1
|
Xie B, Yu J, Chen C, Shen T. Protein Arginine Methyltransferases from Regulatory Function to Clinical Implication in Central Nervous System. Cell Mol Neurobiol 2025; 45:41. [PMID: 40366461 PMCID: PMC12078925 DOI: 10.1007/s10571-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/16/2025] [Indexed: 05/15/2025]
Abstract
Arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is a regulatory key mechanism involved in various cellular processes such as gene expression, RNA processing, DNA damage repair. Increasing evidence highlights the crucial role of PRMTs in human diseases, including cancer, cardiovascular and metabolic diseases. Here, this review focuses on the latest findings regarding PRMTs in the central nervous system (CNS), emphasizing their regulatory roles in neural stem cells, neurons, and glial cells. Additionally, we examine the connection between PRMTs dysregulation and neurological diseases affecting the CNS, including brain tumors, neurodegenerative diseases, and neurodevelopmental disorders. Therefore, this review aims to deepen our understanding of PRMTs-mediated arginine methylation in CNS and open avenues for developing novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Bin Xie
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jing Yu
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chao Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ting Shen
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Shahani A, Slika H, Elbeltagy A, Lee A, Peters C, Dotson T, Raj D, Tyler B. The epigenetic mechanisms involved in the treatment resistance of glioblastoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:12. [PMID: 40201311 PMCID: PMC11977385 DOI: 10.20517/cdr.2024.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 04/10/2025]
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor with almost inevitable recurrence despite multimodal management with surgical resection and radio-chemotherapy. While several genetic, proteomic, cellular, and anatomic factors interplay to drive recurrence and promote treatment resistance, the epigenetic component remains among the most versatile and heterogeneous of these factors. Herein, the epigenetic landscape of GBM refers to a myriad of modifications and processes that can alter gene expression without altering the genetic code of cancer cells. These processes encompass DNA methylation, histone modification, chromatin remodeling, and non-coding RNA molecules, all of which have been found to be implicated in augmenting the tumor's aggressive behavior and driving its resistance to therapeutics. This review aims to delve into the underlying interactions that mediate this role for each of these epigenetic components. Further, it discusses the two-way relationship between epigenetic modifications and tumor heterogeneity and plasticity, which are crucial to effectively treat GBM. Finally, we build on the previous characterization of epigenetic modifications and interactions to explore specific targets that have been investigated for the development of promising therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
3
|
Onishi S, Jayamohan S, Chowdhury A, Rivas S, Otani Y, Murphy SA, Rivera-Caraballo KA, Walbridge S, Shah AH, Sisay B, Maric D, Elkahloun A, Johnson K, Heiss J, Lee TJ, Kumbar SG, Brown DA, Yoo JY, Brenner A, Kaur B, Sareddy GR, Banasavadi-Siddegowda YK. PRMT5 inhibition sensitizes glioblastoma tumor models to temozolomide. RESEARCH SQUARE 2025:rs.3.rs-5936706. [PMID: 39989968 PMCID: PMC11844640 DOI: 10.21203/rs.3.rs-5936706/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor-treating fields, glioblastoma patients show dismal prognosis. Protein Arginine Methyltransferase 5 (PRMT5) is overexpressed in glioblastoma and its inhibition imparts an anti-tumor effect. Even though Temozolomide (TMZ) is the standard chemotherapeutic agent in the treatment of glioblastoma, tumor cells invariably develop resistance to TMZ. However, the mechanistic role of PRMT5 in glioblastoma therapy resistance is unknown. Methods Patient-derived primary glioblastoma neurospheres (GBMNS), treated with PRMT5 inhibitor (LLY-283) or transfected with PRMT5 target-specific siRNA were treated with TMZ and subjected to in vitro functional and mechanistic studies. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. Results We found that PRMT5 inhibition increased the cytotoxic effect and caspase 3/7 activity of TMZ in GBMNS suggesting that apoptosis is the potential mode of cell death in the combination treatment. PRMT5 inhibition abrogated the TMZ-induced G2/M cell cycle arrest. Unbiased transcriptomic studies indicate that PRMT5 inhibition negatively enriches DNA damage repair genes. Importantly, combination therapy increased DNA double-strand breaks (H2AX foci) and enhanced the DNA damage (comet assay), suggesting that the combination treatment increases the TMZ-induced DNA damage. Specifically, the LLY-283 treatment blocked homologous recombination repair in GBMNS. In vivo, LLY-283 and TMZ combination significantly curbed the tumor growth and prolonged the survival of tumor-bearing mice. Conclusion Concomitant treatment of LLY-283 and TMZ has significantly greater antitumor efficacy, suggesting that PRMT5 inhibition and TMZ combination could be a new therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bayu Sisay
- National Human Genome Research Institute, National Institutes of Health
| | | | - Abdel Elkahloun
- National Human Genome Research Institute, National Institutes of Health
| | | | | | - Tae Jin Lee
- University of Texas Health Science Center at Houston
| | | | | | - Ji Young Yoo
- University of Texas Health Science Center at Houston
| | - Andrew Brenner
- Mays Cancer Center at University of Texas Health San Antonio
| | | | | | | |
Collapse
|
4
|
Ben Mrid R, El Guendouzi S, Mineo M, El Fatimy R. The emerging roles of aberrant alternative splicing in glioma. Cell Death Discov 2025; 11:50. [PMID: 39915450 PMCID: PMC11802826 DOI: 10.1038/s41420-025-02323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Gliomas represent a heterogeneous group of uniformly fatal brain tumors. Low and high-grade gliomas have diverse molecular signatures. Despite successful advances in understanding glioma, several genetic, epigenetic, and post-transcriptional alterations leave various targeted therapies ineffective, leading to a poor prognosis for high-grade glioma. Recent advances have revealed the implication of dysregulated alternative splicing (AS) events in glioma development. AS is a process that produces, from a single genomic sequence, several mature messenger RNAs. Splicing of pre-messenger RNAs concerns at least 95% of transcripts and constitutes an important mechanism in gene expression regulation. Dysregulation of this process, through variations in spliceosome components, aberrant splicing factors and RNA-binding protein activity, disproportionate regulation of non-coding RNAs, and abnormal mRNA methylation, can contribute to the disruption of AS. Such disruptions are usually associated with the development of several cancers, including glioma. Consequently, AS constitutes a key regulatory mechanism that could serve as a target for future therapies. In this review, we explore how AS events, spliceosome components, and their regulatory mechanisms play a critical role in glioma development, highlighting their potential as targets for innovative therapeutic strategies against this challenging cancer.
Collapse
Affiliation(s)
- Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Ben-Guerir, Morocco.
| | - Sara El Guendouzi
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Ben-Guerir, Morocco
| | - Marco Mineo
- Harvey W. Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Ben-Guerir, Morocco.
| |
Collapse
|
5
|
DeSisto J, Balakrishnan I, Knox AJ, Link G, Venkataraman S, Vibhakar R, Green AL. PRMT5 Maintains Tumor Stem Cells to Promote Pediatric High-Grade Glioma Tumorigenesis. Mol Cancer Res 2025; 23:107-118. [PMID: 39422546 PMCID: PMC11799838 DOI: 10.1158/1541-7786.mcr-24-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/02/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Pediatric high-grade gliomas (PHGG) are aggressive, undifferentiated central nervous system tumors with poor outcomes, for which no standard-of-care drug therapy currently exists. Through a knockdown (KD) screen for epigenetic regulators, we identified PRMT5 as essential for PHGG cell growth. We hypothesized that, similar to its effect in normal cells, PRMT5 promotes self-renewal of stem-like PHGG tumor-initiating cells essential for tumor growth. We conducted in vitro analyses, including limiting dilution studies of self-renewal, to determine the phenotypic effects of PRMT5 KD. We performed chromatin immunoprecipitation sequencing (ChIP-Seq) to identify PRMT5-mediated epigenetic changes and performed gene set enrichment analysis to identify pathways that PRMT5 regulates. Using an orthotopic xenograft model of PHGG, we tracked survival and histologic characteristics resulting from PRMT5 KD or administration of a PRMT5 inhibitor ± radiation therapy. In vitro, PRMT5 KD slowed cell-cycle progression, tumor growth and self-renewal, and altered chromatin occupancy at genes associated with differentiation, tumor formation, and growth. In vivo, PRMT5 KD increased survival and reduced tumor aggressiveness; however, pharmacologic inhibition of PRMT5 with or without radiation therapy did not improve survival. PRMT5 KD epigenetically reduced tumor-initiating cells' self-renewal, leading to increased survival in preclinical models. Pharmacologic inhibition of PRMT5 enzymatic activity may have failed in vivo due to insufficient reduction of PRMT5 activity by chemical inhibition, or this failure may suggest that nonenzymatic activities of PRMT5 are more relevant. Implications: PRMT5 maintains and promotes the growth of stem-like cells that initiate and drive tumorigenesis in PHGG.
Collapse
Affiliation(s)
- John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ilango Balakrishnan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aaron J. Knox
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabrielle Link
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado
| | - Adam L. Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado
| |
Collapse
|
6
|
Rodon J, Prenen H, Sacher A, Villalona-Calero M, Penel N, El Helali A, Rottey S, Yamamoto N, Ghiringhelli F, Goebeler ME, Doi T, Postel-Vinay S, Lin CC, Liu C, Chuang CH, Keyvanjah K, Eggert T, O'Neil BH. First-in-human study of AMG 193, an MTA-cooperative PRMT5 inhibitor, in patients with MTAP-deleted solid tumors: results from phase I dose exploration. Ann Oncol 2024; 35:1138-1147. [PMID: 39293516 DOI: 10.1016/j.annonc.2024.08.2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Homozygous deletion of methylthioadenosine phosphorylase (MTAP) occurs in ∼10%-15% of solid tumors. AMG 193, a CNS-penetrant methylthioadenosine-cooperative protein arginine methyltransferase 5 (PRMT5) inhibitor, selectively induces synthetic lethality in MTAP-deleted tumor cells. Here, we report results of the completed monotherapy dose exploration evaluating AMG 193 in patients with MTAP-deleted solid tumors. PATIENTS AND METHODS In this first-in-human, multicenter, open-label, phase I study, patients with advanced CDKN2A-deleted and/or MTAP-deleted solid tumors received AMG 193 orally [once (o.d.) or twice (b.i.d.) daily] continuously in 28-day cycles. Primary objectives were safety and tolerability assessed by dose-limiting toxicities and determination of the maximum tolerated dose; secondary objectives included pharmacokinetics and preliminary antitumor activity measured by RECIST v1.1. RESULTS As of 23 May 2024, 80 patients in dose exploration received AMG 193 at doses 40-1600 mg o.d. or 600 mg b.i.d. The most common treatment-related adverse events were nausea (48.8%), fatigue (31.3%), and vomiting (30.0%). Dose-limiting toxicities were reported in eight patients at doses ≥240 mg, including nausea, vomiting, fatigue, hypersensitivity reaction, and hypokalemia. The maximum tolerated dose was determined to be 1200 mg o.d. Mean exposure of AMG 193 increased in a dose-proportional manner from 40 mg to 1200 mg. Among the efficacy-assessable patients treated at the active and tolerable doses of 800 mg o.d., 1200 mg o.d., or 600 mg b.i.d. (n = 42), objective response rate was 21.4% (95% confidence interval 10.3% to 36.8%). Responses were observed across eight different tumor types, including squamous/non-squamous non-small-cell lung cancer, pancreatic adenocarcinoma, and biliary tract cancer. At doses ≥480 mg, complete intratumoral PRMT5 inhibition was confirmed in paired MTAP-deleted tumor biopsies, and molecular responses (circulating tumor DNA clearance) were observed. CONCLUSIONS AMG 193 demonstrated a favorable safety profile without clinically significant myelosuppression. Encouraging antitumor activity across a variety of MTAP-deleted solid tumors was observed based on objective response rate and circulating tumor DNA clearance.
Collapse
Affiliation(s)
- J Rodon
- MD Anderson Cancer Center, Houston, USA.
| | - H Prenen
- University Hospital Antwerp, Edegem, Belgium
| | - A Sacher
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - M Villalona-Calero
- Department of Medical Oncology and Therapeutics Research, University of California, Irvine, USA
| | - N Penel
- Centre Oscar Lambret, Lille, France
| | - A El Helali
- Centre of Cancer Medicine, University of Hong Kong, Hong Kong, China
| | - S Rottey
- Ghent University Hospital, Ghent, Belgium
| | - N Yamamoto
- National Cancer Center Hospital, Tokyo, Japan
| | - F Ghiringhelli
- INSERM U866, Cancer Center Georges Francois Leclerc, Dijon, France
| | - M E Goebeler
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - T Doi
- National Cancer Center Hospital East, Chiba, Japan
| | - S Postel-Vinay
- Institut Gustave Roussy, Villejuif, France; University College London Cancer Institute, London, UK
| | - C-C Lin
- National Taiwan University Hospital, Taipei, Taiwan
| | - C Liu
- Amgen Inc., Thousand Oaks
| | | | | | | | - B H O'Neil
- Community-Health Network, Indianapolis, USA
| |
Collapse
|
7
|
Liu L, Soler J, Reckamp KL, Sankar K. Emerging Targets in Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:10046. [PMID: 39337530 PMCID: PMC11432526 DOI: 10.3390/ijms251810046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Lung cancer is responsible for a high burden of disease globally. Over the last two decades, the discovery of targetable oncogenic genomic alterations has revolutionized the treatment landscape for early-stage and advanced non-small cell lung cancer (NSCLC). New molecular drivers continue to emerge as promising therapeutic targets, including KRAS non-G12C, RAF/MEK, HER3, Nectin-4, folate receptor alpha, ITGB6, and PRMT5. In this review, we summarize the emerging molecular targets with a potential clinical impact in advanced NSCLC, elaborating on their clinical characteristics and specific mechanisms and molecular pathways for which targeted treatments are currently available. Additionally, we present an aggregate of ongoing clinical trials investigating the available treatment options targeting such alterations, in addition to their current recruitment status and preliminary efficacy data. These advancements may guide further research endeavors and inform future treatment strategies to improve the management of and transform outcomes for patients with advanced NSCLC.
Collapse
Affiliation(s)
- Louisa Liu
- Samuel-Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joshua Soler
- Riverside School of Medicine, University of California, Riverside, CA 92521, USA
| | - Karen L Reckamp
- Samuel-Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kamya Sankar
- Samuel-Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
8
|
Degorre C, Lohard S, Bobrek CN, Rawal KN, Kuhn S, Tofilon PJ. Targeting PRMT5 enhances the radiosensitivity of tumor cells grown in vitro and in vivo. Sci Rep 2024; 14:17316. [PMID: 39068290 PMCID: PMC11283541 DOI: 10.1038/s41598-024-68405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
PRMT5 is a widely expressed arginine methyltransferase that regulates processes involved in tumor cell proliferation and survival. In the study described here, we investigated whether PRMT5 provides a target for tumor radiosensitization. Knockdown of PRMT5 using siRNA enhanced the radiosensitivity of a panel of cell lines corresponding to tumor types typically treated with radiotherapy. To extend these studies to an experimental therapeutic setting, the PRMT5 inhibitor LLY-283 was used. Exposure of the tumor cell lines to LLY-283 decreased PRMT5 activity and enhanced their radiosensitivity. This increase in radiosensitivity was accompanied by an inhibition of DNA double-strand break repair as determined by γH2AX foci and neutral comet analyses. For a normal fibroblast cell line, although LLY-283 reduced PRMT5 activity, it had no effect on their radiosensitivity. Transcriptome analysis of U251 cells showed that LLY-283 treatment reduced the expression of genes and altered the mRNA splicing pattern of genes involved in the DNA damage response. Subcutaneous xenografts were then used to evaluate the in vivo response to LLY-283 and radiation. Treatment of mice with LLY-283 decreased tumor PRMT5 activity and significantly enhanced the radiation-induced growth delay. These results suggest that PRMT5 is a tumor selective target for radiosensitization.
Collapse
Affiliation(s)
- Charlotte Degorre
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD, 20892, USA
| | - Steven Lohard
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD, 20892, USA
| | - Christina N Bobrek
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD, 20892, USA
| | - Komal N Rawal
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD, 20892, USA
| | - Skyler Kuhn
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
KURDI MAHER, ALKHOTANI ALAA, SABBAGH ABDULRAHMAN, FAIZO EYAD, LARY AHMEDI, BAMAGA AHMEDK, ALMANSOURI MAJID, HAFIZ BADR, ALSHARIF THAMER, BAEESA SALEH. The interplay mechanism between IDH mutation, MGMT-promoter methylation, and PRMT5 activity in the progression of grade 4 astrocytoma: unraveling the complex triad theory. Oncol Res 2024; 32:1037-1045. [PMID: 38827324 PMCID: PMC11136683 DOI: 10.32604/or.2024.051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 06/04/2024] Open
Abstract
Background The dysregulation of Isocitrate dehydrogenase (IDH) and the subsequent production of 2-Hydroxyglutrate (2HG) may alter the expression of epigenetic proteins in Grade 4 astrocytoma. The interplay mechanism between IDH, O-6-methylguanine-DNA methyltransferase (MGMT)-promoter methylation, and protein methyltransferase proteins-5 (PRMT5) activity, with tumor progression has never been described. Methods A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors. Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis. Inter-cohort statistical significance was evaluated. Results Both IDH-mutant WHO grade 4 astrocytomas (n = 22, 64.7%) and IDH-wildtype glioblastomas (n = 12, 35.3%) had upregulated PRMT5 gene expression except in one case. Out of the 22 IDH-mutant tumors, 10 (45.5%) tumors showed MGMT-promoter methylation and 12 (54.5%) tumors had unmethylated MGMT. All IDH-wildtype tumors had unmethylated MGMT. There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma (p-value = 0.006). Statistically significant differences in progression-free survival (PFS) were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide (TMZ) or TMZ plus other chemotherapies, regardless of their IDH or MGMT-methylation status (p-value=0.0014). Specifically, IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation, who received only TMZ, have exhibited longer PFS. Conclusions The relationship between PRMT5, MGMT-promoter, and IDH is not tri-directional. However, accumulation of D2-hydroxyglutarate (2-HG), which partially activates 2-OG-dependent deoxygenase, may not affect their activities. In IDH-wildtype glioblastomas, the 2HG-2OG pathway is typically inactive, leading to PRMT5 upregulation. TMZ alone, compared to TMZ-plus, can increase PFS in upregulated PRMT5 tumors. Thus, using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.
Collapse
Affiliation(s)
- MAHER KURDI
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - ALAA ALKHOTANI
- Department of Pathology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - ABDULRAHMAN SABBAGH
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - EYAD FAIZO
- Department of Surgery, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - AHMED I. LARY
- Section of Neurosurgery, Department of Surgery, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - AHMED K. BAMAGA
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - MAJID ALMANSOURI
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - BADR HAFIZ
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - THAMER ALSHARIF
- Department of Surgery, King Abdulaziz Specialist Hospital, Taif, Saudi Arabia
| | - SALEH BAEESA
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Lavogina D, Krõlov MK, Vellama H, Modhukur V, Di Nisio V, Lust H, Eskla KL, Salumets A, Jaal J. Inhibition of epigenetic and cell cycle-related targets in glioblastoma cell lines reveals that onametostat reduces proliferation and viability in both normoxic and hypoxic conditions. Sci Rep 2024; 14:4303. [PMID: 38383756 PMCID: PMC10881536 DOI: 10.1038/s41598-024-54707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The choice of targeted therapies for treatment of glioblastoma patients is currently limited, and most glioblastoma patients die from the disease recurrence. Thus, systematic studies in simplified model systems are required to pinpoint the choice of targets for further exploration in clinical settings. Here, we report screening of 5 compounds targeting epigenetic writers or erasers and 6 compounds targeting cell cycle-regulating protein kinases against 3 glioblastoma cell lines following incubation under normoxic or hypoxic conditions. The viability/proliferation assay indicated that PRMT5 inhibitor onametostat was endowed with high potency under both normoxic and hypoxic conditions in cell lines that are strongly MGMT-positive (T98-G), weakly MGMT-positive (U-251 MG), or MGMT-negative (U-87 MG). In U-251 MG and U-87 MG cells, onametostat also affected the spheroid formation at concentrations lower than the currently used chemotherapeutic drug lomustine. In T98-G cell line, treatment with onametostat led to dramatic changes in the transcriptome profile by inducing the cell cycle arrest, suppressing RNA splicing, and down-regulating several major glioblastoma cell survival pathways. Further validation by immunostaining in three cell lines confirmed that onametostat affects cell cycle and causes reduction in nucleolar protein levels. In this way, inhibition of epigenetic targets might represent a viable strategy for glioblastoma treatment even in the case of decreased chemo- and radiation sensitivity, although further studies in clinically more relevant models are required.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia.
- Competence Centre on Health Technologies, Tartu, Estonia.
| | - Mattias Kaspar Krõlov
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Hans Vellama
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Helen Lust
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia.
| |
Collapse
|
11
|
Brown EJ, Balaguer-Lluna L, Cribbs AP, Philpott M, Campo L, Browne M, Wong JF, Oppermann U, Carcaboso ÁM, Bullock AN, Farnie G. PRMT5 inhibition shows in vitro efficacy against H3K27M-altered diffuse midline glioma, but does not extend survival in vivo. Sci Rep 2024; 14:328. [PMID: 38172189 PMCID: PMC10764357 DOI: 10.1038/s41598-023-48652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
H3K27-altered Diffuse Midline Glioma (DMG) is a universally fatal paediatric brainstem tumour. The prevalent driver mutation H3K27M creates a unique epigenetic landscape that may also establish therapeutic vulnerabilities to epigenetic inhibitors. However, while HDAC, EZH2 and BET inhibitors have proven somewhat effective in pre-clinical models, none have translated into clinical benefit due to either poor blood-brain barrier penetration, lack of efficacy or toxicity. Thus, there remains an urgent need for new DMG treatments. Here, we performed wider screening of an epigenetic inhibitor library and identified inhibitors of protein arginine methyltransferases (PRMTs) among the top hits reducing DMG cell viability. Two of the most effective inhibitors, LLY-283 and GSK591, were targeted against PRMT5 using distinct binding mechanisms and reduced the viability of a subset of DMG cells expressing wild-type TP53 and mutant ACVR1. RNA-sequencing and phenotypic analyses revealed that LLY-283 could reduce the viability, clonogenicity and invasion of DMG cells in vitro, representing three clinically important phenotypes, but failed to prolong survival in an orthotopic xenograft model. Together, these data show the challenges of DMG treatment and highlight PRMT5 inhibitors for consideration in future studies of combination treatments.
Collapse
Affiliation(s)
- Elizabeth J Brown
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Leire Balaguer-Lluna
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Adam P Cribbs
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Martin Philpott
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Leticia Campo
- Department of Oncology, Experimental Cancer Medicine Centre, University of Oxford, Oxford, UK
| | - Molly Browne
- Department of Oncology, Experimental Cancer Medicine Centre, University of Oxford, Oxford, UK
| | - Jong Fu Wong
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Udo Oppermann
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Ángel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Alex N Bullock
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Gillian Farnie
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK.
- Cancer Research Horizons, The Francis Crick Institute, London, UK.
| |
Collapse
|
12
|
Kumar D, Jain S, Coulter DW, Joshi SS, Chaturvedi NK. PRMT5 as a Potential Therapeutic Target in MYC-Amplified Medulloblastoma. Cancers (Basel) 2023; 15:5855. [PMID: 38136401 PMCID: PMC10741595 DOI: 10.3390/cancers15245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
MYC amplification or overexpression is most common in Group 3 medulloblastomas and is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase 5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates oncogenes, including MYC, that are often deregulated in medulloblastomas. However, the role of PRMT5-mediated post-translational modification in the stabilization of these oncoproteins remains poorly understood. The potential impact of PRMT5 inhibition on MYC makes it an attractive target in various cancers. PRMT5 inhibitors are a promising class of anti-cancer drugs demonstrating preclinical and preliminary clinical efficacies. Here, we review the publicly available preclinical and clinical studies on PRMT5 targeting using small molecule inhibitors and discuss the prospects of using them in medulloblastoma therapy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Stuti Jain
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| | - Shantaram S. Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 69198, USA;
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| |
Collapse
|
13
|
Verbeke S, Bourdon A, Guegan JP, Leroy L, Chaire V, Richard E, Bessede A, Italiano A. Antitumor Effects of PRMT5 Inhibition in Sarcomas. CANCER RESEARCH COMMUNICATIONS 2023; 3:2211-2220. [PMID: 37861293 PMCID: PMC10621483 DOI: 10.1158/2767-9764.crc-23-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Patients with advanced soft-tissue sarcomas (STS) have few therapeutic options. Protein arginine methyltransferase 5 (PRMT5), an anticancer target, has been extensively investigated in recent years in epithelial tumors. To date, no data related to the biological role of PRMT5 inhibition and its potential effect as a treatment in STS have been reported.To investigate the therapeutic potential of PRMT5 targeting in STS, we first evaluated the prognostic value of PRMT5 expression in two different cohorts of patients with STS. We then used the potent and selective GSK3326595 (GSK595) compound to investigate the antitumor effect of the pharmacologic inhibition of PRMT5 in vitro via MTT, apoptosis, cell cycle, clonogenicity, and proliferation assays. In vivo studies were performed with two animal models to evaluate the effects of GSK595 on tumor growth. The mechanisms of action were investigated by RNA sequencing, metabolic pathway analysis, Western blotting, and glucose uptake/lactate production assays.High PRMT5 gene expression levels were significantly associated with worsened metastasis-free survival of patients with STS. GSK595 decreased the global symmetric dimethylarginine level, the proliferation rate and clonogenicity of STS cell lines in vitro and tumor growth in vivo. Moreover, PRMT5 inhibition regulated aerobic glycolysis through downregulation of key enzymes of glycolysis as well as glucose uptake and lactate production.The current study demonstrated that PRMT5 regulates STS cell metabolism and thus represents a potential therapeutic target for STS. Additional studies in diverse sarcoma subtypes will be essential to confirm and expand upon these findings. SIGNIFICANCE STSs have limited therapeutic options. We show here the poor prognostic value of high PRMT5 expression in STS. Moreover, we demonstrate that the pharmacologic inhibition of PRMT5 has significant antitumor activity through the downregulation of glycolysis. Our findings support the clinical investigation of PRMT5 inhibition in STSs.
Collapse
Affiliation(s)
- Stéphanie Verbeke
- Sarcoma Unit, Bergonié Institute, Bordeaux, France
- INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux, Bordeaux, France
| | - Aurélien Bourdon
- Sarcoma Unit, Bergonié Institute, Bordeaux, France
- INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux, Bordeaux, France
| | | | - Laura Leroy
- Sarcoma Unit, Bergonié Institute, Bordeaux, France
- INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux, Bordeaux, France
| | - Vanessa Chaire
- Sarcoma Unit, Bergonié Institute, Bordeaux, France
- INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux, Bordeaux, France
| | - Elodie Richard
- Service Commun des Animaleries, University of Bordeaux, Bordeaux, France
| | | | - Antoine Italiano
- Sarcoma Unit, Bergonié Institute, Bordeaux, France
- INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux, Bordeaux, France
- Faculty of Medicine, University of Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Chang K, Gao D, Yan J, Lin L, Cui T, Lu S. Critical Roles of Protein Arginine Methylation in the Central Nervous System. Mol Neurobiol 2023; 60:6060-6091. [PMID: 37415067 DOI: 10.1007/s12035-023-03465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
A remarkable post-transitional modification of both histones and non-histone proteins is arginine methylation. Methylation of arginine residues is crucial for a wide range of cellular process, including signal transduction, DNA repair, gene expression, mRNA splicing, and protein interaction. Arginine methylation is modulated by arginine methyltransferases and demethylases, like protein arginine methyltransferase (PRMTs) and Jumonji C (JmjC) domain containing (JMJD) proteins. Symmetric dimethylarginine and asymmetric dimethylarginine, metabolic products of the PRMTs and JMJD proteins, can be changed by abnormal expression of these proteins. Many pathologies including cancer, inflammation and immune responses have been closely linked to aberrant arginine methylation. Currently, the majority of the literature discusses the substrate specificity and function of arginine methylation in the pathogenesis and prognosis of cancers. Numerous investigations on the roles of arginine methylation in the central nervous system (CNS) have so far been conducted. In this review, we display the biochemistry of arginine methylation and provide an overview of the regulatory mechanism of arginine methyltransferases and demethylases. We also highlight physiological functions of arginine methylation in the CNS and the significance of arginine methylation in a variety of neurological diseases such as brain cancers, neurodegenerative diseases and neurodevelopmental disorders. Furthermore, we summarize PRMT inhibitors and molecular functions of arginine methylation. Finally, we pose important questions that require further research to comprehend the roles of arginine methylation in the CNS and discover more effective targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, and Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
15
|
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther 2023; 8:345. [PMID: 37699892 PMCID: PMC10497558 DOI: 10.1038/s41392-023-01569-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.
Collapse
Affiliation(s)
- Zhe-Nan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Yi-Fan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jun-Nan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jia-Hua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China.
| |
Collapse
|
16
|
Li J, Zhang R, Wang C, Zhu J, Ren M, Jiang Y, Hou X, Du Y, Wu Q, Qi S, Li L, Chen S, Yang H, Hou F. WDR77 inhibits prion-like aggregation of MAVS to limit antiviral innate immune response. Nat Commun 2023; 14:4824. [PMID: 37563140 PMCID: PMC10415273 DOI: 10.1038/s41467-023-40567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
RIG-I-MAVS signaling pathway plays a crucial role in defending against pathogen infection and maintaining immune balance. Upon detecting viral RNA, RIG-I triggers the formation of prion-like aggregates of the adaptor protein MAVS, which then activates the innate antiviral immune response. However, the mechanisms that regulate the aggregation of MAVS are not yet fully understood. Here, we identified WDR77 as a MAVS-associated protein, which negatively regulates MAVS aggregation. WDR77 binds to MAVS proline-rich region through its WD2-WD3-WD4 domain and inhibits the formation of prion-like filament of recombinant MAVS in vitro. In response to virus infection, WDR77 is recruited to MAVS to prevent the formation of its prion-like aggregates and thus downregulate RIG-I-MAVS signaling in cells. WDR77 deficiency significantly potentiates the induction of antiviral genes upon negative-strand RNA virus infections, and myeloid-specific Wdr77-deficient mice are more resistant to RNA virus infection. Our findings reveal that WDR77 acts as a negative regulator of the RIG-I-MAVS signaling pathway by inhibiting the prion-like aggregation of MAVS to prevent harmful inflammation.
Collapse
Affiliation(s)
- Jiaxin Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rui Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Changwan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Junyan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Miao Ren
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingbo Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xianteng Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yangting Du
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shishi Qi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Hui Yang
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
17
|
Muniyandi A, Hartman GD, Song Y, Mijit M, Kelley MR, Corson TW. Beyond VEGF: Targeting Inflammation and Other Pathways for Treatment of Retinal Disease. J Pharmacol Exp Ther 2023; 386:15-25. [PMID: 37142441 PMCID: PMC10289243 DOI: 10.1124/jpet.122.001563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Neovascular eye diseases include conditions such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration. Together, they are a major cause of vision loss and blindness worldwide. The current therapeutic mainstay for these diseases is intravitreal injections of biologics targeting vascular endothelial growth factor (VEGF) signaling. Lack of universal response to these anti-VEGF agents coupled with the challenging delivery method underscore a need for new therapeutic targets and agents. In particular, proteins that mediate both inflammatory and proangiogenic signaling are appealing targets for new therapeutic development. Here, we review agents currently in clinical trials and highlight some promising targets in preclinical and early clinical development, focusing on the redox-regulatory transcriptional activator APE1/Ref-1, the bioactive lipid modulator soluble epoxide hydrolase, the transcription factor RUNX1, and others. Small molecules targeting each of these proteins show promise for blocking neovascularization and inflammation. The affected signaling pathways illustrate the potential of new antiangiogenic strategies for posterior ocular disease. SIGNIFICANCE STATEMENT: Discovery and therapeutic targeting of new angiogenesis mediators is necessary to improve treatment of blinding eye diseases like retinopathy of prematurity, diabetic retinopathy, and neovascular age-related macular degeneration. Novel targets undergoing evaluation and drug discovery work include proteins important for both angiogenesis and inflammation signaling, including APE1/Ref-1, soluble epoxide hydrolase, RUNX1, and others.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Gabriella D Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Yang Song
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Mahmut Mijit
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute (A.M., G.D.H., Y.S., M.R.K., T.W.C.), Department of Pediatrics, Herman B Wells Center for Pediatric Research (M.M., M.R.K.), Stark Neurosciences Research Institute (G.D.H., T.W.C.), Departments of Pharmacology and Toxicology (M.R.K., T.W.C.) and Biochemistry and Molecular Biology (M.R.K., T.W.C.), and Melvin and Bren Simon Comprehensive Cancer Center (M.R.K., T.W.C.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
18
|
McCornack C, Woodiwiss T, Hardi A, Yano H, Kim AH. The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol 2023; 13:1144184. [PMID: 37205197 PMCID: PMC10185819 DOI: 10.3389/fonc.2023.1144184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain malignancy and is characterized by a high degree of intra and intertumor cellular heterogeneity, a starkly immunosuppressive tumor microenvironment, and nearly universal recurrence. The application of various genomic approaches has allowed us to understand the core molecular signatures, transcriptional states, and DNA methylation patterns that define GBM. Histone posttranslational modifications (PTMs) have been shown to influence oncogenesis in a variety of malignancies, including other forms of glioma, yet comparatively less effort has been placed on understanding the transcriptional impact and regulation of histone PTMs in the context of GBM. In this review we discuss work that investigates the role of histone acetylating and methylating enzymes in GBM pathogenesis, as well as the effects of targeted inhibition of these enzymes. We then synthesize broader genomic and epigenomic approaches to understand the influence of histone PTMs on chromatin architecture and transcription within GBM and finally, explore the limitations of current research in this field before proposing future directions for this area of research.
Collapse
Affiliation(s)
- Colin McCornack
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy Woodiwiss
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa, IA, United States
| | - Angela Hardi
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
19
|
Araujo-Abad S, Manresa-Manresa A, Rodríguez-Cañas E, Fuentes-Baile M, García-Morales P, Mallavia R, Saceda M, de Juan Romero C. Glioblastoma-Derived Small Extracellular Vesicles: Nanoparticles for Glioma Treatment. Int J Mol Sci 2023; 24:ijms24065910. [PMID: 36982984 PMCID: PMC10054028 DOI: 10.3390/ijms24065910] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Glioblastoma (GBM), characterized by fast growth and invasion into adjacent tissue, is the most aggressive cancer of brain origin. Current protocols, which include cytotoxic chemotherapeutic agents, effectively treat localized disease; however, these aggressive therapies present side effects due to the high doses administered. Therefore, more efficient ways of drug delivery have been studied to reduce the therapeutic exposure of the patients. We have isolated and fully characterized small extracellular vesicles (EVs) from seven patient-derived GBM cell lines. After loading them with two different drugs, Temozolomide (TMZ) and EPZ015666, we observed a reduction in the total amount of drugs needed to trigger an effect on tumor cells. Moreover, we observed that GBM-derived small EVs, although with lower target specificity, can induce an effect on pancreatic cancer cell death. These results suggest that GBM-derived small EVs represent a promising drug delivery tool for further preclinical studies and potentially for the clinical development of GBM treatments.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
- Centro de Biotecnología, Universidad Nacional de Loja, Loja 110111, Ecuador
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Unidad de Investigación, 03203 Alicante, Spain
| | - Antonio Manresa-Manresa
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Unidad de Investigación, 03203 Alicante, Spain
| | - Enrique Rodríguez-Cañas
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - María Fuentes-Baile
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Unidad de Investigación, 03203 Alicante, Spain
| | - Pilar García-Morales
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Ricardo Mallavia
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
| | - Miguel Saceda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Unidad de Investigación, 03203 Alicante, Spain
| | - Camino de Juan Romero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Unidad de Investigación, 03203 Alicante, Spain
| |
Collapse
|
20
|
Lechpammer M, Mahammedi A, Pomeranz Krummel DA, Sengupta S. Lessons learned from evolving frameworks in adult glioblastoma. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:131-140. [PMID: 36796938 DOI: 10.1016/b978-0-323-85538-9.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant adult brain tumor. Significant effort has been directed to achieve a molecular subtyping of GBM to impact treatment. The discovery of new unique molecular alterations has resulted in a more effective classification of tumors and has opened the door to subtype-specific therapeutic targets. Morphologically identical GBM may have different genetic, epigenetic, and transcriptomic alterations and therefore different progression trajectories and response to treatments. With a transition to molecularly guided diagnosis, there is now a potential to personalize and successfully manage this tumor type to improve outcomes. The steps to achieve subtype-specific molecular signatures can be extrapolated to other neuroproliferative as well as neurodegenerative disorders.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Abdelkader Mahammedi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel A Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
21
|
Muniyandi A, Martin M, Sishtla K, Motolani A, Sun M, Jensen NR, Qi X, Boulton ME, Prabhu L, Lu T, Corson TW. PRMT5 is a therapeutic target in choroidal neovascularization. Sci Rep 2023; 13:1747. [PMID: 36720900 PMCID: PMC9889383 DOI: 10.1038/s41598-023-28215-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Ocular neovascular diseases including neovascular age-related macular degeneration (nvAMD) are widespread causes of blindness. Patients' non-responsiveness to currently used biologics that target vascular endothelial growth factor (VEGF) poses an unmet need for novel therapies. Here, we identify protein arginine methyltransferase 5 (PRMT5) as a novel therapeutic target for nvAMD. PRMT5 is a well-known epigenetic enzyme. We previously showed that PRMT5 methylates and activates a proangiogenic and proinflammatory transcription factor, the nuclear factor kappa B (NF-κB), which has a master role in tumor progression, notably in pancreatic ductal adenocarcinoma and colorectal cancer. We identified a potent and specific small molecule inhibitor of PRMT5, PR5-LL-CM01, that dampens the methylation and activation of NF-κB. Here for the first time, we assessed the antiangiogenic activity of PR5-LL-CM01 in ocular cells. Immunostaining of human nvAMD sections revealed that PRMT5 is highly expressed in the retinal pigment epithelium (RPE)/choroid where neovascularization occurs, while mouse eyes with laser induced choroidal neovascularization (L-CNV) showed PRMT5 is overexpressed in the retinal ganglion cell layer and in the RPE/choroid. Importantly, inhibition of PRMT5 by PR5-LL-CM01 or shRNA knockdown of PRMT5 in human retinal endothelial cells (HRECs) and induced pluripotent stem cell (iPSC)-derived choroidal endothelial cells (iCEC2) reduced NF-κB activity and the expression of its target genes, such as tumor necrosis factor α (TNF-α) and VEGF-A. In addition to inhibiting angiogenic properties of proliferation and tube formation, PR5-LL-CM01 blocked cell cycle progression at G1/S-phase in a dose-dependent manner in these cells. Thus, we provide the first evidence that inhibition of PRMT5 impedes angiogenesis in ocular endothelial cells, suggesting PRMT5 as a potential therapeutic target to ameliorate ocular neovascularization.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nathan R Jensen
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lakshmi Prabhu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
22
|
Fu S, Zheng Q, Zhang D, Lin C, Ouyang L, Zhang J, Chen L. Medicinal chemistry strategies targeting PRMT5 for cancer therapy. Eur J Med Chem 2022; 244:114842. [DOI: 10.1016/j.ejmech.2022.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022]
|
23
|
Liao Y, Luo Z, Lin Y, Chen H, Chen T, Xu L, Orgurek S, Berry K, Dzieciatkowska M, Reisz JA, D’Alessandro A, Zhou W, Lu QR. PRMT3 drives glioblastoma progression by enhancing HIF1A and glycolytic metabolism. Cell Death Dis 2022; 13:943. [PMID: 36351894 PMCID: PMC9646854 DOI: 10.1038/s41419-022-05389-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor, but the mechanisms underlying tumor growth and progression remain unclear. The protein arginine methyltransferases (PRMTs) regulate a variety of biological processes, however, their roles in GBM growth and progression are not fully understood. In this study, our functional analysis of gene expression networks revealed that among the PRMT family expression of PRMT3 was most significantly enriched in both GBM and low-grade gliomas. Higher PRMT3 expression predicted poorer overall survival rate in patients with gliomas. Knockdown of PRMT3 markedly reduced the proliferation and migration of GBM cell lines and patient-derived glioblastoma stem cells (GSC) in cell culture, while its over-expression increased the proliferative capacity of GSC cells by promoting cell cycle progression. Consistently, stable PRMT3 knockdown strongly inhibited tumor growth in xenograft mouse models, along with a significant decrease in cell proliferation as well as an increase in apoptosis. We further found that PRMT3 reprogrammed metabolic pathways to promote GSC growth via increasing glycolysis and its critical transcriptional regulator HIF1α. In addition, pharmacological inhibition of PRMT3 with a PRMT3-specific inhibitor SGC707 impaired the growth of GBM cells. Thus, our study demonstrates that PRMT3 promotes GBM progression by enhancing HIF1A-mediated glycolysis and metabolic rewiring, presenting a point of metabolic vulnerability for therapeutic targeting in malignant gliomas.
Collapse
Affiliation(s)
- Yunfei Liao
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China ,grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Zaili Luo
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Yifeng Lin
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huiyao Chen
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tong Chen
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lingli Xu
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Sean Orgurek
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Kalen Berry
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Monika Dzieciatkowska
- grid.430503.10000 0001 0703 675XUniversity of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Julie A. Reisz
- grid.430503.10000 0001 0703 675XUniversity of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Angelo D’Alessandro
- grid.430503.10000 0001 0703 675XUniversity of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Wenhao Zhou
- grid.8547.e0000 0001 0125 2443Key Laboratory of Birth Defects, Children’s Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Q. Richard Lu
- grid.239573.90000 0000 9025 8099Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| |
Collapse
|
24
|
Feustel K, Falchook GS. Protein Arginine Methyltransferase 5 (PRMT5) Inhibitors in Oncology Clinical Trials: A review. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 5:58-67. [PMID: 36034581 PMCID: PMC9390703 DOI: 10.36401/jipo-22-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
ABSTRACT
Protein arginine methyltransferase 5 (PRMT5) inhibitors are a new class of antineoplastic agents showing promising preliminary clinical efficacy. Targeting an enzyme involved in a wide array of cellular and transcriptional pro-oncogenic processes, this class offers multifaceted tumor-suppressive effects. Partial response has been seen in adenoid cystic carcinoma from both GSK3326595 and JNJ-64619178, with four cases of stable disease seen with PRT543. Highly significant is a durable complete response in isocitrate dehydrogenase 1-mutated glioblastoma multiforme with PRT811. Both alone and in combination with existing chemotherapies and immunotherapies, this class shows promising preliminary data, particularly in cancers with splicing mutations and DNA damage repair deficiencies. Further studies are warranted, and there are clinical trials to come whose data will be telling of the efficacy of PRMT5 inhibitors in both hematologic and solid malignancies. The aim of this study is to compile available results of PRMT5 inhibitors in oncology clinical trials.
Collapse
Affiliation(s)
- Kavanya Feustel
- 1 Sky Ridge Medical Center, HCA Continental Division, Lone Tree, CO, USA
| | | |
Collapse
|
25
|
Sarmiento BE, Callegari S, Ghotme KA, Akle V. Patient-Derived Xenotransplant of CNS Neoplasms in Zebrafish: A Systematic Review. Cells 2022; 11:cells11071204. [PMID: 35406768 PMCID: PMC8998145 DOI: 10.3390/cells11071204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma and neuroblastoma are the most common central nervous system malignant tumors in adult and pediatric populations. Both are associated with poor survival. These tumors are highly heterogeneous, having complex interactions among different cells within the tumor and with the tumor microenvironment. One of the main challenges in the neuro-oncology field is achieving optimal conditions to evaluate a tumor’s molecular genotype and phenotype. In this respect, the zebrafish biological model is becoming an excellent alternative for studying carcinogenic processes and discovering new treatments. This review aimed to describe the results of xenotransplantation of patient-derived CNS tumors in zebrafish models. The reviewed studies show that it is possible to maintain glioblastoma and neuroblastoma primary cell cultures and transplant the cells into zebrafish embryos. The zebrafish is a suitable biological model for understanding tumor progression and the effects of different treatments. This model offers new perspectives in providing personalized care and improving outcomes for patients living with central nervous system tumors.
Collapse
Affiliation(s)
- Beatriz E. Sarmiento
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
| | - Santiago Callegari
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
| | - Kemel A. Ghotme
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia;
- Translational Neuroscience Research Lab, Faculty of Medicine, Universidad de La Sabana, Chía 250001, Colombia
| | - Veronica Akle
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
- Correspondence:
| |
Collapse
|
26
|
Abumustafa W, Zamer BA, Khalil BA, Hamad M, Maghazachi AA, Muhammad JS. Protein arginine N-methyltransferase 5 in colorectal carcinoma: Insights into mechanisms of pathogenesis and therapeutic strategies. Biomed Pharmacother 2022; 145:112368. [PMID: 34794114 DOI: 10.1016/j.biopha.2021.112368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Protein arginine N-methyltransferase 5 (PRMT5) enzyme is one of the eight canonical PRMTs, classified as a type II PRMT, induces arginine monomethylation and symmetric dimethylation. PRMT5 is known to be overexpressed in multiple cancer types, including colorectal cancer (CRC), where its overexpression is associated with poor survival. Recent studies have shown that upregulation of PRMT5 induces tumor growth and metastasis in CRC. Moreover, various novel PRMT5 inhibitors tested on CRC cell lines showed promising anticancer effects. Also, it was suggested that PRMT5 could be a valid biomarker for CRC diagnosis and prognosis. Hence, a deeper understanding of PRMT5-mediated CRC carcinogenesis could provide new avenues towards developing a targeted therapy. In this study, we started with in silico analysis correlating PRMT5 expression in CRC patients as a prelude to further our investigation of its role in CRC. We then carried out a comprehensive review of the scientific literature that dealt with the role(s) of PRMT5 in CRC pathogenesis, diagnosis, and prognosis. Also, we have summarized key findings from in vitro research using various therapeutic agents and strategies directly targeting PRMT5 or disrupting its function. In conclusion, PRMT5 seems to play a significant role in the pathogenesis of CRC; therefore, its prognostic and therapeutic potential merits further investigation.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
27
|
Banasavadi-Siddegowda YK, Namagiri S, Otani Y, Sur H, Rivas S, Bryant JP, Shellbourn A, Rock M, Chowdhury A, Lewis CT, Shimizu T, Walbridge S, Kumarasamy S, Shah AH, Lee TJ, Maric D, Yan Y, Yoo JY, Kumbar SG, Heiss JD, Kaur B. Targeting protein arginine methyltransferase 5 sensitizes glioblastoma to trametinib. Neurooncol Adv 2022; 4:vdac095. [PMID: 35875691 PMCID: PMC9297944 DOI: 10.1093/noajnl/vdac095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The prognosis of glioblastoma (GBM) remains dismal because therapeutic approaches have limited effectiveness. A new targeted treatment using MEK inhibitors, including trametinib, has been proposed to improve GBM therapy. Trametinib had a promising preclinical effect against several cancers, but its adaptive treatment resistance precluded its clinical translation in GBM. Previously, we have demonstrated that protein arginine methyltransferase 5 (PRMT5) is upregulated in GBM and its inhibition promotes apoptosis and senescence in differentiated and stem-like tumor cells, respectively. We tested whether inhibition of PRMT5 can enhance the efficacy of trametinib against GBM. METHODS Patient-derived primary GBM neurospheres (GBMNS) with transient PRMT5 knockdown were treated with trametinib and cell viability, proliferation, cell cycle progression, ELISA, and western blot were analyzed. In vivo, NSG mice were intracranially implanted with PRMT5-intact and -depleted GBMNS, treated with trametinib by daily oral gavage, and observed for tumor progression and mice survival rate. RESULTS PRMT5 depletion enhanced trametinib-induced cytotoxicity in GBMNS. PRMT5 knockdown significantly decreased trametinib-induced AKT and ERBB3 escape pathways. However, ERBB3 inhibition alone failed to block trametinib-induced AKT activity suggesting that the enhanced antitumor effect imparted by PRMT5 knockdown in trametinib-treated GBMNS resulted from AKT inhibition and not ERBB3 inhibition. In orthotopic murine xenograft models, PRMT5-depletion extended the survival of tumor-bearing mice, and combination with trametinib further increased survival. CONCLUSION Combined PRMT5/MEK inhibition synergistically inhibited GBM in animal models and is a promising strategy for GBM therapy.
Collapse
Affiliation(s)
| | - Sriya Namagiri
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshihiro Otani
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hannah Sur
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah Rivas
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jean-Paul Bryant
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Allison Shellbourn
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitchell Rock
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashis Chowdhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cole T Lewis
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Toshihiko Shimizu
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Stuart Walbridge
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Ashish H Shah
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tae Jin Lee
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, NINDS, NIH, Bethesda, Maryland, USA
| | - Yuanqing Yan
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Ji Young Yoo
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sangamesh G Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Balveen Kaur
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
28
|
Motolani A, Martin M, Sun M, Lu T. The Structure and Functions of PRMT5 in Human Diseases. Life (Basel) 2021; 11:life11101074. [PMID: 34685445 PMCID: PMC8539453 DOI: 10.3390/life11101074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of protein arginine methyltransferase 5 (PRMT5) and the resolution of its structure, an increasing number of papers have investigated and delineated the structural and functional role of PRMT5 in diseased conditions. PRMT5 is a type II arginine methyltransferase that catalyzes symmetric dimethylation marks on histones and non-histone proteins. From gene regulation to human development, PRMT5 is involved in many vital biological functions in humans. The role of PRMT5 in various cancers is particularly well-documented, and investigations into the development of better PRMT5 inhibitors to promote tumor regression are ongoing. Notably, emerging studies have demonstrated the pathological contribution of PRMT5 in the progression of inflammatory diseases, such as diabetes, cardiovascular diseases, and neurodegenerative disorders. However, more research in this direction is needed. Herein, we critically review the position of PRMT5 in current literature, including its structure, mechanism of action, regulation, physiological and pathological relevance, and therapeutic strategies.
Collapse
Affiliation(s)
- Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-278-0520
| |
Collapse
|
29
|
Chen Y, Shao X, Zhao X, Ji Y, Liu X, Li P, Zhang M, Wang Q. Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms. Biomed Pharmacother 2021; 144:112252. [PMID: 34619493 DOI: 10.1016/j.biopha.2021.112252] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
The protein arginine methyltransferase 5 (PRMT5) as the major type II arginine methyltransferase catalyzes the mono- and symmetric dimethylation of arginine residues in both histone and non-histone proteins. Recently, increasing evidence has demonstrated that PRMT5 plays an indispensable role in the occurrence and development of various human cancers by promoting the cell proliferation, invasion, and migration. It has become a promising and valuable target in the cancer epigenetic therapy. This review is to summarize the clinical significance of PRMT5 in the cancers such as lung cancer, breast cancer and colorectal cancer, and the drug discovery targeting PRMT5. Importantly, the existing PRMT5 inhibitors representing different molecular mechanisms, and their pharmacological effect, mechanism of action and biological affinity are analyzed. Clinical status, current problems and future perspective of PRMT5 inhibitors for the treatment of cancers are also discussed, all of which provides crucial help for the future discovery of PRMT5 targeted drugs for cancer treatment.
Collapse
Affiliation(s)
- Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Xiaomin Shao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Xiangge Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yuan Ji
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Xiaorong Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Peixuan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Mingyu Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China.
| |
Collapse
|
30
|
Wu Q, Berglund AE, Etame AB. The Impact of Epigenetic Modifications on Adaptive Resistance Evolution in Glioblastoma. Int J Mol Sci 2021; 22:8324. [PMID: 34361090 PMCID: PMC8347012 DOI: 10.3390/ijms22158324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a highly lethal cancer that is universally refractory to the standard multimodal therapies of surgical resection, radiation, and chemotherapy treatment. Temozolomide (TMZ) is currently the best chemotherapy agent for GBM, but the durability of response is epigenetically dependent and often short-lived secondary to tumor resistance. Therapies that can provide synergy to chemoradiation are desperately needed in GBM. There is accumulating evidence that adaptive resistance evolution in GBM is facilitated through treatment-induced epigenetic modifications. Epigenetic alterations of DNA methylation, histone modifications, and chromatin remodeling have all been implicated as mechanisms that enhance accessibility for transcriptional activation of genes that play critical roles in GBM resistance and lethality. Hence, understanding and targeting epigenetic modifications associated with GBM resistance is of utmost priority. In this review, we summarize the latest updates on the impact of epigenetic modifications on adaptive resistance evolution in GBM to therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| |
Collapse
|
31
|
Amici SA, Osman W, Guerau-de-Arellano M. PRMT5 Promotes Cyclin E1 and Cell Cycle Progression in CD4 Th1 Cells and Correlates With EAE Severity. Front Immunol 2021; 12:695947. [PMID: 34168658 PMCID: PMC8217861 DOI: 10.3389/fimmu.2021.695947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple Sclerosis (MS) is a debilitating central nervous system disorder associated with inflammatory T cells. Activation and expansion of inflammatory T cells is thought to be behind MS relapses and influence disease severity. Protein arginine N-methyltransferase 5 (PRMT5) is a T cell activation-induced enzyme that symmetrically dimethylates proteins and promotes T cell proliferation. However, the mechanism behind PRMT5-mediated control of T cell proliferation and whether PRMT5 contributes to diseases severity is unclear. Here, we evaluated the role of PRMT5 on cyclin/cdk pairs and cell cycle progression, as well as PRMT5's link to disease severity in an animal model of relapsing-remitting MS. Treatment of T helper 1 (mTh1) cells with the selective PRMT5 inhibitor, HLCL65, arrested activation-induced T cell proliferation at the G1 stage of the cell cycle, suggesting PRMT5 promotes cell cycle progression in CD4+ T cells. The Cyclin E1/Cdk2 pair promoting G1/S progression was also decreased after PRMT5 inhibition, as was the phosphorylation of retinoblastoma. In the SJL mouse relapsing-remitting model of MS, the highest PRMT5 expression in central nervous system-infiltrating cells corresponded to peak and relapse timepoints. PRMT5 expression also positively correlated with increasing CD4 Th cell composition, disease severity and Cyclin E1 expression. These data indicate that PRMT5 promotes G1/S cell cycle progression and suggest that this effect influences disease severity and/or progression in the animal model of MS. Modulating PRMT5 levels may be useful for controlling T cell expansion in T cell-mediated diseases including MS.
Collapse
MESH Headings
- Animals
- Cell Cycle
- Cell Proliferation
- Cyclin E/metabolism
- Cyclin-Dependent Kinase 2/metabolism
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Genes, T-Cell Receptor
- Mice, Transgenic
- Multiple Sclerosis, Relapsing-Remitting/enzymology
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/pathology
- Oncogene Proteins/metabolism
- Phosphorylation
- Protein-Arginine N-Methyltransferases/metabolism
- Retinoblastoma Protein/metabolism
- Severity of Illness Index
- Signal Transduction
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Th1 Cells/pathology
Collapse
Affiliation(s)
- Stephanie A. Amici
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Wissam Osman
- Discovery PREP Program, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
32
|
Quinlan RBA, Brennan PE. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. RSC Chem Biol 2021; 2:759-795. [PMID: 34458810 PMCID: PMC8341094 DOI: 10.1039/d1cb00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can accelerate the drug discovery process by providing a starting point for small molecule drugs. This review seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other classes of probe.
Collapse
Affiliation(s)
- Robert B A Quinlan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
| | - Paul E Brennan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Alzheimer's Research (UK) Oxford Drug Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| |
Collapse
|
33
|
Miller JJ. Targeting protein arginine methylation to death. Neuro Oncol 2021; 23:1421-1422. [PMID: 34037795 DOI: 10.1093/neuonc/noab123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julie J Miller
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Sloan SL, Renaldo KA, Long M, Chung JH, Courtney LE, Shilo K, Youssef Y, Schlotter S, Brown F, Klamer BG, Zhang X, Yilmaz AS, Ozer HG, Valli VE, Vaddi K, Scherle P, Alinari L, Kisseberth WC, Baiocchi RA. Validation of protein arginine methyltransferase 5 (PRMT5) as a candidate therapeutic target in the spontaneous canine model of non-Hodgkin lymphoma. PLoS One 2021; 16:e0250839. [PMID: 33989303 PMCID: PMC8121334 DOI: 10.1371/journal.pone.0250839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous group of blood cancers arising in lymphoid tissues that commonly effects both humans and dogs. Protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes the symmetric di-methylation of arginine residues, is frequently overexpressed and dysregulated in both human solid and hematologic malignancies. In human lymphoma, PRMT5 is a known driver of malignant transformation and oncogenesis, however, the expression and role of PRMT5 in canine lymphoma has not been explored. To explore canine lymphoma as a useful comparison to human lymphoma while validating PRMT5 as a rational therapeutic target in both, we characterized expression patterns of PRMT5 in canine lymphoma tissue microarrays, primary lymphoid biopsies, and canine lymphoma-derived cell lines. The inhibition of PRMT5 led to growth suppression and induction of apoptosis, while selectively decreasing global marks of symmetric dimethylarginine (SDMA) and histone H4 arginine 3 symmetric dimethylation. We performed ATAC-sequencing and gene expression microarrays with pathway enrichment analysis to characterize genome-wide changes in chromatin accessibility and whole-transcriptome changes in canine lymphoma cells lines upon PRMT5 inhibition. This work validates PRMT5 as a promising therapeutic target for canine lymphoma and supports the continued use of the spontaneously occurring canine lymphoma model for the preclinical development of PRMT5 inhibitors for the treatment of human NHL.
Collapse
Affiliation(s)
- Shelby L. Sloan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Kyle A. Renaldo
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Mackenzie Long
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Ji-Hyun Chung
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Lindsay E. Courtney
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah Schlotter
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Fiona Brown
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Brett G. Klamer
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ayse S. Yilmaz
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Hatice G. Ozer
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Victor E. Valli
- VDx Veterinary Diagnostics, Davis, California, United States of America
| | - Kris Vaddi
- Prelude Therapeutics, Wilmington, Delaware, United States of America
| | - Peggy Scherle
- Prelude Therapeutics, Wilmington, Delaware, United States of America
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - William C. Kisseberth
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (WCK); (RAB)
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (WCK); (RAB)
| |
Collapse
|
35
|
Samuel SF, Barry A, Greenman J, Beltran-Alvarez P. Arginine methylation: the promise of a 'silver bullet' for brain tumours? Amino Acids 2021; 53:489-506. [PMID: 33404912 PMCID: PMC8107164 DOI: 10.1007/s00726-020-02937-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Despite intense research efforts, our pharmaceutical repertoire against high-grade brain tumours has not been able to increase patient survival for a decade and life expectancy remains at less than 16 months after diagnosis, on average. Inhibitors of protein arginine methyltransferases (PRMTs) have been developed and investigated over the past 15 years and have now entered oncology clinical trials, including for brain tumours. This review collates recent advances in the understanding of the role of PRMTs and arginine methylation in brain tumours. We provide an up-to-date literature review on the mechanisms for PRMT regulation. These include endogenous modulators such as alternative splicing, miRNA, post-translational modifications and PRMT-protein interactions, and synthetic inhibitors. We discuss the relevance of PRMTs in brain tumours with a particular focus on PRMT1, -2, -5 and -8. Finally, we include a future perspective where we discuss possible routes for further research on arginine methylation and on the use of PRMT inhibitors in the context of brain tumours.
Collapse
Affiliation(s)
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | | |
Collapse
|
36
|
Che P, Yu L, Friedman GK, Wang M, Ke X, Wang H, Zhang W, Nabors B, Ding Q, Han X. Integrin αvβ3 Engagement Regulates Glucose Metabolism and Migration through Focal Adhesion Kinase (FAK) and Protein Arginine Methyltransferase 5 (PRMT5) in Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13051111. [PMID: 33807786 PMCID: PMC7961489 DOI: 10.3390/cancers13051111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming promotes glioblastoma cell migration and invasion. Integrin αvβ3 is one of the major integrin family members in glioblastoma multiforme cell surface mediating interactions with extracellular matrix proteins that are important for glioblastoma progression. The role of αvβ3 integrin in regulating metabolic reprogramming and its mechanism of action have not been determined in glioblastoma cells. Integrin αvβ3 engagement with osteopontin promotes glucose uptake and aerobic glycolysis, while inhibiting mitochondrial oxidative phosphorylation. Blocking or downregulation of integrin αvβ3 inhibits glucose uptake and aerobic glycolysis and promotes mitochondrial oxidative phosphorylation, resulting in decreased migration and growth in glioblastoma cells. Pharmacological inhibition of focal adhesion kinase (FAK) or downregulation of protein arginine methyltransferase 5 (PRMT5) blocks metabolic shift toward glycolysis and inhibits glioblastoma cell migration and invasion. These results support that integrin αvβ3 and osteopontin engagement plays an important role in promoting the metabolic shift toward glycolysis and inhibiting mitochondria oxidative phosphorylation in glioblastoma cells. The metabolic shift in cell energy metabolism is coupled to changes in migration, invasion, and growth, which are mediated by downstream FAK and PRMT5 in glioblastoma cells.
Collapse
Affiliation(s)
- Pulin Che
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
| | - Lei Yu
- Guiyang Maternal and Child Health Hospital, Guiyang 550001, China;
| | - Gregory K. Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Meimei Wang
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China;
| | - Huafeng Wang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
- School of Life Science, Shanxi Normal University, Linfen City 041004, China
| | - Wenbin Zhang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
| | - Qiang Ding
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
- Correspondence: (Q.D.); (X.H.)
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
- Correspondence: (Q.D.); (X.H.)
| |
Collapse
|
37
|
Sachamitr P, Ho JC, Ciamponi FE, Ba-Alawi W, Coutinho FJ, Guilhamon P, Kushida MM, Cavalli FMG, Lee L, Rastegar N, Vu V, Sánchez-Osuna M, Coulombe-Huntington J, Kanshin E, Whetstone H, Durand M, Thibault P, Hart K, Mangos M, Veyhl J, Chen W, Tran N, Duong BC, Aman AM, Che X, Lan X, Whitley O, Zaslaver O, Barsyte-Lovejoy D, Richards LM, Restall I, Caudy A, Röst HL, Bonday ZQ, Bernstein M, Das S, Cusimano MD, Spears J, Bader GD, Pugh TJ, Tyers M, Lupien M, Haibe-Kains B, Artee Luchman H, Weiss S, Massirer KB, Prinos P, Arrowsmith CH, Dirks PB. PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nat Commun 2021; 12:979. [PMID: 33579912 PMCID: PMC7881162 DOI: 10.1038/s41467-021-21204-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.
Collapse
Affiliation(s)
- Patty Sachamitr
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Jolene C Ho
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Felipe E Ciamponi
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, Brazil
- The Structural Genomics Consortium, University of Campinas (UNICAMP), Campinas, Brazil
| | - Wail Ba-Alawi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fiona J Coutinho
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michelle M Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naghmeh Rastegar
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - María Sánchez-Osuna
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | | | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mathieu Durand
- RNomics Platform, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsten Hart
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Maria Mangos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Joseph Veyhl
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Wenjun Chen
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Nhat Tran
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Bang-Chi Duong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ahmed M Aman
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Xinghui Che
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaoyang Lan
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Owen Whitley
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Olga Zaslaver
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Laura M Richards
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ian Restall
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Amy Caudy
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Maple Flavored Solutions, LLC, Stony Brook, NY, USA
| | - Hannes L Röst
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Julian Spears
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - H Artee Luchman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- Clark H. Smith Brain Tumor Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- Clark H. Smith Brain Tumor Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katlin B Massirer
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, Brazil
- The Structural Genomics Consortium, University of Campinas (UNICAMP), Campinas, Brazil
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
38
|
Otani Y, Sur H, Rachaiah G, Namagiri S, Chowdhury A, Lewis CT, Shimizu T, Gangaplara A, Wang X, Vézina A, Maric D, Jackson S, Yan Y, Zhengping Z, Ray-Chaudhury A, Kumar S, Ballester LY, Chittiboina P, Yoo JY, Heiss J, Kaur B, Kumar Banasavadi-Siddegowda Y. Inhibiting protein phosphatase 2A increases the antitumor effect of protein arginine methyltransferase 5 inhibition in models of glioblastoma. Neuro Oncol 2021; 23:1481-1493. [PMID: 33556161 DOI: 10.1093/neuonc/noab014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor treating fields, the median survival of Glioblastoma (GBM) patients is less than 15 months. Protein Arginine Methyltransferase 5 (PRMT5) catalyzes the symmetric di-methylation of arginine residues and is overexpressed in GBM. Inhibition of PRMT5 causes senescence in stem-like GBM tumor cells. LB100, a first-in-class small molecular inhibitor of Protein Phosphatase 2A (PP2A) can sensitize therapy-resistant tumor cells. Here, we tested the anti-GBM effect of concurrent PRMT5 and PP2A inhibition. METHODS Patient-derived primary GBM neurospheres (GBMNS), transfected with PRMT5 target-specific siRNA were treated with LB100 and subjected to in vitro assays including PP2A activity and western blot. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. RESULTS We found that PRMT5-depletion increased PP2A activity in GBMNS. LB100 treatment significantly reduced the viability of PRMT5-depleted GBMNS compared to PRMT5 intact GBMNS. LB100 enhanced G1 cell cycle arrest induced by PRMT5-depletion. Combination therapy also increased the expression of phospho-MLKL. Necrostatin-1 rescued PRMT5-depleted cells from the cytotoxic effects of LB100, indicating that necroptosis caused the enhanced cytotoxicity of combination therapy. In the in vivo mouse tumor xenograft model, LB100 treatment combined with transient depletion of PRMT5 significantly decreased tumor size and prolonged survival, while LB100 treatment alone had no survival benefit. CONCLUSION Overall, combined PRMT5 and PP2A inhibition had significantly greater antitumor effects than PRMT5 inhibition alone.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hannah Sur
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Sriya Namagiri
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashis Chowdhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cole T Lewis
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Toshihiko Shimizu
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiang Wang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Amélie Vézina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, NINDS, NIH, Bethesda, MD, USA
| | - Sadhana Jackson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yuanqing Yan
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhuang Zhengping
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine and Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ji Young Yoo
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Balveen Kaur
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
39
|
Shailesh H, Siveen KS, Sif S. Protein arginine methyltransferase 5 (PRMT5) activates WNT/β-catenin signalling in breast cancer cells via epigenetic silencing of DKK1 and DKK3. J Cell Mol Med 2021; 25:1583-1600. [PMID: 33462997 PMCID: PMC7875925 DOI: 10.1111/jcmm.16260] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) activity is dysregulated in many aggressive cancers and its enhanced levels are associated with increased tumour growth and survival. However, the role of PRMT5 in breast cancer remains underexplored. In this study, we show that PRMT5 is overexpressed in breast cancer cell lines, and that it promotes WNT/β-CATENIN proliferative signalling through epigenetic silencing of pathway antagonists, DKK1 and DKK3, leading to enhanced expression of c-MYC, CYCLIN D1 and SURVIVIN. Through chromatin immunoprecipitation (ChIP) studies, we found that PRMT5 binds to the promoter region of WNT antagonists, DKK1 and DKK3, and induces symmetric methylation of H3R8 and H4R3 histones. Our findings also show that PRMT5 inhibition using a specific small molecule inhibitor, compound 5 (CMP5), reduces PRMT5 recruitment as well as methylation of H3R8 and H4R3 histones in the promoter regions of DKK1 and DKK3, which consequently results in reduced expression CYCLIN D1 and SURVIVIN. Furthermore, CMP5 treatment either alone or in combination with 5-Azacytidine and Trichostatin A restored expression of DKK1 and DKK3 in TNBCs. PRMT5 inhibition also altered the growth characteristics of breast cancer cells and induced their death. Collectively, these results show that PRMT5 controls breast cancer cell growth through epigenetic silencing of WNT/β-CATENIN pathway antagonists, DKK1 and DKK3, resulting in up-regulation of WNT/β-CATENIN proliferative signalling.
Collapse
Affiliation(s)
- Harshita Shailesh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Kodappully S Siveen
- Flow Cytometry Core Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
40
|
Bryant JP, Heiss J, Banasavadi-Siddegowda YK. Arginine Methylation in Brain Tumors: Tumor Biology and Therapeutic Strategies. Cells 2021; 10:cells10010124. [PMID: 33440687 PMCID: PMC7827394 DOI: 10.3390/cells10010124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification that plays a pivotal role in cellular regulation. Protein arginine methyltransferases (PRMTs) catalyze the modification of target proteins by adding methyl groups to the guanidino nitrogen atoms of arginine residues. Protein arginine methylation takes part in epigenetic and cellular regulation and has been linked to neurodegenerative diseases, metabolic diseases, and tumor progression. Aberrant expression of PRMTs is associated with the development of brain tumors such as glioblastoma and medulloblastoma. Identifying PRMTs as plausible contributors to tumorigenesis has led to preclinical and clinical investigations of PRMT inhibitors for glioblastoma and medulloblastoma therapy. In this review, we discuss the role of arginine methylation in cancer biology and provide an update on the use of small molecule inhibitors of PRMTs to treat glioblastoma, medulloblastoma, and other cancers.
Collapse
|
41
|
Abstract
Arginine methylation is an essential post-translational modification (PTM) deposited by protein arginine methyltransferases (PRMTs) and recognized by Tudor domain-containing proteins. Of the nine mammalian PRMTs, PRMT5 is the primary enzyme responsible for the deposition of symmetric arginine methylation marks in cells. The staphylococcal nuclease and Tudor domain-containing 1 (SND1) effector protein is a key reader of the marks deposited by PRMT5. Both PRMT5 and SND1 are broadly expressed and their deregulation is reported to be associated with a range of disease phenotypes, including cancer. Hepatocellular carcinoma (HCC) is an example of a cancer type that often displays elevated PRMT5 and SND1 levels, and there is evidence that hyperactivation of this axis is oncogenic. Importantly, this pathway can be tempered with small-molecule inhibitors that target PRMT5, offering a therapeutic node for cancer, such as HCC, that display high PRMT5–SND1 axis activity. Here we summarize the known activities of this writer–reader pair, with a focus on their biological roles in HCC. This will help establish a foundation for treating HCC with PRMT5 inhibitors and also identify potential biomarkers that could predict sensitivity to this type of therapy.
Collapse
Affiliation(s)
- Tanner Wright
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (T.W.); (Y.W.)
- Graduate Program in Genetics & Epigenetics, UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (T.W.); (Y.W.)
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (T.W.); (Y.W.)
- Correspondence:
| |
Collapse
|
42
|
Sapir T, Shifteh D, Pahmer M, Goel S, Maitra R. Protein Arginine Methyltransferase 5 (PRMT5) and the ERK1/2 & PI3K Pathways: A Case for PRMT5 Inhibition and Combination Therapies in Cancer. Mol Cancer Res 2020; 19:388-394. [PMID: 33288733 DOI: 10.1158/1541-7786.mcr-20-0745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
The ERK1/2 (RAS, RAF, MEK, ERK) and PI3K (PI3K, AKT, mTOR, PTEN) pathways are the chief signaling pathways for cellular proliferation, survival, and differentiation. Overactivation and hyperphosphorylation of the ERK1/2 & PI3K pathways is frequently observed in cancer and is associated with poor patient prognosis. While it is well known that genetic alterations lead to the dysregulation of the ERK1/2 & PI3K pathways, increasing evidence showcase that epigenetic alterations also play a major role in the regulation of the ERK1/2 & PI3K pathways. Protein Arginine Methyltransferase 5 (PRMT5) is a posttranslational modifier for multiple cellular processes, which is currently being tested as a therapeutic target for cancer. PRMT5 has been shown to be overexpressed in many types of cancers, as well as negatively correlated with patient survival. Numerous studies are indicating that as a posttranslational modifier, PRMT5 is extensively involved in regulating the ERK1/2 & PI3K pathways. In addition, a large number of in vitro and in vivo studies are demonstrating that PRMT5 inhibition, as well as PRMT5 and ERK1/2 & PI3K combination therapies, show significant therapeutic effects in many cancer types. In this review, we explore the vast interactions that PRMT5 has with the ERK1/2 & PI3K pathways, and we make the case for further testing of PRMT5 inhibition, as well as PRMT5 and ERK1/2 & PI3K combination therapies, for the treatment of cancer.
Collapse
Affiliation(s)
- Tzuriel Sapir
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - David Shifteh
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - Moshe Pahmer
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - Sanjay Goel
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Radhashree Maitra
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York.
| |
Collapse
|
43
|
Eddershaw AR, Stubbs CJ, Edwardes LV, Underwood E, Hamm GR, Davey PRJ, Clarkson PN, Syson K. Characterization of the Kinetic Mechanism of Human Protein Arginine Methyltransferase 5. Biochemistry 2020; 59:4775-4786. [PMID: 33274632 DOI: 10.1021/acs.biochem.0c00554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are of great interest for the development of therapeutics due to their involvement in a number of malignancies, such as lung and colon cancer. PRMT5 catalyzes the formation of symmetrical dimethylarginine of a wide variety of substrates and is responsible for the majority of this mark within cells. To gain insight into the mechanism of PRMT5 inhibition, we co-expressed the human PRMT5:MEP50 complex (hPRMT5:MEP50) in insect cells for a detailed mechanistic study. In this report, we carry out steady state, product, and dead-end inhibitor studies that show hPRMT5:MEP50 uses a rapid equilibrium random order mechanism with EAP and EBQ dead-end complexes. We also provide evidence of ternary complex formation in solution using hydrogen/deuterium exchange mass spectrometry. Isotope exchange and intact protein mass spectrometry further rule out ping-pong as a potential enzyme mechanism, and finally, we show that PRMT5 exhibits a pre-steady state burst that corresponds to an initial slow turnover with all four active sites of the hetero-octamer being catalytically active.
Collapse
Affiliation(s)
- Alice R Eddershaw
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Christopher J Stubbs
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Lucy V Edwardes
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Elizabeth Underwood
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory R Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals, R&D AstraZeneca, Cambridge CB4 0WG, U.K
| | - Paul R J Davey
- Chemistry, Oncology, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Paul N Clarkson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Karl Syson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
44
|
Kunadis E, Lakiotaki E, Korkolopoulou P, Piperi C. Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol Ther 2020; 220:107721. [PMID: 33144118 DOI: 10.1016/j.pharmthera.2020.107721] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults, and the most lethal form of glioma, characterized by variable histopathology, aggressiveness and poor clinical outcome and prognosis. GBMs constitute a challenge for oncologists because of their molecular heterogeneity, extensive invasion, and tendency to relapse. Glioma cells demonstrate a variety of deregulated genomic pathways and extensive interplay with epigenetic alterations. Epigenetic modifications have emerged as essential players in GBM research, with biomarker potential for tumor classification and prognosis and for drug targeting. Histone posttranslational modifications (PTMs) are crucial regulators of chromatin architecture and gene expression, playing a pivotal role in malignant transformation, tumor development and progression. Alteration in the expression of genes coding for lysine and arginine methyltransferases (G9a, SUV39H1 and SETDB1) and acetyltransferases and deacetylases (KAT6A, SIRT2, SIRT7, HDAC4, 6, 9) contribute to GBM pathogenesis. In addition, proteins of the sumoylation pathway are upregulated in GBM cell lines, including E1 (SAE1), E2 (Ubc9) components, and a SUMO-specific protease (SENP1). Preclinical and clinical studies are currently in progress targeting epigenetic enzymes in gliomas, including a new generation of histone deacetylase (HDAC), protein arginine methyltransferase (PRMT) and bromodomain (BRD) inhibitors. Herein, we provide an update on recent advances in glioma epigenetic research, focusing on the role of histone modifications and the use of epigenetic therapy as a valid treatment option for glioblastoma.
Collapse
Affiliation(s)
- Elena Kunadis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Eleftheria Lakiotaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| |
Collapse
|
45
|
Barbarino M, Cesari D, Bottaro M, Luzzi L, Namagerdi A, Bertolino FM, Bellan C, Proietti F, Somma P, Micheli M, de Santi MM, Guazzo R, Mutti L, Pirtoli L, Paladini P, Indovina P, Giordano A. PRMT5 silencing selectively affects MTAP-deleted mesothelioma: In vitro evidence of a novel promising approach. J Cell Mol Med 2020; 24:5565-5577. [PMID: 32301278 PMCID: PMC7214180 DOI: 10.1111/jcmm.15213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive asbestos‐related cancer of the serous membranes. Despite intensive treatment regimens, MM is still a fatal disease, mainly due to the intrinsic resistance to current therapies and the lack of predictive markers and new valuable molecular targets. Protein arginine methyltransferase 5 (PRMT5) inhibition has recently emerged as a potential therapy against methylthioadenosine phosphorylase (MTAP)‐deficient cancers, in which the accumulation of the substrate 5'‐methylthioadenosine (MTA) inhibits PRMT5 activity, thus sensitizing the cells to further PRMT5 inhibition. Considering that the MTAP gene is frequently codeleted with the adjacent cyclin‐dependent kinase inhibitor 2A (CDKN2A) locus in MM, we assessed whether PRMT5 could represent a therapeutic target also for this cancer type. We evaluated PRMT5 expression, the MTAP status and MTA content in normal mesothelial and MM cell lines. We found that both administration of exogenous MTA and stable PRMT5 knock‐down, by short hairpin RNAs (shRNAs), selectively reduced the growth of MTAP‐deleted MM cells. We also observed that PRMT5 knock‐down in MTAP‐deficient MM cells reduced the expression of E2F1 target genes involved in cell cycle progression and of factors implicated in epithelial‐to‐mesenchymal transition. Therefore, PRMT5 targeting could represent a promising new therapeutic strategy against MTAP‐deleted MMs.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Daniele Cesari
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Bottaro
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Luca Luzzi
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, Siena, Italy
| | - Asadoor Namagerdi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Pasquale Somma
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", Naples, Italy
| | | | | | - Raffaella Guazzo
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, Siena, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Piero Paladini
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, Siena, Italy
| | - Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Chaturvedi NK, Mahapatra S, Kesherwani V, Kling MJ, Shukla M, Ray S, Kanchan R, Perumal N, McGuire TR, Sharp JG, Joshi SS, Coulter DW. Role of protein arginine methyltransferase 5 in group 3 (MYC-driven) Medulloblastoma. BMC Cancer 2019; 19:1056. [PMID: 31694585 PMCID: PMC6836472 DOI: 10.1186/s12885-019-6291-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MYC amplification or overexpression is common in Group 3 medulloblastoma and is associated with the worst prognosis. Recently, protein arginine methyl transferase (PRMT) 5 expression has been closely associated with aberrant MYC function in various cancers, including brain tumors such as glioblastoma. However, the role of PRMT5 and its association with MYC in medulloblastoma have not been explored. Here, we report the role of PRMT5 as a novel regulator of MYC and implicate PRMT5 as a potential therapeutic target in MYC-driven medulloblastoma. METHODS Expression and association between PRMT5 and MYC in primary medulloblastoma tumors were investigated using publicly available databases. Expression levels of PRMT5 protein were also examined using medulloblastoma cell lines and primary tumors by western blotting and immunohistochemistry, respectively. Using MYC-driven medulloblastoma cells, we examined the physical interaction between PRMT5 and MYC by co-immunoprecipitation and co-localization experiments. To determine the functional role of PRMT5 in MYC-driven medulloblastoma, PRMT5 was knocked-down in MYC-amplified cells using siRNA and the consequences of knockdown on cell growth and MYC expression/stability were investigated. In vitro therapeutic potential of PRMT5 in medulloblastoma was also evaluated using a small molecule inhibitor, EPZ015666. RESULTS We observed overexpression of PRMT5 in MYC-driven primary medulloblastoma tumors and cell lines compared to non-MYC medulloblastoma tumors and adjacent normal tissues. We also found that high expression of PRMT5 is inversely correlated with patient survival. Knockdown of PRMT5 using siRNA in MYC-driven medulloblastoma cells significantly decreased cell growth and MYC expression. Mechanistically, we found that PRMT5 physically associated with MYC by direct protein-protein interaction. In addition, a cycloheximide chase experiment showed that PRMT5 post-translationally regulated MYC stability. In the context of therapeutics, we observed dose-dependent efficacy of PRMT5 inhibitor EPZ015666 in suppressing cell growth and inducing apoptosis in MYC-driven medulloblastoma cells. Further, the expression levels of PRMT5 and MYC protein were downregulated upon EPZ015666 treatment. We also observed a superior efficacy of this inhibitor against MYC-amplified medulloblastoma cells compared to non-MYC-amplified medulloblastoma cells, indicating specificity. CONCLUSION Our results reveal the regulation of MYC oncoprotein by PRMT5 and suggest that targeting PRMT5 could be a potential therapeutic strategy for MYC-driven medulloblastoma.
Collapse
Affiliation(s)
- Nagendra K Chaturvedi
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Sidharth Mahapatra
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Varun Kesherwani
- Child Health Research Institute Cancer, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Matthew J Kling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mamta Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sutapa Ray
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, 69198, USA
| | - J Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
47
|
Favia A, Salvatori L, Nanni S, Iwamoto-Stohl LK, Valente S, Mai A, Scagnoli F, Fontanella RA, Totta P, Nasi S, Illi B. The Protein Arginine Methyltransferases 1 and 5 affect Myc properties in glioblastoma stem cells. Sci Rep 2019; 9:15925. [PMID: 31685892 PMCID: PMC6828805 DOI: 10.1038/s41598-019-52291-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Protein Arginine (R) methylation is the most common post-translational methylation in mammalian cells. Protein Arginine Methyltransferases (PRMT) 1 and 5 dimethylate their substrates on R residues, asymmetrically and symmetrically, respectively. They are ubiquitously expressed and play fundamental roles in tumour malignancies, including glioblastoma multiforme (GBM) which presents largely deregulated Myc activity. Previously, we demonstrated that PRMT5 associates with Myc in GBM cells, modulating, at least in part, its transcriptional properties. Here we show that Myc/PRMT5 protein complex includes PRMT1, in both HEK293T and glioblastoma stem cells (GSCs). We demonstrate that Myc is both asymmetrically and symmetrically dimethylated by PRMT1 and PRMT5, respectively, and that these modifications differentially regulate its stability. Moreover, we show that the ratio between symmetrically and asymmetrically dimethylated Myc changes in GSCs grown in stem versus differentiating conditions. Finally, both PRMT1 and PRMT5 activity modulate Myc binding at its specific target promoters. To our knowledge, this is the first work reporting R asymmetrical and symmetrical dimethylation as novel Myc post-translational modifications, with different functional properties. This opens a completely unexplored field of investigation in Myc biology and suggests symmetrically dimethylated Myc species as novel diagnostic and prognostic markers and druggable therapeutic targets for GBM.
Collapse
Affiliation(s)
- Annarita Favia
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy
| | - Luisa Salvatori
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy.
| | - Simona Nanni
- Institute of Medical Pathology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Sergio Valente
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Fiorella Scagnoli
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Rosaria Anna Fontanella
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy
| | | | - Sergio Nasi
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology - National Research Council (IBPM-CNR), Rome, Italy.
| |
Collapse
|
48
|
The protein arginine methyltransferase PRMT5 confers therapeutic resistance to mTOR inhibition in glioblastoma. J Neurooncol 2019; 145:11-22. [PMID: 31473880 DOI: 10.1007/s11060-019-03274-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Clinical trials directed at mechanistic target of rapamycin (mTOR) inhibition have yielded disappointing results in glioblastoma (GBM). A major mechanism of resistance involves the activation of a salvage pathway stimulating internal ribosome entry site (IRES)-mediated protein synthesis. PRMT5 activity has been implicated in the enhancement of IRES activity. METHODS We analyzed the expression and activity of PRMT5 in response to mTOR inhibition in GBM cell lines and short-term patient cultures. To determine whether PRMT5 conferred resistance we used genetic and pharmacological approaches to ablate PRMT5 activity and assessed the effects on in vitro and in vivo sensitivity. Mutational analyses of the requisite IRES-trans-acting factor (ITAF), hnRNP A1 determined whether PRMT5-mediated methylation was necessary for ITAF RNA binding and IRES activity. RESULTS PRMT5 activity is stimulated in response to mTOR inhibitors. Knockdown or treatment with a PRMT5 inhibitor blocked IRES activity and sensitizes GBM cells. Ectopic expression of non-methylatable hnRNP A1 mutants demonstrated that methylation of either arginine residues 218 or 225 was sufficient to maintain IRES binding and hnRNP A1-dependent cyclin D1 or c-MYC IRES activity, however a double R218K/R225K mutant was unable to do so. The PRMT5 inhibitor EPZ015666 displayed synergistic anti-GBM effects in vitro and in a xenograft mouse model in combination with PP242. CONCLUSIONS These results demonstrate that PRMT5 activity is stimulated upon mTOR inhibition in GBM. Our data further support a signaling cascade in which PRMT5-mediated methylation of hnRNP A1 promotes IRES RNA binding and activation of IRES-mediated protein synthesis and resultant mTOR inhibitor resistance.
Collapse
|
49
|
Lu QR, Qian L, Zhou X. Developmental origins and oncogenic pathways in malignant brain tumors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e342. [PMID: 30945456 DOI: 10.1002/wdev.342] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022]
Abstract
Brain tumors such as adult glioblastomas and pediatric high-grade gliomas or medulloblastomas are among the leading causes of cancer-related deaths, exhibiting poor prognoses with little improvement in outcomes in the past several decades. These tumors are heterogeneous and can be initiated from various neural cell types, contributing to therapy resistance. How such heterogeneity arises is linked to the tumor cell of origin and their genetic alterations. Brain tumorigenesis and progression recapitulate key features associated with normal neurogenesis; however, the underlying mechanisms are quite dysregulated as tumor cells grow and divide in an uncontrolled manner. Recent comprehensive genomic, transcriptomic, and epigenomic studies at single-cell resolution have shed new light onto diverse tumor-driving events, cellular heterogeneity, and cells of origin in different brain tumors. Primary and secondary glioblastomas develop through different genetic alterations and pathways, such as EGFR amplification and IDH1/2 or TP53 mutation, respectively. Mutations such as histone H3K27M impacting epigenetic modifications define a distinct group of pediatric high-grade gliomas such as diffuse intrinsic pontine glioma. The identification of distinct genetic, epigenomic profiles and cellular heterogeneity has led to new classifications of adult and pediatric brain tumor subtypes, affording insights into molecular and lineage-specific vulnerabilities for treatment stratification. This review discusses our current understanding of tumor cells of origin, heterogeneity, recurring genetic and epigenetic alterations, oncogenic drivers and signaling pathways for adult glioblastomas, pediatric high-grade gliomas, and medulloblastomas, the genetically heterogeneous groups of malignant brain tumors. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Signaling Pathways > Cell Fate Signaling.
Collapse
Affiliation(s)
- Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lily Qian
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xianyao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Role of protein arginine methyltransferase 5 in human cancers. Biomed Pharmacother 2019; 114:108790. [PMID: 30903920 DOI: 10.1016/j.biopha.2019.108790] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) play important roles in protein methylation. PRMT5 is the major type II arginine methyltransferase that catalyzes the transfer of two methyl groups symmetrically to the arginine residues of either histone or non-histone proteins. In recent years, increasing evidence has shown that PRMT5, as an oncogene, plays an indispensable regulatory role in the pathological progression of several human cancers by promoting the proliferation, invasion, and migration of cancer cells. PRMT5 is overexpressed in many malignant tumors and plays an important role in the occurrence and development of cancer, which suggests that PRMT5 may become a potential biomarker or therapeutic target of cancer. This article reviews the biological function, mechanism, and clinical significance of PRMT5 in tumorigenesis.
Collapse
|