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - S J Patel
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| | - D Cachia
- Department of Neurosurgery (Divisions of Neuro-Oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA
| |
Collapse
|
19
|
A HOTAIR regulatory element modulates glioma cell sensitivity to temozolomide through long-range regulation of multiple target genes. Genome Res 2020; 30:155-163. [PMID: 31953347 PMCID: PMC7050528 DOI: 10.1101/gr.251058.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
Abstract
Temozolomide (TMZ) is a frequently used chemotherapy for glioma; however, chemoresistance is a major problem limiting its effectiveness. Thus, knowledge of mechanisms underlying this outcome could improve patient prognosis. Here, we report that deletion of a regulatory element in the HOTAIR locus increases glioma cell sensitivity to TMZ and alters transcription of multiple genes. Analysis of a combination of RNA-seq, Capture Hi-C, and patient survival data suggests that CALCOCO1 and ZC3H10 are target genes repressed by the HOTAIR regulatory element and that both function in regulating glioma cell sensitivity to TMZ. Rescue experiments and 3C data confirmed this hypothesis. We propose a new regulatory mechanism governing glioma cell TMZ sensitivity.
Collapse
|
20
|
Zhang H, Wang R, Yu Y, Liu J, Luo T, Fan F. Glioblastoma Treatment Modalities besides Surgery. J Cancer 2019; 10:4793-4806. [PMID: 31598150 PMCID: PMC6775524 DOI: 10.7150/jca.32475] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/04/2019] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is commonly known as the most aggressive primary CNS tumor in adults. The mean survival of it is 14 to 15 months, following the standard therapy from surgery, chemotherapy, to radiotherapy. Efforts in recent decades have brought many novel therapies to light, however, with limitations. In this paper, authors reviewed current treatments for GBM besides surgery. In the past decades, only radiotherapy, temozolomide (TMZ), and tumor treating field (TTF) were approved by FDA. Though promising in preclinical experiments, therapeutic effects of other novel treatments including BNCT, anti-angiogenic therapy, immunotherapy, epigenetic therapy, oncolytic virus therapy, and gene therapy are still either uncertain or discouraging in clinical results. In this review, we went through current clinical trials, underlying causes, and future therapy designs to present neurosurgeons and researchers a sketch of this field.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ruizhe Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuanqiang Yu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Tianmeng Luo
- Department of Medical Affairs, Xiangya Hospital, Central South University, Chang Sha, Hunan Province, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University Changsha, China
| |
Collapse
|
21
|
Factorial Design as a Tool for the Optimization of PLGA Nanoparticles for the Co-Delivery of Temozolomide and O6-Benzylguanine. Pharmaceutics 2019; 11:pharmaceutics11080401. [PMID: 31405159 PMCID: PMC6722980 DOI: 10.3390/pharmaceutics11080401] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 08/08/2019] [Indexed: 12/07/2022] Open
Abstract
Poly(d,l-lactic-co-glycolic) (PLGA) nanoparticles (NPs) have been widely studied for several applications due to their advantageous properties, such as biocompatibility and biodegradability. Therefore, these nanocarriers could be a suitable approach for glioblastoma multiforme (GBM) therapy. The treatment of this type of tumours remains a challenge due to intrinsic resistance mechanisms. Thus, new approaches must be envisaged to target GBM tumour cells potentially providing an efficient treatment. Co-delivery of temozolomide (TMZ) and O6-benzylguanine (O6BG), an inhibitor of DNA repair, could provide good therapeutic outcomes. In this work, a fractional factorial design (FFD) was employed to produce an optimal PLGA-based nanoformulation for the co-loading of both molecules, using a reduced number of observations. The developed NPs exhibited optimal physicochemical properties for brain delivery (dimensions below 200 nm and negative zeta potential), high encapsulation efficiencies (EE) for both drugs, and showed a sustained drug release for several days. Therefore, the use of an FFD allowed for the development of a nanoformulation with optimal properties for the co-delivery of TMZ and O6BG to the brain.
Collapse
|
22
|
Development of transferrin-modified poly(lactic-co-glycolic acid) nanoparticles for glioma therapy. Anticancer Drugs 2019; 30:604-610. [DOI: 10.1097/cad.0000000000000754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Yang Z, Wei D, Dai X, Stevens MFG, Bradshaw TD, Luo Y, Zhang J. C8-Substituted Imidazotetrazine Analogs Overcome Temozolomide Resistance by Inducing DNA Adducts and DNA Damage. Front Oncol 2019; 9:485. [PMID: 31263673 PMCID: PMC6584802 DOI: 10.3389/fonc.2019.00485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Temozolomide (TMZ) is the standard of care chemotherapeutic agent used in the treatment of glioblastoma multiforme. Cytotoxic O6-methylguaine lesions formed by TMZ are repaired by O6-methyl-guanine DNA methyltransferase (MGMT), a DNA repair protein that removes alkyl groups located at the O6-position of guanine. Response to TMZ requires low MGMT expression and functional mismatch repair. Resistance to TMZ conferred by MGMT, and tolerance to O6-methylguanine lesions conferred by deficient MMR severely limit TMZ clinical applications. Therefore, development of new TMZ derivatives that can overcome TMZ-resistance is urgent. In this study, we investigated the anti-tumor mechanism of action of two novel TMZ analogs: C8-imidazolyl (377) and C8-methylimidazole (465) tetrazines. We found that analogs 377 and 465 display good anticancer activity against MGMT-overexpressing glioma T98G and MMR deficient colorectal carcinoma HCT116 cell lines with IC50 value of 62.50, 44.23, 33.09, and 25.37 μM, respectively. Analogs induce cell cycle arrest at G2/M, DNA double strand break damage and apoptosis irrespective of MGMT and MMR status. It was established that analog 377, similar to TMZ, is able to ring-open and hydrolyze under physiological conditions, and its intermediate product is more stable than MTIC. Moreover, DNA adducts of 377 with calf thymus DNA were identified: N7-methylguanine, O6-methylguanine, N3-methyladenine, N3-methylthymine, and N3-methylcytidine deoxynucleotides. We conclude that C8 analogs of TMZ share a mechanism of action similar to TMZ and are able to methylate DNA generating O6-methylguanine adducts, but unlike TMZ are able at least in part to thwart MGMT- and MMR-mediated resistance.
Collapse
Affiliation(s)
- Zhikuan Yang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Danping Wei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoli Dai
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Malcolm F G Stevens
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Tracey D Bradshaw
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ying Luo
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
24
|
Lajous H, Lelièvre B, Vauléon E, Lecomte P, Garcion E. Rethinking Alkylating(-Like) Agents for Solid Tumor Management. Trends Pharmacol Sci 2019; 40:342-357. [PMID: 30979523 DOI: 10.1016/j.tips.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Although old molecules, alkylating agents and platinum derivatives are still widely used in the treatment of various solid tumors. However, systemic toxicity and cellular resistance mechanisms impede their efficacy. Innovative strategies, including local administration, optimization of treatment schedule/dosage, synergistic combinations, and the encapsulation of bioactive molecules in smart, multifunctional drug delivery systems, have shown promising results in potentiating anticancer activity while circumventing such hurdles. Furthermore, questioning of the old paradigm according to which nuclear DNA is the critical target of their anticancer activity has shed light on subcellular alternative and neglected targets that obviously participate in the mediation of cytotoxicity or resistance. Thus, rethinking of the use of these pivotal antineoplastic agents appears critical to improve clinical outcomes in the management of solid tumors.
Collapse
Affiliation(s)
- Hélène Lajous
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France; Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, B6a Sart-Tilman, B-4000 Liege, Belgium
| | - Bénédicte Lelièvre
- Centre Régional de Pharmacovigilance, Laboratoire de Pharmacologie-Toxicologie, CHU Angers, 4 rue Larrey, F-49100 Angers, France
| | - Elodie Vauléon
- Centre Eugène Marquis, Rennes, France; INSERM U1242, Université de Rennes 1, Rennes, France
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, B6a Sart-Tilman, B-4000 Liege, Belgium; Equivalent contribution
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France; Equivalent contribution.
| |
Collapse
|
25
|
Ge Y, Lai X, Li J, Yu R, Zhuang Z, Sun G, Cui X, Zhang N, Zhao L, Upadhyaya P, Zhong R. NBGNU: a hypoxia-activated tripartite combi-nitrosourea prodrug overcoming AGT-mediated chemoresistance. Future Med Chem 2019; 11:269-284. [PMID: 30560688 DOI: 10.4155/fmc-2018-0511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023] Open
Abstract
Aim: A hypoxia-activated combi-nitrosourea prodrug, N-(2-chloroethyl)-N'-2-(2-(4-nitrobenzylcarbamate)-O6-benzyl-9-guanine)ethyl-N-nitrosourea (NBGNU), was synthesized and evaluated for its hypoxic selectivity and anticancer activity in vitro. Results: The prodrug was designed as a tripartite molecule consisting of a chloroethylnitrosourea pharmacophore to induce DNA interstrand crosslinks (ICLs) and an O6-benzylguanine analog moiety masked by a 4-nitrobenzylcarbamate group to induce hypoxia-activated inhibition of O6-alkylguanine-DNA alkyltransferase. NBGNU was tested for hypoxic selectivity, cytotoxicity and DNA ICLs ability. The reduction product amounts, cell death rates and DNA ICL levels induced by NBGNU under hypoxic conditions were all significantly higher than those induced by NBGNU under normoxic conditions. Conclusion: The tripartite combi-nitrosourea prodrug exhibits desirable tumor-hypoxia targeting ability and abolished chemoresistance compared with the conventional chloroethylnitrosoureas.
Collapse
Affiliation(s)
- Yao Ge
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xinxin Lai
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jintao Li
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Ran Yu
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhuochen Zhuang
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xin Cui
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
26
|
Rare Stochastic Expression of O6-Methylguanine- DNA Methyltransferase (MGMT) in MGMT-Negative Melanoma Cells Determines Immediate Emergence of Drug-Resistant Populations upon Treatment with Temozolomide In Vitro and In Vivo. Cancers (Basel) 2018; 10:cancers10100362. [PMID: 30274152 PMCID: PMC6209933 DOI: 10.3390/cancers10100362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/01/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
The chemotherapeutic agent temozolomide (TMZ) kills tumor cells preferentially via alkylation of the O6-position of guanine. However, cells that express the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT), or harbor deficient DNA mismatch repair (MMR) function, are profoundly resistant to this drug. TMZ is in clinical use for melanoma, but objective response rates are low, even when TMZ is combined with O6-benzylguanine (O6BG), a potent MGMT inhibitor. We used in vitro and in vivo models of melanoma to characterize the early events leading to cellular TMZ resistance. Melanoma cell lines were exposed to a single treatment with TMZ, at physiologically relevant concentrations, in the absence or presence of O6BG. Surviving clones and mass cultures were analyzed by Western blot, colony formation assays, and DNA methylation studies. Mice with melanoma xenografts received TMZ treatment, and tumor tissue was analyzed by immunohistochemistry. We found that MGMT-negative melanoma cell cultures, before any drug treatment, already harbored a small fraction of MGMT-positive cells, which survived TMZ treatment and promptly became the dominant cell type within the surviving population. The MGMT-negative status in individual cells was not stable, as clonal selection of MGMT-negative cells again resulted in a mixed population harboring MGMT-positive, TMZ-resistant cells. Blocking the survival advantage of MGMT via the addition of O6BG still resulted in surviving clones, although at much lower frequency and independent of MGMT, and the resistance mechanism of these clones was based on a common lack of expression of MSH6, a key MMR enzyme. TMZ treatment of mice implanted with MGMT-negative melanoma cells resulted in effective tumor growth delay, but eventually tumor growth resumed, with tumor tissue having become MGMT positive. Altogether, these data reveal stochastic expression of MGMT as a pre-existing, key determinant of TMZ resistance in melanoma cell lines. Although MGMT activity can effectively be eliminated by pharmacologic intervention with O6BG, additional layers of TMZ resistance, although considerably rarer, are present as well and minimize the cytotoxic impact of TMZ/O6BG combination treatment. Our results provide rational explanations regarding clinical observations, where the TMZ/O6BG regimen has yielded mostly disappointing outcomes in melanoma patients.
Collapse
|
27
|
Sun G, Zhao L, Zhong R, Peng Y. The specific role of O 6-methylguanine-DNA methyltransferase inhibitors in cancer chemotherapy. Future Med Chem 2018; 10:1971-1996. [PMID: 30001630 DOI: 10.4155/fmc-2018-0069] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), can confer resistance to guanine O6-alkylating agents. Therefore, inhibition of resistant MGMT protein is a practical approach to increase the anticancer effects of such alkylating agents. Numerous small molecule inhibitors were synthesized and exhibited potential MGMT inhibitory activities. Although they were nontoxic alone, they also inhibited MGMT in normal tissues, thereby enhancing the side effects of chemotherapy. Therefore, strategies for tumor-specific MGMT inhibition have been proposed, including local drug delivery and tumor-activated prodrugs. Over-expression of MGMT in hematopoietic stem cells to protect bone marrow from the toxic effects of chemotherapy is also a feasible selection. The future prospects and challenges of MGMT inhibitors in cancer chemotherapy were also discussed.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment & Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
28
|
Chen X, Zhang M, Gan H, Wang H, Lee JH, Fang D, Kitange GJ, He L, Hu Z, Parney IF, Meyer FB, Giannini C, Sarkaria JN, Zhang Z. A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun 2018; 9:2949. [PMID: 30054476 PMCID: PMC6063898 DOI: 10.1038/s41467-018-05373-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/02/2018] [Indexed: 12/26/2022] Open
Abstract
Temozolomide (TMZ) was used for the treatment of glioblastoma (GBM) for over a decade, but its treatment benefits are limited by acquired resistance, a process that remains incompletely understood. Here we report that an enhancer, located between the promoters of marker of proliferation Ki67 (MKI67) and O6-methylguanine-DNA-methyltransferase (MGMT) genes, is activated in TMZ-resistant patient-derived xenograft (PDX) lines and recurrent tumor samples. Activation of the enhancer correlates with increased MGMT expression, a major known mechanism for TMZ resistance. We show that forced activation of the enhancer in cell lines with low MGMT expression results in elevated MGMT expression. Deletion of this enhancer in cell lines with high MGMT expression leads to a dramatic reduction of MGMT and a lesser extent of Ki67 expression, increased TMZ sensitivity, and impaired proliferation. Together, these studies uncover a mechanism that regulates MGMT expression, confers TMZ resistance, and potentially regulates tumor proliferation.
Collapse
Affiliation(s)
- Xiaoyue Chen
- Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Minjie Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Haiyun Gan
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, 430030, Wuhan, China
| | - Jeong-Heon Lee
- Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Dong Fang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Lihong He
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Zeng Hu
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Fredric B Meyer
- Department of Neurologic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA.
| |
Collapse
|
29
|
Yang Z, Wei D, Liu F, Liu J, Wu X, Stevens MFG, Bradshaw TD, Luo Y, Zhang J. Temozolomide analog PMX 465 downregulates MGMT expression in HCT116 colorectal carcinoma cells. J Cell Biochem 2018; 119:5350-5358. [PMID: 29331023 DOI: 10.1002/jcb.26674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023]
Abstract
The efficacy of temozolomide (TMZ) treatment for cancers is currently limited by inherent or the development of resistance, particularly, but not exclusively, due to the expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) in a significant proportion of tumors. We have found that TMZ analog C8-methyl imidazole tetrazine (PMX 465) displayed good anticancer activity against the colorectal carcinoma HCT116 cells which are MGMT-overexpressing and mismatch repair (MMR)-deficient. In this study, we found that PMX 465 could downregulate the expression of MGMT in HCT116 cells at the protein and mRNA levels. We found that PMX 465 could reduce MGMT expression by increasing the binding of wild-type p53 to the MGMT promoter and reducing the binding of Sp1 to the MGMT promoter.
Collapse
Affiliation(s)
- Zhikuan Yang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Danping Wei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Feifei Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jing Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoming Wu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | | | - Tracey D Bradshaw
- Centre for Biomolecular Science, University of Nottingham, Nottingham, UK
| | - Ying Luo
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
30
|
Rocha CRR, Kajitani GS, Quinet A, Fortunato RS, Menck CFM. NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells. Oncotarget 2018; 7:48081-48092. [PMID: 27344172 PMCID: PMC5217002 DOI: 10.18632/oncotarget.10129] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer is a leading cause of death worldwide, and while great advances have been made particularly in chemotherapy, many types of cancer still present a dismal prognosis. In the case of glioma, temozolomide (TMZ) is the main option for treatment, but it has limited success due to drug resistance. While this resistance is usually associated to DNA repair mechanisms, in this work we demonstrate that oxidative stress plays an important role. We showed that upon TMZ treatment there is an induction of the nuclear factor erythroid 2-related factor 2 (NRF2), which is the main antioxidant transcription factor regulator in human cells. This is accompanied by an enhancement of glutathione (GSH) concentration in the tumor cells. The effectiveness of this pathway was proven by silencing NFR2, which greatly enhanced cell death upon TMZ treatment both in vitro and in vivo. Also, higher DNA damage and induced cell death was observed by combining BSO - a GSH inhibitor - with TMZ. Similar effects were also observed using in vitro and in vivo models of melanoma, thus possibly indicating that GSH has a decisive role in TMZ resistance in a wider range of tumors. Thus, a combined regimen of BSO and TMZ configures an interesting therapeutic alternative for fighting both glioma and melanoma.
Collapse
Affiliation(s)
| | - Gustavo Satoru Kajitani
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Annabel Quinet
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Soares Fortunato
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
31
|
Song X, Xie L, Chang M, Geng X, Wang X, Chen TC, Song X. Temozolomide-perillyl alcohol conjugate downregulates O 6-methylguanin DNA methltransferase via inducing ubiquitination-dependent proteolysis in non-small cell lung cancer. Cell Death Dis 2018; 9:202. [PMID: 29426908 PMCID: PMC5833843 DOI: 10.1038/s41419-017-0193-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 11/27/2022]
Abstract
The DNA repair enzyme O6-methylguanin-DNA-methltransferase (MGMT) is able to remove products of alkylating agent such as O6-meG and emerges as a central determinant of cancer resistance to temozolomide (TMZ). Temozolomide–perillyl alcohol conjugate (TMZ–POH), a novel TMZ analog developed based on the conjugation of TMZ and POH, displayed strong anticancer potency in multiple cancer types, but seemed not to experience the chemoresistance even in cells with high MGMT expression unlike TMZ and other alkylating agents. In this study, we demonstrated TMZ–POH inhibited MGMT dependent on proteasomal pathway and this inhibition is a significant factor in its toxic effect in the non-small cell lung cancer (NSCLC) cells.
Collapse
Affiliation(s)
- Xingguo Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Clinical Laboratory, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Minghui Chang
- Department of Clinical Laboratory, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medicine Science, Jinan, Shandong, China
| | - Xinran Geng
- Maternity & Child Care Center of Dezhou, Dongdizhong Street 835#, Decheng District, Dezhou, Shandong, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Thomas C Chen
- Departments of Neurological Surgery and Pathology, University of Southern California, Los Angeles, CA, USA
| | - Xianrang Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China. .,Department of Clinical Laboratory, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
32
|
Vinblastine and antihelmintic mebendazole potentiate temozolomide in resistant gliomas. Invest New Drugs 2017; 36:323-331. [DOI: 10.1007/s10637-017-0503-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 11/30/2022]
|
33
|
Long W, Yi Y, Chen S, Cao Q, Zhao W, Liu Q. Potential New Therapies for Pediatric Diffuse Intrinsic Pontine Glioma. Front Pharmacol 2017; 8:495. [PMID: 28790919 PMCID: PMC5525007 DOI: 10.3389/fphar.2017.00495] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an extensively invasive malignancy with infiltration into other regions of the brainstem. Although large numbers of specific targeted therapies have been tested, no significant progress has been made in treating these high-grade gliomas. Therefore, the identification of new therapeutic approaches is of great importance for the development of more effective treatments. This article reviews the conventional therapies and new potential therapeutic approaches for DIPG, including epigenetic therapy, immunotherapy, and the combination of stem cells with nanoparticle delivery systems.
Collapse
Affiliation(s)
- Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central South UniversityChangsha, China
| | - Yang Yi
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Shen Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, HoustonTX, United States
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
34
|
Sun G, Fan T, Zhao L, Zhou Y, Zhong R. The potential of combi-molecules with DNA-damaging function as anticancer agents. Future Med Chem 2017; 9:403-435. [PMID: 28263086 DOI: 10.4155/fmc-2016-0229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/13/2017] [Indexed: 12/14/2022] Open
Abstract
DNA-damaging agents, such as methylating agents, chloroethylating agents and platinum-based agents, have been extensively used as anticancer drugs. However, the side effects, high toxicity, lack of selectivity and resistance severely limit their clinical applications. In recent years, a strategy combining a DNA-damaging agent with a bioactive molecule (e.g., enzyme inhibitors) or carrier (e.g., steroid hormone and DNA intercalators) to produce a new 'combi-molecule' with improved efficacy or selectivity has been attempted to overcome these drawbacks. The combi-molecule simultaneously acts on two targets and is expected to possess better potency than the parent compounds. Many studies have shown DNA-damaging combi-molecules exhibiting excellent anticancer activity in vitro and in vivo. This review focuses on the development of combi-molecules, which possess increased DNA-damaging potency, anticancer efficacy and tumor selectivity and reduced side reactions than the parent compounds. The future opportunities and challenges in the discovery of combi-molecules were also discussed.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Yue Zhou
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Virus Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
35
|
Wang Y, Ren T, Lai X, Sun G, Zhao L, Zhang N, Zhong R. Synthesis and Antitumor Activity Evaluation of a Novel Combi-nitrosourea Prodrug: BGCNU. ACS Med Chem Lett 2017; 8:174-178. [PMID: 28197307 PMCID: PMC5304294 DOI: 10.1021/acsmedchemlett.6b00358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/13/2017] [Indexed: 12/21/2022] Open
Abstract
Chloroethylnitrosoureas (CENUs) are an important type of alkylating agent employed in the clinical treatment of cancer. However, the anticancer efficacy of CENUs is greatly decreased by a DNA repairing enzyme, O6-alkylguanine-DNA alkyltransferase (AGT), by preventing the formation of interstrand cross-links (ICLs). In this study, a combi-nitrosourea prodrug, namely, N-(2-chloroethyl)-N'-2-(O6-benzyl-9-guanine)ethyl-N-nitrosourea (BGCNU), which possesses an O6-benzylguanine (O6-BG) derivative and CENU pharmacophores simultaneously, was synthesized and evaluated for its ability to induce ICLs. The target compound is markedly more cytotoxic in human glioma cells than the clinically used CENU chemotherapies ACNU, BCNU, and their respective combinations with O6-BG. In the AGT-proficient cells, significantly higher levels of DNA ICLs were observed in the groups treated by BGCNU than those by ACNU and BCNU, which indicated that the activity of AGT was effectively inhibited by the O6-BG derivatives released from BGCNU.
Collapse
Affiliation(s)
- Yameng Wang
- Beijing Key Laboratory of
Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Ting Ren
- Beijing Key Laboratory of
Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xinxin Lai
- Beijing Key Laboratory of
Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Guohui Sun
- Beijing Key Laboratory of
Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Lijiao Zhao
- Beijing Key Laboratory of
Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Na Zhang
- Beijing Key Laboratory of
Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Rugang Zhong
- Beijing Key Laboratory of
Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
36
|
Sun G, Zhao L, Fan T, Ren T, Zhong R. Measurement of O(6)-alkylguanine-DNA alkyltransferase activity in tumour cells using stable isotope dilution HPLC-ESI-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:138-146. [PMID: 27544051 DOI: 10.1016/j.jchromb.2016.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 11/21/2022]
Abstract
The repair of DNA mediated by O(6)-alkylguanine-DNA alkyltransferase (AGT) provides protection against DNA damage from endogenous or exogenous alkylation of the O(6) position of guanine. However, this repair acts as a double-edged sword in cancer treatment, as it not only protects normal cells from chemotherapy-associated toxicities, but also results in cancer cell resistance to guanine O(6)-alkylating antitumour agents. Thus, AGT plays an important role in predicting the individual susceptibility to guanine O(6)-alkylating carcinogens and chemotherapies. Accordingly, it is necessary to establish a quantitative method for determining AGT activity with high accuracy, sensitivity and practicality. Here, we describe a novel nonradioactive method for measuring AGT activity using stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). This method is based on the irreversibility of the removal of the O(6)-alkyl group from guanine by AGT and on the high affinity of O(6)-benzylguanine (O(6)-BG) as an AGT substrate. HPLC-ESI-MS/MS was used to measure the AGT activities in cell protein extracts from eight tumour lines, demonstrating that AGT activity was quite variable among different cell lines, ranging from nondetectable to 1021 fmol/mg protein. The experiments performed in intact tumour cells yielded similar results but exhibited slightly higher activities than those observed in cell protein extracts. The accuracy of this method was confirmed by an examination of AGT expression levels using western blotting analysis. To our knowledge, this method is the first mass spectrometry-based AGT activity assay, and will likely provide assistance in the screening of cancer risk or the application of chemotherapies.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
37
|
Antigen-specific immunoreactivity and clinical outcome following vaccination with glioma-associated antigen peptides in children with recurrent high-grade gliomas: results of a pilot study. J Neurooncol 2016; 130:517-527. [PMID: 27624914 DOI: 10.1007/s11060-016-2245-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/21/2016] [Indexed: 12/29/2022]
Abstract
Recurrent high-grade gliomas (HGGs) of childhood have an exceedingly poor prognosis with current therapies. Accordingly, new treatment approaches are needed. We initiated a pilot trial of vaccinations with peptide epitopes derived from glioma-associated antigens (GAAs) overexpressed in these tumors in HLA-A2+ children with recurrent HGG that had progressed after prior treatments. Peptide epitopes for three GAAs (EphA2, IL13Rα2, survivin), emulsified in Montanide-ISA-51, were administered subcutaneously adjacent to intramuscular injections of poly-ICLC every 3 weeks for 8 courses, followed by booster vaccines every 6 weeks. Primary endpoints were safety and T-cell responses against the GAA epitopes, assessed by enzyme-linked immunosorbent spot (ELISPOT) analysis. Treatment response was evaluated clinically and by magnetic resonance imaging. Twelve children were enrolled, 6 with glioblastoma, 5 with anaplastic astrocytoma, and one with malignant gliomatosis cerebri. No dose-limiting non-CNS toxicity was encountered. ELISPOT analysis, in ten children, showed GAA responses in 9: to IL13Rα2 in 4, EphA2 in 9, and survivin in 3. One child had presumed symptomatic pseudoprogression, discontinued vaccine therapy, and responded to subsequent treatment. One other child had a partial response that persisted throughout 2 years of vaccine therapy, and continues at >39 months. Median progression-free survival (PFS) from the start of vaccination was 4.1 months and median overall survival (OS) was 12.9 months. 6-month PFS and OS were 33 and 73 %, respectively. GAA peptide vaccination in children with recurrent malignant gliomas is generally well tolerated, and has preliminary evidence of immunological and modest clinical activity.
Collapse
|
38
|
Sun G, Fan T, Zhang N, Ren T, Zhao L, Zhong R. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking. Molecules 2016; 21:823. [PMID: 27347909 PMCID: PMC6273773 DOI: 10.3390/molecules21070823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/08/2016] [Accepted: 06/18/2016] [Indexed: 01/29/2023] Open
Abstract
DNA repair enzyme O⁶-methylguanine-DNA methyltransferase (MGMT), which plays an important role in inducing drug resistance against alkylating agents that modify the O⁶ position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesized over the past decades to improve the chemotherapeutic effects of O⁶-alkylating agents. In the present study, we performed a three-dimensional quantitative structure activity relationship (3D-QSAR) study on 97 guanine derivatives as MGMT inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Three different alignment methods (ligand-based, DFT optimization-based and docking-based alignment) were employed to develop reliable 3D-QSAR models. Statistical parameters derived from the models using the above three alignment methods showed that the ligand-based CoMFA (Qcv² = 0.672 and Rncv² = 0.997) and CoMSIA (Qcv² = 0.703 and Rncv² = 0.946) models were better than the other two alignment methods-based CoMFA and CoMSIA models. The two ligand-based models were further confirmed by an external test-set validation and a Y-randomization examination. The ligand-based CoMFA model (Qext² = 0.691, Rpred² = 0.738 and slope k = 0.91) was observed with acceptable external test-set validation values rather than the CoMSIA model (Qext² = 0.307, Rpred² = 0.4 and slope k = 0.719). Docking studies were carried out to predict the binding modes of the inhibitors with MGMT. The results indicated that the obtained binding interactions were consistent with the 3D contour maps. Overall, the combined results of the 3D-QSAR and the docking obtained in this study provide an insight into the understanding of the interactions between guanine derivatives and MGMT protein, which will assist in designing novel MGMT inhibitors with desired activity.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
39
|
Abstract
Great progress has been made in many areas of pediatric oncology. However, tumors of the central nervous system (CNS) remain a significant challenge. A recent explosion of data has led to an opportunity to understand better the molecular basis of these diseases and is already providing a foundation for the pursuit of rationally chosen therapeutics targeting relevant molecular pathways. The molecular biology of pediatric brain tumors is shifting from a singular focus on basic scientific discovery to a platform upon which insights are being translated into therapies.
Collapse
|
40
|
Pediatric brainstem gliomas: new understanding leads to potential new treatments for two very different tumors. Curr Oncol Rep 2015; 17:436. [PMID: 25702179 DOI: 10.1007/s11912-014-0436-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pediatric brainstem gliomas include low-grade focal brainstem gliomas (FBSG) and high-grade diffuse intrinsic pontine gliomas (DIPG). These tumors share a crucial and eloquent area of the brain as their location, which carries common challenges for treatment. Otherwise, though, these two diseases are very different in terms of presentation, biology, treatment, and prognosis. FBSG usually present with greater than 3 months of symptoms, while DIPG are usually diagnosed within 3 months of symptom onset. Surgery remains the preferred initial treatment for FBSG, with chemotherapy used for persistent, recurrent, or inoperable disease; conversely, radiation is the only known effective treatment for DIPG. Recent developments in biological understanding of both tumors have led to new treatment possibilities. In FBSG, two genetic changes related to BRAF characterize the majority of tumors, and key differences in their biological effects are informing strategies for targeted chemotherapy use. In DIPG, widespread histone H3 and ACVR1 mutations have led to new hope for effective targeted treatments. FBSG has an excellent prognosis, while the long-term survival rate of DIPG tragically remains near zero. In this review, we cover the epidemiology, biology, presentation, imaging characteristics, multimodality treatment, and prognosis of FBSG and DIPG, with a focus on recent biological discoveries.
Collapse
|
41
|
Snape TJ, Warr T. Approaches toward improving the prognosis of pediatric patients with glioma: pursuing mutant drug targets with emerging small molecules. Semin Pediatr Neurol 2015; 22:28-34. [PMID: 25976258 DOI: 10.1016/j.spen.2014.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gliomas represent approximately 70% of all pediatric brain tumors, and most of these are of astrocytic lineage; furthermore, malignant or high-grade astrocytomas account for approximately 20% of pediatric astrocytoma. Treatment options for pediatric patients with glioma are limited. Although low-grade astrocytomas are relatively slow-growing tumors that can often be cured through surgical resection, a significant proportion of cases recur, as such, new treatments are desperately needed. This review covers the various approaches that are currently being made toward improving the prognosis of pediatric patients with glioma by pursuing pediatric-selective mutant drug targets with emerging small molecules.
Collapse
Affiliation(s)
- Timothy J Snape
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Lancashire, UK.
| | - Tracy Warr
- Brain Tumour Research Centre, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
42
|
Yang S, Huang N, Jin YM, Zhang HQ, Su YH, Yang HG. Crystal shape engineering of anatase TiO2and its biomedical applications. CrystEngComm 2015. [DOI: 10.1039/c5ce00804b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Burzynski SR, Janicki TJ, Burzynski GS, Marszalek A. The response and survival of children with recurrent diffuse intrinsic pontine glioma based on phase II study of antineoplastons A10 and AS2-1 in patients with brainstem glioma. Childs Nerv Syst 2014; 30:2051-61. [PMID: 24718705 PMCID: PMC4223571 DOI: 10.1007/s00381-014-2401-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/06/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Brainstem gliomas (BSG) are relatively rare tumors of which recurrent pediatric diffuse intrinsic pontine gliomas (RPDIPG) comprise a distinct group. Numerous trials have been conducted on RPDIPG, none of which have resulted in identifying any proven pharmacological treatment benefit. This study included 40 patients diagnosed with different types of BSG, but it was decided to describe first the encouraging results in the most challenging group of RPDIPG. MATERIALS AND METHODS This single-arm phase II study evaluated the efficacy and safety of the combination of antineoplastons A10 and AS2-1 (ANP) in patients with RPDIPG. Seventeen patients (median age 8.8 years) were enrolled, and all were diagnosed with RPDIPG. ANP was administered intravenously daily. Efficacy analyses were conducted in this group of patients. RESULTS In this group, complete responses were observed in 6 % of patients, partial responses in 23.5 %, and stable disease in 11.8 %. Six-month progression-free survival was 35.3 %. One-year overall survival was 29.4 %, 2 years 11.8 %, and 5, 10, and 15 years 5.9 %. One patient with DIPG is alive over 15 years post-treatment. Grade 3 and higher toxicities including hypokalemia and fatigue occurred in 6 %, hypernatremia in 18 %, fatigue and urinary incontinence in 6 %, and somnolence in 12 %. In a single patient, grade 4 hypernatremia occurred when he was on mechanical ventilation. He was disconnected from the ventilator and died from brain tumor according to the attending physician. Responding patients experienced improved quality of life. CONCLUSION The results suggest that ANP shows efficacy and acceptable tolerability profile in patients with RPDIPG.
Collapse
Affiliation(s)
| | | | | | - Ania Marszalek
- Burzynski Clinic, 9432 Katy Freeway, Houston, TX 77055 USA
| |
Collapse
|
44
|
Stephen ZR, Kievit FM, Veiseh O, Chiarelli PA, Fang C, Wang K, Hatzinger SJ, Ellenbogen RG, Silber JR, Zhang M. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors. ACS NANO 2014; 8:10383-95. [PMID: 25247850 PMCID: PMC4212796 DOI: 10.1021/nn503735w] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/23/2014] [Indexed: 05/21/2023]
Abstract
Resistance to temozolomide (TMZ) based chemotherapy in glioblastoma multiforme (GBM) has been attributed to the upregulation of the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). Inhibition of MGMT using O(6)-benzylguanine (BG) has shown promise in these patients, but its clinical use is hindered by poor pharmacokinetics that leads to unacceptable toxicity. To improve BG biodistribution and efficacy, we developed superparamagnetic iron oxide nanoparticles (NP) for targeted convection-enhanced delivery (CED) of BG to GBM. The nanoparticles (NPCP-BG-CTX) consist of a magnetic core coated with a redox-responsive, cross-linked, biocompatible chitosan-PEG copolymer surface coating (NPCP). NPCP was modified through covalent attachment of BG and tumor targeting peptide chlorotoxin (CTX). Controlled, localized BG release was achieved under reductive intracellular conditions and NPCP-BG-CTX demonstrated proper trafficking of BG in human GBM cells in vitro. NPCP-BG-CTX treated cells showed a significant reduction in MGMT activity and the potentiation of TMZ toxicity. In vivo, CED of NPCP-BG-CTX produced an excellent volume of distribution (Vd) within the brain of mice bearing orthotopic human primary GBM xenografts. Significantly, concurrent treatment with NPCP-BG-CTX and TMZ showed a 3-fold increase in median overall survival in comparison to NPCP-CTX/TMZ treated and untreated animals. Furthermore, NPCP-BG-CTX mitigated the myelosuppression observed with free BG in wild-type mice when administered concurrently with TMZ. The combination of favorable physicochemical properties, tumor cell specific BG delivery, controlled BG release, and improved in vivo efficacy demonstrates the great potential of these NPs as a treatment option that could lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Zachary R. Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Forrest M. Kievit
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, United States
| | - Omid Veiseh
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Peter A. Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, United States
| | - Chen Fang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shelby J. Hatzinger
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Richard G. Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, United States
- Department of Radiology, University of Washington, Seattle, Washington 98195, United States
| | - John R. Silber
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, United States
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, United States
- Address correspondence to
| |
Collapse
|
45
|
Vanan MI, Eisenstat DD. Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neurooncol Pract 2014; 1:145-157. [PMID: 26034626 DOI: 10.1093/nop/npu022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 11/12/2022] Open
Abstract
High-grade gliomas (HGGs) constitute ∼15% of all primary brain tumors in children and adolescents. Routine histopathological diagnosis is based on tissue obtained from biopsy or, preferably, from the resected tumor itself. The majority of pediatric HGGs are clinically and biologically distinct from histologically similar adult malignant gliomas; these differences may explain the disparate responses to therapy and clinical outcomes when comparing children and adults with HGG. The recently proposed integrated genomic classification identifies 6 distinct biological subgroups of glioblastoma (GBM) throughout the age spectrum. Driver mutations in genes affecting histone H3.3 (K27M and G34R/V) coupled with mutations involving specific proteins (TP53, ATRX, DAXX, SETD2, ACVR1, FGFR1, NTRK) induce defects in chromatin remodeling and may play a central role in the genesis of many pediatric HGGs. Current clinical practice in pediatric HGGs includes surgical resection followed by radiation therapy (in children aged > 3 years) with concurrent and adjuvant chemotherapy with temozolomide. However, these multimodality treatment strategies have had a minimal impact on improving survival. Ongoing clinical trials are investigating new molecular targets, chemoradiation sensitization strategies, and immunotherapy. Future clinical trials of pediatric HGG will incorporate the distinction between GBM molecular subgroups and stratify patients using group-specific biomarkers.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics , University of Manitoba , Winnipeg, Manitoba , Canada (M.I.V.); Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology , University of Alberta , Edmonton, Alberta , Canada (D.D.E.)
| | - David D Eisenstat
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics , University of Manitoba , Winnipeg, Manitoba , Canada (M.I.V.); Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology , University of Alberta , Edmonton, Alberta , Canada (D.D.E.)
| |
Collapse
|
46
|
Saletta F, Wadham C, Ziegler DS, Marshall GM, Haber M, McCowage G, Norris MD, Byrne JA. Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA CLINICAL 2014; 1:59-77. [PMID: 26675306 PMCID: PMC4633945 DOI: 10.1016/j.bbacli.2014.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. SCOPE OF REVIEW This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. MAJOR CONCLUSIONS There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. GENERAL SIGNIFICANCE The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- ARMS, alveolar rhabdomyosarcoma
- AT/RT, atypical teratoid/rhabdoid tumor
- AURKA, aurora kinase A
- AURKB, aurora kinase B
- BET, bromodomain and extra terminal
- Biomarkers
- CAR, chimeric antigen receptor
- CML, chronic myeloid leukemia
- Childhood cancer
- DFMO, difluoromethylornithine
- DIPG, diffuse intrinsic pontine glioma
- EGFR, epidermal growth factor receptor
- ERMS, embryonal rhabdomyosarcoma
- HDAC, histone deacetylases
- Hsp90, heat shock protein 90
- IGF-1R, insulin-like growth factor type 1 receptor
- IGF/IGFR, insulin-like growth factor/receptor
- Molecular diagnostics
- NSCLC, non-small cell lung cancer
- ODC1, ornithine decarboxylase 1
- PARP, poly(ADP-ribose) polymerase
- PDGFRA/B, platelet derived growth factor alpha/beta
- PI3K, phosphatidylinositol 3′-kinase
- PLK1, polo-like kinase 1
- Ph +, Philadelphia chromosome-positive
- RMS, rhabdomyosarcoma
- SHH, sonic hedgehog
- SMO, smoothened
- SYK, spleen tyrosine kinase
- TOP1/TOP2, DNA topoisomerase 1/2
- TRAIL, TNF-related apoptosis-inducing ligand
- Targeted therapy
- VEGF/VEGFR, vascular endothelial growth factor/receptor
- mAb, monoclonal antibody
- mAbs, monoclonal antibodies
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Federica Saletta
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Geoffrey McCowage
- The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| | - Murray D. Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Jennifer A. Byrne
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
- The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| |
Collapse
|
47
|
Julsing JR, Peters GJ. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6199-2-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Liu XY, Zhang L, Wu J, Zhou L, Ren YJ, Yang WQ, Ming ZJ, Chen B, Wang J, Zhang Y, Yang JM. Inhibition of elongation factor-2 kinase augments the antitumor activity of Temozolomide against glioma. PLoS One 2013; 8:e81345. [PMID: 24303044 PMCID: PMC3841121 DOI: 10.1371/journal.pone.0081345] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/10/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM), the most common form of brain cancer with an average survival of less than 12 months, is a highly aggressive and fatal disease characterized by survival of glioma cells following initial treatment, invasion through the brain parenchyma and destruction of normal brain tissues, and ultimately resistance to current treatments. Temozolomide (TMZ) is commonly used chemotherapy for treatment of primary and recurrent high-grade gliomas. Nevertheless, the therapeutic outcome of TMZ is often unsatisfactory. In this study, we sought to determine whether eEF-2 kinase affected the sensitivity of glioma cells to treatment with TMZ. METHODOLOGY/PRINCIPAL FINDINGS Using RNA interference approach, a small molecule inhibitor of eEF-2 kinase, and in vitro and in vivo glioma models, we observed that inhibition of eEF-2 kinase could enhance sensitivity of glioma cells to TMZ, and that this sensitizing effect was associated with blockade of autophagy and augmentation of apoptosis caused by TMZ. CONCLUSIONS/SIGNIFICANCE These findings demonstrated that targeting eEF-2 kinase can enhance the anti-glioma activity of TMZ, and inhibitors of this kinase may be exploited as chemo-sensitizers for TMZ in treatment of malignant glioma.
Collapse
Affiliation(s)
- Xiao-yuan Liu
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Li Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - JianPing Wu
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhou
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Yi-Jie Ren
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Wei-Qiong Yang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Zi-Jun Ming
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Jianrong Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Jin-Ming Yang
- Department of Pharmacology, College of Pharmaceutical Sciences, Cyrus Tang Hematology Center, Affiliated Changshu Hospital, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
49
|
Warren KE, Poussaint TY, Vezina G, Hargrave D, Packer RJ, Goldman S, Wen PY, Pollack IF, Zurakowski D, Kun LE, Prados MD, Rutkowski S, Kieran MW. Challenges with defining response to antitumor agents in pediatric neuro-oncology: a report from the response assessment in pediatric neuro-oncology (RAPNO) working group. Pediatr Blood Cancer 2013; 60:1397-401. [PMID: 23625747 PMCID: PMC6300142 DOI: 10.1002/pbc.24562] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/21/2013] [Indexed: 11/08/2022]
Abstract
Criteria for new drug approval include demonstration of efficacy. In neuro-oncology, this is determined radiographically utilizing tumor measurements on MRI scans. Limitations of this method have been identified where drug activity is not reflected in decreased tumor size. The RANO (Response Assessment in Neuro-Oncology) working group was established to address limitations in defining endpoints for clinical trials in adult neuro-oncology and to develop standardized response criteria. RAPNO was subsequently established to address unique issues in pediatric neuro-oncology. The aim of this paper is to delineate response criteria issues in pediatric clinical trials as a basis for subsequent recommendations.
Collapse
Affiliation(s)
- Katherine E. Warren
- National Cancer Institute, Bethesda, Maryland,Correspondence to: Katherine E. Warren, Pediatric Oncology Branch, National Cancer Institute, Building 10/Room 1-5750, 9000 Rockville Pike, Bethesda, MD 20892.
| | | | - Gilbert Vezina
- Children’s National Medical Center, Washington, District of Columbia
| | | | - Roger J. Packer
- Children’s National Medical Center, Washington, District of Columbia
| | | | | | - Ian F. Pollack
- Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Larry E. Kun
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | | | | - Mark W. Kieran
- Dana-Farber/Children’s Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
50
|
Abstract
BACKGROUND This study reports changes in long-term survival after the introduction of modern imaging in pediatric patients with low-grade gliomas (LGGs). METHODS Records from 351 consecutive pediatric patients diagnosed with LGG between 1970 and 2009 at Mayo Clinic Rochester were reviewed and divided into diagnosis before (group I: 1970 to 1989) and after (group II: 1990 to 2009) postoperative magnetic resonance imaging became regularly used in pediatric LGG. RESULTS Median progression-free survival (PFS) and overall survival (OS) were not reached. Overall, 10-year PFS was 62% and OS was 90%. On multivariate analysis, improved PFS was associated with gross total resection (GTR; P<0.0001) and postoperative radiation therapy (RT; P<0.0001). In those undergoing less than GTR, PFS was improved with RT, nearing rates of patients receiving GTR (P=0.12). On multivariate analysis, higher OS was associated with GTR (P<0.0001) and pilocytic histology (P=0.03). Group II had fewer headaches, fewer sensory/motor symptoms, less postoperative RT, and more GTRs. OS and PFS were not different between the groups. CONCLUSIONS This large series of pediatric LGG patients with long-term follow-up found no significant changes in OS or PFS over time. Overall, GTR was associated with improved OS and PFS. RT was associated with an improvement in PFS, with the greatest benefit seen in patients undergoing less than GTR.
Collapse
|