1
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Lootens T, Roman BI, Stevens CV, De Wever O, Raedt R. Glioblastoma-Associated Mesenchymal Stem/Stromal Cells and Cancer-Associated Fibroblasts: Partners in Crime? Int J Mol Sci 2024; 25:2285. [PMID: 38396962 PMCID: PMC10889514 DOI: 10.3390/ijms25042285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor-associated mesenchymal stem/stromal cells (TA-MSCs) have been recognized as attractive therapeutic targets in several cancer types, due to their ability to enhance tumor growth and angiogenesis and their contribution to an immunosuppressive tumor microenvironment (TME). In glioblastoma (GB), mesenchymal stem cells (MSCs) seem to be recruited to the tumor site, where they differentiate into glioblastoma-associated mesenchymal stem/stromal cells (GA-MSCs) under the influence of tumor cells and the TME. GA-MSCs are reported to exert important protumoral functions, such as promoting tumor growth and invasion, increasing angiogenesis, stimulating glioblastoma stem cell (GSC) proliferation and stemness, mediating resistance to therapy and contributing to an immunosuppressive TME. Moreover, they could act as precursor cells for cancer-associated fibroblasts (CAFs), which have recently been identified in GB. In this review, we provide an overview of the different functions exerted by GA-MSCs and CAFs and the current knowledge on the relationship between these cell types. Increasing our understanding of the interactions and signaling pathways in relevant models might contribute to future regimens targeting GA-MSCs and GB-associated CAFs to inhibit tumor growth and render the TME less immunosuppressive.
Collapse
Affiliation(s)
- Thibault Lootens
- 4Brain, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium;
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (B.I.R.); (C.V.S.)
| | - Bart I. Roman
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (B.I.R.); (C.V.S.)
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Christian V. Stevens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (B.I.R.); (C.V.S.)
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (B.I.R.); (C.V.S.)
| | - Robrecht Raedt
- 4Brain, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (B.I.R.); (C.V.S.)
| |
Collapse
|
3
|
Trevisi G, Mangiola A. Current Knowledge about the Peritumoral Microenvironment in Glioblastoma. Cancers (Basel) 2023; 15:5460. [PMID: 38001721 PMCID: PMC10670229 DOI: 10.3390/cancers15225460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is a deadly disease, with a mean overall survival of less than 2 years from diagnosis. Recurrence after gross total surgical resection and adjuvant chemo-radiotherapy almost invariably occurs within the so-called peritumoral brain zone (PBZ). The aim of this narrative review is to summarize the most relevant findings about the biological characteristics of the PBZ currently available in the medical literature. The PBZ presents several peculiar biological characteristics. The cellular landscape of this area is different from that of healthy brain tissue and is characterized by a mixture of cell types, including tumor cells (seen in about 30% of cases), angiogenesis-related endothelial cells, reactive astrocytes, glioma-associated microglia/macrophages (GAMs) with anti-inflammatory polarization, tumor-infiltrating lymphocytes (TILs) with an "exhausted" phenotype, and glioma-associated stromal cells (GASCs). From a genomic and transcriptomic point of view, compared with the tumor core and healthy brain tissue, the PBZ presents a "half-way" pattern with upregulation of genes related to angiogenesis, the extracellular matrix, and cellular senescence and with stemness features and downregulation in tumor suppressor genes. This review illustrates that the PBZ is a transition zone with a pre-malignant microenvironment that constitutes the base for GBM progression/recurrence. Understanding of the PBZ could be relevant to developing more effective treatments to prevent GBM development and recurrence.
Collapse
Affiliation(s)
- Gianluca Trevisi
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
- Neurosurgical Unit, Ospedale Spirito Santo, 65122 Pescara, Italy
| | - Annunziato Mangiola
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
4
|
Ma J, Dai L, Yu J, Cao H, Bao Y, Hu J, Zhou L, Yang J, Sofia A, Chen H, Wu F, Xie Z, Qian W, Zhan R. Tumor microenvironment targeting system for glioma treatment via fusion cell membrane coating nanotechnology. Biomaterials 2023; 295:122026. [PMID: 36731366 DOI: 10.1016/j.biomaterials.2023.122026] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME), comprising cancer cells and stroma, plays a significant role in determining clinical outcomes, which makes targeting cancer cells in the TME an important area of research. One way in which cancer cells in the TME can be specifically targeted is by coating drug-encapsulated nanoparticles (NPs) with homotypic cancer cell membranes. However, incomplete targeting is inevitable for biomimetic nanoformulations coated with only cancer cell membranes because of the inherent heterogeneity of the TME. After observing the structural connection between glioma-associated stromal cells (GASCs) and glioma cells from a clinic, we designed a novel drug delivery system that targets the TME by coating polylactic-co-glycolic acid (PLGA) NPs with GASC-glioma cell fusion cell (SG cell) membranes. The resulting SGNPs inherited membrane proteins from both the glioma membrane and GASC membrane, significantly enhancing the tumor targeting efficiency compared to nanoformulations coated with cancer cell membranes alone. We further demonstrated that encapsulation of temozolomide (TMZ) improved the therapeutic efficacy of TMZ in both heterotopic and orthotopic glioma mouse models. Owing to its significant efficacy, our TME-targeting nanoplatform has potential for clinical applications in the treatment of various cancers.
Collapse
Affiliation(s)
- Junning Ma
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China; School of Medicine Zhejiang University, China.
| | - Lisi Dai
- Department of Pathology& Pathophysiology, and Department of Surgical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, China; School of Basic Medical Sciences Zhejiang University, China.
| | - Jianbo Yu
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hui Cao
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Youmei Bao
- Department of Neurosurgery, School of Medicine, Yale University, USA
| | - JiaJia Hu
- Department of Nuclear Medicine, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Lihui Zhou
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Jiqi Yang
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Adame Sofia
- School of Medicine Zhejiang University, China
| | - Hongwei Chen
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Fan Wu
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Zhikai Xie
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Wenqi Qian
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Renya Zhan
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
5
|
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, Moresco RM, Giussani C, Bentivegna A. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Neurosci Res 2023; 101:199-216. [PMID: 36300592 PMCID: PMC10091804 DOI: 10.1002/jnr.25134] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.
Collapse
Affiliation(s)
- Martina Giambra
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Silvia Valtorta
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Roberto Manfrellotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Vittorio Bigiogera
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
6
|
Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, Clavreul A, Constantin B, Coronas V, Daubon T, Dontenwill M, Ducray F, Enz-Werle N, Figarella-Branger D, Fournier I, Frenel JS, Gabut M, Galli T, Gavard J, Huberfeld G, Hugnot JP, Idbaih A, Junier MP, Mathivet T, Menei P, Meyronet D, Mirjolet C, Morin F, Mosser J, Moyal ECJ, Rousseau V, Salzet M, Sanson M, Seano G, Tabouret E, Tchoghandjian A, Turchi L, Vallette FM, Vats S, Verreault M, Virolle T. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 2023; 9:9-27. [PMID: 36400694 DOI: 10.1016/j.trecan.2022.09.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France.
| | - Cristine Alves da Costa
- Côte d'Azur University, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Team "Laboratory of Excellence (LABEX) Distalz", F-06560 Nice, France
| | - Tony Avril
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Luc Bauchet
- Montpellier University Medical Center, Department of Neurosurgery, INSERM U1191, F-34090 Montpellier, France
| | - Lucie Brisson
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | | | - Hélène Castel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Eric Chevet
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Hervé Chneiweiss
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Anne Clavreul
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - Bruno Constantin
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Valérie Coronas
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Thomas Daubon
- Bordeaux University, CNRS, IBGC, UMR 5095, F-33 077 Bordeaux, France
| | - Monique Dontenwill
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Francois Ducray
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Natacha Enz-Werle
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Dominique Figarella-Branger
- Aix-Marseille University, Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, F-13385 Marseille, France
| | - Isabelle Fournier
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Jean-Sébastien Frenel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Mathieu Gabut
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Julie Gavard
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Gilles Huberfeld
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Université PSL, Paris 75005, France
| | - Jean-Philippe Hugnot
- Montpellier University, Institut de Génomique Fonctionnelle, CNRS, INSERM, F-34094 Montpellier, France
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Pierre Junier
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Thomas Mathivet
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | - Philippe Menei
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, F-69008, Lyon, France
| | - Céline Mirjolet
- Centre Georges-François Leclerc, UNICANCER, Dijon, France. Inserm U1231, Equipe Cadir, F-21000 Dijon, France
| | - Fabrice Morin
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Jean Mosser
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Elisabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, NSERM 1037, CRCT Team RADOPT, Département de Radiothérapie, IUCT-Oncopole, F-31100 Toulouse, France
| | - Véronique Rousseau
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Michel Salzet
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marc Sanson
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Giorgio Seano
- Curie Institute Research Center, Tumor Microenvironment Laboratory, PSL Research University, Inserm U1021, CNRS UMR3347, F-91898 Orsay, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Laurent Turchi
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| | - Francois M Vallette
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Somya Vats
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Maité Verreault
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Thierry Virolle
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| |
Collapse
|
7
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Hatlen RR, Rajagopalan P. Environmental interplay: Stromal cells and biomaterial composition influence in the glioblastoma microenvironment. Acta Biomater 2021; 132:421-436. [PMID: 33276155 DOI: 10.1016/j.actbio.2020.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most deadly form of brain cancer. Recurrence is common, and established therapies have not been able to significantly extend overall patient survival. One platform through which GBM research can progress is to design biomimetic systems for discovery and investigation into the mechanisms of invasion, cellular properties, as well as the efficacy of therapies. In this review, 2D and 3D GBM in vitro cultures will be discussed. We focus on the effects of biomaterial properties, interactions between stromal cells, and vascular influence on cancer cell survival and progression. This review will summarize critical findings in each of these areas and how they have led to a more comprehensive scientific understanding of GBM. STATEMENT OF SIGNIFICANCE: Glioblastoma multiforme (GBM) is the most deadly form of brain cancer. Recurrence is common, and established therapies have not been able to significantly extend overall patient survival. One platform through which GBM research can progress is to design biomimetic systems for discovery and investigation into the mechanisms of invasion, cellular properties, as well as the efficacy of therapies. In this review, 2D and 3D GBM in vitro cultures will be discussed. We focus on the effects of biomaterial properties, interactions between stromal cells and vascular influence on cancer cell survival and progression. This review will summarize critical findings in each of these areas and how they have lead to a more comprehensive scientific understanding of GBM.
Collapse
Affiliation(s)
- Rosalyn R Hatlen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | | |
Collapse
|
9
|
Balaziova E, Vymola P, Hrabal P, Mateu R, Zubal M, Tomas R, Netuka D, Kramar F, Zemanova Z, Svobodova K, Brabec M, Sedo A, Busek P. Fibroblast Activation Protein Expressing Mesenchymal Cells Promote Glioblastoma Angiogenesis. Cancers (Basel) 2021; 13:cancers13133304. [PMID: 34282761 PMCID: PMC8267680 DOI: 10.3390/cancers13133304] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The perivascular niche in glioblastoma is crucial for maintaining a tumour- permissive microenvironment. In various extracranial cancers, mesenchymal cells that express fibroblast activation protein (FAP) are an important stromal component and a potential therapeutic target. In this study, we examine their functions in the glioblastoma microenvironment where their role is so far largely unexplored. Glioblastoma-associated FAP+ mesenchymal cells are localised around activated endothelial cells and their presence positively correlates with vascular density. They represent a subpopulation of stromal, non-tumorigenic cells which mostly lack the chromosomal aberrations characteristic of glioma cells. By soluble factors they induce angiogenic sprouting, chemotaxis of endothelial cells, contribute to destabilisation of blood vessels, and increase the migration and growth of glioma cells. Taken together, we identified a subpopulation of FAP+ mesenchymal cells in the perivascular niche in glioblastoma that may contribute to tumour progression by promoting angiogenesis and supporting dissemination of transformed cells into the surrounding tissue. Abstract Fibroblast activation protein (FAP) is a membrane-bound protease that is upregulated in a wide range of tumours and viewed as a marker of tumour-promoting stroma. Previously, we demonstrated increased FAP expression in glioblastomas and described its localisation in cancer and stromal cells. In this study, we show that FAP+ stromal cells are mostly localised in the vicinity of activated CD105+ endothelial cells and their quantity positively correlates with glioblastoma vascularisation. FAP+ mesenchymal cells derived from human glioblastomas are non-tumorigenic and mostly lack the cytogenetic aberrations characteristic of glioblastomas. Conditioned media from these cells induce angiogenic sprouting and chemotaxis of endothelial cells and promote migration and growth of glioma cells. In a chorioallantoic membrane assay, co-application of FAP+ mesenchymal cells with glioma cells was associated with enhanced abnormal angiogenesis, as evidenced by an increased number of erythrocytes in vessel-like structures and higher occurrence of haemorrhages. FAP+ mesenchymal cells express proangiogenic factors, but in comparison to normal pericytes exhibit decreased levels of antiangiogenic molecules and an increased Angiopoietin 2/1 ratio. Our results show that FAP+ mesenchymal cells promote angiogenesis and glioma cell migration and growth by paracrine communication and in this manner, they may thus contribute to glioblastoma progression.
Collapse
Affiliation(s)
- Eva Balaziova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Petr Vymola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Petr Hrabal
- Department of Pathology, Military University Hospital, 169 02 Prague, Czech Republic;
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Michal Zubal
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
| | - Robert Tomas
- Departments of Neurosurgery, Na Homolce Hospital, 150 00 Prague, Czech Republic;
| | - David Netuka
- Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, 168 02 Prague, Czech Republic; (D.N.); (F.K.)
| | - Filip Kramar
- Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, 168 02 Prague, Czech Republic; (D.N.); (F.K.)
| | - Zuzana Zemanova
- Center of Oncocytogenomics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (Z.Z.); (K.S.)
| | - Karla Svobodova
- Center of Oncocytogenomics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (Z.Z.); (K.S.)
| | - Marek Brabec
- Institute of Computer Science, The Czech Academy of Sciences, 128 00 Prague, Czech Republic;
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
- Correspondence: (A.S.); (P.B.)
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (E.B.); (P.V.); (R.M.); (M.Z.)
- Correspondence: (A.S.); (P.B.)
| |
Collapse
|
10
|
Schaffenrath J, Wyss T, He L, Rushing EJ, Delorenzi M, Vasella F, Regli L, Neidert MC, Keller A. Blood-brain barrier alterations in human brain tumors revealed by genome-wide transcriptomic profiling. Neuro Oncol 2021; 23:2095-2106. [PMID: 33560373 DOI: 10.1093/neuonc/noab022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Brain tumors, whether primary or secondary, have limited therapeutic options despite advances in understanding driver gene mutations and heterogeneity within tumor cells. The cellular and molecular composition of brain tumor stroma, an important modifier of tumor growth, has been less investigated to date. Only few studies have focused on the vasculature of human brain tumors despite the fact that the blood-brain barrier (BBB) represents the major obstacle for efficient drug delivery. METHODS In this study, we employed RNA sequencing to characterize transcriptional alterations of endothelial cells isolated from primary and secondary human brain tumors. We used an immunoprecipitation approach to enrich for endothelial cells from normal brain, glioblastoma (GBM) and lung cancer brain metastasis (BM). RESULTS Analysis of the endothelial transcriptome showed deregulation of genes implicated in cell proliferation, angiogenesis and deposition of extracellular matrix (ECM) in the vasculature of GBM and BM. Deregulation of genes defining the BBB dysfunction module were found in both tumor types. We identified deregulated expression of genes in vessel-associated fibroblasts in GBM. CONCLUSION We characterize alterations in BBB genes in GBM and BM vasculature and identify proteins that might be exploited for developing drug delivery platforms. In addition, our analysis on vessel-associated fibroblasts in GBM shows that the cellular composition of brain tumor stroma merits further investigation.
Collapse
Affiliation(s)
- Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Tania Wyss
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland
| | - Marian Christoph Neidert
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Clavreul A, Menei P. Mesenchymal Stromal-Like Cells in the Glioma Microenvironment: What Are These Cells? Cancers (Basel) 2020; 12:E2628. [PMID: 32942567 PMCID: PMC7565954 DOI: 10.3390/cancers12092628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
The glioma microenvironment is a critical regulator of tumor progression. It contains different cellular components such as blood vessels, immune cells, and neuroglial cells. It also contains non-cellular components, such as the extracellular matrix, extracellular vesicles, and cytokines, and has certain physicochemical properties, such as low pH, hypoxia, elevated interstitial pressure, and impaired perfusion. This review focuses on a particular type of cells recently identified in the glioma microenvironment: glioma-associated stromal cells (GASCs). This is just one of a number of names given to these mesenchymal stromal-like cells, which have phenotypic and functional properties similar to those of mesenchymal stem cells and cancer-associated fibroblasts. Their close proximity to blood vessels may provide a permissive environment, facilitating angiogenesis, invasion, and tumor growth. Additional studies are required to characterize these cells further and to analyze their role in tumor resistance and recurrence.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, 49933 Angers, France;
- Université d’Angers, CHU d’Angers, CRCINA, F-49000 Angers, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU, 49933 Angers, France;
- Université d’Angers, CHU d’Angers, CRCINA, F-49000 Angers, France
| |
Collapse
|
12
|
Clavreul A, Soulard G, Lemée JM, Rigot M, Fabbro-Peray P, Bauchet L, Figarella-Branger D, Menei P. The French glioblastoma biobank (FGB): a national clinicobiological database. J Transl Med 2019; 17:133. [PMID: 31014363 PMCID: PMC6480741 DOI: 10.1186/s12967-019-1859-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glioblastomas (GB) are the most common and lethal primary brain tumors. Significant progress has been made toward identifying potential risk factors for GB and diagnostic and prognostic biomarkers. However, the current standard of care for newly diagnosed GB, the Stupp protocol, has remained unchanged for over a decade. Large-scale translational programs based on a large clinicobiological database are required to improve our understanding of GB biology, potentially facilitating the development of personalized and specifically targeted therapies. With this goal in mind, a well-annotated clinicobiological database housing data and samples from GB patients has been set up in France: the French GB biobank (FGB). METHODS The biobank contains data and samples from adult GB patients from 24 centers in France providing written informed consent. Clinical and biomaterial data are stored in anonymized certified electronic case report forms. Biological samples (including frozen and formalin-fixed paraffin-embedded tumor tissues, blood samples, and hair) are conserved in certified biological resource centers or tumor tissue banks at each participating center. RESULTS Clinical data and biological materials have been collected for 1087 GB patients. A complete set of samples (tumor, blood and hair) is available for 66%, and at least one frozen tumor sample is available for 88% of the GB patients. CONCLUSIONS This large biobank is unique in Europe and can support the large-scale translational projects required to improve GB care. Additional biological materials, such as peritumoral brain zone and fecal samples, will be collected in the future, to respond to research needs.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Gwénaëlle Soulard
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Jean-Michel Lemée
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Marion Rigot
- Département Promotion, Direction de la Recherche, CHU Nantes, Nantes, France
| | - Pascale Fabbro-Peray
- Département de Biostatistique, Epidémiologie, Santé Publique, CHU Nîmes, Nîmes, France.,Unité de recherche EA2415, Université de Montpellier, Montpellier, France
| | - Luc Bauchet
- Département de Neurochirurgie, Hôpital Gui de Chauliac, CHU Montpellier, Université de Montpellier, Montpellier, France.,Institut des Neurosciences de Montpellier INSERM U1051, Montpellier, France
| | - Dominique Figarella-Branger
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France. .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | | |
Collapse
|
13
|
Clavreul A, Pourbaghi-Masouleh M, Roger E, Menei P. Nanocarriers and nonviral methods for delivering antiangiogenic factors for glioblastoma therapy: the story so far. Int J Nanomedicine 2019; 14:2497-2513. [PMID: 31040671 PMCID: PMC6461002 DOI: 10.2147/ijn.s194858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is an essential component of glioblastoma (GB) progression. The development of angiogenesis inhibitor therapy, including treatments targeting vascular endothelial growth factor (VEGF) in particular, raised new hopes for the treatment of GB, but no Phase III clinical trial to date has reported survival benefits relative to standard treatment. There are several possible reasons for this limited efficacy, including VEGF-independent angiogenesis, induction of tumor invasion, and inefficient antiangiogenic factor delivery to the tumor. Efforts have been made to overcome these limitations by identifying new angiogenesis inhibitors that target angiogenesis through different mechanisms of action without inducing tumor invasion, and through the development of viral and nonviral delivery methods to improve antiangiogenic activity. Herein, we describe the nonviral methods, including convection-enhanced delivery devices, implantable polymer devices, nanocarriers, and cellular vehicles, to deliver antiangiogenic factors. We focus on those evaluated in intracranial (orthotopic) animal models of GB, the most relevant models of this disease, as they reproduce the clinical scenario of tumor progression and therapy response encountered in GB patients.
Collapse
Affiliation(s)
- Anne Clavreul
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| | - Milad Pourbaghi-Masouleh
- CRCINA, INSERM, University of Nantes, University of Angers, Angers, France, .,Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emilie Roger
- MINT, INSERM 1066, CNRS 6021, University of Angers, Angers, France
| | - Philippe Menei
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| |
Collapse
|
14
|
Autier L, Clavreul A, Cacicedo ML, Franconi F, Sindji L, Rousseau A, Perrot R, Montero-Menei CN, Castro GR, Menei P. A new glioblastoma cell trap for implantation after surgical resection. Acta Biomater 2019; 84:268-279. [PMID: 30465922 DOI: 10.1016/j.actbio.2018.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/09/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GB) is a highly infiltrative tumor, recurring, in 90% of cases, within a few centimeters of the surgical resection cavity, even with adjuvant chemo/radiotherapy. Residual GB cells left in the margins or infiltrating the brain parenchyma shelter behind the extremely fragile and sensitive brain tissue and may favor recurrence. Tools for eliminating these cells without damaging the brain microenvironment are urgently required. We propose a strategy involving the implantation, into the tumor bed after resection, of a scaffold to concentrate and trap these cells, to facilitate their destruction by targeted therapies, such as stereotactic radiosurgery. We used bacterial cellulose (BC), an easily synthesized and modifiable random nanofibrous biomaterial, to make the trap. We showed that the structure of BC membranes was ideal for trapping tumor cells and that BC implants were biocompatible with brain parenchyma. We also demonstrated the visibility of BC on magnetic resonance imaging, making it possible to follow its fate in clinical situations and to define the target volume for stereotactic radiosurgery more precisely. Furthermore, BC membranes can be loaded with chemoattractants, which were released and attracted tumor cells in vitro. This is of particular interest for trapping GB cells infiltrating tissues within a few centimeters of the resection cavity. Our data suggest that BC membranes could be a scaffold of choice for implantation after surgical resection to trap residual GB cells. STATEMENT OF SIGNIFICANCE: Glioblastoma is a highly infiltrative tumor, recurring, in 90% of cases, within a few centimeters of the surgical resection cavity, even with adjuvant chemo/radiotherapy. Residual tumor cells left in the margins or infiltrating the brain parenchyma shelter behind the extremely fragile and sensitive brain tissue and contribute to the risk of recurrence. Finding tools to eliminate these cells without damaging the brain microenvironment is a real challenge. We propose a strategy involving the implantation, into the walls of the surgical resection cavity, of a scaffold to concentrate and trap the residual tumor cells, to facilitate their destruction by targeted therapies, such as stereotactic radiosurgery.
Collapse
Affiliation(s)
- Lila Autier
- Département de Neurochirurgie, CHU, Angers, France; CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France; Département de Neurologie, CHU, Angers, France
| | - Anne Clavreul
- Département de Neurochirurgie, CHU, Angers, France; CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | - Maximiliano L Cacicedo
- Nanobiomaterials Lab, CINDEFI, School of Sciences, National University of La Plata-CONICET (CCT La Plata), Buenos Aires, Argentina
| | - Florence Franconi
- PRISM, Plate-forme de recherche en imagerie et spectroscopie multi-modales, PRISM-Icat, UNIV Angers, Angers, France; MINT, Micro & Nanomedecines Translationnelles, UNIV Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Laurence Sindji
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Audrey Rousseau
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France; Laboratoire Pathologie Cellulaire et Tissulaire, CHU, Angers, France
| | - Rodolphe Perrot
- SCIAM, Service Commun d'Imageries et d'Analyses Microscopiques, UNIV Angers, Angers, France
| | | | - Guillermo R Castro
- Nanobiomaterials Lab, CINDEFI, School of Sciences, National University of La Plata-CONICET (CCT La Plata), Buenos Aires, Argentina
| | - Philippe Menei
- Département de Neurochirurgie, CHU, Angers, France; CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| |
Collapse
|
15
|
Lemée JM, Clavreul A, Aubry M, Com E, de Tayrac M, Mosser J, Menei P. Integration of transcriptome and proteome profiles in glioblastoma: looking for the missing link. BMC Mol Biol 2018; 19:13. [PMID: 30463513 PMCID: PMC6249855 DOI: 10.1186/s12867-018-0115-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma (GB) is the most common and aggressive tumor of the brain. Genotype-based approaches and independent analyses of the transcriptome or the proteome have led to progress in understanding the underlying biology of GB. Joint transcriptome and proteome profiling may reveal new biological insights, and identify pathogenic mechanisms or therapeutic targets for GB therapy. We present a comparison of transcriptome and proteome data from five GB biopsies (TZ) vs their corresponding peritumoral brain zone (PBZ). Omic analyses were performed using RNA microarray chips and the isotope-coded protein label method (ICPL). Results As described in other cancers, we found a poor correlation between transcriptome and proteome data in GB. We observed only two commonly deregulated mRNAs/proteins (neurofilament light polypeptide and synapsin 1) and 12 altered biological processes; they are related to cell communication, synaptic transmission and nervous system processes. This poor correlation may be a consequence of the techniques used to produce the omic profiles, the intrinsic properties of mRNA and proteins and/or of cancer- or GB-specific phenomena. Of interest, the analysis of the transcription factor binding sites present upstream from the open reading frames of all altered proteins identified by ICPL method shows a common binding site for the topoisomerase I and p53-binding protein TOPORS. Its expression was observed in 7/11 TZ samples and not in PBZ. Some findings suggest that TOPORS may function as a tumor suppressor; its implication in gliomagenesis should be examined in future studies. Conclusions In this study, we showed a low correlation between transcriptome and proteome data for GB samples as described in other cancer tissues. We observed that NEFL, SYN1 and 12 biological processes were deregulated in both the transcriptome and proteome data. It will be important to analyze more specifically these processes and these two proteins to allow the identification of new theranostic markers or potential therapeutic targets for GB. Electronic supplementary material The online version of this article (10.1186/s12867-018-0115-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Michel Lemée
- Department of Neurosurgery, CHU Angers, University Hospital of Angers, 4, Rue Larrey, 49933, Angers Cedex 09, France. .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | - Anne Clavreul
- Department of Neurosurgery, CHU Angers, University Hospital of Angers, 4, Rue Larrey, 49933, Angers Cedex 09, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Marc Aubry
- UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes 1, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes 1, Rennes, France
| | - Emmanuelle Com
- Inserm U1085 IRSET, Université de Rennes 1, Rennes, France.,Protim, Université de Rennes 1, Rennes, France
| | - Marie de Tayrac
- UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes 1, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU Rennes, Rennes, France.,CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France
| | - Jean Mosser
- UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes 1, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes 1, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU Rennes, Rennes, France.,CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France
| | - Philippe Menei
- Department of Neurosurgery, CHU Angers, University Hospital of Angers, 4, Rue Larrey, 49933, Angers Cedex 09, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| |
Collapse
|
16
|
Volak A, LeRoy SG, Natasan JS, Park DJ, Cheah PS, Maus A, Fitzpatrick Z, Hudry E, Pinkham K, Gandhi S, Hyman BT, Mu D, GuhaSarkar D, Stemmer-Rachamimov AO, Sena-Esteves M, Badr CE, Maguire CA. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery. J Neurooncol 2018; 139:293-305. [PMID: 29767307 PMCID: PMC6454875 DOI: 10.1007/s11060-018-2889-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Abstract
The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
Collapse
Affiliation(s)
- Adrienn Volak
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Stanley G LeRoy
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Jeya Shree Natasan
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - David J Park
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Pike See Cheah
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Andreas Maus
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Fitzpatrick
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Eloise Hudry
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Kelsey Pinkham
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Sheetal Gandhi
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Dakai Mu
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Christian E Badr
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| | - Casey A Maguire
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Vieira de Castro J, Gomes ED, Granja S, Anjo SI, Baltazar F, Manadas B, Salgado AJ, Costa BM. Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology. J Transl Med 2017; 15:200. [PMID: 28969635 PMCID: PMC5625623 DOI: 10.1186/s12967-017-1303-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
Background Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. Methods The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton’s jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. Results We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. Conclusions These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1303-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
18
|
Clavreul A, Pourbaghi-Masouleh M, Roger E, Lautram N, Montero-Menei CN, Menei P. Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: a good deal? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:135. [PMID: 28962658 PMCID: PMC5622550 DOI: 10.1186/s13046-017-0605-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Background Glioblastoma (GB) is the most malignant brain tumor in adults. It is characterized by angiogenesis and a high proliferative and invasive capacity. Standard therapy (surgery, radiotherapy and chemotherapy with temozolomide) is of limited efficacy. Innovative anticancer drugs targeting both tumor cells and angiogenesis are urgently required, together with effective systems for their delivery to the brain. We assessed the ability of human mesenchymal stromal cells (MSCs) to uptake the multikinase inhibitor, sorafenib (SFN), and to carry this drug to a brain tumor following intranasal administration. Method MSCs were primed with SFN and drug content and release were quantified by analytical chemistry techniques. The ability of SFN-primed MSCs to inhibit the survival of the human U87MG GB cell line and endothelial cells was assessed in in vitro assays. These cells were then administered intranasally to nude mice bearing intracerebral U87MG xenografts. Their effect on tumor growth and angiogenesis was evaluated by magnetic resonance imaging and immunofluorescence analyses, and was compared with the intranasal administration of unprimed MSCs or SFN alone. Results MSCs took up about 9 pg SFN per cell, with no effect on viability, and were able to release 60% of the primed drug. The cytostatic activity of the released SFN was entirely conserved, resulting in a significant inhibition of U87MG and endothelial cell survival in vitro. Two intranasal administrations of SFN-primed MSCs in U87MG-bearing mice resulted in lower levels of tumor angiogenesis than the injection of unprimed MSCs or SFN alone, but had no effect on tumor volume. We also observed an increase in the proportion of small intratumoral vessels in animals treated with unprimed MSCs; this effect being abolished if the MSCs were primed with SFN. Conclusion We show the potential of MSCs to carry SFN to brain tumors following an intranasal administration. However, the therapeutic effect is modest probably due to the pro-tumorigenic properties of MSCs, which may limit the action of the released SFN. This calls into question the suitability of MSCs for use in GB therapy and renders it necessary to find methods guaranteeing the safety of this cellular vector after drug delivery.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, Angers, France. .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | - Milad Pourbaghi-Masouleh
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emilie Roger
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Nolwenn Lautram
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | | | - Philippe Menei
- Département de Neurochirurgie, CHU, Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| |
Collapse
|
19
|
Guo Y, Shao Y, Chen J, Xu S, Zhang X, Liu H. Expression of pituitary tumor-transforming 2 in human glioblastoma cell lines and its role in glioblastoma tumorigenesis. Exp Ther Med 2016; 11:1847-1852. [PMID: 27168815 DOI: 10.3892/etm.2016.3159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/11/2016] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the association between the expression of pituitary tumor-transforming 2 (PTTG2), and cell proliferation, invasion and apoptosis in glioblastoma. The U251 human glioblastoma cell line was transfected with the pcDNA-PTTG2 and small interfering (si)RNA-PTTG2 plasmids using Lipofectamine 2000. The expression of PTTG2 in U251 glioblastoma cells was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The association between PTTG2 expression, and cell proliferation, invasion and apoptosis in vitro were investigated using an MTT assay, Matrigel Transwell assay and flow cytometry combined with Annexin V/propidium iodide staining, respectively. RT-qPCR and western blot analysis demonstrated that PTTG2 mRNA and protein expression were significantly overexpressed and significantly suppressed following transfection with pcDNA-PTTG2 and short interfering RNA (siRNA)-PTTG2 plasmids, respectively (P<0.05). In addition, the cell proliferation rate and invasive cell number in cells with overexpressed PTTG2 were significantly higher compared with cells in the untreated group, and the invasive cell number in the siRNA-PTTG2 group was significantly lower than the untreated group (P<0.05). Flow cytometry analysis demonstrated that, compared with the untreated group, the quantity of apoptotic cells in PTTG2 overexpression group was significantly reduced, and the quantity of apoptotic cells in the siRNA-PTTG2 group was increased. Similar results were obtained with regards to the expression level of caspase-3. The results of the present study indicate that PTTG2 overexpression promotes cell proliferation and invasion during glioblastoma progression. In addition, the results suggest that PTTG2 overexpression inhibits cell apoptosis in glioblastoma by affecting caspase-3-dependent signaling pathways. It can therefore be suggested that PTTG2 may serve as a novel therapeutic target for treating glioblastoma.
Collapse
Affiliation(s)
- Yunbao Guo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yimeng Shao
- Operating Room, Central Hospital of Changchun, Changchun, Jilin 130011, P.R. China
| | - Jing Chen
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Songbai Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xingdong Zhang
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haiyan Liu
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
20
|
Lemée JM, Clavreul A, Menei P. Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone. Neuro Oncol 2015. [PMID: 26203067 DOI: 10.1093/neuonc/nov119] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most frequent and aggressive primary tumor of the central nervous system. Prognosis remains poor despite ongoing progress. In cases where the gadolinium-enhanced portion of the GB is completely resected, 90% of recurrences occur at the margin of surgical resection in the macroscopically normal peritumoral brain zone (PBZ). Intratumoral heterogeneity in GB is currently a hot topic in neuro-oncology, and the GB PBZ may be involved in this phenomenon. Indeed, this region, which possesses specific properties, has been less studied than the core of the GB tumor. The high rate of local recurrence in the PBZ and the limited success of targeted therapies against GB demonstrate the need for a better understanding of the PBZ. We present here a review of the literature on the GB PBZ, focusing on its radiological, cellular, and molecular characteristics. We discuss how intraoperative analysis of the PBZ is important for the optimization of surgical resection and the development of targeted therapies against GB.
Collapse
Affiliation(s)
- Jean-Michel Lemée
- Department of Neurosurgery, University Hospital of Angers, Angers, France (J.-M.L., A.C., P.M.); INSERM U1066, "Micro- et nano-médecine biomimétiques", Angers, France (J.-M.L., A.C., P.M.)
| | - Anne Clavreul
- Department of Neurosurgery, University Hospital of Angers, Angers, France (J.-M.L., A.C., P.M.); INSERM U1066, "Micro- et nano-médecine biomimétiques", Angers, France (J.-M.L., A.C., P.M.)
| | - Philippe Menei
- Department of Neurosurgery, University Hospital of Angers, Angers, France (J.-M.L., A.C., P.M.); INSERM U1066, "Micro- et nano-médecine biomimétiques", Angers, France (J.-M.L., A.C., P.M.)
| |
Collapse
|