1
|
Anwer MS, Abdel-Rasol MA, El-Sayed WM. Emerging therapeutic strategies in glioblastsoma: drug repurposing, mechanisms of resistance, precision medicine, and technological innovations. Clin Exp Med 2025; 25:117. [PMID: 40223032 PMCID: PMC11994545 DOI: 10.1007/s10238-025-01631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Glioblastoma (GBM) is an aggressive Grade IV brain tumor with a poor prognosis. It results from genetic mutations, epigenetic changes, and factors within the tumor microenvironment (TME). Traditional treatments like surgery, radiotherapy, and chemotherapy provide limited survival benefits due to the tumor's heterogeneity and resistance mechanisms. This review examines novel approaches for treating GBM, focusing on repurposing existing medications such as antipsychotics, antidepressants, and statins for their potential anti-GBM effects. Advances in molecular profiling, including next-generation sequencing, artificial intelligence (AI), and nanotechnology-based drug delivery, are transforming GBM diagnosis and treatment. The TME, particularly GBM stem cells and immune evasion, plays a key role in therapeutic resistance. Integrating multi-omics data and applying precision medicine show promise, especially in combination therapies and immunotherapies, to enhance clinical outcomes. Addressing challenges such as drug resistance, targeting GBM stem cells, and crossing the blood-brain barrier is essential for improving treatment efficacy. While current treatments offer limited benefits, emerging strategies such as immunotherapies, precision medicine, and drug repurposing show significant potential. Technologies like liquid biopsies, AI-powered diagnostics, and nanotechnology could help overcome obstacles like the blood-brain barrier and GBM stem cells. Ongoing research into combination therapies, targeted drug delivery, and personalized treatments is crucial. Collaborative efforts and robust clinical trials are necessary to translate these innovations into effective therapies, offering hope for improved survival and quality of life for GBM patients.
Collapse
Affiliation(s)
- Mohamed S Anwer
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohammed A Abdel-Rasol
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Pan Y, Zhou H, Sun Z, Zhu Y, Zhang Z, Han J, Liu Y, Wang Q. Regulatory T cells in solid tumor immunotherapy: effect, mechanism and clinical application. Cell Death Dis 2025; 16:277. [PMID: 40216744 PMCID: PMC11992189 DOI: 10.1038/s41419-025-07544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The tumor-immune response is mobilized to suppress tumorigenesis, while the immune microenvironment and lymph node microenvironment are formed gradually during tumor progression. In fact, tumor surface antigens are not easily recognized by antigen-presenting cells. So it is hard for the immune system to kill the newly formed tumor cells effectively. In a normal immune environment, immune function is always suppressed to maintain the stability of the body, and regulatory T cells play an important role in maintaining immune suppression. However, during tumorigenesis, the suppression of regulatory T cell immune functions is more likely to contribute to tumor cell proliferation and migration leading directly to tumor progression. Therefore, focusing on the role of regulatory T cells in tumor immunity could improve tumor immunotherapy outcomes in the clinic. Regulatory T cells are more mature in hematologic system tumors than in solid tumors. However, there are continuing efforts to apply regulatory T cells for immunotherapy in solid tumors. This review describes the role of regulatory T cells in solid tumor immunotherapy from the perspective of prognosis, immune microenvironment remodeling, and current clinical applications. This summary could help us better understand the mechanisms of regulatory T cells in solid tumor immunotherapy and further expand their clinical application.
Collapse
Affiliation(s)
- Yan Pan
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Hanqiong Zhou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yichen Zhu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhe Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Jing Han
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Yang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China.
| |
Collapse
|
3
|
Mao M, Lei Y, Ma X, Xie HY. Challenges and Emerging Strategies of Immunotherapy for Glioblastoma. Chembiochem 2025; 26:e202400848. [PMID: 39945240 DOI: 10.1002/cbic.202400848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Glioblastoma (GBM) is recognized as the most lethal primary malignant tumor of the central nervous system. Although traditional treatments can somewhat prolong patient survival, the overall prognosis remains grim. Immunotherapy has become an effective method for GBM treatment. Oncolytic virus, checkpoint inhibitors, CAR T cells and tumor vaccines have all been applied in this field. Moreover, the combining of immunotherapy with traditional radiotherapy, chemotherapy, or gene therapy can further improve the treatment outcome. This review systematically summarizes the features of GBM, the recent progress of immunotherapy in overcoming GBM.
Collapse
Affiliation(s)
- Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yao Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hai-Yan Xie
- Chemical Biology Center, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
4
|
Sangubotla R, Gubbiyappa KS, Devarapogu R, Kim J. Modern insights of nanotheranostics in the glioblastoma: An updated review. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167653. [PMID: 39756713 DOI: 10.1016/j.bbadis.2024.167653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant subtype of glioma, originating from the glial cells that provide support to other neurons in the brain. GBM predominantly impacts the cerebral hemisphere of the brain, with minimal effects on the cerebellum, brain stem, or spinal cord. Individuals diagnosed with GBM commonly encounter a range of symptoms, starting from auditory abnormalities to seizures. Recently, cell membrane-camouflaged nanoparticles (CMCNPs) are evolving as promising theranostic agents that can carry specific biological moieties from their biological origin and effectively target GBM cells. Moreover, exosomes have gained widespread scientific attention as an effective drug delivery approach due to their excellent stability in the bloodstream, high biocompatibility, low immune response, and inherent targeting capabilities. Exosomes derived from specific cell types can transport endogenous signaling molecules that have therapeutic promise for GBM therapy. In this context, researchers are utilizing various techniques to isolate exosomes from liquid biomarkers from patients, such as serum and cerebrospinal fluid (CSF). Proper isolation of exosomes may induce the clinical diagnosis in GBM due to their commercial accessibility and real-time monitoring options. Since exosomes are unable to penetrate the blood-brain barrier (BBB), strategic theranostic methods are ideal. For this, understanding interactions between glioma-specific exosomes in the TME and biomarkers is necessary. The versatile characteristics of NPs and their capacity to cross the BBB enable them to be indispensable against GBM. In this review article, we discussed the recent theranostic applications of nanotechnology by comparing the limitations of existing nanotechnology-based approaches.
Collapse
Affiliation(s)
- Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Kumar Shiva Gubbiyappa
- GITAM School of Pharmacy, GITAM Deemed to be University, Rudraram, Patencheru, Sangareddy Dist, 502329, Telangana, India
| | - Rajakumari Devarapogu
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
5
|
Sahoo L, Paikray SK, Tripathy NS, Fernandes D, Dilnawaz F. Advancements in nanotheranostics for glioma therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2587-2608. [PMID: 39480526 DOI: 10.1007/s00210-024-03559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Gliomas are brain tumors mainly derived from glial cells that are difficult to treat and cause high mortality. Radiation, chemotherapy, and surgical excision are the conventional treatments for gliomas. Patients who have surgery or have undergone chemotherapy for glioma treatment have poor prognosis with tumor recurrence. In particular, for glioblastoma, the 5-year average survival rate is 4-7%, and the median survival is 12-18 months. A number of issues hinder effective treatment such as, poor surgical resection, tumor heterogeneity, insufficient drug penetration across the blood-brain barrier, multidrug resistance, and difficulties with drug specificity. Nanotheranostic-mediated drug delivery is becoming a well-researched consideration, and an efficient non-invasive method for delivering chemotherapeutic drugs to the target area. Theranostic nanomedicines, which incorporate therapeutic drugs and imaging agents for personalized therapies, can be used for preventing overdose of non-responders. Through the identification of massive and complicated information from next-generation sequencing, machine learning enables for precise prediction of therapeutic outcomes and post-treatment management for patients with cancer. This article gives a thorough overview of nanocarrier-mediated drug delivery with a brief introduction to drug delivery challenges. In addition, this assessment offers a current summary of preclinical and clinical research on nanomedicines for gliomas. In the future, nanotheranostics will provide personalized treatment for gliomas and other treatable cancers.
Collapse
Affiliation(s)
- Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | | | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India.
| |
Collapse
|
6
|
Jang HJ, Park JW. Microenvironmental Drivers of Glioma Progression. Int J Mol Sci 2025; 26:2108. [PMID: 40076738 PMCID: PMC11900340 DOI: 10.3390/ijms26052108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Gliomas, particularly glioblastoma (GBM), are among the most challenging brain tumors due to their complex and dynamic tumor microenvironment (TME). The TME plays a pivotal role in tumor progression, immune evasion, and resistance to therapy through intricate interactions among glioma cells, immune components, neurons, astrocytes, the extracellular matrix, and the blood-brain barrier. Targeting the TME has demonstrated potential, with immunotherapies such as checkpoint inhibitors and neoadjuvant therapies enhancing immune responses. Nonetheless, overcoming the immunosuppressive landscape and metabolic adaptations continues to pose significant challenges. This review explores the diverse cellular and molecular mechanisms that shape the glioma TME. A deeper understanding of these mechanisms holds promise for providing novel therapeutic opportunities to improve glioma treatment outcomes.
Collapse
Affiliation(s)
- Hyun Ji Jang
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
7
|
Toghraie FS, Bayat M, Hosseini MS, Ramezani A. Tumor-infiltrating myeloid cells; mechanisms, functional significance, and targeting in cancer therapy. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01051-y. [PMID: 39998754 DOI: 10.1007/s13402-025-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor-infiltrating myeloid cells (TIMs), which encompass tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and tumor-associated dendritic cells (TADCs), are of great importance in tumor microenvironment (TME) and are integral to both pro- and anti-tumor immunity. Nevertheless, the phenotypic heterogeneity and functional plasticity of TIMs have posed challenges in fully understanding their complexity roles within the TME. Emerging evidence suggested that the presence of TIMs is frequently linked to prevention of cancer treatment and improvement of patient outcomes and survival. Given their pivotal function in the TME, TIMs have recently been recognized as critical targets for therapeutic approaches aimed at augmenting immunostimulatory myeloid cell populations while depleting or modifying those that are immunosuppressive. This review will explore the important properties of TIMs related to immunity, angiogenesis, and metastasis. We will also document the latest therapeutic strategies targeting TIMs in preclinical and clinical settings. Our objective is to illustrate the potential of TIMs as immunological targets that may improve the outcomes of existing cancer treatments.
Collapse
Affiliation(s)
- Fatemeh Sadat Toghraie
- Institute of Biotechnology, Faculty of the Environment and Natural Sciences, Brandenburg University of Technology, Cottbus, Germany
| | - Maryam Bayat
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sadat Hosseini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Liu L, Zhang X, Chai Y, Zhang J, Deng Q, Chen X. Skull bone marrow and skull meninges channels: redefining the landscape of central nervous system immune surveillance. Cell Death Dis 2025; 16:53. [PMID: 39875352 PMCID: PMC11775313 DOI: 10.1038/s41419-025-07336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
The understanding of neuroimmune function has evolved from concepts of immune privilege and protection to a new stage of immune interaction. The discovery of skull meninges channels (SMCs) has opened new avenues for understanding central nervous system (CNS) immunity. Here, we characterize skull bone marrow and SMCs by detailing the anatomical structures adjacent to the skull, the differences between skull and peripheral bone marrow, mainstream animal processing methods, and the role of skull bone marrow in monitoring various CNS diseases. Additionally, we highlight several unresolved issues based on current research findings, aiming to guide future research directions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| |
Collapse
|
9
|
Montoya M, Collins SA, Chuntova P, Patel TS, Nejo T, Yamamichi A, Kasahara N, Okada H. Interferon regulatory factor 8-driven reprogramming of the immune microenvironment enhances antitumor adaptive immunity and reduces immunosuppression in murine glioblastoma. Neuro Oncol 2024; 26:2272-2287. [PMID: 39115195 PMCID: PMC11630541 DOI: 10.1093/neuonc/noae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) has a highly immunosuppressive tumor immune microenvironment (TIME), largely mediated by myeloid-derived suppressor cells (MDSCs). Here, we utilized a retroviral replicating vector (RRV) to deliver Interferon Regulatory Factor 8 (IRF8), a master regulator of type 1 conventional dendritic cell (cDC1) development, in a syngeneic murine GBM model. We hypothesized that RRV-mediated delivery of IRF8 could "reprogram" intratumoral MDSCs into antigen-presenting cells and thereby restore T-cell responses. METHODS Effects of RRV-IRF8 on survival and tumor growth kinetics were examined in the SB28 murine GBM model. The immunophenotype was analyzed by flow cytometry and gene expression assays. We assayed functional immunosuppression and antigen presentation by ex vivo T-cell-myeloid co-culture. RESULTS Intratumoral injection of RRV-IRF8 in mice bearing intracerebral SB28 glioma significantly suppressed tumor growth and prolonged survival. RRV-IRF8 treated tumors exhibited significant enrichment of cDC1s and CD8+ T-cells. Additionally, myeloid cells derived from RRV-IRF8 tumors showed decreased expression of the immunosuppressive markers Arg1 and IDO1 and demonstrated reduced suppression of naïve T-cell proliferation in ex vivo co-culture, compared to controls. Furthermore, DCs from RRV-IRF8 tumors showed increased antigen presentation compared to those from control tumors. In vivo treatment with azidothymidine (AZT), a viral replication inhibitor, showed that IRF8 transduction in both tumor and non-tumor cells is necessary for survival benefit, associated with a reprogrammed, cDC1- and CD8 T-cell-enriched TIME. CONCLUSIONS Our results indicate that reprogramming of glioma-infiltrating myeloid cells by in vivo expression of IRF8 may reduce immunosuppression and enhance antigen presentation, achieving improved tumor control.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sara A Collins
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Pavlina Chuntova
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Trishna S Patel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Takahide Nejo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| |
Collapse
|
10
|
Lad M, Beniwal AS, Jain S, Shukla P, Kalistratova V, Jung J, Shah SS, Yagnik G, Saha A, Sati A, Babikir H, Nguyen AT, Gill S, Rios J, Young JS, Lui A, Salha D, Diaz A, Aghi MK. Glioblastoma induces the recruitment and differentiation of dendritic-like "hybrid" neutrophils from skull bone marrow. Cancer Cell 2024; 42:1549-1569.e16. [PMID: 39255776 PMCID: PMC11446475 DOI: 10.1016/j.ccell.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Tumor-associated neutrophil (TAN) effects on glioblastoma (GBM) biology remain under-characterized. We show here that neutrophils with dendritic features-including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate major histocompatibility complex (MHC)II-dependent T cell activation-accumulate intratumorally and suppress tumor growth in vivo. Trajectory analysis of patient TAN scRNA-seq identifies this "hybrid" dendritic-neutrophil phenotype as a polarization state that is distinct from canonical cytotoxic TANs, and which differentiates from local precursors. These hybrid-inducible immature neutrophils-which we identified in patient and murine glioblastomas-arise not from circulation, but from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a contributor of antitumoral myeloid antigen-presenting cells (APCs), including TANs, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow-such as intracalvarial AMD3100, whose survival-prolonging effect in GBM we report-present therapeutic potential.
Collapse
Affiliation(s)
- Meeki Lad
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Angad S Beniwal
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Saket Jain
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Poojan Shukla
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Venina Kalistratova
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Jangham Jung
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Sumedh S Shah
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Garima Yagnik
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Atul Saha
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Ankita Sati
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Husam Babikir
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Alan T Nguyen
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Sabraj Gill
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Jennifer Rios
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Jacob S Young
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Austin Lui
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Diana Salha
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Aaron Diaz
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Manish K Aghi
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA.
| |
Collapse
|
11
|
Takacs GP, Garcia JS, Hodges CA, Kreiger CJ, Sherman A, Harrison JK. CSF1R Ligands Expressed by Murine Gliomas Promote M-MDSCs to Suppress CD8 + T Cells in a NOS-Dependent Manner. Cancers (Basel) 2024; 16:3055. [PMID: 39272914 PMCID: PMC11394022 DOI: 10.3390/cancers16173055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor, resulting in poor survival despite aggressive therapies. GBM is characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME) made up predominantly of infiltrating peripheral immune cells. One significant immune cell type that contributes to glioma immune evasion is a population of immunosuppressive cells, termed myeloid-derived suppressor cells (MDSCs). Previous studies suggest that a subset of myeloid cells, expressing monocytic (M)-MDSC markers and dual expression of chemokine receptors CCR2 and CX3CR1, utilize CCR2 to infiltrate the TME. This study evaluated the mechanism of CCR2+/CX3CR1+ M-MDSC differentiation and T cell suppressive function in murine glioma models. We determined that bone marrow-derived CCR2+/CX3CR1+ cells adopt an immune suppressive cell phenotype when cultured with glioma-derived factors. Glioma-secreted CSF1R ligands M-CSF and IL-34 were identified as key drivers of M-MDSC differentiation while adenosine and iNOS pathways were implicated in the M-MDSC suppression of T cells. Mining a human GBM spatial RNAseq database revealed a variety of different pathways that M-MDSCs utilize to exert their suppressive function that is driven by complex niches within the microenvironment. These data provide a more comprehensive understanding of the mechanism of M-MDSCs in glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey K. Harrison
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA (J.S.G.); (C.A.H.)
| |
Collapse
|
12
|
Tian Y, Gao X, Yang X, Chen S, Ren Y. VEGFA contributes to tumor property of glioblastoma cells by promoting differentiation of myeloid-derived suppressor cells. BMC Cancer 2024; 24:1040. [PMID: 39174921 PMCID: PMC11342494 DOI: 10.1186/s12885-024-12803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a malignant astrocytic tumor and its progression involves the regulation of vascular endothelial growth factor-A (VEGFA). However, the mechanism of VEGFA in regulating GBM progression remains unclear. METHODS VEGFA mRNA expression was analyzed by quantitative real-time polymerase chain reaction. Protein expression of VEGFA, cluster of differentiation 9 (CD9), CD81, and transforming growth factor-β1 (TGF-β1) was detected by western blotting assay. Flow cytometry assay was conducted to assess cell proliferation, cell apoptosis and myeloid-derived suppressor cell (MDSC) differentiation. TUNEL cell apoptosis detection kit was utilized to analyze cell apoptosis of tumors. Angiogenic capacity was investigated by tube formation assay. Transwell assay was used to assess cell migration and invasion. The effect of VEGFA on tumor formation was determined by a xenograft mouse model assay. Immunohistochemistry assay was used to analyze positive expression rate of VEGFA in tumor tissues. TGF-β1 level was detected by enzyme-linked immunosorbent assay. RESULTS VEGFA expression was upregulated in GBM tissues, GBM cells, and exosomes from GBM patients and GBM cells. VEGFA silencing led to decreased cell proliferation, tube formation, migration and invasion and increased cell apoptosis. Moreover, VEGFA knockdown also delayed tumor formation. VEGFA promoted MDSC differentiation and TGF-β1 secretion by MDSCs by being packaged into exosomes. In addition, TGF-β1 knockdown displayed similar effects with VEGFA silencing on GBM cell phenotypes, and MDSCs attenuated VEGFA knockdown-induced effects by secreting TGF-β1 in A172 and U251 cells. CONCLUSION VEGFA contributed to tumor property of GBM cells by promoting MDSC differentiation and TGF-β1 secretion by MDSCs, providing potential targets for GBM treatment.
Collapse
Affiliation(s)
- Yanlong Tian
- Department of Pathology, No. 215 Hospital of Shaanxi Nuclear Industry, No. 35 Weiyang West Road, Qindu District, Xianyang City, Shaanxi Province, 712000, China
| | - Xiao Gao
- Department of Pathology, No. 215 Hospital of Shaanxi Nuclear Industry, No. 35 Weiyang West Road, Qindu District, Xianyang City, Shaanxi Province, 712000, China
| | - Xuechao Yang
- Department of Pathology, No. 215 Hospital of Shaanxi Nuclear Industry, No. 35 Weiyang West Road, Qindu District, Xianyang City, Shaanxi Province, 712000, China.
| | - Shangjun Chen
- Department of Neurosurgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, China
| | - Yufeng Ren
- Department of Orthopaedics, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, China
| |
Collapse
|
13
|
Takacs GP, Garcia JS, Hodges CA, Kreiger CJ, Sherman A, Harrison JK. Glioma-derived M-CSF and IL-34 license M-MDSCs to suppress CD8 + T cells in a NOS-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597474. [PMID: 38895268 PMCID: PMC11185662 DOI: 10.1101/2024.06.05.597474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor, resulting in poor survival despite aggressive therapies. GBM is characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME) made up predominantly of infiltrating peripheral immune cells. One significant immune cell type that contributes to glioma immune evasion is a population of immunosuppressive cells, termed myeloid-derived suppressor cells (MDSCs). Previous studies suggest that a subset of myeloid cells, expressing monocytic (M)-MDSC markers and dual expression of chemokine receptors CCR2 and CX3CR1, utilize CCR2 to infiltrate the TME. This study evaluated the mechanism of CCR2+/CX3CR1+ M-MDSC differentiation and T cell suppressive function in murine glioma models. We determined that bone marrow-derived CCR2+/CX3CR1+ cells adopt an immune suppressive cell phenotype when cultured with glioma-derived factors. Glioma secreted CSF1R ligands M-CSF and IL-34 were identified as key drivers of M-MDSC differentiation while adenosine and iNOS pathways were implicated in M-MDSC suppression of T cells. Mining a human GBM spatial RNAseq database revealed a variety of different pathways that M-MDSCs utilize to exert their suppressive function that are driven by complex niches within the microenvironment. These data provide a more comprehensive understanding of the mechanism of M-MDSCs in glioblastoma.
Collapse
Affiliation(s)
- Gregory P. Takacs
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, 32610, United States
| | - Julia S. Garcia
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, 32610, United States
| | - Caitlyn A. Hodges
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, 32610, United States
| | - Christian J. Kreiger
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, 32610, United States
| | - Alexandra Sherman
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, 32610, United States
| | - Jeffrey K. Harrison
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, 32610, United States
| |
Collapse
|
14
|
Bazrgar M, Mirmotalebisohi SA, Ahmadi M, Azimi P, Dargahi L, Zali H, Ahmadiani A. Comprehensive analysis of lncRNA-associated ceRNA network reveals novel potential prognostic regulatory axes in glioblastoma multiforme. J Cell Mol Med 2024; 28:e18392. [PMID: 38864705 PMCID: PMC11167707 DOI: 10.1111/jcmm.18392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Deciphering the lncRNA-associated competitive endogenous RNA (ceRNA) network is essential in decoding glioblastoma multiforme (GBM) pathogenesis by regulating miRNA availability and controlling mRNA stability. This study aimed to explore novel biomarkers for GBM by constructing a lncRNA-miRNA-mRNA network. A ceRNA network in GBM was constructed using lncRNA, mRNA and miRNA expression profiles from the TCGA and GEO datasets. Seed nodes were identified by protein-protein interaction (PPI) network analysis of deregulated-mRNAs (DEmRNAs) in the ceRNA network. A lncRNA-miRNA-seed network was constructed by mapping the seed nodes into the preliminary ceRNA network. The impact of the seed nodes on the overall survival (OS) of patients was assessed by the GSCA database. Functional enrichment analysis of the deregulated-lncRNAs (DElncRNA) in the ceRNA network and genes interacting with OS-related genes in the PPI network were performed. Finally, the positive correlation between seed nodes and their associated lncRNAs and the expression level of these molecules in GBM tissue compared with normal samples was validated using the GEPIA database. Our analyzes revealed that three novel regulatory axes AL161785.1/miR-139-5p/MS4A6A, LINC02611/miR-139-5p/MS4A6A and PCED1B-AS1/miR-433-3p/MS4A6A may play essential roles in GBM pathogenesis. MS4A6A is upregulated in GBM and closely associated with shorter survival time of patients. We also identified that MS4A6A expression positively correlates with genes related to tumour-associated macrophages, which induce macrophage infiltration and immune suppression. The functional enrichment analysis demonstrated that DElncRNAs are mainly involved in neuroactive ligand-receptor interaction, calcium/MAPK signalling pathway, ribosome, GABAergic/Serotonergic/Glutamatergic synapse and immune system process. In addition, genes related to MS4A6A contribute to immune and inflammatory-related biological processes. Our findings provide novel insights to understand the ceRNA regulation in GBM and identify novel prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Parisa Azimi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Leila Dargahi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
16
|
Montoya M, Collins SA, Chuntova P, Patel TS, Nejo T, Yamamichi A, Kasahara N, Okada H. IRF8-driven reprogramming of the immune microenvironment enhances anti-tumor adaptive immunity and reduces immunosuppression in murine glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587608. [PMID: 38617245 PMCID: PMC11014587 DOI: 10.1101/2024.04.02.587608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background Glioblastoma (GBM) has a highly immunosuppressive tumor immune microenvironment (TIME), largely mediated by myeloid-derived suppressor cells (MDSCs). Here, we utilized a retroviral replicating vector (RRV) to deliver Interferon Regulatory Factor 8 (IRF8), a master regulator of type 1 conventional dendritic cell (cDC1) development, in a syngeneic murine GBM model. We hypothesized that RRV-mediated delivery of IRF8 could "reprogram" intratumoral MDSCs into antigen-presenting cells (APCs) and thereby restore T-cell responses. Methods Effects of RRV-IRF8 on survival and tumor growth kinetics were examined in the SB28 murine GBM model. Immunophenotype was analyzed by flow cytometry and gene expression assays. We assayed functional immunosuppression and antigen presentation by ex vivo T-cell-myeloid co-culture. Results Mice with RRV-IRF8 pre-transduced intracerebral tumors had significantly longer survival and slower tumor growth compared to controls. RRV-IRF8 treated tumors exhibited significant enrichment of cDC1s and CD8+ T-cells. Additionally, myeloid cells derived from RRV-IRF8 tumors showed decreased expression of the immunosuppressive markers Arg1 and IDO1 and demonstrated reduced suppression of naïve T-cell proliferation in ex vivo co-culture, compared to controls. Furthermore, DCs from RRV-IRF8 tumors showed increased antigen presentation compared to those from control tumors. In vivo treatment with azidothymidine (AZT), a viral replication inhibitor, showed that IRF8 transduction in both tumor and non-tumor cells is necessary for survival benefit, associated with a reprogrammed, cDC1- and CD8 T-cell-enriched TIME. Conclusions Our results indicate that reprogramming of glioma-infiltrating myeloid cells by in vivo expression of IRF8 may reduce immunosuppression and enhance antigen presentation, achieving improved tumor control.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Sara A Collins
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Pavlina Chuntova
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Trishna S Patel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Takahide Nejo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; The Parker Institute for Cancer Immunotherapy
| |
Collapse
|
17
|
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M, Ciurea AV. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr Issues Mol Biol 2024; 46:2402-2443. [PMID: 38534769 DOI: 10.3390/cimb46030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas constitute a diverse and complex array of tumors within the central nervous system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the immunological context of gliomas, unveiling the intricate immune environment and its ramifications for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in understanding tumor behavior, focusing on recent research breakthroughs in treatment responses and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies, we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to tumor evolution and possible therapeutic advancements. In the end, this comparative oncological analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared characteristics with other types of tumors.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
18
|
Kienzler JC, Becher B. Immunity in malignant brain tumors: Tumor entities, role of immunotherapy, and specific contribution of myeloid cells to the brain tumor microenvironment. Eur J Immunol 2024; 54:e2250257. [PMID: 37940552 DOI: 10.1002/eji.202250257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Malignant brain tumors lack effective treatment, that can improve their poor overall survival achieved with standard of care. Advancement in different cancer treatments has shifted the focus in brain tumor research and clinical trials toward immunotherapy-based approaches. The investigation of the immune cell landscape revealed a dominance of myeloid cells in the tumor microenvironment. Their exact roles and functions are the subject of ongoing research. Current evidence suggests a complex interplay of tumor cells and myeloid cells with competing functions toward support vs. control of tumor growth. Here, we provide a brief overview of the three most abundant brain tumor entities: meningioma, glioma, and brain metastases. We also describe the field of ongoing immunotherapy trials and their results, including immune checkpoint inhibitors, vaccination studies, oncolytic viral therapy, and CAR-T cells. Finally, we summarize the phenotypes of microglia, monocyte-derived macrophages, border-associated macrophages, neutrophils, and potential novel therapy targets.
Collapse
Affiliation(s)
- Jenny C Kienzler
- Institute of Experimental Immunology, Inflammation Research Lab, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research Lab, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Laws MT, Walker EN, Cozzi FM, Ampie L, Jung MY, Burton EC, Brown DA. Glioblastoma may evade immune surveillance through primary cilia-dependent signaling in an IL-6 dependent manner. Front Oncol 2023; 13:1279923. [PMID: 38188300 PMCID: PMC10766829 DOI: 10.3389/fonc.2023.1279923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Glioblastoma is the most common, malignant primary brain tumor in adults and remains universally fatal. While immunotherapy has vastly improved the treatment of several solid cancers, efficacy in glioblastoma is limited. These challenges are due in part to the propensity of glioblastoma to recruit tumor-suppressive immune cells, which act in conjunction with tumor cells to create a pro-tumor immune microenvironment through secretion of several soluble factors. Glioblastoma-derived EVs induce myeloid-derived suppressor cells (MDSCs) and non-classical monocytes (NCMs) from myeloid precursors leading to systemic and local immunosuppression. This process is mediated by IL-6 which contributes to the recruitment of tumor-associated macrophages of the M2 immunosuppressive subtype, which in turn, upregulates anti-inflammatory cytokines including IL-10 and TGF-β. Primary cilia are highly conserved organelles involved in signal transduction and play critical roles in glioblastoma proliferation, invasion, angiogenesis, and chemoradiation resistance. In this perspectives article, we provide preliminary evidence that primary cilia regulate intracellular release of IL-6. This ties primary cilia mechanistically to tumor-mediated immunosuppression in glioblastomas and potentially, in additional neoplasms which have a shared mechanism for cancer-mediated immunosuppression. We propose potentially testable hypotheses of the cellular mechanisms behind this finding.
Collapse
Affiliation(s)
- Maxwell T. Laws
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Erin N. Walker
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- University of South Carolina School of Medicine Greenville, Greenville, SC, United States
| | - Francesca M. Cozzi
- Cambridge Brain Tumour Imaging Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbroke’s Hospital, Cambridge, United Kingdom
| | - Leonel Ampie
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Mi-Yeon Jung
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Eric C. Burton
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Desmond A. Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Tang OY, Binder ZA, O'Rourke DM, Bagley SJ. Optimizing CAR-T Therapy for Glioblastoma. Mol Diagn Ther 2023; 27:643-660. [PMID: 37700186 DOI: 10.1007/s40291-023-00671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination therapies to overcome the immune-hostile microenvironment.
Collapse
Affiliation(s)
- Oliver Y Tang
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Canella A, Nazzaro M, Rajendran S, Schmitt C, Haffey A, Nigita G, Thomas D, Lyberger JM, Behbehani GK, Amankulor NM, Mardis ER, Cripe TP, Rajappa P. Genetically modified IL2 bone-marrow-derived myeloid cells reprogram the glioma immunosuppressive tumor microenvironment. Cell Rep 2023; 42:112891. [PMID: 37516967 DOI: 10.1016/j.celrep.2023.112891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Gliomas are one of the leading causes of cancer-related death in the adolescent and young adult (AYA) population. Two-thirds of AYA glioma patients are affected by low-grade gliomas (LGGs), but there are no specific treatments. Malignant progression is supported by the immunosuppressive stromal component of the tumor microenvironment (TME) exacerbated by M2 macrophages and a paucity of cytotoxic T cells. A single intravenous dose of engineered bone-marrow-derived myeloid cells that release interleukin-2 (GEMys-IL2) was used to treat mice with LGGs. Our results demonstrate that GEMys-IL2 crossed the blood-brain barrier, infiltrated the TME, and reprogrammed the immune cell composition and transcriptome. Moreover, GEMys-IL2 extended survival in an LGG immunocompetent mouse model. Here, we report the efficacy of an in vivo approach that demonstrates the potential for a cell-mediated innate immunotherapy designed to enhance the recruitment of activated effector T and natural killer cells within the glioma TME.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Nazzaro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Claire Schmitt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Abigail Haffey
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Diana Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Justin M Lyberger
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gregory K Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Nduka M Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy P Cripe
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
22
|
Liu L, Liu B. Inflammatory microenvironment and immunotherapy in hepatocellular carcinoma. EUR J INFLAMM 2023; 21. [DOI: 10.1177/1721727x231172025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is considered a classic inflammation-associated tumor that usually originates from chronic hepatitis, where an intense and chronic inflammatory response leads to the accumulation of mutations and eventually carcinogenesis under conditions of persistent liver injury. In recent years, immunotherapy for HCC has continued to evolve, as the liver is naturally filled with a large variety of immune cells, making hepatocellular carcinoma a more complex inflammatory microenvironment unlike other tumors. With a better understanding of the specific inflammatory microenvironment of HCC, there is an opportunity to try new therapeutic strategies for HCC immunotherapy. In this paper, we review the immunotherapy of primary liver cancer in terms of the correlation between ICI drugs, ACT therapy and the inflammatory microenvironment of HCC, summarize and discuss the progress and difficulties of immunotherapy of liver cancer, and provide more scientific guidance for immunotherapy of primary liver cancer.
Collapse
Affiliation(s)
- Liwei Liu
- College of Medical Technology, Anhui Medical College, Hefei, China
| | - Bo Liu
- Department of Cell Center, 901th Hospital of PLA Joint Logistic Support Force, Hefei, China
| |
Collapse
|
23
|
Wang J, Dai X, Gao Q, Chang H, Zhang S, Shan C, He T. Tyrosine metabolic reprogramming coordinated with the tricarboxylic acid cycle to drive glioma immune evasion by regulating PD-L1 expression. IBRAIN 2023; 9:133-147. [PMID: 37786553 PMCID: PMC10529206 DOI: 10.1002/ibra.12107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 10/04/2023]
Abstract
Due to the existence of the blood-brain barrier in glioma, traditional drug therapy has a poor therapeutic outcome. Emerging immunotherapy has been shown to have satisfactory therapeutic effects in solid tumors, and it is clinically instructive to explore the possibility of immunotherapy in glioma. We performed a retrospective analysis of RNA-seq data and clinical information in 1027 glioma patients, utilizing machine learning to explore the relationship between tyrosine metabolizing enzymes and clinical characteristics. In addition, we also assessed the role of tyrosine metabolizing enzymes in the immune microenvironment including immune infiltration and immune evasion. Highly expressed tyrosine metabolizing enzymes 4-hydroxyphenylpyruvate dioxygenase, homogentisate 1,2-dioxygenase, and fumarylacetoacetate hydrolase not only promote the malignant phenotype of glioma but are also closely related to poor prognosis. The expression of tyrosine metabolizing enzymes could distinguish the malignancy degree of glioma. More importantly, tyrosine metabolizing enzymes regulate the adaptive immune process in glioma. Mechanistically, multiple metabolic enzymes remodel fumarate metabolism, promote α-ketoglutarate production, induce programmed death-ligand 1 expression, and help glioma evade immune surveillance. Our data suggest that the metabolic subclass driven by tyrosine metabolism provides promising targets for the immunotherapy of glioma.
Collapse
Affiliation(s)
- Ji‐Yan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Xin‐Tong Dai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Qing‐Le Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Hong‐Kai Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Shuai Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Chang‐Liang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Tao He
- Department of PathologyCharacteristic Medical Center of The Chinese People's Armed Police ForceTianjinChina
| |
Collapse
|
24
|
Gillette JS, Wang EJ, Dowd RS, Toms SA. Barriers to overcoming immunotherapy resistance in glioblastoma. Front Med (Lausanne) 2023; 10:1175507. [PMID: 37275361 PMCID: PMC10232794 DOI: 10.3389/fmed.2023.1175507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, known for its poor prognosis and high recurrence rate. Current standard of care includes surgical resection followed by combined radiotherapy and chemotherapy. Although immunotherapies have yielded promising results in hematological malignancies, their successful application in GBM remains limited due to a host of immunosuppressive factors unique to GBM. As a result of these roadblocks, research efforts have focused on utilizing combinatorial immunotherapies that target networks of immune processes in GBM with promising results in both preclinical and clinical trials, although limitations in overcoming the immunosuppressive factors within GBM remain. In this review, we aim to discuss the intrinsic and adaptive immune resistance unique to GBM and to summarize the current evidence and outcomes of engineered and non-engineered treatments targeted at overcoming GBM resistance to immunotherapy. Additionally, we aim to highlight the most promising strategies of targeted GBM immunotherapy combinatorial treatments and the insights that may directly improve the current patient prognosis and clinical care.
Collapse
|
25
|
Li Q, Mei A, Qian H, Min X, Yang H, Zhong J, Li C, Xu H, Chen J. The role of myeloid-derived immunosuppressive cells in cardiovascular disease. Int Immunopharmacol 2023; 117:109955. [PMID: 36878043 DOI: 10.1016/j.intimp.2023.109955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population found in the bone marrow, peripheral blood, and tumor tissue. Their role is mainly to inhibit the monitoring function of innate and adaptive immune cells, which leads to the escape of tumor cells and promotes tumor development and metastasis. Moreover, recent studies have found that MDSCs are therapeutic in several autoimmune disorders due to their strong immunosuppressive ability. Additionally, studies have found that MDSCs have an important role in the formation and progression of other cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, and hypertension. In this review, we will discuss the role of MDSCs in the pathogenesis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Qingmei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| |
Collapse
|
26
|
Lad BM, Beniwal AS, Jain S, Shukla P, Jung J, Shah SS, Yagnik G, Babikir H, Nguyen AT, Gill S, Young JS, Lui A, Salha D, Diaz A, Aghi MK. Glioblastoma induces the recruitment and differentiation of hybrid neutrophils from skull bone marrow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534105. [PMID: 36993266 PMCID: PMC10055347 DOI: 10.1101/2023.03.24.534105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tumor-associated neutrophil (TAN) effects on glioblastoma biology remain under-characterized. We show here that 'hybrid' neutrophils with dendritic features - including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate MHCII-dependent T cell activation - accumulate intratumorally and suppress tumor growth in vivo . Trajectory analysis of patient TAN scRNA-seq identifies this phenotype as a polarization state which is distinct from canonical cytotoxic TANs and differentiates intratumorally from immature precursors absent in circulation. Rather, these hybrid-inducible immature neutrophils - which we identified in patient and murine glioblastomas - arise from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a potent contributor of antitumoral myeloid APCs, including hybrid TANs and dendritic cells, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow - such as intracalvarial AMD3100 whose survival prolonging-effect in GBM we demonstrate - present therapeutic potential.
Collapse
|
27
|
Specialized functions and sexual dimorphism explain the functional diversity of the myeloid populations during glioma progression. Cell Rep 2023; 42:111971. [PMID: 36640350 DOI: 10.1016/j.celrep.2022.111971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Malignant gliomas are aggressive, hard-to-treat brain tumors. Their tumor microenvironment is massively infiltrated by myeloid cells, mostly brain-resident microglia, bone marrow (BM)-derived monocytes/macrophages, and dendritic cells that support tumor progression. Single-cell omics studies significantly dissected immune cell heterogeneity, but dynamics and specific functions of individual subpopulations were poorly recognized. We use Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) to precisely dissect myeloid cell identities and functionalities in murine GL261 gliomas. We demonstrate that the diversity of myeloid cells infiltrating gliomas is dictated by cell type and cell state. Glioma-activated microglia are the major source of cytokines attracting other immune cells, whereas BM-derived cells show the monocyte-to-macrophage transition in the glioma microenvironment. This transition is coupled with a phenotypic switch from the IFN-related to antigen-presentation and tumor-supportive gene expression. Moreover, we found sex-dependent differences in transcriptional programs and composition of myeloid cells in murine and human glioblastomas.
Collapse
|
28
|
Ni L, Sun P, Zhang S, Qian B, Chen X, Xiong M, Li B. Transcriptome and single-cell analysis reveal the contribution of immunosuppressive microenvironment for promoting glioblastoma progression. Front Immunol 2023; 13:1051701. [PMID: 36685556 PMCID: PMC9851159 DOI: 10.3389/fimmu.2022.1051701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Background and objectives GBM patients frequently exhibit severe local and systemic immunosuppression, limiting the possible efficacy of immunotherapy strategies. The mechanism through which immunosuppression is established in GBM tumors is the key to successful personalized immunotherapies. Methods We divided GBM patients into subtypes according to the expression characteristics of the TME typing-related signature matrix. WGCNA analysis was used to get co-expressed gene modules. The expression activity of hub genes retrieved from co-expressed modules was validated in two single-cell datasets. Then, cell-cell interaction was calculated. Results Four subtypes were identified in the TCGA and CGGA RNA-seq datasets simultaneously, one of which was an immunosuppressive subtype rich in immunosuppressive factors with low lymphocyte infiltration and an IDH1 mutation. Three co-expressed gene modules related to the immunosuppressive subtype were identified. These three modules are associated with the inflammatory response, angiogenesis, hypoxia, and carbon metabolism, respectively. The genes of the inflammatory response were mainly related to myeloid cells, especially TAM, angiogenesis was related to blood vessels; hypoxia and glucose metabolism were related to tumors, TAM, and blood vessels. Moreover, there was enhanced interaction between tumor cells and TAM. Discussion This research successfully found the immunosuppressive subtype and the major cell types, signal pathways, and molecules involved in the formation of the immunosuppressive subtype and will provide new clues for the improvement of GBM personalized immunotherapy in the future.
Collapse
Affiliation(s)
- Lulu Ni
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Ping Sun
- Department of Pathology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Sujuan Zhang
- Institute of Science and Technology Information, Beijing Academy of Science and Technology, Beijing, China
| | - Bin Qian
- Department of Traditional Chinese Medicine, General Hospital of the Third Division of Xinjiang Production and Construction Corps, Tumushuke, China
| | - Xu Chen
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Mengrui Xiong
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Bing Li
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China,*Correspondence: Bing Li,
| |
Collapse
|
29
|
Takacs GP, Kreiger CJ, Luo D, Tian G, Garcia JS, Deleyrolle LP, Mitchell DA, Harrison JK. Glioma-derived CCL2 and CCL7 mediate migration of immune suppressive CCR2 +/CX3CR1 + M-MDSCs into the tumor microenvironment in a redundant manner. Front Immunol 2023; 13:993444. [PMID: 36685592 PMCID: PMC9854274 DOI: 10.3389/fimmu.2022.993444] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor, resulting in poor survival despite aggressive therapies. GBM is characterized in part by a highly heterogeneous and immunosuppressive tumor microenvironment (TME) made up predominantly of infiltrating peripheral immune cells. One significant immune cell type that contributes to glioma immune evasion is a population of immunosuppressive, hematopoietic cells, termed myeloid-derived suppressor cells (MDSCs). Previous studies suggest that a potent subset of myeloid cells, expressing monocytic (M)-MDSC markers, distinguished by dual expression of chemokine receptors CCR2 and CX3CR1, utilize CCR2 to infiltrate into the TME. This study evaluated the T cell suppressive function and migratory properties of CCR2+/CX3CR1+ MDSCs. Bone marrow-derived CCR2+/CX3CR1+ cells adopt an immune suppressive cell phenotype when cultured with glioma-derived factors. Recombinant and glioma-derived CCL2 and CCL7 induce the migration of CCR2+/CX3CR1+ MDSCs with similar efficacy. KR158B-CCL2 and -CCL7 knockdown murine gliomas contain equivalent percentages of CCR2+/CX3CR1+ MDSCs compared to KR158B gliomas. Combined neutralization of CCL2 and CCL7 completely blocks CCR2-expressing cell migration to KR158B cell conditioned media. CCR2+/CX3CR1+ cells are also reduced within KR158B gliomas upon combination targeting of CCL2 and CCL7. High levels of CCL2 and CCL7 are also associated with negative prognostic outcomes in GBM patients. These data provide a more comprehensive understanding of the function of CCR2+/CX3CR1+ MDSCs and the role of CCL2 and CCL7 in the recruitment of these immune suppressive cells and further support the significance of targeting this chemokine axis in GBM.
Collapse
Affiliation(s)
- Gregory P. Takacs
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christian J. Kreiger
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Defang Luo
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Guimei Tian
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julia S. Garcia
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Loic P. Deleyrolle
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jeffrey K. Harrison
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
30
|
TSPO PET signal using [ 18F]GE180 is associated with survival in recurrent gliomas. Eur J Nucl Med Mol Imaging 2023; 50:859-869. [PMID: 36329288 PMCID: PMC9852133 DOI: 10.1007/s00259-022-06006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Glioma patients, especially recurrent glioma, suffer from a poor prognosis. While advances to classify glioma on a molecular level improved prognostication at initial diagnosis, markers to prognosticate survival in the recurrent situation are still needed. As 18 kDa translocator protein (TSPO) was previously reported to be associated with aggressive histopathological glioma features, we correlated the TSPO positron emission tomography (PET) signal using [18F]GE180 in a large cohort of recurrent glioma patients with their clinical outcome. METHODS In patients with [18F]GE180 PET at glioma recurrence, [18F]GE180 PET parameters (e.g., SUVmax) as well as other imaging features (e.g., MRI volume, [18F]FET PET parameters when available) were evaluated together with patient characteristics (age, sex, Karnofsky-Performance score) and neuropathological features (e.g. WHO 2021 grade, IDH-mutation status). Uni- and multivariate Cox regression and Kaplan-Meier survival analyses were performed to identify prognostic factors for post-recurrence survival (PRS) and time to treatment failure (TTF). RESULTS Eighty-eight consecutive patients were evaluated. TSPO tracer uptake correlated with tumor grade at recurrence (p < 0.05), with no significant differences in IDH-wild-type versus IDH-mutant tumors. Within the subgroup of IDH-mutant glioma (n = 46), patients with low SUVmax (median split, ≤ 1.60) had a significantly longer PRS (median 41.6 vs. 25.3 months, p = 0.031) and TTF (32.2 vs 8.7 months, p = 0.001). Also among IDH-wild-type glioblastoma (n = 42), patients with low SUVmax (≤ 1.89) had a significantly longer PRS (median not reached vs 8.2 months, p = 0.002). SUVmax remained an independent prognostic factor for PRS in the multivariate analysis including CNS WHO 2021 grade, IDH status, and age. Tumor volume defined by [18F]FET PET or contrast-enhanced MRI correlated weakly with TSPO tracer uptake. Treatment regimen did not differ among the median split subgroups. CONCLUSION Our data suggest that TSPO PET using [18F]GE180 can help to prognosticate recurrent glioma patients even among homogeneous molecular subgroups and may therefore serve as valuable non-invasive biomarker for individualized patient management.
Collapse
|
31
|
Sharma P, Aaroe A, Liang J, Puduvalli VK. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neurooncol Adv 2023; 5:vdad009. [PMID: 36968288 PMCID: PMC10034917 DOI: 10.1093/noajnl/vdad009] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Glioblastoma (GBM) tumor microenvironment (TME) is a highly heterogeneous and complex system, which in addition to cancer cells, consists of various resident brain and immune cells as well as cells in transit through the tumor such as marrow-derived immune cells. The TME is a dynamic environment which is heavily influenced by alterations in cellular composition, cell-to-cell contact and cellular metabolic products as well as other chemical factors, such as pH and oxygen levels. Emerging evidence suggests that GBM cells appear to reprogram their the TME, and hijack microenvironmental elements to facilitate rapid proliferation, invasion, migration, and survival thus generating treatment resistance. GBM cells interact with their microenvironment directly through cell-to-cell by interaction mediated by cell-surface molecules, or indirectly through apocrine or paracrine signaling via cytokines, growth factors, and extracellular vehicles. The recent discovery of neuron-glioma interfaces and neurotransmitter-based interactions has uncovered novel mechanisms that favor tumor cell survival and growth. Here, we review the known and emerging evidence related to the communication between GBM cells and various components of its TME, discuss models for studying the TME and outline current studies targeting components of the TME for therapeutic purposes.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ashley Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiyong Liang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
32
|
Protein Kinase Inhibitors as a New Target for Immune System Modulation and Brain Cancer Management. Int J Mol Sci 2022; 23:ijms232415693. [PMID: 36555334 PMCID: PMC9778944 DOI: 10.3390/ijms232415693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
High-grade brain tumors are malignant tumors with poor survival and remain the most difficult tumors to treat. An important contributing factor to the development and progression of brain tumors is their ability to evade the immune system. Several immunotherapeutic strategies including vaccines and checkpoint inhibitors have been studied to improve the effectiveness of the immune system in destroying cancer cells. Recent studies have shown that kinase inhibitors, capable of inhibiting signal transduction cascades that affect cell proliferation, migration, and angiogenesis, have additional immunological effects. In this review, we explain the beneficial therapeutic effects of novel small-molecule kinase inhibitors and explore how, through different mechanisms, they increase the protective antitumor immune response in high-grade brain tumors.
Collapse
|
33
|
Zhang X, Zhao L, Zhang H, Zhang Y, Ju H, Wang X, Ren H, Zhu X, Dong Y. The immunosuppressive microenvironment and immunotherapy in human glioblastoma. Front Immunol 2022; 13:1003651. [PMID: 36466873 PMCID: PMC9712217 DOI: 10.3389/fimmu.2022.1003651] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 08/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant intracranial tumor in adults, characterized by extensive infiltrative growth, high vascularization, and resistance to multiple therapeutic approaches. Among the many factors affecting the therapeutic effect, the immunosuppressive GBM microenvironment that is created by cells and associated molecules via complex mechanisms plays a particularly important role in facilitating evasion of the tumor from the immune response. Accumulating evidence is also revealing a close association of the gut microbiota with the challenges in the treatment of GBM. The gut microbiota establishes a connection with the central nervous system through bidirectional signals of the gut-brain axis, thus affecting the occurrence and development of GBM. In this review, we discuss the key immunosuppressive components in the tumor microenvironment, along with the regulatory mechanism of the gut microbiota involved in immunity and metabolism in the GBM microenvironment. Lastly, we concentrate on the immunotherapeutic strategies currently under investigation, which hold promise to overcome the hurdles of the immunosuppressive tumor microenvironment and improve the therapeutic outcome for patients with GBM.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Xiaoyu Wang
- Department of Neurology, Hongda Hospital, Jinxiang, China
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
34
|
Bayik D, Bartels CF, Lovrenert K, Watson DC, Zhang D, Kay K, Lee J, Lauko A, Johnson S, Lo A, Silver DJ, McGraw M, Grabowski M, Mohammadi AM, Veglia F, Fan Y, Vogelbaum MA, Scacheri P, Lathia JD. Distinct Cell Adhesion Signature Defines Glioblastoma Myeloid-Derived Suppressor Cell Subsets. Cancer Res 2022; 82:4274-4287. [PMID: 36126163 PMCID: PMC9664137 DOI: 10.1158/0008-5472.can-21-3840] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
In multiple types of cancer, an increased frequency in myeloid-derived suppressor cells (MDSC) is associated with worse outcomes and poor therapeutic response. In the glioblastoma (GBM) microenvironment, monocytic (m) MDSCs represent the predominant subset. However, the molecular basis of mMDSC enrichment in the tumor microenvironment compared with granulocytic (g) MDSCs has yet to be determined. Here we performed the first broad epigenetic profiling of MDSC subsets to define underlying cell-intrinsic differences in behavior and found that enhanced gene accessibility of cell adhesion programs in mMDSCs is linked to their tumor-accelerating ability in GBM models upon adoptive transfer. Mouse and human mMDSCs expressed higher levels of integrin β1 and dipeptidyl peptidase-4 (DPP-4) compared with gMDSCs as part of an enhanced cell adhesion signature. Integrin β1 blockade abrogated the tumor-promoting phenotype of mMDSCs and altered the immune profile in the tumor microenvironment, whereas treatment with a DPP-4 inhibitor extended survival in preclinical GBM models. Targeting DPP-4 in mMDSCs reduced pERK signaling and their migration towards tumor cells. These findings uncover a fundamental difference in the molecular basis of MDSC subsets and suggest that integrin β1 and DPP-4 represent putative immunotherapy targets to attenuate myeloid cell-driven immune suppression in GBM. SIGNIFICANCE Epigenetic profiling uncovers cell adhesion programming as a regulator of the tumor-promoting functions of monocytic myeloid-derived suppressor cells in glioblastoma, identifying therapeutic targets that modulate the immune response and suppress tumor growth.
Collapse
Affiliation(s)
- Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Cynthia F. Bartels
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Katreya Lovrenert
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Dionysios C. Watson
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristen Kay
- Lerner Research Institute, Cleveland Clinic, Ohio
| | - Juyeun Lee
- Lerner Research Institute, Cleveland Clinic, Ohio
| | - Adam Lauko
- Lerner Research Institute, Cleveland Clinic, Ohio
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Case Western Reserve University, Medical Science Training Program, Cleveland, Ohio
| | | | - Alice Lo
- Lerner Research Institute, Cleveland Clinic, Ohio
| | - Daniel J. Silver
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Mary McGraw
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Ohio
| | | | | | - Filippo Veglia
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Peter Scacheri
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Justin D. Lathia
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Ohio
| |
Collapse
|
35
|
Becker H, Castaneda-Vega S, Patzwaldt K, Przystal JM, Walter B, Michelotti FC, Canjuga D, Tatagiba M, Pichler B, Beck SC, Holland EC, la Fougère C, Tabatabai G. Multiparametric Longitudinal Profiling of RCAS-tva-Induced PDGFB-Driven Experimental Glioma. Brain Sci 2022; 12:1426. [PMID: 36358353 PMCID: PMC9688186 DOI: 10.3390/brainsci12111426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2023] Open
Abstract
Glioblastomas are incurable primary brain tumors harboring a heterogeneous landscape of genetic and metabolic alterations. Longitudinal imaging by MRI and [18F]FET-PET measurements enable us to visualize the features of evolving tumors in a dynamic manner. Yet, close-meshed longitudinal imaging time points for characterizing temporal and spatial metabolic alterations during tumor evolution in patients is not feasible because patients usually present with already established tumors. The replication-competent avian sarcoma-leukosis virus (RCAS)/tumor virus receptor-A (tva) system is a powerful preclinical glioma model offering a high grade of spatial and temporal control of somatic gene delivery in vivo. Consequently, here, we aimed at using MRI and [18F]FET-PET to identify typical neuroimaging characteristics of the platelet-derived growth factor B (PDGFB)-driven glioma model using the RCAS-tva system. Our study showed that this preclinical glioma model displays MRI and [18F]FET-PET features that highly resemble the corresponding established human disease, emphasizing the high translational relevance of this experimental model. Furthermore, our investigations unravel exponential growth dynamics and a model-specific tumor microenvironment, as assessed by histology and immunochemistry. Taken together, our study provides further insights into this preclinical model and advocates for the imaging-stratified design of preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Hannes Becker
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
- Department of Neurosurgery, University Hospital Tubingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
| | - Salvador Castaneda-Vega
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
| | - Kristin Patzwaldt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
| | - Justyna M. Przystal
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
- German Translational Cancer Consortium (DKTK), DKFZ Partner Site, 72072 Tubingen, Germany
| | - Bianca Walter
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
| | - Filippo C. Michelotti
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
| | - Denis Canjuga
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
| | - Marcos Tatagiba
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
- Department of Neurosurgery, University Hospital Tubingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
| | - Bernd Pichler
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
- German Translational Cancer Consortium (DKTK), DKFZ Partner Site, 72072 Tubingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72072 Tubingen, Germany
| | - Susanne C. Beck
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
| | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, DC 98109, USA
| | - Christian la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
- German Translational Cancer Consortium (DKTK), DKFZ Partner Site, 72072 Tubingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72072 Tubingen, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
- German Translational Cancer Consortium (DKTK), DKFZ Partner Site, 72072 Tubingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72072 Tubingen, Germany
| |
Collapse
|
36
|
Pang L, Khan F, Heimberger AB, Chen P. Mechanism and therapeutic potential of tumor-immune symbiosis in glioblastoma. Trends Cancer 2022; 8:839-854. [PMID: 35624002 PMCID: PMC9492629 DOI: 10.1016/j.trecan.2022.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and lethal form of brain tumor in human adults. Myeloid-lineage cells, including macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and neutrophils, are the most frequent types of cell in the GBM tumor microenvironment (TME) that contribute to tumor progression. Emerging experimental evidence indicates that symbiotic interactions between cancer cells and myeloid cells are critical for tumor growth and immunotherapy resistance in GBM. In this review, we discuss the molecular mechanisms whereby cancer cells shape a myeloid cell-mediated immunosuppressive TME and, reciprocally, how such myeloid cells affect tumor progression and immunotherapy efficiency in GBM. Moreover, we highlight tumor-T cell symbiosis and summarize immunotherapeutic strategies intercepting this co-dependency in GBM.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fatima Khan
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Franson A, McClellan BL, Varela ML, Comba A, Syed MF, Banerjee K, Zhu Z, Gonzalez N, Candolfi M, Lowenstein P, Castro MG. Development of immunotherapy for high-grade gliomas: Overcoming the immunosuppressive tumor microenvironment. Front Med (Lausanne) 2022; 9:966458. [PMID: 36186781 PMCID: PMC9515652 DOI: 10.3389/fmed.2022.966458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
The preclinical and clinical development of novel immunotherapies for the treatment of central nervous system (CNS) tumors is advancing at a rapid pace. High-grade gliomas (HGG) are aggressive tumors with poor prognoses in both adult and pediatric patients, and innovative and effective therapies are greatly needed. The use of cytotoxic chemotherapies has marginally improved survival in some HGG patient populations. Although several challenges exist for the successful development of immunotherapies for CNS tumors, recent insights into the genetic alterations that define the pathogenesis of HGG and their direct effects on the tumor microenvironment (TME) may allow for a more refined and targeted therapeutic approach. This review will focus on the TME in HGG, the genetic drivers frequently found in these tumors and their effect on the TME, the development of immunotherapy for HGG, and the practical challenges in clinical trials employing immunotherapy for HGG. Herein, we will discuss broadly the TME and immunotherapy development in HGG, with a specific focus on glioblastoma multiforme (GBM) as well as additional discussion in the context of the pediatric HGG diagnoses of diffuse midline glioma (DMG) and diffuse hemispheric glioma (DHG).
Collapse
Affiliation(s)
- Andrea Franson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L. McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mohammad Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
- Biosciences Initiative in Brain Cancer, Biointerface Institute, University of Michigan, Ann Arbor, MI, United States
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Biosciences Initiative in Brain Cancer, Biointerface Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
38
|
Zhang C, Liu H, Tan Y, Xu Y, Li Y, Tong S, Qiu S, Chen Q, Su Z, Tian D, Zhou W, Zhong C. MS4A6A is a new prognostic biomarker produced by macrophages in glioma patients. Front Immunol 2022; 13:865020. [PMID: 36119086 PMCID: PMC9472524 DOI: 10.3389/fimmu.2022.865020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
MS4A6A has been recognized as being associated with aging and the onset of neurodegenerative disease. However, the mechanisms of MS4A6A in glioma biology and prognosis are ill-defined. Here, we show that MS4A6A is upregulated in glioma tissues, resulting in unfavorable clinical outcomes and poor responses to adjuvant chemotherapy. Multivariate Cox regression analysis suggested that MS4A6A expression can act as a strong and independent predictor for glioma outcomes (CGGA1: HR: 1.765, p < 0.001; CGGA2: HR: 2.626, p < 0.001; TCGA: HR: 1.415, p < 0.001; Rembrandt: HR: 1.809, p < 0.001; Gravendeel: HR: 1.613, p < 0.001). A protein–protein interaction (PPI) network revealed that MS4A6A might be coexpressed with CD68, CD163, and macrophage-specific signatures. Enrichment analysis showed the innate immune response and inflammatory response to be markedly enriched in the high MS4A6A expression group. Additionally, single-cell RNA sequencing (scRNA-seq) analysis revealed distinctive expression features for MS4A6A in macrophages in the glioma immune microenvironment (GIME). Immunofluorescence staining confirmed colocalization of CD68/MS4A6A and CD163/MS4A6A in macrophages. Correlation analysis revealed that MS4A6A expression is positively related to the tumor mutation burden (TMB) of glioma, displaying the high potential of applying MS4A6A to evaluate responsiveness to immunotherapy. Altogether, our research indicates that MS4A6A upregulation may be used as a promising and effective indicator for adjuvant therapy and prognosis assessment.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
| | - Haitao Liu
- Department of Cardiothoracic Surgery, Jiaxing University, The First Affiliated Hospital, Jiaxing, China
| | - Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Shiao Tong
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Sheng Qiu
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
| | - Qianxue Chen
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Zhongzhou Su
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
| | - Daofeng Tian
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
- *Correspondence: Daofeng Tian, ; Chunlong Zhong, ; Wei Zhou,
| | - Wei Zhou
- Department of Anesthesia, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
- *Correspondence: Daofeng Tian, ; Chunlong Zhong, ; Wei Zhou,
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Daofeng Tian, ; Chunlong Zhong, ; Wei Zhou,
| |
Collapse
|
39
|
Wang G, Wang J, Niu C, Zhao Y, Wu P. Neutrophils: New Critical Regulators of Glioma. Front Immunol 2022; 13:927233. [PMID: 35860278 PMCID: PMC9289230 DOI: 10.3389/fimmu.2022.927233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
In cancer, neutrophils are an important part of the tumour microenvironment (TME). Previous studies have shown that circulating and infiltrating neutrophils are associated with malignant progression and immunosuppression in gliomas. However, recent studies have shown that neutrophils have an antitumour effect. In this review, we focus on the functional roles of neutrophils in the circulation and tumour sites in patients with glioma. The mechanisms of neutrophil recruitment, immunosuppression and the differentiation of neutrophils are discussed. Finally, the potential of neutrophils as clinical biomarkers and therapeutic targets is highlighted. This review can help us gain a deeper and systematic understanding of the role of neutrophils, and provide new insights for treatment in gliomas.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, China
| | - Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
40
|
Glycan-Lectin Interactions as Novel Immunosuppression Drivers in Glioblastoma. Int J Mol Sci 2022; 23:ijms23116312. [PMID: 35682991 PMCID: PMC9181495 DOI: 10.3390/ijms23116312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Despite diagnostic and therapeutic improvements, glioblastoma (GB) remains one of the most threatening brain tumor in adults, underlining the urgent need of new therapeutic targets. Lectins are glycan-binding proteins that regulate several biological processes through the recognition of specific sugar motifs. Lectins and their ligands are found on immune cells, endothelial cells and, also, tumor cells, pointing out a strong correlation among immunity, tumor microenvironment and vascularization. In GB, altered glycans and lectins contribute to tumor progression and immune evasion, shaping the tumor-immune landscape promoting immunosuppressive cell subsets, such as myeloid-derived suppressor cells (MDSCs) and M2-macrophages, and affecting immunoeffector populations, such as CD8+ T cells and dendritic cells (DCs). Here, we discuss the latest knowledge on the immune cells, immune related lectin receptors (C-type lectins, Siglecs, galectins) and changes in glycosylation that are involved in immunosuppressive mechanisms in GB, highlighting their interest as possible novel therapeutical targets.
Collapse
|
41
|
Sharma V, Sachdeva N, Gupta V, Nada R, Jacob J, Sahni D, Aggarwal A. CCR4 + monocytic myeloid-derived suppressor cells are associated with the increased epithelial-mesenchymal transition in pancreatic adenocarcinoma patients. Immunobiology 2022; 227:152210. [PMID: 35358941 DOI: 10.1016/j.imbio.2022.152210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/06/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
Among all the cancer-related deaths globally, pancreatic ductal adenocarcinoma (PDAC) accounts for the seventh leading cause of mortality. A dysregulated immune system disrupts anti-tumor immunity by abnormal accumulation of myeloid-derived suppressor cells (MDSCs), but the underlying mechanisms are still inconclusive. To gain new insights into the role of MDSCs in tumor settings, we aimed to determine the mechanism of expansion of various subsets of MDSCs in PDAC patients and their role in promoting invasiveness. We assessed the load of MDSCs, chemokines responsible for the recruitment of MDSCs in PDAC patients by flow cytometry. We investigated the chemokine profile of tumor tissue using qRT-PCR and the status of epithelial-mesenchymal transition (EMT) related markers E-Cadherin, N-Cadherin, Snail, and ZEB1 by qRT-PCR and immunohistochemistry. We found a higher frequency of tumor infiltrated MDSCs in PDAC patients. Chemokine ligands CCL2 and the receptor CCR4 were markedly elevated in the PDAC tumor, while CCR4+ monocytic MDSCs (M-MDSCs) were found significantly elevated in peripheral blood and tumor tissue. In tumor tissue, expression of E-Cadherin was significantly reduced, while N-Cadherin, Snail, and ZEB1 were markedly raised. The frequency of CCR4+ M-MDSCs significantly correlated with the expression of mesenchymal transition markers N-Cadherin, Snail, and ZEB1. Collectively, these results suggest that the CCL2-CCR4 axis plays a crucial role in driving the recruitment of M-MDSCs, which is associated with increased invasiveness in PDAC. This study sheds light on the expansion mechanism of MDSCs, which can serve as a crucial target of future anti-cancer strategies to inhibit tumor cell invasiveness.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vikas Gupta
- Department of Surgical Gastroenterology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
42
|
Munansangu BSM, Kenyon C, Walzl G, Loxton AG, Kotze LA, du Plessis N. Immunometabolism of Myeloid-Derived Suppressor Cells: Implications for Mycobacterium tuberculosis Infection and Insights from Tumor Biology. Int J Mol Sci 2022; 23:3512. [PMID: 35408873 PMCID: PMC8998693 DOI: 10.3390/ijms23073512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
The field of immunometabolism seeks to decipher the complex interplay between the immune system and the associated metabolic pathways. The role of small molecules that can target specific metabolic pathways and subsequently alter the immune landscape provides a desirable platform for new therapeutic interventions. Immunotherapeutic targeting of suppressive cell populations, such as myeloid-derived suppressor cells (MDSC), by small molecules has shown promise in pathologies such as cancer and support testing of similar host-directed therapeutic approaches in MDSC-inducing conditions such as tuberculosis (TB). MDSC exhibit a remarkable ability to suppress T-cell responses in those with TB disease. In tumors, MDSC exhibit considerable plasticity and can undergo metabolic reprogramming from glycolysis to fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) to facilitate their immunosuppressive functions. In this review we look at the role of MDSC during M. tb infection and how their metabolic reprogramming aids in the exacerbation of active disease and highlight the possible MDSC-targeted metabolic pathways utilized during M. tb infection, suggesting ways to manipulate these cells in search of novel insights for anti-TB therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; (B.S.M.M.); (C.K.); (G.W.); (A.G.L.); (L.A.K.)
| |
Collapse
|
43
|
Codrici E, Popescu ID, Tanase C, Enciu AM. Friends with Benefits: Chemokines, Glioblastoma-Associated Microglia/Macrophages, and Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23052509. [PMID: 35269652 PMCID: PMC8910233 DOI: 10.3390/ijms23052509] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and has the greatest prevalence of all brain tumors. Treatment resistance and tumor recurrence in GBM are mostly explained by considerable alterations within the tumor microenvironment, as well as extraordinary cellular and molecular heterogeneity. Soluble factors, extracellular matrix components, tissue-resident cell types, resident or newly recruited immune cells together make up the GBM microenvironment. Regardless of many immune cells, a profound state of tumor immunosuppression is supported and developed, posing a considerable hurdle to cancer cells' immune-mediated destruction. Several studies have suggested that various GBM subtypes present different modifications in their microenvironment, although the importance of the microenvironment in treatment response has yet to be determined. Understanding the microenvironment and how it changes after therapies is critical because it can influence the remaining invasive GSCs and lead to recurrence. This review article sheds light on the various components of the GBM microenvironment and their roles in tumoral development, as well as immune-related biological processes that support the interconnection/interrelationship between different cell types. Also, we summarize the current understanding of the modulation of soluble factors and highlight the dysregulated inflammatory chemokine/specific receptors cascades/networks and their significance in tumorigenesis, cancer-related inflammation, and metastasis.
Collapse
Affiliation(s)
- Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Ionela-Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| |
Collapse
|
44
|
Bayik D, Lee J, Lathia JD. The Role of Myeloid-Derived Suppressor Cells in Tumor Growth and Metastasis. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:189-217. [PMID: 35165865 DOI: 10.1007/978-3-030-91311-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature bone marrow-derived suppressive cells that are an important component of the pathological immune response associated with cancer. Expansion of MDSCs has been linked to poor disease outcome and therapeutic resistance in patients with various malignancies, making these cells potential targets for next-generation treatment strategies. MDSCs are classified into monocytic (M-MDSC) and polymorphonuclear/granulocytic (PMN-MDSC) subtypes that undertake distinct and numerous roles in the tumor microenvironment or systemically to drive disease progression. In this chapter, we will discuss how MDSC subsets contribute to the growth of primary tumors and induce metastatic spread by suppressing the antitumor immune response, supporting cancer stem cell (CSC)/epithelial-to-mesenchymal transition (EMT) phenotypes and promoting angiogenesis. We will also summarize the signaling networks involved in the crosstalk between cancer cells and MDSCs that could represent putative immunotherapy targets.
Collapse
Affiliation(s)
- Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Euclid, OH, USA
| | - Juyeun Lee
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Euclid, OH, USA.
| |
Collapse
|
45
|
Andersen BM, Faust Akl C, Wheeler MA, Chiocca EA, Reardon DA, Quintana FJ. Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat Rev Cancer 2021; 21:786-802. [PMID: 34584243 PMCID: PMC8616823 DOI: 10.1038/s41568-021-00397-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Brain cancers carry bleak prognoses, with therapeutic advances helping only a minority of patients over the past decade. The brain tumour microenvironment (TME) is highly immunosuppressive and differs from that of other malignancies as a result of the glial, neural and immune cell populations that constitute it. Until recently, the study of the brain TME was limited by the lack of methods to de-convolute this complex system at the single-cell level. However, novel technical approaches have begun to reveal the immunosuppressive and tumour-promoting properties of distinct glial and myeloid cell populations in the TME, identifying new therapeutic opportunities. Here, we discuss the immune modulatory functions of microglia, monocyte-derived macrophages and astrocytes in brain metastases and glioma, highlighting their disease-associated heterogeneity and drawing from the insights gained by studying these malignancies and other neurological disorders. Lastly, we consider potential approaches for the therapeutic modulation of the brain TME.
Collapse
Affiliation(s)
- Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
46
|
Lee AH, Sun L, Mochizuki AY, Reynoso JG, Orpilla J, Chow F, Kienzler JC, Everson RG, Nathanson DA, Bensinger SJ, Liau LM, Cloughesy T, Hugo W, Prins RM. Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nat Commun 2021; 12:6938. [PMID: 34836966 PMCID: PMC8626557 DOI: 10.1038/s41467-021-26940-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Primary brain tumors, such as glioblastoma (GBM), are remarkably resistant to immunotherapy, even though pre-clinical models suggest effectiveness. To understand this better in patients, here we take advantage of our recent neoadjuvant treatment paradigm to map the infiltrating immune cell landscape of GBM and how this is altered following PD-1 checkpoint blockade using high dimensional proteomics, single cell transcriptomics, and quantitative multiplex immunofluorescence. Neoadjuvant PD-1 blockade increases T cell infiltration and the proportion of a progenitor exhausted population of T cells found within the tumor. We identify an early activated and clonally expanded CD8+ T cell cluster whose TCR overlaps with a CD8+ PBMC population. Distinct changes are also observed in conventional type 1 dendritic cells that may facilitate T cell recruitment. Macrophages and monocytes still constitute the majority of infiltrating immune cells, even after anti-PD-1 therapy. Interferon-mediated changes in the myeloid population are consistently observed following PD-1 blockade; these also mediate an increase in chemotactic factors that recruit T cells. However, sustained high expression of T-cell-suppressive checkpoints in these myeloid cells continue to prevent the optimal activation of the tumor infiltrating T cells. Therefore, future immunotherapeutic strategies may need to incorporate the targeting of these cells for clinical benefit.
Collapse
Affiliation(s)
- Alexander H Lee
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lu Sun
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Aaron Y Mochizuki
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeremy G Reynoso
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joey Orpilla
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Frances Chow
- Department of Neurology/Neuro-Oncology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jenny C Kienzler
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Richard G Everson
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Linda M Liau
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy Cloughesy
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurology/Neuro-Oncology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Willy Hugo
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA, 94129, USA.
- Department of Medicine/Dermatology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Robert M Prins
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA, 94129, USA.
| |
Collapse
|
47
|
Francipane MG, Douradinha B, Chinnici CM, Russelli G, Conaldi PG, Iannolo G. Zika Virus: A New Therapeutic Candidate for Glioblastoma Treatment. Int J Mol Sci 2021; 22:10996. [PMID: 34681654 PMCID: PMC8537796 DOI: 10.3390/ijms222010996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive among the neurological tumors. At present, no chemotherapy or radiotherapy regimen is associated with a positive long-term outcome. In the majority of cases, the tumor recurs within 32-36 weeks of initial treatment. The recent discovery that Zika virus (ZIKV) has an oncolytic action against GBM has brought hope for the development of new therapeutic approaches. ZIKV is an arbovirus of the Flaviviridae family, and its infection during development has been associated with central nervous system (CNS) malformations, including microcephaly, through the targeting of neural stem/progenitor cells (NSCs/NPCs). This finding has led various groups to evaluate ZIKV's effects against glioblastoma stem cells (GSCs), supposedly responsible for GBM onset, progression, and therapy resistance. While preliminary data support ZIKV tropism toward GSCs, a more accurate study of ZIKV mechanisms of action is fundamental in order to launch ZIKV-based clinical trials for GBM patients.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.G.F.); (B.D.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bruno Douradinha
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.G.F.); (B.D.); (C.M.C.)
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.G.F.); (B.D.); (C.M.C.)
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Giovanna Russelli
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Pier Giulio Conaldi
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| | - Gioacchin Iannolo
- Department of Research, Istituto di Ricovero e Cura a Carattere Scientifico—Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), 90127 Palermo, Italy; (G.R.); (P.G.C.)
| |
Collapse
|
48
|
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 2021; 6:362. [PMID: 34620838 PMCID: PMC8497485 DOI: 10.1038/s41392-021-00670-9] [Citation(s) in RCA: 429] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/21/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Houhui Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Benxia Zhang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Xuejin Ou
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Qizhi Ma
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Yue Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Pei Shu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yongsheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China. .,Clinical Trial Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
49
|
Alghamri MS, McClellan BL, Avvari RP, Thalla R, Carney S, Hartlage CS, Haase S, Ventosa M, Taher A, Kamran N, Zhang L, Faisal SM, Núñez FJ, Garcia-Fabiani MB, Al-Holou WN, Orringer D, Hervey-Jumper S, Heth J, Patil PG, Eddy K, Merajver SD, Ulintz PJ, Welch J, Gao C, Liu J, Núñez G, Hambardzumyan D, Lowenstein PR, Castro MG. G-CSF secreted by mutant IDH1 glioma stem cells abolishes myeloid cell immunosuppression and enhances the efficacy of immunotherapy. SCIENCE ADVANCES 2021; 7:eabh3243. [PMID: 34586841 PMCID: PMC8480930 DOI: 10.1126/sciadv.abh3243] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/06/2021] [Indexed: 05/24/2023]
Abstract
Mutant isocitrate-dehydrogenase 1 (mIDH1) synthesizes the oncometabolite 2-hydroxyglutarate (2HG), which elicits epigenetic reprogramming of the glioma cells’ transcriptome by inhibiting DNA and histone demethylases. We show that the efficacy of immune-stimulatory gene therapy (TK/Flt3L) is enhanced in mIDH1 gliomas, due to the reprogramming of the myeloid cells’ compartment infiltrating the tumor microenvironment (TME). We uncovered that the immature myeloid cells infiltrating the mIDH1 TME are mainly nonsuppressive neutrophils and preneutrophils. Myeloid cell reprogramming was triggered by granulocyte colony-stimulating factor (G-CSF) secreted by mIDH1 glioma stem/progenitor-like cells. Blocking G-CSF in mIDH1 glioma–bearing mice restores the inhibitory potential of the tumor-infiltrating myeloid cells, accelerating tumor progression. We demonstrate that G-CSF reprograms bone marrow granulopoiesis, resulting in noninhibitory myeloid cells within mIDH1 glioma TME and enhancing the efficacy of immune-stimulatory gene therapy.
Collapse
Affiliation(s)
- Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brandon L. McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ruthvik P. Avvari
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rohit Thalla
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Carson S. Hartlage
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria Ventosa
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ayman Taher
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Neha Kamran
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Li Zhang
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Syed Mohd Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Felipe J. Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - María Belén Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Wajd N. Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel Orringer
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shawn Hervey-Jumper
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jason Heth
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Parag G. Patil
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Karen Eddy
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sofia D. Merajver
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter J. Ulintz
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chao Gao
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jialin Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Ye Z, Ai X, Zhao L, Fei F, Wang P, Zhou S. Phenotypic plasticity of myeloid cells in glioblastoma development, progression, and therapeutics. Oncogene 2021; 40:6059-6070. [PMID: 34556813 DOI: 10.1038/s41388-021-02010-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant type of intracranial tumors with poor prognosis. Accumulating evidence suggests that phenotypic alterations of infiltrating myeloid cells in the tumor microenvironment are important for GBM progression. Conventional tumor immunotherapy commonly targets T-cells, while innate immunity as a therapeutic target is an emerging field. Targeting infiltrating myeloid cells that induce immune suppression in the TME provides a novel direction to improve the prognosis of patients with GBM. The factors released by tumor cells recruit myeloid cells into tumor bed and reprogram infiltrating myeloid cells into immunostimulatory/immunosuppressive phenotypes. Reciprocally, infiltrating myeloid cells, especially microglia/macrophages, regulate GBM progression and affect therapeutic efficacy. Herein, we revisited biological characteristics and functions of infiltrating myeloid cells and discussed the recent advances in immunotherapies targeting infiltrating myeloid cells in GBM. With an evolving understanding of the complex interactions between infiltrating myeloid cells and tumor cells in the tumor microenvironment, we will expand novel immunotherapeutic regimens targeting infiltrating myeloid cells in GBM treatment and improve the outcomes of GBM patients.
Collapse
Affiliation(s)
- Zengpanpan Ye
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xiaolin Ai
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Fan Fei
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital; School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|