1
|
Zhang CM, Wei Y, Tian XK, Ren KD, Yang J. Gene expression profiling of peripheral blood in patients with steroid-induced osteonecrosis of the femoral head. Per Med 2024; 21:89-102. [PMID: 38501284 DOI: 10.2217/pme-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Aim: Steroid-induced osteonecrosis of the femoral head (SONFH) is a severe complication following glucocorticoid therapy. This study aimed to identify the differential mRNA expression and investigate the molecular mechanisms of SONFH. Materials & methods: RNA sequencing was performed in eight SONFH patients, five non-SONFH patients and five healthy individuals. Results: A total of 1555, 3997 and 5276 differentially expressed mRNAs existed between the following combinations: SONFH versus non-SONFH, SONFH versus healthy subjects and non-SONFH versus healthy subjects. Increased ISM1 expression might contribute to a high risk of SONFH through antiangiogenesis. Decreased FOLR3 expression might affect the metabolism of homocysteine, leading to avascular necrosis of the femoral head. KCNJ2, which plays a pivotal role in regulating bone development, was also deregulated. Conclusion: ISM1, FOLR3 and KCNJ2 might be related to the occurrence of SONFH.
Collapse
Affiliation(s)
- Cong-Min Zhang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou, 450052, China
| | - Yuan Wei
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xue-Ke Tian
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou, 450052, China
| | - Kai-Di Ren
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou, 450052, China
| | - Jing Yang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Li J, Tan M, Yang T, Huang Q, Shan F. The paracrine isthmin1 transcriptionally regulated by C/EBPβ exacerbates pulmonary vascular leakage in murine sepsis. Am J Physiol Cell Physiol 2024; 326:C304-C316. [PMID: 38047305 DOI: 10.1152/ajpcell.00431.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
It is known that pulmonary vascular leakage, a key pathological feature of sepsis-induced lung injury, is largely regulated by perivascular cells. However, the underlying mechanisms have not been fully uncovered. In the present study, we aimed to evaluate the role of isthmin1, a secretory protein originating from alveolar epithelium, in the pulmonary vascular leakage during sepsis and to investigate the regulatory mechanisms of isthmin1 gene transcription. We observed an elevated isthmin1 gene expression in the pulmonary tissue of septic mice induced by cecal ligation and puncture (CLP), as well as in primary murine alveolar type II epithelial cells (ATII) exposed to lipopolysaccharide (LPS). Furthermore, we confirmed that isthmin1 derived from ATII contributes to pulmonary vascular leakage during sepsis. Specifically, adenovirus-mediated isthmin1 disruption in ATII led to a significant attenuation of the increased pulmonary microvascular endothelial cell (PMVEC) hyperpermeability in a PMVEC/ATII coculture system when exposed to LPS. In addition, adeno-associated virus 9 (AAV9)-mediated knockdown of isthmin1 in the alveolar epithelium of septic mice significantly attenuated pulmonary vascular leakage. Finally, mechanistic studies unveiled that nuclear transcription factor CCAAT/enhancer binding protein (C/EBP)β participates in isthmin1 gene activation by binding directly to the cis-regulatory element of isthmin1 locus and may contribute to isthmin1 upregulation during sepsis. Collectively, the present study highlighted the impact of the paracrine protein isthmin1, derived from ATII, on the exacerbation of pulmonary vascular permeability in sepsis and revealed a new regulatory mechanism for isthmin1 gene transcription.NEW & NOTEWORTHY This article addresses the role of the alveolar epithelial-secreted protein isthmin1 on the exacerbation of pulmonary vascular permeability in sepsis and identified nuclear factor CCAAT/enhancer binding protein (C/EBP)β as a new regulator of isthmin1 gene transcription. Targeting the C/EBPβ-isthmin1 regulatory axis on the alveolar side would be of great value in the treatment of pulmonary vascular leakage and lung injury induced by sepsis.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Miaomiao Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Tian Yang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Qingyuan Huang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Liang JY, Wei HJ, Tang YY. Isthmin: A multifunctional secretion protein. Cytokine 2024; 173:156423. [PMID: 37979212 DOI: 10.1016/j.cyto.2023.156423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Isthmin is a polypeptide secreted by adipocytes that was first detected in Xenopus gastrula embryos. Recent studies have focused on the biological functions of isthmin in growth and development, angiogenesis, and metabolism. Distinct spatiotemporal expression of isthmin-1 (ISM-1) was observed during growth and development. ISM-1 plays an important role in the occurrence and development of cancer by regulating cell proliferation, migration, angiogenesis, and immune microenvironments. Moreover, ISM-1, as a newly identified insulin-like adipokine, increases adipocyte glucose uptake and inhibits hepatic lipid synthesis. However, the biological function of ISM-1 remains largely unknown. In this review, we highlight the structure and physiological functions of isthmin and explore its application potential, contributing to a better understanding of its function and providing prevention and treatment strategies for various diseases.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Physiology, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Hai-Jun Wei
- Department of Physiology, Hunan Polytechnic of Environment and Biology, Hengyang 421001, Hunan, PR China
| | - Yi-Yun Tang
- Department of Physiology, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
4
|
Seidkhani E, Moradi F, Rustamzadeh A, Simorgh S, Shirvalilou S, Mehdizadeh M, Dehghani H, Akbarnejad Z, Motevalian M, Gorgich EAC. Intranasal delivery of sunitinib: A new therapeutic approach for targeting angiogenesis of glioblastoma. Toxicol Appl Pharmacol 2023; 481:116754. [PMID: 37956929 DOI: 10.1016/j.taap.2023.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most vascular among solid tumors, and despite the use of multimodal therapies, the survival of these patients is poor. In order to target angiogenesis in GBM as a promising strategy, an antiangiogenic drug is required. This study was designed to evaluate the effects of sunitinib, a multityrosine kinase inhibitor with tumor proliferation and angiogenesis inhibitory properties, on GBM-bearing rats. Given the ineffective drug delivery to the brain due to the presence of the blood-brain barrier (BBB), intra-nasal (IN) drug delivery has recently been considered as a non-invasive method to bypass BBB. Therefore, in the current study, IN was used as an ideal method for the delivery of sunitinib to the brain, and the effects of this method were also compared to the OR administration of the sunitinib. GBM was induced in the brain of male Wistar rats, and they were randomly divided into 4 groups; IN-STB (sunitinib intranasal delivery), IN-sham (placebo intranasal delivery), OR-STB (sunitinib oral delivery) and OR-sham (placebo oral delivery). After the end of the treatment period, an MRI of animals' brains showed a reduction in tumor growth in the treatment groups. Immunohistochemistry revealed that sunitinib inhibits angiogenesis in GBM in both OR and IN delivery methods. Analysis of liver tissue and enzymes showed that IN delivery of sunitinib had less hepatotoxicity than the OR method. Overall, it was found that IN sunitinib delivery could be used as a potential non-hepatotoxic alternative for the treatment of GBM.
Collapse
Affiliation(s)
- Elham Seidkhani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Auob Rustamzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sakine Shirvalilou
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Dehghani
- Department of Medical Physics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, the Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Menghuan L, Yang Y, Qianhe M, Na Z, Shicheng C, Bo C, XueJie YI. Advances in research of biological functions of Isthmin-1. J Cell Commun Signal 2023; 17:507-521. [PMID: 36995541 PMCID: PMC10409700 DOI: 10.1007/s12079-023-00732-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/07/2023] [Indexed: 03/31/2023] Open
Abstract
Isthmin-1 (ISM1) was initially thought to be a brain secretory factor, but with the development of technical means of research and the refinement of animal models, numerous studies have shown that this molecule is expressed in multiple tissues, suggesting that it may have multiple biological functions. As a factor that regulates growth and development, ISM1 is expressed in different animals with spatial and temporal variability and can coordinate the normal development of multiple organs. Recent studies have found that under the dependence of a non-insulin pathway, ISM1 can lower blood glucose, inhibit insulin-regulated lipid synthesis, promote protein synthesis, and affect the body's glucolipid and protein metabolism. In addition, ISM1 plays an important role in cancer development by promoting apoptosis and anti-angiogenesis, and by regulating multiple inflammatory pathways to influence the body's immune response. The purpose of this paper is to summarize relevant research results from recent years and to describe the key features of the biological functions of ISM1. We aimed to provide a theoretical basis for the study of ISM1 related diseases, and potential therapeutic strategies. The main biological functions of ISM1. Current studies on the biological functions of ISM1 focus on growth and development, metabolism, and anticancer treatment. During embryonic development, ISM1 is dynamically expressed in the zebrafish, African clawed frog, chick, mouse, and human, is associated with craniofacial malformations, abnormal heart localization, and hematopoietic dysfunction. ISM1 plays an important role in regulating glucose metabolism, lipid metabolism, and protein metabolism in the body. ISM1 affects cancer development by regulating cellular autophagy, angiogenesis, and the immune microenvironment.
Collapse
Affiliation(s)
- Li Menghuan
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China
| | - Yang Yang
- School of Sports and Human Sciences, Shanghai Sport University, Shanghai, 200438, China
| | - Ma Qianhe
- School of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Zhang Na
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China
| | - Cao Shicheng
- Department of Sports Medicine, China Medical University, Shenyang, China
| | - Chang Bo
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Qiangsong East Road, Sujiatun District, Shenyang, 110102, China.
| | - Y I XueJie
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, No.36 Qiangsong East Road, Sujiatun District, Shenyang, 110115, Liaoning Province, China.
| |
Collapse
|
6
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
7
|
Isthmin-A Multifaceted Protein Family. Cells 2022; 12:cells12010017. [PMID: 36611811 PMCID: PMC9818725 DOI: 10.3390/cells12010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Isthmin (ISM) is a secreted protein family with two members, namely ISM1 and ISM2, both containing a TSR1 domain followed by an AMOP domain. Its broad expression pattern suggests diverse functions in developmental and physiological processes. Over the past few years, multiple studies have focused on the functional analysis of the ISM protein family in several events, including angiogenesis, metabolism, organ homeostasis, immunity, craniofacial development, and cancer. Even though ISM was identified two decades ago, we are still short of understanding the roles of the ISM protein family in embryonic development and other pathological processes. To address the role of ISM, functional studies have begun but unresolved issues remain. To elucidate the regulatory mechanism of ISM, it is crucial to determine its interactions with other ligands and receptors that lead to the activation of downstream signalling pathways. This review provides a perspective on the gene organization and evolution of the ISM family, their links with developmental and physiological functions, and key questions for the future.
Collapse
|
8
|
Li C, Song L, Zhou Y, Yuan J, Zhang S. Identification of Isthmin1 in the small annual fish, Nothobranchius guentheri, as a novel biomarker of aging and its potential rejuvenation activity. Biogerontology 2022; 23:99-114. [PMID: 34988750 DOI: 10.1007/s10522-021-09948-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Isthmin 1 (Ism1) has been shown to play roles in multiple biological processes including morphogenesis, hematopoiesis, antiviral immune response and suppression of tumor growth. However, it remains unknown if it plays any role in aging process. Here we showed for the first time that Ism1 was a new age-related biomarker, which decreased with age in fish, mice and humans. Interestingly, Ism1 was also useful to measure the "rejuvenated" age of fish Nothobranchius guentheri reversed by salidroside treatment and temperature reduction, providing additional evidence that Ism1 was an aging biomarker. In addition, we clearly showed that dietary intake of recombinant Ism1 had little effects on the body length and weight of aging N. guentheri, but it retarded the onset of age-related biomarkers and prolonged both the maximum and median lifespan of the fish. We also showed that Ism1 exerted its rejuvenation activity via the enhancement of antioxidant system. Collectively, our results indicate that Ism1 is not only is a novel biomarker of aging but also a potential rejuvenation factor capable of reversing aging of N. guentheri.
Collapse
Affiliation(s)
- Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yang Zhou
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jiangshui Yuan
- Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, 266011, Shandong, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
9
|
Li C, Zhong S, Ni S, Liu Z, Zhang S, Ji G. Zebrafish Ism1 is a novel antiviral factor that positively regulates antiviral immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104210. [PMID: 34302859 DOI: 10.1016/j.dci.2021.104210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Isthmin1 (Ism1), first identified as a secreted protein in Xenopus embryos in 2002, has been shown to perform multiple biological functions, but little is known currently regarding its role in immunity. Here we show that the expression of ism1 is inducible by challenge with Grass carp reovirus (GCRV) in zebrafish, suggesting involvement of Ism1 in antiviral response. We then demonstrate that recombinant Ism1 (rIsm1) reduces the cytopathic effect in the cells infected by GCRV, promotes the expression of type I IFN gene and IFN-inducible antiviral protein Mxa gene, and reduces the virus quantity in virus-infected cells and host. We also show that rIsm1 promotes the expression of tbk1, irf3 and irf7, suggesting it promotes the expression of type I IFN gene and Mxa gene via induction of Tbk1-Irf3-Ifn pathway. These data together indicate that Ism1 is a new immune-relevant factor functioning in antiviral immune response, and provides a target for controlling viral infection.
Collapse
Affiliation(s)
- Congjun Li
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Shenjie Zhong
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shousheng Ni
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhenhui Liu
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| | - Guangdong Ji
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
10
|
Li J, Xia Y, Huang Z, Zhao Y, Xiong R, Li X, Huang Q, Shan F. Novel HIF-1-target gene isthmin1 contributes to hypoxia-induced hyperpermeability of pulmonary microvascular endothelial cells monolayers. Am J Physiol Cell Physiol 2021; 321:C671-C680. [PMID: 34469202 DOI: 10.1152/ajpcell.00124.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
Hypoxia-induced pulmonary microvascular endothelial cell (PMVEC) monolayers hyperpermeability is vital for vascular leakage, which participates in vascular diseases, such as acute lung injury (ALI) and high-altitude pulmonary edema (HAPE). We previously observed that PMVEC permeability was markedly elevated in hypoxia when cocultured with primary type II alveolar epithelial cells (AECII) in which isthmin1 (ISM1) was highly upregulated. However, whether the upregulation of ISM1 plays a role in hypoxia-induced PMVEC hyperpermeability is unclear. In this study, we assessed the role of AECII-derived ISM1 in hypoxia-induced PMVEC hyperpermeability with an AECII/PMVEC coculture system and uncovered the underlying mechanism whereby hypoxia stimulates ISM1 gene expression. We found that ISM1 gene expression was upregulated in cultured AECII cells exposed to hypoxia (3% O2) and that AECII-derived ISM1 participated in hypoxia-induced hyperpermeability of PMVEC monolayers, as small interference RNA (siRNA)-mediated knockdown of ISM1 in AECII markedly attenuated the increase in PMVEC permeability in coculture system under hypoxia. In addition, we confirmed that ISM1 was regulated by hypoxia-inducible factor-1α (HIF1α) according to the evidence that silencing of HIF1α inhibited the hypoxia-mediated upregulation of ISM1. Mechanismly, overexpression of HIF1α transcriptionally activated ISM1 gene expression by directly binding to the conserved regulatory elements upstream of the ism1 locus. We identified a novel HIF-1-target gene ISM1, which involves in hyperpermeability of pulmonary microvascular endothelial cell monolayers under hypoxia. Our in vitro cell experiments implied that the upregulated ISM1 derived from alveolar epithelium might be a vital modulator in hypoxia-induced endothelial hyperpermeability and thereby implicates with hypoxic pulmonary-related diseases.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yiming Xia
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhizhong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Renping Xiong
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaoxu Li
- College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Qingyuan Huang
- College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Martinez C, González-Ramírez J, Marín ME, Martínez-Coronilla G, Meza-Reyna VI, Mora R, Díaz-Molina R. Isthmin 2 is decreased in preeclampsia and highly expressed in choriocarcinoma. Heliyon 2020; 6:e05096. [PMID: 33088937 PMCID: PMC7567920 DOI: 10.1016/j.heliyon.2020.e05096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022] Open
Abstract
Introduction Isthmin 2 (ISM2) is a protein which expression in humans is almost specific to the placenta. There is no previous report in the literature that investigated this protein in preeclampsia or choriocarcinoma. Methods We conducted a prospective, cross-sectional study that included women with preeclampsia, gestational hypertension and normotensive pregnancy. We measured serum concentrations of ISM2 protein and performed immunohistochemistry in placenta tissues. We also performed immunohistochemistry of ISM2 in samples from choriocarcinoma and compare with lung, prostate, colon, gastric and breast cancers. Results A total of 81 patients were included, 30 with preeclampsia, 21 with gestational hypertension and 30 controls. The ISM2 protein was found to be decreased in patients with preeclampsia compared to the control group (P = 0.036). These results were confirmed by immunohistochemistry. We also found that ISM2 protein was overexpressed in choriocarcinoma. Discussion Taken together, our results suggest an angiogenic function for ISM2. Its serum level decreased in our patients with preeclampsia could be reflecting that it is involved in the pathogenesis of the disease; on the other hand its high expression in choriocarcinoma, indicates that ISM2 may play an active role in the angiogenesis of this and other cancers.
Collapse
Affiliation(s)
- Cynthia Martinez
- Department of Obstetrics and Gynecology, Maternity and Children Hospital, Mexicali, B.C., 21376, Mexico
| | | | - María E Marín
- School of Medicine, University Autonomous of Baja California, Mexicali, B.C., 21000, Mexico
| | | | - Vanessa I Meza-Reyna
- Laboratory of Surgical Pathology and Cytodiagnosis, Mexicali, B.C., 21389, Mexico
| | - Rafael Mora
- Department of Obstetrics and Gynecology, Maternity and Children Hospital, Mexicali, B.C., 21376, Mexico.,Faculty of Nursing, University Autonomous of Baja California, Mexicali, B.C., 21100, Mexico.,School of Medicine, University Autonomous of Baja California, Mexicali, B.C., 21000, Mexico.,Laboratory of Surgical Pathology and Cytodiagnosis, Mexicali, B.C., 21389, Mexico
| | - Raul Díaz-Molina
- School of Medicine, University Autonomous of Baja California, Mexicali, B.C., 21000, Mexico
| |
Collapse
|
12
|
Berrun A, Harris E, Stachura DL. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish. PLoS One 2018; 13:e0196872. [PMID: 29758043 PMCID: PMC5951578 DOI: 10.1371/journal.pone.0196872] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility.
Collapse
Affiliation(s)
- Arturo Berrun
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| | - Elena Harris
- Department of Computer Sciences, California State University Chico, Chico, CA, United States of America
| | - David L Stachura
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| |
Collapse
|
13
|
MiR-29a: a potential therapeutic target and promising biomarker in tumors. Biosci Rep 2018; 38:BSR20171265. [PMID: 29217524 PMCID: PMC5803495 DOI: 10.1042/bsr20171265] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
MiRNAs, small non-coding RNA molecules, were recognized to be associated with the incidence and development of diverse neoplasms. MiRNAs were small non-coding RNAs that could regulate post-transcriptional level by binding to 3'-UTR of target mRNAs. Amongst which, miR-29a was demonstrated that it had significant impact on oncogenicity in various neoplasms through binding to critical genes which enhanced or inhibited the progression of cancers. MiR-29a participated in kinds of physiological and pathological processes, including virus replication, cell proliferation, differentiation, apoptosis, fibrosis, angiogenesis, tumorigenicity, metastasis, drug-resistance, and so on. According to its sufficient sensitivity and specificity, many studies showed that miR-29a might serve as a potential therapeutic target and promising biomarker in various tumors. In this review, we discussed the functions of miR-29a and its potential application in the diagnosis, treatment and stages of carcinoma, which could provide additional insight to develop a novel therapeutic strategy.
Collapse
|
14
|
Jia P, Cai H, Liu X, Chen J, Ma J, Wang P, Liu Y, Zheng J, Xue Y. Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett 2016; 381:359-69. [PMID: 27543358 DOI: 10.1016/j.canlet.2016.08.009] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022]
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in the development and progression of glioma. Previous studies indicated that lncRNA H19 regulated tumor carcinogenesis, angiogenesis and metastasis. This study aimed to investigate its functional role in glioma-induced endothelial cell proliferation, migration and tube formation as well as its possible molecular mechanisms. H19 was up-regulated in microvessels from glioma tissues and glioma-associated endothelial cells (GEC) cultured in glioma conditioned medium. Knockdown of H19 suppressed glioma-induced endothelial cell proliferation, migration and tube formation in vitro and meanwhile up-regulated the expression of miR-29a. Bioinformatics analysis and luciferase reporter assay defined that H19 mediated the above effects via directly binding to miR-29a. In addition, miR-29a targeted 3'-UTR region of vasohibin 2 (VASH2) and decreased its expression. VASH2 has been identified as an angiogenic factor. Knockdown of H19 also decreased the VASH2 expression by up-regulating miR-29a. In conclusion, the results indicated that knockdown of H19 suppressed glioma induced angiogenesis by inhibiting microRNA-29a, which may modulate the onset of glioma by regulating biological behaviors of glioma vascular endothelial cells.
Collapse
Affiliation(s)
- Peng Jia
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang 110004, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
15
|
Novel endogenous angiogenesis inhibitors and their therapeutic potential. Acta Pharmacol Sin 2015; 36:1177-90. [PMID: 26364800 PMCID: PMC4648174 DOI: 10.1038/aps.2015.73] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.
Collapse
|
16
|
Valle-Rios R, Maravillas-Montero JL, Burkhardt AM, Martinez C, Buhren BA, Homey B, Gerber PA, Robinson O, Hevezi P, Zlotnik A. Isthmin 1 is a secreted protein expressed in skin, mucosal tissues, and NK, NKT, and th17 cells. J Interferon Cytokine Res 2014; 34:795-801. [PMID: 24956034 DOI: 10.1089/jir.2013.0137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Using a comprehensive microarray database of human gene expression, we identified that in mammals, a secreted protein known as isthmin 1 (ISM1) is expressed in skin, mucosal tissues, and selected lymphocyte populations. ISM1 was originally identified in Xenopus brain during development, and it encodes a predicted ∼50-kDa protein containing a signal peptide, a thrombospondin domain, and an adhesion-associated domain. We confirmed the pattern of expression of ISM1 in both human and mouse tissues. ISM1 is expressed by DX5(+) lung lymphocytes that include NK and NKT-like cells, and is also expressed by some CD4(+) T cells upon activation but its expression increases significantly when CD4(+) T cells were polarized to the Th17 lineage in vitro. The presence of IFN-γ during CD4(+) T cell polarization inhibits ISM1 expression. Given that ISM1 has been reported to have anti-angiogenic properties, these observations suggest that ISM1 is a mediator of lymphocyte effector functions and may participate in both innate and acquired immune responses.
Collapse
Affiliation(s)
- Ricardo Valle-Rios
- 1 Department of Physiology and Biophysics, School of Medicine, University of California , Irvine, Irvine, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kobayashi H, Higashiura Y, Koike N, Akasaka J, Uekuri C, Iwai K, Niiro E, Morioka S, Yamada Y. Genes Downregulated in Endometriosis Are Located Near the Known Imprinting Genes. Reprod Sci 2014; 21:966-972. [PMID: 24615936 DOI: 10.1177/1933719114526473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is now accumulating evidence that endometriosis is a disease associated with an epigenetic disorder. Genomic imprinting is an epigenetic phenomenon known to regulate DNA methylation of either maternal or paternal alleles. We hypothesize that hypermethylated endometriosis-associated genes may be enriched at imprinted gene loci. We sought to determine whether downregulated genes associated with endometriosis susceptibility are associated with chromosomal location of the known paternally and maternally expressed imprinting genes. Gene information has been gathered from National Center for Biotechnology Information database geneimprint.com. Several researchers have identified specific loci with strong DNA methylation in eutopic endometrium and ectopic lesion with endometriosis. Of the 29 hypermethylated genes in endometriosis, 19 genes were located near 45 known imprinted foci. There may be an association of the genomic location between genes specifically downregulated in endometriosis and epigenetically imprinted genes.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yumi Higashiura
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Natsuki Koike
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Juria Akasaka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Chiharu Uekuri
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Kana Iwai
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Emiko Niiro
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Sachiko Morioka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|
18
|
Current status of gene therapy for brain tumors. Transl Res 2013; 161:339-54. [PMID: 23246627 PMCID: PMC3733107 DOI: 10.1016/j.trsl.2012.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma.
Collapse
|
19
|
Jiang JX, Gao S, Pan YZ, Sun CY. Quantitative proteomic analysis of differentially expressed proteins in pancreatic cancer stem cells. Shijie Huaren Xiaohua Zazhi 2013; 21:145-152. [DOI: 10.11569/wcjd.v21.i2.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To screen and identify differentially expressed proteins in pancreatic cancer stem cells.
METHODS: MIA-PaCa2 (TIChigh) and BxPc-3 (TIClow) were used in the study. Differentially expressed proteins between MIA-PaCa2 (TIChigh) and BxPc-3 (TIClow) cells were isolated and screened by 2D-DIGE analysis. Protein identification was performed by peptide mass fingerprinting with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF). Western blot was performed to verify the differential expression of TRIM28.
RESULTS: Fluorescent differential protein expression patterns were obtained between MIA-PaCa2 (TIChigh) and BxPc-3 (TIClow) cells. Analyses with DeCyder v6.5 software showed a total of 23 differentially expressed protein spots (>1.5 folds), and these protein spots were identified by mass spectrometry as 19 proteins, which are involved in cell communication and signal transduction, immune response, transcription and cell cycle regulation, adipocyte differentiation and lipid droplet formation, cytoskeletal formation, cell adhesion, transport, and translation. Western blot analysis revealed that TRIM28 was highly expressed in MIA-PaCa2 (TIChigh) cells but not expressed in BxPc-3 (TIClow) cells. Among the 19 identified proteins, 8 were up-regulated and 11 down-regulated in MIA-PaCa2 (TIChigh) cells.
CONCLUSION: The identified differentially expressed proteins, such as TRIM28, are associated with the genesis, development and regulation of pancreatic cancer stem cells. They may become new therapeutic targets for pancreatic cancer.
Collapse
|