1
|
Stachyra P, Grzybowska-Szatkowska L. Signaling Pathways in Gliomas. Genes (Basel) 2025; 16:600. [PMID: 40428422 PMCID: PMC12110932 DOI: 10.3390/genes16050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/10/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Changes in cell signaling pathways, which in normal conditions determine the maintenance of cell homeostasis and the correctness of its basic processes, may cause the transformation of a normal cell into a cancer cell. Alterations in cellular metabolism leading to oncogenesis are considered to be a hallmark of cancer cells. Therefore, a thorough understanding of cellular enzymes affecting metabolism and respiration, as well as intracellular pathways connected with them, seems crucial. These changes may be both prognostic and predictive factors, especially in terms of using molecularly targeted therapies. Aberrations in the pathways responsible for cell growth and angiogenesis are considered particularly important in the process of oncogenesis. Gliomas are the most common primary malignant tumors of the brain. The most important molecular disorders determining their particularly malignant nature are aberrations in the pathways responsible for cell growth and angiogenesis, such as the PI3K/Akt or RAS/MAPK/ERK signaling pathway, as well as excessive activity of enzymes, like hexokinases, which play a key role in glycolysis, autophagy, and apoptosis. The multitude of alterations detected in glioma cells, high heterogeneity, and the immunosuppressive environment within the tumor are the main features causing failures in the attempts to implement modern therapies.
Collapse
Affiliation(s)
- Paulina Stachyra
- II Department of Oncology and Clinical Immunology with Day Chemotherapy, Oncology Centre of the Lublin Region, Jaczewskiego 7, 20-090 Lublin, Poland
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | | |
Collapse
|
2
|
Mei X, Qin D, Zou M, Teng H, Zhai Y. Aberrant expression of CNTRL was associated with poor prognosis, immune response and progression in glioma. Discov Oncol 2025; 16:706. [PMID: 40343556 PMCID: PMC12064530 DOI: 10.1007/s12672-025-02531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
This study investigated the biological functions and prognostic significance of centromere protein L (CNTRL) in glioma. mRNA expression data and clinical information were obtained from TCGA, CGGA, and an independent cohort of 207 glioma patients. CNTRL expression levels were quantified using qRT-PCR. Functional analyses, including Gene Ontology and KEGG pathway enrichment, were conducted to elucidate the biological roles of CNTRL. Kaplan-Meier survival curves and Cox regression analyses were applied to evaluate its association with overall survival, and a nomogram was constructed to predict individual survival. Additionally, the tumor microenvironment and immune cell infiltration were analyzed. Glioma cell lines were transfected with CNTRL-targeting shRNA to explore its functional role in cell proliferation, migration, and invasion, utilizing CCK-8, colony formation, scratchy and Transwell assays. The results revealed that CNTRL is ubiquitously expressed in brain tissues and is significantly upregulated in glioma. Higher CNTRL expression was positively correlated with increased tumor grade and were associated with poor prognosis in glioma patients. Furthermore, univariate and multivariate Cox regression analyses identified CNTRL as an independent prognostic factor for glioma survival. The nomogram model integrating CNTRL expression and clinical parameters demonstrated robust predictive performance for patient survival. Functional enrichment analyses suggested that CNTRL is involved in key cellular processes such as cell cycle, DNA repair, and chromatin remodeling. CNTRL expression was positively associated with enhanced immune cell infiltration and activation within the tumor microenvironment, as well as with the expression of immune checkpoint molecules, implicating its potential role in immune evasion mechanisms. In vitro, CNTRL knockdown significantly inhibited glioma cell proliferation, migration, and invasion. Notably, suppression of CNTRL led to reduced expression of the cell cycle regulator WEE1 in glioma cells. This study provides comprehensive evidence that CNTRL contributes to glioma progression by regulating the cell cycle and immune-related processes. Targeting CNTRL could represent a promising therapeutic strategy for glioma. These findings underscore the potential of CNTRL as a prognostic biomarker and a therapeutic target in glioma management.
Collapse
Affiliation(s)
- Xiaoping Mei
- Medical Administration Division, Guangxi International Zhuang Medicine Hospital, Nanning, 530200, Guangxi Province, China
| | - Deyuan Qin
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, Guangxi Province, China
| | - Min Zou
- Department of Pediatrics, Guangxi International Zhuang Medicine Hospital, Nanning, 530200, Guangxi Province, China
| | - Hongli Teng
- Pain Management, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiangxin District, Nanning, 530200, Guangxi Province, China.
| | - Yang Zhai
- Medical Administration Division, Nanning Seventh People's Hospital, Xingning District, No. 209 Gonghe Road, Nanning, 530000, Guangxi Province, China.
| |
Collapse
|
3
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Li HJ, Yu ZY, Gao HP, Xu YR, Li XY, Jiang W, Chen D, Yan DM, Yang C, Liu XZ. Inhibiting ADORA1 enhances glioma apoptosis and increases its sensitivity to anti-PD1 therapy. Front Oncol 2025; 15:1545780. [PMID: 40376586 PMCID: PMC12078947 DOI: 10.3389/fonc.2025.1545780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/09/2025] [Indexed: 05/18/2025] Open
Abstract
Introduction Glioma, the primary cancerous tumor of the central nervous system in adults, has a poor outlook. Immune checkpoint blockade therapy has exhibited notable efficacy against various cancer types. Prior research has suggested that the adenosine A1 receptor (ADORA1) facilitates the proliferation of tumors in cancer. Nevertheless, the precise impact of ADORA1 on glioma progression and its influence on anti-programmed death receptor 1 (PD1) therapy, along with the underlying regulatory mechanisms, remain to be fully elucidated. Methods Bioinformatics was used to explore the correlation between ADORA1 expression and glioma prognosis. The effects of ADORA1 on glioma and anti-PD1 therapy were investigated in both laboratory settings and living organisms. Results The results revealed a significant increase in ADORA1 expression in glioma, which was correlated with poor prognosis. Furthermore, ADORA1 inhibition facilitated glioma apoptosis by augmenting kininogen-1 (KNG1). ADORA1 inhibition enhanced T cell recruitment and increased glioma susceptibility to anti-PD1 therapy. Dicussion Our findings indicate that inhibiting ADORA1 can induce apoptosis in glioma cells and increase their sensitivity to anti-PD1 therapy. ADORA1 may serve as a prognostic marker for glioma and a potential target to enhance the effectiveness of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Hong-jiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-yun Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua-ping Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi-ran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue-yuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- The Application Center for Precision Medicine, Academy of Medical Science, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong-ming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhang M, Li J, Meng X, Sun Q, Xue Z, Wang M, Du F, Zhang J. ITGA5 induces mesenchymal transformation to promote gliomas progression via PI3K/AKT/mTORC1 signaling pathway. Sci Rep 2025; 15:13539. [PMID: 40253517 PMCID: PMC12009355 DOI: 10.1038/s41598-025-98170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
Glioma is a common malignant tumor of the central nervous system, characterized by high malignancy, strong invasiveness and high recurrence rate. Integrin α5 (ITGA5), a member of the integrin adhesion molecule family, has been reported to be associated with tumor progression and metastasis. In this study, we first identified the overexpression of ITGA5 in glioma through bioinformatics analysis. Kaplan-Meier analysis, Cox regression analysis, and nomogram modeling revealed that high ITGA5 expression was significantly associated with poor prognosis in glioma patients. The ssGSEA showed that the high expression of ITGA5 had a higher level of immune cell infiltration, especially aDCs, B cells, CD8 + T cells, Macrophages, T helper cells, etc. To validate the results of bioinformatics analysis, we used qRT-PCR and Western blot assay confirmed that ITGA5 expression was up-regulated in glioma tissues and increased with pathological grade. Immunohistochemistry showed that high expression of ITGA5 was positively correlated with WHO grade, Ki67 expression and P53 status (P < 0.05). Univariate and multivariate Cox regression analysis showed that ITGA5 expression was an independent prognostic marker in gliomas. Functionally, silencing of ITGA5 significantly inhibited the proliferation, invasion, and migration of glioma cells. The GSEA analysis indicated that ITGA5 was involved in mesenchymal transformation, PI3K/AKT/mTORC1 pathways. In vitro experiments further confirmed that ITGA5 positively regulates mesenchymal transformation and activates the PI3K/AKT/mTORC1 pathway. Moreover, treatment with PI3K activator 740Y-P was able to reverse the effects of ITGA5 silencing on glioma cells growth and mesenchymal transformation. Therefore, ITGA5 may be a potential therapeutic target for the individualized treatment of glioma patients.
Collapse
Affiliation(s)
- Moxuan Zhang
- Beijing Neurosurgery Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Junhong Li
- Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong Province, China
| | - Xianglong Meng
- Department of Neurosurgery, Beijing Daxing District People's Hospital, Beijing, 102699, China
| | - Qiang Sun
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Zhengchun Xue
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Mingguang Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Fei Du
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Jian Zhang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China.
| |
Collapse
|
6
|
Xu J, Guo Y, Ning W, Wang J, Chen Y, Liu D, Yang J, Song Y, Zhang H. Comprehensive analysis of heat shock proteins in glioma revealed the association with glioma-associated myeloid cells. Genes Immun 2025:10.1038/s41435-025-00327-5. [PMID: 40234584 DOI: 10.1038/s41435-025-00327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
In the central nervous system, glioma stands as the predominant primary brain tumor. Heat shock proteins exerted a critical influence on tumor progression and tumor immune microenvironment. However, research on heat shock proteins in glioma remained ambiguous. We analyzed data from the CPTAC, TCGA, and GTEx databases, identifying seven heat shock protein genes critical to glioma prognosis. Subsequently, through Lasso regression, a model based on heat shock protein genes (DNAJC7, DNAJC12, HSPB2, HSP90B1, HSPA5) was constructed. And the risk score showed a positive correlation to the immune score. Further investigation into immune cells revealed that HSPA5 and HSP90B1 were expressed at higher levels in glioma and significantly linked to M2 macrophage infiltration. Considering the limited research on HSP90B1 in glioma, we further revealed that HSP90B1 might have a connection with two crucial signaling pathways within tumors: PI3K/AKT and Wnt/β-catenin. Given that lactate could promote the M2 polarization of macrophages, we further found that HSP90B1 could enhance the transcription of glycolysis-related genes, including LDHA. Overall, our study demonstrated that heat shock protein genes were significantly linked to glioma patient prognosis. Additionally, we observed that HSP90B1 had a significant relationship with M2 macrophage infiltration and potentially regulated LDHA level in glioma.
Collapse
Affiliation(s)
- Jiacheng Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuduo Guo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University/China International Neuroscience Institute (China-INI), Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Deshan Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jingjing Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Piyadasa H, Oberlton B, Ribi M, Ranek JS, Averbukh I, Leow K, Amouzgar M, Liu CC, Greenwald NF, McCaffrey EF, Kumar R, Ferrian S, Tsai AG, Filiz F, Fullaway CC, Bosse M, Varra SR, Kong A, Sowers C, Gephart MH, Nuñez-Perez P, Yang E, Travers M, Schachter MJ, Liang S, Santi MR, Bucktrout S, Gherardini PF, Connolly J, Cole K, Barish ME, Brown CE, Oldridge DA, Drake RR, Phillips JJ, Okada H, Prins R, Bendall SC, Angelo M. Multi-omic landscape of human gliomas from diagnosis to treatment and recurrence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642624. [PMID: 40161803 PMCID: PMC11952471 DOI: 10.1101/2025.03.12.642624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Gliomas are among the most lethal cancers, with limited treatment options. To uncover hallmarks of therapeutic escape and tumor microenvironment (TME) evolution, we applied spatial proteomics, transcriptomics, and glycomics to 670 lesions from 310 adult and pediatric patients. Single-cell analysis shows high B7H3+ tumor cell prevalence in glioblastoma (GBM) and pleomorphic xanthoastrocytoma (PXA), while most gliomas, including pediatric cases, express targetable tumor antigens in less than 50% of tumor cells, potentially explaining trial failures. Longitudinal samples of isocitrate dehydrogenase (IDH)-mutant gliomas reveal recurrence driven by tumor-immune spatial reorganization, shifting from T-cell and vasculature-associated myeloid cell-enriched niches to microglia and CD206+ macrophage-dominated tumors. Multi-omic integration identified N-glycosylation as the best classifier of grade, while the immune transcriptome best predicted GBM survival. Provided as a community resource, this study opens new avenues for glioma targeting, classification, outcome prediction, and a baseline of TME composition across all stages.
Collapse
Affiliation(s)
- Hadeesha Piyadasa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Oberlton
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Mikaela Ribi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jolene S. Ranek
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Inna Averbukh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ke Leow
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Meelad Amouzgar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Candace C. Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah F. Greenwald
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Erin F. McCaffrey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rashmi Kumar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Selena Ferrian
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Albert G. Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ferda Filiz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Marc Bosse
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Alex Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cameron Sowers
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Pablo Nuñez-Perez
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - EnJun Yang
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Mike Travers
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Samantha Liang
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Maria R. Santi
- Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | | | - Pier Federico Gherardini
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - John Connolly
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kristina Cole
- Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Michael E. Barish
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Christine E. Brown
- Departments of Hematology & Hematopoietic Cell Transplantation and Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Derek A. Oldridge
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, PA, USA
| | - Richard R. Drake
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Joanna J. Phillips
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Robert Prins
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Neurosurgery, UCLA, Los Angeles, CA, USA
| | - Sean C. Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
8
|
Raub S, Fixman B, Hanks T, Nistal D, Peterson R, Eaton J, Tyrtova E, Gonzalez-Cuyar L, Weaver K, Pathak A, DeSantis A, Failor RA, Wisse B, Garrett NE, Emerson S, Cote DJ, Briggs RG, Zada G, Ferreira M, Ruzevick J. Clinical and Radiographic Presentation and Surgical Outcomes of T-Box Pituitary Transcription Factor (TPIT) Silent Corticotroph Pituitary Neuroendocrine Tumors: A Multi-institutional Experience and Review of the Literature. World Neurosurg 2025; 196:123791. [PMID: 39952399 DOI: 10.1016/j.wneu.2025.123791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE The aim of this study is to characterize the incidence, aggressiveness, and clinical outcomes of silent TPIT+ PitNETs, as well as treatment strategies in the event of recurrence/progression. We also review the current literature surrounding TPIT+ silent corticotrophs. METHODS An institutional review board-approved retrospective study of prospectively acquired patients undergoing resection of PitNETs at the University of Washington and University of Southern California between 2011 and 2023 was performed. A prospectively maintained Research Electronic Data Capture database at each institution was queried for patients with tumors immunostaining positive for TPIT and included for study regardless of adrenocorticotropic hormone (ACTH) status. Exclusion criteria included patients with biochemically confirmed Cushing disease. Patient demographics, preoperative radiographic findings, and surgical outcomes were documented. Descriptive statistics were reported for the patient cohort and recurrence/progression free survival analysis was measured and visualized using Kaplan-Meier and Swimmer plots. RESULTS A total of 1475 patients underwent surgical resection of PitNET with a total of 107 TPIT-immunoreactive tumors. Of these, 37 (34.6%) patients were diagnosed with Cushing disease preoperatively and were excluded from the analysis, leaving 70 (65.4%) patients with TPIT+ silent corticotroph PitNETs. A total of 56 (80%) tumors were only TPIT+, while 14 (20%) stained positive for multiple transcription factors including steroidogenic factor-1, pituitary-specific positive transcription factor 1, or both. The cohort consisted of 45 (64.3%) ACTH+ tumors and 25 (35.7%) ACTH tumors. There were 19 (27.1%) men and 51 (72.9%) women, with mean age 51.3 years. Radiographically, growth beyond the sella into the suprasellar space 54 (77.1%), cavernous sinus 41 (51.4%), and clival/sphenoid 12 (17.1%) compartments was common. A total of 67 (95.7%) of cases were treated via an endoscopic endonasal approach. Gross total resection (GTR) was achieved in 47 (70.1%) of cases. Of those undergoing GTR, two (4.3%) experienced tumor recurrence. Of those undergoing subtotal resection, four (20%) experienced tumor progression (P = 0.06). The median recurrence/progression free survival of TPIT+ tumors was 51.3 months. When stratified by extent of resection, median recurrence free survival was 38.3 months for GTR versus median progression free survival of 51.3 months for subtotal resection (P = 0.88). CONCLUSIONS With the addition of TPIT staining, the diagnosis of silent corticotroph PitNETs increased substantially versus those defined by ACTH immunostaining alone. Regardless of hormone status, these tumors continue to exhibit high rates of extrasellar growth and high rates of recurrence/progression.
Collapse
Affiliation(s)
- Spencer Raub
- University of Washington School of Medicine, Department of Neurological surgery, Seattle, Washington, USA
| | - Ben Fixman
- University of Southern California, Department of Neurological Surgery, Los Angeles, California, USA
| | - Thomas Hanks
- University of Washington School of Medicine, Department of Neurological surgery, Seattle, Washington, USA
| | - Dominic Nistal
- University of Washington School of Medicine, Department of Neurological surgery, Seattle, Washington, USA
| | - Racheal Peterson
- University of Southern California, Department of Neurological Surgery, Los Angeles, California, USA
| | - Jessica Eaton
- University of Washington School of Medicine, Department of Neurological surgery, Seattle, Washington, USA
| | - Evgeniya Tyrtova
- University of Washington School of Medicine, Department of Neurological surgery, Seattle, Washington, USA
| | - Luis Gonzalez-Cuyar
- University of Washington School of Medicine, Department of Laboratory Medicine and Pathology, Division of Neuropathology, Seattle, Washington, USA
| | - Kathryn Weaver
- University of Washington School of Medicine, Division of Endocrinology, Seattle, Washington, USA
| | - Asha Pathak
- University of Washington School of Medicine, Division of Endocrinology, Seattle, Washington, USA
| | - Anthony DeSantis
- University of Washington School of Medicine, Division of Endocrinology, Seattle, Washington, USA
| | - R Alan Failor
- University of Washington School of Medicine, Division of Endocrinology, Seattle, Washington, USA
| | - Brent Wisse
- University of Washington School of Medicine, Division of Endocrinology, Seattle, Washington, USA
| | - Norman E Garrett
- University of Southern California, Department of Neurological Surgery, Los Angeles, California, USA
| | - Samuel Emerson
- University of Washington School of Medicine, Department of Neurological surgery, Seattle, Washington, USA
| | - David J Cote
- University of Southern California, Department of Neurological Surgery, Los Angeles, California, USA
| | - Robert G Briggs
- University of Southern California, Department of Neurological Surgery, Los Angeles, California, USA
| | - Gabriel Zada
- University of Southern California, Department of Neurological Surgery, Los Angeles, California, USA
| | - Manuel Ferreira
- University of Washington School of Medicine, Department of Neurological surgery, Seattle, Washington, USA
| | - Jacob Ruzevick
- University of Washington School of Medicine, Department of Neurological surgery, Seattle, Washington, USA.
| |
Collapse
|
9
|
Shi L, Fei X, Huang J, He B, Sun Z, Sun G. DMC-BH derivative DMC-GF inhibits the growth of glioma stem cells by targeting the TRIM33/SLC25A1/mitochondrial oxidative phosphorylation pathway. J Transl Med 2025; 23:363. [PMID: 40128751 PMCID: PMC11934672 DOI: 10.1186/s12967-025-06355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/08/2025] [Indexed: 03/26/2025] Open
Abstract
Glioma stem cells (GSCs) exhibit significant resistance to conventional radiotherapy and chemotherapy, contributing to high recurrence rates in gliomas. Addressing this critical clinical need, we developed DMC-GF, a novel GLUT1-based curcumin derivative, to enhance brain specificity and metabolic stability compared to its predecessor DMC-BH. Pharmacokinetic studies in rats demonstrated that DMC-GF achieved an 8.5-fold increase in brain-to-blood concentration ratio two hours post-intravenous administration, markedly superior to the 0.2-fold increase observed with DMC-BH. In vitro assays showed that DMC-GF exerted a more substantial inhibitory effect on GSC proliferation than DMC-BH (p < 0.01), as assessed by Cell Counting Kit-3D and EdU assays. Mechanistic analysis via the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway indicated that DMC-GF's anti-GSC activity is associated with disruption of mitochondrial oxidative phosphorylation. Treatment with DMC-GF at a concentration of 4 µM caused a notable decrease in mitochondrial membrane potential and maximal mitochondrial oxygen consumption. Additionally, exposure to 8 µM DMC-GF led to a marked (> 70%) reduction in SLC25A1, a mitochondrial citrate transporter, protein levels (p < 0.01). Overexpression of SLC25A1 attenuated both the decreased proliferation and enhanced apoptosis caused by DMC-GF (p < 0.01). Furthermore, the proteasome inhibitor MG132 (10 µM) and TRIM33, an E3 ubiquitin ligase involved in proteasome-mediated protein degradation, knockdown via shRNA both abrogated the DMC-GF-mediated decrease in SLC25A1 protein levels (p < 0.05). These findings underscore the potential of DMC-GF as an efficacious targeted therapeutic against GSCs, offering enhanced brain specificity and stability, and elucidating its mechanism involving mitochondrial dysfunction and SLC25A1 degradation.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, China Medical University, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, P. R. China
| | - Jian Huang
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, China Medical University, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Bao He
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, China Medical University, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Zhixiang Sun
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, China Medical University, Gusu School, Nanjing Medical University, Suzhou, P. R. China
| | - Guan Sun
- Department of Neurosurgery, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, P. R. China.
| |
Collapse
|
10
|
Poorva P, Mast J, Cao B, Shah MV, Pollok KE, Shen J. Killing the killers: Natural killer cell therapy targeting glioma stem cells in high-grade glioma. Mol Ther 2025:S1525-0016(25)00168-6. [PMID: 40040281 DOI: 10.1016/j.ymthe.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
High-grade gliomas (HGGs), including glioblastoma (GBM) in adults and diffuse intrinsic pontine glioma (DIPG) in children, are among the most aggressive and deadly brain tumors. A key factor in their resilience is the presence of glioma stem cells (GSCs), which drive tumor initiation, progression, and resistance to treatment. Targeting and eradicating GSCs holds potential for curing both GBM and DIPG. Natural killer (NK) cells, as part of the innate immune system, naturally recognize and destroy malignant cells. Recent advances in NK cell-based therapies, such as chimeric antigen receptor (CAR)-NK cells, NK cell engagers, and NK cell-derived exosomes, offer promising approaches for treating GBM and DIPG, particularly by addressing the persistence of GSCs. This review highlights these advancements, explores challenges such as the blood-brain barrier and the immunosuppressive tumor microenvironment, and proposes future directions for improving and clinically advancing these NK cell-based therapies for HGGs.
Collapse
Affiliation(s)
- Poorva Poorva
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Jensen Mast
- Biochemistry Graduate Program, Indiana University, Bloomington, IN 47405, USA
| | - Bihui Cao
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Mitesh V Shah
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Jia Shen
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Sumorek-Wiadro J, Kapral-Piotrowska J, Zając A, Maciejczyk A, Hułas-Stasiak M, Skalicka-Woźniak K, Rzeski W, Pawlikowska-Pawlęga B, Jakubowicz-Gil J. Proapoptotic and antimigration properties of osthole in combination with LY294002 against human glioma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3147-3161. [PMID: 39352533 PMCID: PMC11919984 DOI: 10.1007/s00210-024-03424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 03/19/2025]
Abstract
Anaplastic astrocytoma and glioblastoma multiforme are infiltrating and vascularized gliomas with a high degree of chemoresistance and metastasis. Our previous studies have shown that osthole may be of great importance in the treatment of gliomas. Therefore, in this work, for the first time, coumarin was used in combination with LY294002-an inhibitor of the PI3K-Akt/PKB-mTOR pathway, which is overly active in gliomas. MOGGCCM and T98G cells were incubated with osthole and LY294002, alone and in combination. Staining with specific fluorochromes was used to visualize cell death and the scratch test to assess the migration. The level of proteins was estimated by immunoblotting. Forming protrusions were visualized by SEM, and immunocytochemistry was used to determine the localization of proteins. Additionally, the expression of Bcl-2, beclin 1 and Raf kinase was silenced using specific siRNA. The obtained results showed that osthole in combination with LY294092 effectively inhibited the migration of glioma cells by reducing the level of metaloproteinases and Rho family proteins, as well as decreasing the level of N-cadherin. In addition, the combination of compounds induced apoptosis. New combination of compounds shows a high pro-apoptotic potential and also inhibits the migration of gliomas cells.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Justyna Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
- Department of Medical Biology, Institute of Rural Health, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950, Lublin, Poland
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
12
|
Khafaga DSR, Muteeb G, Aswa DW, Aatif M, Farhan M, Allam S. Green chemistry: Modern therapies using nanocarriers for treating rare brain cancer metastasis from colon cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100213. [PMID: 39826871 DOI: 10.1016/j.slasd.2025.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Brain metastasis (BM) from colon cancer is associated with a poor prognosis and restricted treatment alternatives, largely due to issues related to blood-brain barrier (BBB) permeability and the negative effects of standard chemotherapy. Nanotechnology improves treatment efficacy by enabling targeted and controlled drug delivery. This review article evaluates the potential of nanotechnology-based therapies for treating colon cancer BM, emphasizing their capacity to cross the BBB, diminish metastatic growth, and enhance overall survival rates. A review of multiple studies evaluated nanoparticles (NPs) as carriers for chemotherapy, focusing on parameters including particle size, surface charge, and drug-loading capacity. The study also reviewed studies that examined BBB penetration, in vitro tumor accumulation, and in vivo tumor growth inhibition. In vitro findings indicated that NPs accumulate more efficiently in BM tissue than in healthy brain tissue and show significant BBB penetration. In vivo, nanotherapy markedly inhibited tumor growth and prolonged survival relative to conventional chemotherapy or control treatments while also exhibiting reduced side effects. Recent studies demonstrated that plant extracts can effectively and safely synthesize nanomaterials, positioning them as a viable and environmentally friendly precursor for nanomaterial production. Nanotechnology-based therapies demonstrate significant potential in the treatment of colon cancer BM by minimizing systemic toxicity, enhancing therapeutic efficacy, and facilitating more targeted drug delivery. Further research is required to confirm these findings and implement them in clinical practice.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City 43511, Suez, Egypt.
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Darin W Aswa
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| |
Collapse
|
13
|
Godlewski A, Mojsak P, Pienkowski T, Lyson T, Mariak Z, Reszec J, Kaminski K, Moniuszko M, Kretowski A, Ciborowski M. Metabolomic profiling of plasma from glioma and meningioma patients based on two complementary mass spectrometry techniques. Metabolomics 2025; 21:33. [PMID: 39987409 DOI: 10.1007/s11306-025-02231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/02/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Extracranial and intracranial tumors are a diverse group of malignant and benign neoplasms, influenced by multiple factors. Given the complex nature of these tumors and usually late or accidental diagnosis, minimally invasive, rapid, early, and accurate diagnostic methods are urgently required. Metabolomics offers promising insights into central nervous system tumors by uncovering distinctive metabolic changes linked to tumor development. OBJECTIVES This study aimed to elucidate the role of altered metabolites and the associated biological pathways implicated in the development of gliomas and meningiomas. METHODS The study was conducted on 95 patients with gliomas, 68 patients with meningiomas, and 71 subjects as a control group. The metabolic profiling of gliomas and meningiomas achieved by integrating untargeted metabolomic analysis based on GC-MS and targeted analysis performed using LC-MS/MS represents the first comprehensive study. Three comparisons (gliomas or meningiomas vs. controls as well as gliomas vs. meningiomas) were performed to reveal statistically significant metabolites. RESULTS Comparative analysis revealed 97, 56, and 27 significant metabolites for gliomas vs. controls, meningiomas vs. controls and gliomas vs. meningiomas comparison, respectively. Moreover, among above mentioned comparisons unique metabolites involved in arginine biosynthesis and metabolism, the Krebs cycle, and lysine degradation pathways were found. Notably, 2-aminoadipic acid has been identified as a metabolite that can be used in distinguishing two tumor types. CONCLUSIONS Our results provide a deeper understanding of the metabolic changes associated with brain tumor development and progression.
Collapse
Affiliation(s)
- Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Interventional Neurology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Karol Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland.
| |
Collapse
|
14
|
Liao J, Duan Y, Xu X, Liu Y, Zhan C, Xiao G. Circadian rhythm related genes signature in glioma for drug resistance prediction: a comprehensive analysis integrating transcriptomics and machine learning. Discov Oncol 2025; 16:119. [PMID: 39909964 PMCID: PMC11799505 DOI: 10.1007/s12672-025-01863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Gliomas, 24% of all primary brain tumors, have diverse histology and poor survival rates, with about 70% recurring due to acquired or de novo resistance. Insomnia in patients is correlated strongly with circadian rhythm disruptions. The correlation between circadian rhythm disorders and drug resistance of some tumors has been proved. However, the precise mechanism underlying the relationship between glioma and circadian rhythm disorders has not been elucidated. METHODS Circadian rhythm-related genes (CRRGs) were identified using the least absolute shrinkage and selection operator (LASSO) regression, and stochastic gradient descent (SGD) was performed to form a circadian rhythm-related score (CRRS) model. The studies of immune cell infiltration, genetic variations, differential gene expression pattern, and single cell analysis were performed for exploring the mechanisms of chemotherapy resistance in glioma. The relationship between CRRGs and chemosensitivity was also confirmed by IC 50 (half maximal inhibitory concentration) analysis. RESULT Signatures of 16 CRRGs were screened out and identified. Based on the CRRS model, an optimal comprehensive nomogram was created, exhibiting a favorable potential for predicting drug resistance in samples. Immune infiltration, cell-cell communication, and single cell analysis all indicated that high CRRS group was closely related to innate immune cells. IC50 analysis showed that CRRG knockdown enhanced the chemosensitivity of glioma. CONCLUSION A significant correlation between CRRGs, drug resistance of glioma, and innate immune cells was found, which might hold a significant role in the drug resistance of glioma.
Collapse
Affiliation(s)
- Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxing Duan
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiangwang Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaxue Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaohong Zhan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Mansour MA, Kamer-Eldawla AM, Malaeb RW, Aboelhassan R, Nabawi DH, Aziz MM, Mostafa HN. Unlocking the code: The role of molecular and genetic profiling in revolutionizing glioblastoma treatment. Cancer Treat Res Commun 2025; 43:100881. [PMID: 39985914 DOI: 10.1016/j.ctarc.2025.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer, characterized by profound molecular and cellular heterogeneity, which contributes to its resistance to conventional therapies and poor prognosis. Despite multimodal treatments including surgical resection, radiation, and chemotherapy, median survival remains approximately 15 months. Recent advances in molecular and genetic profiling have elucidated key genetic alterations and molecular subtypes of GBM, such as EGFR amplification, PTEN and ATRX loss, and TP53 alterations, which have significant prognostic and therapeutic implications. These discoveries have spurred the development of targeted therapies aimed at disrupting aberrant signaling pathways like RTK/RAS/PI3K and TP53. However, treatment resistance remains a formidable challenge, driven by tumor heterogeneity, the complex tumor microenvironment (TME), and intrinsic adaptive mechanisms. Emerging therapeutic approaches aim to address these challenges, including the use of immunotherapies such as immune checkpoint inhibitors and CAR T-cell therapies, which target specific tumor antigens but face hurdles due to the immunosuppressive TME. Additionally, novel strategies like biopolymer-based interstitial therapies, focused ultrasound for blood-brain barrier disruption, and nanoparticle-based drug delivery systems show promise in enhancing the efficacy and precision of GBM treatments. This review explores the evolving landscape of GBM therapy, emphasizing the importance of personalized medicine through molecular profiling, the potential of combination therapies, and the need for innovative approaches to overcome therapeutic resistance. Continued research into GBM's biology and treatment modalities offers hope for improving patient outcomes.
Collapse
Affiliation(s)
- Moustafa A Mansour
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt; Department of Neurology and Neurosurgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt; Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA.
| | - Ahmed M Kamer-Eldawla
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt; Department of Neurosurgery, Malawi Specialized Hospital, Minya, Egypt
| | - Reem W Malaeb
- Department of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Rasha Aboelhassan
- Department of Clinical Oncology, Nasser Institute for Research and Treatment, Cairo, Egypt
| | - Dina H Nabawi
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed M Aziz
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt; Department of Neurosurgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hamdi Nabawi Mostafa
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt; Department of Neurosurgery, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
16
|
Bonner K, Quick QA. Microtubule actin crosslinking factor 1, a brain tumor oncoprotein (Review). Mol Clin Oncol 2025; 22:15. [PMID: 39720461 PMCID: PMC11667447 DOI: 10.3892/mco.2024.2810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/22/2024] [Indexed: 12/26/2024] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1), is a cytoskeletal protein that functions as a crosslinker between microtubules and actin filaments, with early studies expanding the role of this spectraplakin protein to the central nervous system and Wnt signaling. In the early 2000's, genetic alterations of MACF1 were identified in several cancers suggesting that this cytoskeletal crosslinker was involved in tumor development and progression, while preclinical studies provided evidence that MACF1 is a potential diagnostic and prognostic biomarker and therapeutic target in glioblastomas, a central nervous system cancer derived from astrocytes and neural progenitor stem cells. Furthermore, investigations in glioblastomas demonstrated that genetic inhibitory targeting of this spectraplakin protein alone and in combination with DNA damaging agents had synergistic antitumorigenic effects. The established role of MACF1 in Wnt signaling, a known mechanistic driver of central nervous system development and pro-tumorigenic cell behavior in glioblastomas, provide a premise for addressing the potential of this spectraplakin protein as a novel oncoprotein in cancers with origins in the nervous system. The present review provides a summary of the role and function of MACF1 in the central nervous system, Wnt signaling and cancer development, specifically as an oncoprotein that underlie the transformation and oncogenic properties of glioblastomas.
Collapse
Affiliation(s)
- Kala Bonner
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37066, USA
| | - Quincy A. Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37066, USA
| |
Collapse
|
17
|
Kim YN, Patil K, Pai SB. Cinnamaldehyde impacts key cellular signaling pathways for induction of programmed cell death in high-grade and low-grade human glioma cells. BMC Res Notes 2025; 18:23. [PMID: 39833890 PMCID: PMC11744947 DOI: 10.1186/s13104-025-07092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Primary tumors of the brain and a large percent of malignant brain tumors are gliomas. Gliomas comprise high-grade gliomas like glioblastoma multiforme (GBMs), many of which have mutation in the tumor suppressor p53 gene and low-grade gliomas (LGGs). LGGs can progress to GBMs due to various factors. The available treatment options for GBMs and LGGs include surgical resection, radiation and chemotherapy. The chemotherapeutic drug available in the clinic is temozolomide (TMZ). However, TMZ can cause damage to DNA if taken for prolonged period. This warrants the discovery of drugs that would potentially elicit less adverse side effects while maintaining anticancer activity. To this end, we evaluated the impact of cinnamaldehyde (CA), a single, purified component of the natural product cinnamon. RESULTS The elucidation of the mechanism of action revealed the impact of CA on reactive oxygen species (ROS) levels. Moreover, its effect on the extrinsic programmed cell death pathway resulted in the increase of apoptotic cell populations, invoking multicaspase. Notably, the cell survival/death pivotal molecule Bcl-2 was impacted. These effects were observed in both the types of brain tumor cells studied: GBMs, represented by U251 cells (p53 mutated cell line) and LGGs represented by H4 cells. Results from the current study suggest potential for CA as a therapeutic option as it is expected to have fewer adverse side effects due to it being a component of a natural product and possibly deter the progression of LGGs to GBMs.
Collapse
Affiliation(s)
- Yoo Na Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Ketki Patil
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
18
|
Gu W, Tang J, Liu P, Gan J, Lai J, Xu J, Deng J, Liu C, Wang Y, Zhang G, Yu F, Shi C, Fang K, Qiu F. Development and Validation of a Prognostic Molecular Phenotype and Clinical Characterization in Grade III Diffuse Gliomas Treatment with Radio-Chemotherapy. Ther Clin Risk Manag 2025; 21:35-53. [PMID: 39802957 PMCID: PMC11721490 DOI: 10.2147/tcrm.s478905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
Background The relationship between molecular phenotype and prognosis in high-grade gliomas (WHO III and IV, HGG) treated with radiotherapy and chemotherapy is not fully understood and needs further exploration. Methods The HGG patients following surgery and treatment with radiotherapy and chemotherapy. Univariate and multivariate Cox analyses were used to assess the independent prognostic factors. The nomogram model was established, and its accuracy was determined via the calibration plots. Results A total of 215 and 88 patients had grade III glioma and grade IV glioma, respectively. Grade III oligodendroglioma (OG-G3) patients had the longest mPFS and mOS than other grade III pathology, while grade III astrocytoma (AA-G3) patients were close to IDH-1 wildtype glioblastoma (GBM) and had a poor prognosis. The IDH-1 mutant group had a better mPFS and mOS than the IDH-1 wildtype group in all grade III patients, OG-G3 and AA-G3 patients. Furthermore, 1p/19q co-deletion group had a longer mPFS and mOS than 1p/19q non-deletion group in all grade III patients. IDH-1 mutation and 1p/19q co-deletion patients had the best prognosis than other molecular types. Also, the MGMT methylation and IDH-1 mutation or 1p/19q co-deletion group had a longer mPFS and mOS than the MGMT unmethylation and IDH-1 wildtype or 1p/19q non-codeletion of grade III patients. In addition, the low Ki-67 expression group had a better prognosis than high Ki-67 expression group in grade III patients. Univariate and multivariate COX showed that 1p/19q co-deletion and MGMT methylation were the independent prognostic factors for mPFS and mOS. The calibration curve showed that the established nomogram could well predict the survival based on these covariates. Conclusion The AA-G3 with IDH-1 wildtype, MGMT unmethylation or 1p/19q non-codeletion patients was resistant to radiotherapy and chemotherapy, has a poor prognosis and needs a more active treatment.
Collapse
Affiliation(s)
- Weiguo Gu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jiaming Tang
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Penghui Liu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jinyu Gan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jianfei Lai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jinbiao Xu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jianxiong Deng
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Chaoxing Liu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yuhua Wang
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Guohua Zhang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Chao Shi
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Ke Fang
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Feng Qiu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| |
Collapse
|
19
|
Spigarelli R, Spisni E, Magalhães M, Cabral C, Gonçalves AC, Saracino IM, Botti G, Dalpiaz A, Beggiato S, Valerii MC. Clove Essential Oil as a Source of Antitumoral Compounds Capable of Crossing the Blood-Brain Barrier: A Focus on the Effects of β-Caryophyllene and Eugenol in a Glioblastoma Cell Line. Int J Mol Sci 2024; 26:238. [PMID: 39796096 PMCID: PMC11720353 DOI: 10.3390/ijms26010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
This study aimed to investigate β-Caryophyllene (BCA) pharmacokinetics as well as the potential antitumor activity and mechanism of action of BCA and eugenol (EU), alone or in combination, in U87 glioblastoma (GB) cells. The BCA pharmacokinetic was studied by evaluating its concentration profiles in rat blood and cerebrospinal fluid after oral and intravenous administration. EU and BCA antitumor mechanisms were assessed by comparing their effects in U87 GB cells and non-tumoral HMC3 cells. Cell death, cell cycle regulation and mitochondrial membrane potential (MMP) were evaluated using flow cytometry. mRNA levels of target genes were evaluated by qPCR. Secreted cytokines were measured by Luminex®. BCA, as well as EU, permeates the brain. EU and BCA affected the viability and proliferation of U87 cells (up to 50%, p < 0.001) but not HMC3 cells and showed a synergistic effect. BCA and EU induced G0/G1 cell cycle arrest, increasing apoptosis/necrosis. EU and BCA induced the downregulation of mRNAs encoding for key proteins involved in GB angiogenesis (VEGFA decreased op to 60%, p < 0.01), proliferation and progression, and showed anti-inflammatory activity (IL-4 significantly decreased, p < 0.001). EU and BCA demonstrated strong and multitarget antitumor activity in U87 cells. Our results provide a strong rationale for the further evaluation of EU and BCA as possible therapeutic molecules in GB management.
Collapse
Affiliation(s)
- Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (R.S.); (M.C.V.)
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (R.S.); (M.C.V.)
| | - Mariana Magalhães
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, 3030-789 Coimbra, Portugal;
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- iCBR, Group of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ilaria Maria Saracino
- Microbiology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Giada Botti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy; (G.B.); (A.D.)
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy; (G.B.); (A.D.)
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA Center, Via Fossato di Mortara 19, 44121 Ferrara, Italy;
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (R.S.); (M.C.V.)
| |
Collapse
|
20
|
Okoń E, Kukula-Koch W, Jarząb A, Gaweł-Bęben K, Bator E, Michalak-Tomczyk M, Jachuła J, Antosiewicz-Klimczak B, Odrzywolski A, Koch W, Wawruszak A. The Activity of 1,8-Dihydroanthraquinone Derivatives in Nervous System Cancers. Molecules 2024; 29:5989. [PMID: 39770078 PMCID: PMC11677425 DOI: 10.3390/molecules29245989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Primary and metastatic tumors of the nervous system represent a diverse group of neoplasms, each characterized by distinct biological features, prognostic outcomes, and therapeutic approaches. Due to their molecular complexity and heterogeneity, nervous system cancers (NSCs) pose significant clinical challenges. For decades, plants and their natural products with established anticancer properties have played a pivotal role in the treatment of various medical conditions, including cancers. Anthraquinone derivatives, a class of tricyclic secondary metabolites, are found in several botanical families, such as Fabaceae, Polygonaceae, Rhamnaceae, and Rubiaceae. In a comprehensive review, recent advancements in the anticancer properties of 1,8-dihydroanthraquinone derivatives-such as emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion-were analyzed. These compounds have been studied extensively, both used individually and in combination with other chemotherapeutic agents, using in vitro and in vivo models of nervous system tumors. It was demonstrated that 1,8-dihydroanthraquinone derivatives induce apoptosis and necrosis in cancerous cells, intercalate into DNA, disrupting transcription and replication in rapidly dividing cells, and alter ROS levels, leading to oxidative stress that damages tumor cells. Additionally, they can influence signaling pathways involved in oncogenesis, such as MAPK, PI3K/Akt, or others crucial for the survival and the proliferation of NSC cells. The exploration of 1,8-dihydroanthraquinone derivatives aims to develop novel therapies that could overcome resistance and improve cancer patients' outcomes.
Collapse
Affiliation(s)
- Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Agata Jarząb
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland; (K.G.-B.); (B.A.-K.)
| | - Ewelina Bator
- Interdisciplinary Center for Preclinical and Clinical Research, Rzeszow University, 2a Werynia, 36-100 Kolbuszowa, Poland;
| | - Magdalena Michalak-Tomczyk
- Department of Physiology and Toxicology, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland;
| | - Jacek Jachuła
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Str., 20-033 Lublin, Poland;
| | - Beata Antosiewicz-Klimczak
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland; (K.G.-B.); (B.A.-K.)
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| |
Collapse
|
21
|
Lanskikh D, Kuziakova O, Baklanov I, Penkova A, Doroshenko V, Buriak I, Zhmenia V, Kumeiko V. Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells 2024; 13:2085. [PMID: 39768176 PMCID: PMC11674823 DOI: 10.3390/cells13242085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Gliomas are a group of primary brain tumors characterized by their aggressive nature and resistance to treatment. Infiltration of surrounding normal tissues limits surgical approaches, wide inter- and intratumor heterogeneity hinders the development of universal therapeutics, and the presence of the blood-brain barrier reduces the efficiency of their delivery. As a result, patients diagnosed with gliomas often face a poor prognosis and low survival rates. The spectrum of anti-glioma drugs used in clinical practice is quite narrow. Alkylating agents are often used as first-line therapy, but their effectiveness varies depending on the molecular subtypes of gliomas. This highlights the need for new, more effective therapeutic approaches. Standard drug-screening methods involve the use of two-dimensional cell cultures. However, these models cannot fully replicate the conditions present in real tumors, making it difficult to extrapolate the results to humans. We describe the advantages and disadvantages of existing glioma cell-based models designed to improve the situation and build future prospects to make drug discovery comprehensive and more effective for each patient according to personalized therapy paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (D.L.); (O.K.); (I.B.); (A.P.); (V.D.); (I.B.); (V.Z.)
| |
Collapse
|
22
|
Magalhães M, Domínguez-Martín EM, Jorge J, Gonçalves AC, Massenzio F, Spigarelli R, Ribeiro-Rodrigues T, Catarino S, Girão H, Monti B, Spisni E, Ferreira L, Oliveira PJ, Efferth T, Rijo P, Cabral C. Unveiling the antitumor mechanism of 7α-acetoxy-6β-hydroxyroyleanone from Plectranthus hadiensis in glioblastoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118689. [PMID: 39128799 DOI: 10.1016/j.jep.2024.118689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glioblastoma (GB) is the most aggressive and prevalent glioma within the central nervous system. Despite considerable efforts, GB continues to exhibit a dismal 5-year survival rate (∼6%). This is largely attributed to unfavorable prognosis and lack of viable treatment options. Therefore, novel therapies centered around plant-derived compounds emerge as a compelling avenue to enhance patient survival and well-being. The South African species, Plectranthus hadiensis Schweinf. (P. hadiensis), a member of the Lamiaceae family, has a history of use in traditional medicine for treating a range of diseases, including respiratory, digestive, and liver disorders. This species exhibits diverse biological activities, such as anti-inflammatory and antitumoral properties, likely attributed to its rich composition of naturally occurring diterpenes, like the abietane diterpene, 7α-acetoxy-6β-hydroxyroyleanone (Roy). Roy has demonstrated promising antitumor effects in various cancer cell lines, making it a compelling candidate for further investigation into its mechanisms against GB. AIM OF THE STUDY This study aims to investigate the antitumor activity and potential mechanism of Roy, a natural lead compound, in GB cells. MATERIAL AND METHODS Roy was isolated from the acetonic extract of P. hadiensis and its antitumor mechanism was assessed in a panel of human GB cell lines (U87, A172, H4, U373, and U118) to mimic tumor heterogeneity. Briefly, the impact of Roy treatment on the metabolic activity of cells was evaluated by Alamar Blue® assay, while cell death, cell cycle regulation, mitochondrial membrane potential, and activated caspase-3 activity were evaluated by flow cytometry. Measurement of mRNA levels of target genes was performed by qPCR, while protein expression was assessed by Western blotting. Cell uptake and impact on mitochondrial morphology were evaluated by confocal microscopy. RESULTS Roy induced G2/M cell cycle arrest, mitochondrial fragmentation, and apoptosis by inhibiting the expression of anti-apoptotic proteins and increasing the levels of activated caspase-3. The concentrations of Roy needed to achieve significant inhibitory outcomes were notably lower (6-9 fold) than those of temozolomide (TMZ), the standard first-line treatment, for achieving comparable effects. In addition, at low concentrations (16 μM), Roy affected the metabolic activity of tumor cells while having no significant impact on non-tumoral cells (microglia and astrocytes). CONCLUSION Overall, Roy demonstrated a robust antitumor activity against GB cells offering a promising avenue for the development of novel chemotherapeutic approaches.
Collapse
Affiliation(s)
- Mariana Magalhães
- University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal; University of Coimbra, CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Eva María Domínguez-Martín
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal; Departamento de Ciencias Biomédicas, Facultad de Farmacia, Universidad de Alcalá de Henares, Madrid, Spain
| | - Joana Jorge
- University of Coimbra, Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, ICBR, Group of Environment Genetics and Oncobiology (CIMAGO)-Faculty of Medicine, Coimbra, Portugal
| | - Ana Cristina Gonçalves
- University of Coimbra, Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, ICBR, Group of Environment Genetics and Oncobiology (CIMAGO)-Faculty of Medicine, Coimbra, Portugal
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Teresa Ribeiro-Rodrigues
- University of Coimbra, CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Steve Catarino
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Henrique Girão
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Lino Ferreira
- University of Coimbra, CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; University of Coimbra, Faculty of Medicine, Coimbra, Portugal
| | - Paulo J Oliveira
- University of Coimbra, CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patrícia Rijo
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal; Faculty of Pharmacy, Instituto de Investigação Do Medicamento (iMed.ULisboa), University of Lisbon, Lisbon, Portugal
| | - Célia Cabral
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal.
| |
Collapse
|
23
|
Cao W, Zeng Z, Sun J, Chen Y, Kuang F, Luo S, Lan J, Lei S. Exosome-derived circ-001422 promotes tumor-associated macrophage M2 polarization to accelerate the progression of glioma. Commun Biol 2024; 7:1504. [PMID: 39538012 PMCID: PMC11561164 DOI: 10.1038/s42003-024-07134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cytokines, tumor cells, and tumor-associated macrophages play crucial roles in the composition of glioma tissue. Studies have demonstrated that certain cytokines can induce M2 polarization of tumor-associated macrophages and contribute to the progression of glioma. Nonetheless, the intricate molecular interactions among cytokines, glioma cells, and tumor-associated macrophages remain largely unexplored. To investigate this cross-talk, a combination of RNA-sequencing, chromatin immunoprecipitation, immunoprecipitation, exosome isolation, and biological experiments were employed. Treatment with IL-6 significantly increased circ-001422 expression in glioma cells. A poorer prognosis was associated with elevated levels of circ-001422 in glioma tissues. Circ-001422 was transcribed directly by STAT3 through binding to its promoter. Circ-001422 exerted cancer-promoting functions when co-cultured with M2 macrophages. Furthermore, glioma cells were found to transfer circ-001422 to macrophages via an exosomal pathway, promoting M2 polarization. Mechanically, circ-001422 interacted with p300, resulting in STAT3 acetylation, thus promoting nuclear localization and transcriptional activity of STAT3/NF-κB and M2 macrophage polarization. In conclusion, glioma cells released exosomes enriched with circ-001422, which in turn induce M2 macrophage polarization by activating the STAT3/NF-κB pathway, thereby enhancing the aggressive characteristics of glioma cells. Targeting circ-001422 may represent a potential therapeutic approach for glioma.
Collapse
Affiliation(s)
- Wenpeng Cao
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Postdoctoral workstation, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - JianFei Sun
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Yunhua Chen
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - FaGuang Kuang
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Shipeng Luo
- Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, 550009, Guizhou, China
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Jinzhi Lan
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
- Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| |
Collapse
|
24
|
Jonnalagedda P, Weinberg B, Min TL, Bhanu S, Bhanu B. Computational modeling of tumor invasion from limited and diverse data in Glioblastoma. Comput Med Imaging Graph 2024; 117:102436. [PMID: 39342741 DOI: 10.1016/j.compmedimag.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
For diseases with high morbidity rates such as Glioblastoma Multiforme, the prognostic and treatment planning pipeline requires a comprehensive analysis of imaging, clinical, and molecular data. Many mutations have been shown to correlate strongly with the median survival rate and response to therapy of patients. Studies have demonstrated that these mutations manifest as specific visual biomarkers in tumor imaging modalities such as MRI. To minimize the number of invasive procedures on a patient and for the overall resource optimization for the prognostic and treatment planning process, the correlation of imaging and molecular features has garnered much interest. While the tumor mass is the most significant feature, the impacted tissue surrounding the tumor is also a significant biomarker contributing to the visual manifestation of mutations - which has not been studied as extensively. The pattern of tumor growth impacts the surrounding tissue accordingly, which is a reflection of tumor properties as well. Modeling how the tumor growth impacts the surrounding tissue can reveal important information about the patterns of tumor enhancement, which in turn has significant diagnostic and prognostic value. This paper presents the first work to automate the computational modeling of the impacted tissue surrounding the tumor using generative deep learning. The paper isolates and quantifies the impact of the Tumor Invasion (TI) on surrounding tissue based on change in mutation status, subsequently assessing its prognostic value. Furthermore, a TI Generative Adversarial Network (TI-GAN) is proposed to model the tumor invasion properties. Extensive qualitative and quantitative analyses, cross-dataset testing, and radiologist blind tests are carried out to demonstrate that TI-GAN can realistically model the tumor invasion under practical challenges of medical datasets such as limited data and high intra-class heterogeneity.
Collapse
Affiliation(s)
- Padmaja Jonnalagedda
- Department of Electrical and Computer Engineering, University of California, Riverside, United States of America.
| | - Brent Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta GA, United States of America
| | - Taejin L Min
- Department of Radiology and Imaging Sciences, Emory University, Atlanta GA, United States of America
| | - Shiv Bhanu
- Department of Radiology, Riverside Community Hospital, Riverside CA, United States of America
| | - Bir Bhanu
- Department of Electrical and Computer Engineering, University of California, Riverside, United States of America
| |
Collapse
|
25
|
Sun X, Jia Q, Li K, Tian C, Yi L, Yan L, Zheng J, Jia X, Gu M. Comparative genomic landscape of lower-grade glioma and glioblastoma. PLoS One 2024; 19:e0309536. [PMID: 39208202 PMCID: PMC11361568 DOI: 10.1371/journal.pone.0309536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Biomarkers for classifying and grading gliomas have been extensively explored, whereas populations in public databases were mostly Western/European. Based on public databases cannot accurately represent Chinese population. To identify molecular characteristics associated with clinical outcomes of lower-grade glioma (LGG) and glioblastoma (GBM) in the Chinese population, we performed whole-exome sequencing (WES) in 16 LGG and 35 GBM tumor tissues. TP53 (36/51), TERT (31/51), ATRX (16/51), EFGLAM (14/51), and IDH1 (13/51) were the most common genes harboring mutations. IDH1 mutation (c.G395A; p.R132H) was significantly enriched in LGG, whereas PCDHGA10 mutation (c.A265G; p.I89V) in GBM. IDH1-wildtype and PCDHGA10 mutation were significantly related to poor prognosis. IDH1 is an important biomarker in gliomas, whereas PCDHGA10 mutation has not been reported to correlate with gliomas. Different copy number variations (CNVs) and oncogenic signaling pathways were identified between LGG and GBM. Differential genomic landscapes between LGG and GBM were revealed in the Chinese population, and PCDHGA10, for the first time, was identified as the prognostic factor of gliomas. Our results might provide a basis for molecular classification and identification of diagnostic biomarkers and even potential therapeutic targets for gliomas.
Collapse
Affiliation(s)
- Xinxin Sun
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Qingbin Jia
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Kun Li
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Conghui Tian
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Lili Yan
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| |
Collapse
|
26
|
Yan T, Jiang Q, Ni G, Ma H, Meng Y, Kang G, Xu M, Peng F, Li H, Chen X, Wang M. WZ-3146 acts as a novel small molecule inhibitor of KIF4A to inhibit glioma progression by inducing apoptosis. Cancer Cell Int 2024; 24:221. [PMID: 38937742 PMCID: PMC11209999 DOI: 10.1186/s12935-024-03409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Glioma is considered the most common primary malignant tumor of the central nervous system. Although traditional treatments have not achieved satisfactory outcomes, recently, targeted therapies for glioma have shown promising efficacy. However, due to the single-target nature of targeted therapy, traditional targeted therapies are ineffective; thus, novel therapeutic targets are urgently needed. METHODS The gene expression data for glioma patients were derived from the GEO (GSE4290, GSE50161), TCGA and CGGA databases. Next, the upregulated genes obtained from the above databases were cross-analyzed, finally, 10 overlapping genes (BIRC5, FOXM1, EZH2, CDK1, KIF11, KIF4A, NDC80, PBK, RRM2, and TOP2A) were ultimately screened and only KIF4A expression has the strongest correlation with clinical characteristics in glioma patients. Futher, the TCGA and CGGA database were utilized to explore the correlation of KIF4A expression with glioma prognosis. Then, qRT-PCR and Western blot was used to detect the KIF4A mRNA and protein expression level in glioma cells, respectively. And WZ-3146, the small molecule inhibitor targeting KIF4A, were screened by Cmap analysis. Subsequently, the effect of KIF4A knockdown or WZ-3146 treatment on glioma was measured by the MTT, EdU, Colony formation assay and Transwell assay. Ultimately, GSEA enrichment analysis was performed to find that the apoptotic pathway could be regulated by KIF4A in glioma, in addition, the effect of WZ-3146 on glioma apoptosis was detected by flow cytometry and Western blot. RESULTS In the present study, we confirmed that KIF4A is abnormally overexpressed in glioma. In addition, KIF4A overexpression is a key indicator of glioma prognosis; moreover, suppressing KIF4A expression can inhibit glioma progression. We also discovered that WZ-3146, a small molecule inhibitor of KIF4A, can induce apoptosis in glioma cells and exhibit antiglioma effects. CONCLUSION In conclusion, these observations demonstrated that targeting KIF4A can inhibit glioma progression. With further research, WZ-3146, a small molecule inhibitor of KIF4A, could be combined with other molecular targeted drugs to cooperatively inhibit glioma progression.
Collapse
Affiliation(s)
- Tao Yan
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Qing Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
- Key Laboratory of Neurosurgery of Colleges and Universities in Heilongjiang Province, Harbin, Heilongjiang Province, 150001, China
| | - Guangpu Ni
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Haofeng Ma
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Yun Meng
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Guiqiong Kang
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Meifang Xu
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Department of Neurology, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Fei Peng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Huadong Li
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China.
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.
- Key Laboratory of Neurosurgery of Colleges and Universities in Heilongjiang Province, Harbin, Heilongjiang Province, 150001, China.
| | - Mingguang Wang
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
27
|
Tung Y, Chen Y, Derr K, Wilson K, Song MJ, Ferrer M. A 3D Bioprinted Human Neurovascular Unit Model of Glioblastoma Tumor Growth. Adv Healthc Mater 2024; 13:e2302831. [PMID: 38394389 PMCID: PMC11176035 DOI: 10.1002/adhm.202302831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/29/2024] [Indexed: 02/25/2024]
Abstract
A 3D bioprinted neurovascular unit (NVU) model is developed to study glioblastoma (GBM) tumor growth in a brain-like microenvironment. The NVU model includes human primary astrocytes, pericytes and brain microvascular endothelial cells, and patient-derived glioblastoma cells (JHH-520) are used for this study. Fluorescence reporters are used with confocal high content imaging to quantitate real-time microvascular network formation and tumor growth. Extensive validation of the NVU-GBM model includes immunostaining for brain relevant cellular markers and extracellular matrix components; single cell RNA sequencing (scRNAseq) to establish physiologically relevant transcriptomics changes; and secretion of NVU and GBM-relevant cytokines. The scRNAseq reveals changes in gene expression and cytokines secretion associated with wound healing/angiogenesis, including the appearance of an endothelial mesenchymal transition cell population. The NVU-GBM model is used to test 18 chemotherapeutics and anti-cancer drugs to assess the pharmacological relevance of the model and robustness for high throughput screening.
Collapse
Affiliation(s)
- Yen‐Ting Tung
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Yu‐Chi Chen
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Kristy Derr
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Kelli Wilson
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Min Jae Song
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| |
Collapse
|
28
|
Xu X, Zheng Y, Luo L, You Z, Chen H, Wang J, Zhang F, Liu Y, Ke Y. Glioblastoma stem cells deliver ABCB4 transcribed by ATF3 via exosomes conferring glioblastoma resistance to temozolomide. Cell Death Dis 2024; 15:318. [PMID: 38710703 PMCID: PMC11074105 DOI: 10.1038/s41419-024-06695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.
Collapse
Affiliation(s)
- Xiangdong Xu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Yaofeng Zheng
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Linting Luo
- Department of Neurology, Liwan Central Hospital of Guangzhou, Guangzhou, PR China
| | - Zhongsheng You
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Huajian Chen
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Jihui Wang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Fabing Zhang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Yang Liu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Yiquan Ke
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| |
Collapse
|
29
|
You A, Gu J, Wang J, Li J, Zhang Y, Rao G, Ge X, Zhang K, Gao X, Wang D. Value of long non-coding RNA HAS2-AS1 as a diagnostic and prognostic marker of glioma. Neurologia 2024; 39:353-360. [PMID: 38616063 DOI: 10.1016/j.nrleng.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/11/2021] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Glioma presents high incidence and poor prognosis, and therefore more effective treatments are needed. Studies have confirmed that long non-coding RNAs (lncRNAs) basically regulate various human diseases including glioma. It has been theorized that HAS2-AS1 serves as an lncRNA to exert an oncogenic role in varying cancers. This study aimed to assess the value of lncRNA HAS2-AS1 as a diagnostic and prognostic marker for glioma. METHODS The miRNA expression data and clinical data of glioma were downloaded from the TCGA database for differential analysis and survival analysis. In addition, pathological specimens and specimens of adjacent normal tissue from 80 patients with glioma were used to observe the expression of HAS2-AS1. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic ability and prognostic value of HAS2-AS1 in glioma. Meanwhile, a Kaplan-Meier survival curve was plotted to evaluate the survival of glioma patients with different HAS2-AS1 expression levels. RESULTS HAS2-AS1 was significantly upregulated in glioma tissues compared with normal tissue. The survival curves showed that overexpression of HAS2-AS1 was associated with poor overall survival (OS) and progression-free survival (PFS). Several clinicopathological factors of glioma patients, including tumor size and WHO grade, were significantly correlated with HAS2-AS1 expression in tissues. The ROC curve showed an area under the curve (AUC) value of 0.863, indicating that HAS2-AS1 had good diagnostic value. The ROC curve for the predicted OS showed an AUC of 0.906, while the ROC curve for predicted PFS showed an AUC of 0.88. Both suggested that overexpression of HAS2-AS1 was associated with poor prognosis. CONCLUSIONS Normal tissues could be clearly distinguished from glioma tissues based on HAS2-AS1 expression. Moreover, overexpression of HAS2-AS1 indicated poor prognosis in glioma patients. Therefore, HAS2-AS1 could be used as a diagnostic and prognostic marker for glioma.
Collapse
Affiliation(s)
- A You
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, 063000 Tangshan, China
| | - J Gu
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, 063000 Tangshan, China
| | - J Wang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, 063000 Tangshan, China
| | - J Li
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, 063000 Tangshan, China
| | - Y Zhang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, 063000 Tangshan, China
| | - G Rao
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, 063000 Tangshan, China
| | - X Ge
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, 063000 Tangshan, China
| | - K Zhang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, 063000 Tangshan, China
| | - X Gao
- Operating Theatre, Tangshan Central Hospital, 063000 Tangshan, China
| | - D Wang
- The Fourth Department of Neurosurgery, Tangshan Gongren Hospital, 063000 Tangshan, China.
| |
Collapse
|
30
|
Roda D, Veiga P, Melo JB, Carreira IM, Ribeiro IP. Principles in the Management of Glioblastoma. Genes (Basel) 2024; 15:501. [PMID: 38674436 PMCID: PMC11050118 DOI: 10.3390/genes15040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma, the most aggressive and common malignant primary brain tumour, is characterized by infiltrative growth, abundant vascularization, and aggressive clinical evolution. Patients with glioblastoma often face poor prognoses, with a median survival of approximately 15 months. Technological progress and the subsequent improvement in understanding the pathophysiology of these tumours have not translated into significant achievements in therapies or survival outcomes for patients. Progress in molecular profiling has yielded new omics data for a more refined classification of glioblastoma. Several typical genetic and epigenetic alterations in glioblastoma include mutations in genes regulating receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma protein (RB) signalling, as well as mutation of isocitrate dehydrogenase (IDH), methylation of O6-methylguanine-DNA methyltransferase (MGMT), amplification of epidermal growth factor receptor vIII, and codeletion of 1p/19q. Certain microRNAs, such as miR-10b and miR-21, have also been identified as prognostic biomarkers. Effective treatment options for glioblastoma are limited. Surgery, radiotherapy, and alkylating agent chemotherapy remain the primary pillars of treatment. Only promoter methylation of the gene MGMT predicts the benefit from alkylating chemotherapy with temozolomide and it guides the choice of first-line treatment in elderly patients. Several targeted strategies based on tumour-intrinsic dominant signalling pathways and antigenic tumour profiles are under investigation in clinical trials. This review explores the potential genetic and epigenetic biomarkers that could be deployed as analytical tools in the diagnosis and prognostication of glioblastoma. Recent clinical advancements in treating glioblastoma are also discussed, along with the potential of liquid biopsies to advance personalized medicine in the field of glioblastoma, highlighting the challenges and promises for the future.
Collapse
Affiliation(s)
- Domingos Roda
- Algarve Radiation Oncology Unit—Joaquim Chaves Saúde (JCS), 8000-316 Faro, Portugal;
| | - Pedro Veiga
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
| | - Joana Barbosa Melo
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Marques Carreira
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
31
|
Wang Y, Wang B, Cao W, Xu X. PTX3 activates POSTN and promotes the progression of glioblastoma via the MAPK/ERK signalling axis. Biochem Biophys Res Commun 2024; 703:149665. [PMID: 38359612 DOI: 10.1016/j.bbrc.2024.149665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Intrinsic brain tumours such as glioblastoma (GBM) are believed to develop from neuroglial stem or progenitor cells. GBM accounts for approximately half of gliomas. GBM has a poor prognosis and a low 5-year survival rate. Pentraxin 3 (PTX3) is overexpressed in GBM, but the potential mechanism is unclear. METHODS Glioblastoma data from the TCGA and CGGA databases were used to analyse PTX3 expression. Subsequently, in vivo and in vitro experiments were conducted to verify the effect of PTX3 silencing in glioma cells on EMT like process and GSC maintenance. The JASPAR database was used to predict the downstream genes of PTX3. POSTN is a novel target gene of PTX3 in gliomas, and this finding was validated using a luciferase reporter gene assay. Western blotting and KEGG enrichment analysis were used to predict the downstream pathway of POSTN, and it was found that the MAPK/ERK pathway might be related to the function of POSTN. RESULTS GBM tissues have higher levels of PTX3 expression than normal brain tissues (NBTs). In functional tests, PTX3 promoted the EMT like process of GBM cells while maintaining the stem cell characteristics of GBM stem cells and enhancing their self-renewal. Moreover, we performed a dual luciferase reporter experiment to confirm that PTX3 binds to the POSTN promoter region. In addition, the expression of key proteins in the MAPK/ERK signalling pathway was increased after PTX3 overexpression. CONCLUSION POSTN is a direct target of PTX3 that promotes GBM growth via the MAPK/ERK signalling pathway.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Binbin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Wenping Cao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China.
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China.
| |
Collapse
|
32
|
Shen Z, Sheng H, Zhao J, Xu J, Cai Z, Zhang H, Guo Z, Liu J, Liang H, Tan L, Gan S, Huang J, Zhu S. AQP8 Modulates Mitochondrial H 2O 2 Transport to Influence Glioma Proliferation. Cancer Invest 2024; 42:345-356. [PMID: 38742677 DOI: 10.1080/07357907.2024.2352467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Aquaporin-8 (AQP8) is involved in impacting glioma proliferation and can effect tumour growth by regulating Intracellular reactive oxygen species (ROS) signalling levels. In addition to transporting H2O2, AQP8 has been shown to affect ROS signaling, but evidence is lacking in gliomas. In this study, we aimed to investigate how AQP8 affects ROS signaling in gliomas. MATERIALS AND METHODS We constructed A172 and U251 cell lines with AQP8 knockdown and AQP8 rescue by CRISPR/Cas9 technology and overexpression of lentiviral vectors. We used CCK-8 and flow cytometry to test cell proliferation and cycle, immunofluorescence and Mito-Tracker CMXRos to observe the distribution of AQP8 expression in glioma cells, Amplex and DHE to study mitochondria release of H2O2, mitochondrial membrane potential (MMP) and NAD+/NADH ratio to assess mitochondrial function and protein blotting to detect p53 and p21 expression. RESULT We found that AQP8 co-localised with mitochondria and that knockdown of AQP8 inhibited the release of H2O2 from mitochondria and led to increased levels of ROS in mitochondria, thereby impairing mitochondrial function. We also discovered that AQP8 knockdown resulted in suppression of cell proliferation and was blocked at the G0/G1 phase with increased expression of mitochondrial ROS signalling-related p53/p21. CONCLUSIONS This finding provides further evidence for mechanistic studies of AQP8 as a prospective target for the treatment of gliomas.
Collapse
Affiliation(s)
- ZiHao Shen
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - HuaJun Sheng
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - Jing Zhao
- Xi'an Hospital of TCM, Xi'an, PR China
| | - Jin Xu
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - ZiLing Cai
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - Hao Zhang
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - Zhen Guo
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - JunNan Liu
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - Hang Liang
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - LiHao Tan
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - ShengWei Gan
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - Juan Huang
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| | - ShuJuan Zhu
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
- Neuroscience Research Center, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
33
|
Sentyabreva A, Miroshnichenko E, Artemova D, Alekseeva A, Kosyreva A. Morphological and Molecular Biological Characteristics of Experimental Rat Glioblastoma Tissue Strains Induced by Different Carcinogenic Chemicals. Biomedicines 2024; 12:713. [PMID: 38672069 PMCID: PMC11048177 DOI: 10.3390/biomedicines12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive human neoplasm with poor prognosis due to its malignancy and therapy resistance. To evaluate the efficacy of antitumor therapy, cell models are used most widely, but they are not as relevant to human GBMs as tissue models of gliomas, closely corresponding to human GBMs in cell heterogeneity. In this work, we compared three different tissue strains of rat GBM 101.8 (induced by DMBA), GBM 11-9-2, and GBM 14-4-5 (induced by ENU). MATERIALS AND METHODS We estimated different gene expressions by qPCR-RT and conducted Western blotting and histological and morphometric analysis of three different tissue strains of rat GBM. RESULTS GBM 101.8 was characterized by the shortest period of tumor growth and the greatest number of necroses and mitoses; overexpression of Abcb1, Sox2, Cdkn2a, Cyclin D, and Trp53; and downregulated expression of Vegfa, Pdgfra, and Pten; as well as a high level of HIF-1α protein content. GBM 11-9-2 and GBM 14-4-5 were relevant to low-grade gliomas and characterized by downregulated Mgmt expression; furthermore, a low content of CD133 protein was found in GBM 11-9-2. CONCLUSIONS GBM 101.8 is a reliable model for further investigation due to its similarity to high-grade human GBMs, while GBM 11-9-2 and GBM 14-4-5 correspond to Grade 2-3 gliomas.
Collapse
Affiliation(s)
- Alexandra Sentyabreva
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ekaterina Miroshnichenko
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Daria Artemova
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anna Alekseeva
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
34
|
Lee JO, Ahn SS, Choi KS, Lee J, Jang J, Park JH, Hwang I, Park CK, Park SH, Chung JW, Choi SH. Added prognostic value of 3D deep learning-derived features from preoperative MRI for adult-type diffuse gliomas. Neuro Oncol 2024; 26:571-580. [PMID: 37855826 PMCID: PMC10912011 DOI: 10.1093/neuonc/noad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND To investigate the prognostic value of spatial features from whole-brain MRI using a three-dimensional (3D) convolutional neural network for adult-type diffuse gliomas. METHODS In a retrospective, multicenter study, 1925 diffuse glioma patients were enrolled from 5 datasets: SNUH (n = 708), UPenn (n = 425), UCSF (n = 500), TCGA (n = 160), and Severance (n = 132). The SNUH and Severance datasets served as external test sets. Precontrast and postcontrast 3D T1-weighted, T2-weighted, and T2-FLAIR images were processed as multichannel 3D images. A 3D-adapted SE-ResNeXt model was trained to predict overall survival. The prognostic value of the deep learning-based prognostic index (DPI), a spatial feature-derived quantitative score, and established prognostic markers were evaluated using Cox regression. Model evaluation was performed using the concordance index (C-index) and Brier score. RESULTS The MRI-only median DPI survival prediction model achieved C-indices of 0.709 and 0.677 (BS = 0.142 and 0.215) and survival differences (P < 0.001 and P = 0.002; log-rank test) for the SNUH and Severance datasets, respectively. Multivariate Cox analysis revealed DPI as a significant prognostic factor, independent of clinical and molecular genetic variables: hazard ratio = 0.032 and 0.036 (P < 0.001 and P = 0.004) for the SNUH and Severance datasets, respectively. Multimodal prediction models achieved higher C-indices than models using only clinical and molecular genetic variables: 0.783 vs. 0.774, P = 0.001, SNUH; 0.766 vs. 0.748, P = 0.023, Severance. CONCLUSIONS The global morphologic feature derived from 3D CNN models using whole-brain MRI has independent prognostic value for diffuse gliomas. Combining clinical, molecular genetic, and imaging data yields the best performance.
Collapse
Affiliation(s)
- Jung Oh Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu Sung Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junhyeok Lee
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Joon Jang
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung Hyun Park
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Inpyeong Hwang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Wook Chung
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Innovate Biomedical Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
35
|
Hasani F, Masrour M, Jazi K, Ahmadi P, Hosseini SS, Lu VM, Alborzi A. MicroRNA as a potential diagnostic and prognostic biomarker in brain gliomas: a systematic review and meta-analysis. Front Neurol 2024; 15:1357321. [PMID: 38487328 PMCID: PMC10937740 DOI: 10.3389/fneur.2024.1357321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Brain neoplasms and central nervous system (CNS) disorders, particularly gliomas, have shown a notable increase in incidence over the last three decades, posing significant diagnostic and therapeutic challenges. MicroRNAs (miRNAs) have emerged as promising biomarkers due to their regulatory role in gene expression, offering potential enhancements in glioma diagnosis and prognosis. Methods This systematic review and meta-analysis, adhering to PRISMA guidelines, included 25 studies for diagnostic accuracy and 99 for prognostic analysis, published until August 27th, 2023. Studies were identified through comprehensive searches of PubMed, Web of Science, and Scopus databases. Inclusion criteria encompassed peer-reviewed original research providing sensitivity, specificity, and area under the curve (AUC) for miRNAs in glioma diagnosis, as well as survival outcomes with hazard ratios (HRs) or mean survival. Results and discussion Meta-analysis demonstrated miRNAs' high diagnostic accuracy, with a pooled sensitivity of 0.821 (95% CI: 0.781-0.855) and specificity of 0.831 (95% CI: 0.792-0.865), yielding an AUC of 0.893. Subgroup analysis by specimen type revealed consistent accuracy across blood, cerebrospinal fluid (CSF), and tissue samples. Our results also showed miRNAs can be potential prognostic biomarkers. miRNAs showed significant associations with overall survival (OS) (pooled HR: 2.0221; 95% CI: 1.8497-2.2105), progression-free survival (PFS) (pooled HR: 2.4248; 95% CI: 1.8888-3.1128), and disease-free survival (DFS) (pooled HR: 1.8973; 95% CI: 1.1637-3.0933) in tissue specimens. These findings underscore miRNAs' potential as valuable biomarkers for improving glioma diagnosis and prognosis, offering insights for enhancing clinical decision-making and patient outcomes.
Collapse
Affiliation(s)
- Fatemeh Hasani
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Gastroenterology and Hepatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Jazi
- Clinical Research and Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Student Research Committee, Faculty of Medicine, Medical University of Qom, Qom, Iran
| | - Payam Ahmadi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba sadat Hosseini
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Gastroenterology and Hepatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Victor M. Lu
- Department of Neurosurgery, University of Miami, Miami, FL, United States
| | - Amirmohammad Alborzi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
36
|
Zhao L, Wang Y, Mu P, Zhang X, Qi R, Zhang Y, Zhang H, Zhu X, Dong Z, Dong Y. IGFBP3 induces PD-L1 expression to promote glioblastoma immune evasion. Cancer Cell Int 2024; 24:60. [PMID: 38326861 PMCID: PMC10851611 DOI: 10.1186/s12935-024-03234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) characterized by immune escape is the most malignant primary brain tumors, which has strong immunosuppressive effect. Programmed death ligand-1 (PD-L1) is a recognized immunosuppressive member on the surface of tumor cells, and plays a crucial role in immune evasion of tumors. Actually, little is known about the regulation of PD-L1 expression in GBM. Insulin-like growth factor binding protein 3 (IGFBP3) is upregulated in GBM and is related to poor patient prognosis. However, it remains unclear whether IGFBP3 plays a role in the regulation of PD-L1 expression in GBM. METHODS The role of IGFBP3 in the glioma immune microenvironment was investigated using the CIBERSORT algorithm. The correlation between IGFBP3 and PD-L1 expression was analyzed using TCGA and CGGA databases. QRT-PCR, immunoblotting and RNA-seq were used to examine the regulatory effect of IGFBP3 on PD-L1 expression. Co-culture assay, cell counting kit (CCK-8), qRT-PCR, ELISA and flow cytometry were performed to explore the function of IGFBP3 in inducing immunosuppression. The biological role of IGFBP3 was verified using immunohistochemical, immunofluorescence and mice orthotopic tumor model. RESULTS In this study, we analyzed immune cells infiltration in gliomas and found that IGFBP3 may be associated with an immunosuppressive microenvironment. Then, by analyzing TCGA and CGGA databases, our results showed that IGFBP3 and PD-L1 expression were positively correlated in GBM patients, but not in LGG patients. In vitro experiments conducted on different GBM cell lines revealed that the overexpression of IGFBP3 led to an increase in PD-L1 expression, which was reversible upon knockdown IGFBP3. Mechanistically, IGFBP3 activated the JAK2/STAT3 signaling pathway, leading to an increase in PD-L1 expression. Additionally, co-culture experiments results showed IGFBP3 overexpression induced upregulation of PD-L1 expression promoted apoptosis in Jurkat cells, and this effect was blocked by IGFBP3 antibody and PDL-1 inhibitors. Importantly, in vivo experiments targeting IGFBP3 suppressed tumor growth and significantly prolonged the survival of mice. CONCLUSIONS This research demonstrated IGFBP3 is a novel regulator for PD-L1 expression in GBM, and identified a new mechanism by which IGFBP3 regulates immune evasion through PD-L1, suggesting that IGFBP3 may be a potential novel target for GBM therapy.
Collapse
Affiliation(s)
- Leilei Zhao
- Department of Immunology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China
| | - Peizheng Mu
- School of Computer and Normal Engineering, Yantai University, Qingquan Road 30, Yantai, 264005, Shandong, China
| | - Xuehua Zhang
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Ruomei Qi
- Department of Immunology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xiao Zhu
- School of Computer and Normal Engineering, Yantai University, Qingquan Road 30, Yantai, 264005, Shandong, China.
| | - Zhouyan Dong
- Department of Pathogenic Biology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China.
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, Shandong, China.
| |
Collapse
|
37
|
Zechel C, Loy M, Wegner C, Dahlke E, Soetje B, Baehr L, Leppert J, Ostermaier JJ, Lueg T, Nielsen J, Elßner J, Willeke V, Marzahl S, Tronnier V, Madany Mamlouk A. Molecular signature of stem-like glioma cells (SLGCs) from human glioblastoma and gliosarcoma. PLoS One 2024; 19:e0291368. [PMID: 38306361 PMCID: PMC10836714 DOI: 10.1371/journal.pone.0291368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/28/2023] [Indexed: 02/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) and the GBM variant gliosarcoma (GS) are among the tumors with the highest morbidity and mortality, providing only palliation. Stem-like glioma cells (SLGCs) are involved in tumor initiation, progression, therapy resistance, and relapse. The identification of general features of SLGCs could contribute to the development of more efficient therapies. Commercially available protein arrays were used to determine the cell surface signature of eight SLGC lines from GBMs, one SLGC line obtained from a xenotransplanted GBM-derived SLGC line, and three SLGC lines from GSs. By means of non-negative matrix factorization expression metaprofiles were calculated. Using the cophenetic correlation coefficient (CCC) five metaprofiles (MPs) were identified, which are characterized by specific combinations of 7-12 factors. Furthermore, the expression of several factors, that are associated with GBM prognosis, GBM subtypes, SLGC differentiation stages, or neural identity was evaluated. The investigation encompassed 24 distinct SLGC lines, four of which were derived from xenotransplanted SLGCs, and included the SLGC lines characterized by the metaprofiles. It turned out that all SLGC lines expressed the epidermal growth factor EGFR and EGFR ligands, often in the presence of additional receptor tyrosine kinases. Moreover, all SLGC lines displayed a neural signature and the IDH1 wildtype, but differed in their p53 and PTEN status. Pearson Correlation analysis identified a positive association between the pluripotency factor Sox2 and the expression of FABP7, Musashi, CD133, GFAP, but not with MGMT or Hif1α. Spherical growth, however, was positively correlated with high levels of Hif1α, CDK4, PTEN, and PDGFRβ, whereas correlations with stemness factors or MGMT (MGMT expression and promoter methylation) were low or missing. Factors highly expressed by all SLGC lines, irrespective of their degree of stemness and growth behavior, are Cathepsin-D, CD99, EMMPRIN/CD147, Intβ1, the Galectins 3 and 3b, and N-Cadherin.
Collapse
Affiliation(s)
- Christina Zechel
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Mira Loy
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Christiane Wegner
- Institute for Neuro- and Bioinformatics (INB), University Lübeck, Lübeck, Germany
| | - Eileen Dahlke
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Birga Soetje
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Laura Baehr
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Jan Leppert
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Johannes J. Ostermaier
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Thorben Lueg
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Jana Nielsen
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Julia Elßner
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Viktoria Willeke
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Svenja Marzahl
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Amir Madany Mamlouk
- Institute for Neuro- and Bioinformatics (INB), University Lübeck, Lübeck, Germany
| |
Collapse
|
38
|
Xian W, Asad M, Wu S, Bai Z, Li F, Lu J, Zu G, Brintnell E, Chen H, Mao Y, Zhou G, Liao B, Wu J, Wang E, You L. Distinct immune escape and microenvironment between RG-like and pri-OPC-like glioma revealed by single-cell RNA-seq analysis. Front Med 2024; 18:147-168. [PMID: 37955814 DOI: 10.1007/s11684-023-1017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/24/2023] [Indexed: 11/14/2023]
Abstract
The association of neurogenesis and gliogenesis with glioma remains unclear. By conducting single-cell RNA-seq analyses on 26 gliomas, we reported their classification into primitive oligodendrocyte precursor cell (pri-OPC)-like and radial glia (RG)-like tumors and validated it in a public cohort and TCGA glioma. The RG-like tumors exhibited wild-type isocitrate dehydrogenase and tended to carry EGFR mutations, and the pri-OPC-like ones were prone to carrying TP53 mutations. Tumor subclones only in pri-OPC-like tumors showed substantially down-regulated MHC-I genes, suggesting their distinct immune evasion programs. Furthermore, the two subgroups appeared to extensively modulate glioma-infiltrating lymphocytes in distinct manners. Some specific genes not expressed in normal immune cells were found in glioma-infiltrating lymphocytes. For example, glial/glioma stem cell markers OLIG1/PTPRZ1 and B cell-specific receptors IGLC2/IGKC were expressed in pri-OPC-like and RG-like glioma-infiltrating lymphocytes, respectively. Their expression was positively correlated with those of immune checkpoint genes (e.g., LGALS33) and poor survivals as validated by the increased expression of LGALS3 upon IGKC overexpression in Jurkat cells. This finding indicated a potential inhibitory role in tumor-infiltrating lymphocytes and could provide a new way of cancer immune evasion.
Collapse
Affiliation(s)
- Weiwei Xian
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mohammad Asad
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Shuai Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhixin Bai
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Fengjiao Li
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Junfeng Lu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Erin Brintnell
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guomin Zhou
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, 200040, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 570100, China
| | - Jinsong Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Edwin Wang
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
39
|
Piscopo L, Zampella E, Klain M. [ 18F]FET PET/MR and machine learning in the evaluation of glioma. Eur J Nucl Med Mol Imaging 2024; 51:797-799. [PMID: 37953393 DOI: 10.1007/s00259-023-06505-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Affiliation(s)
- Leandra Piscopo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
40
|
Sawicka MM, Sawicki K, Jadeszko M, Bielawska K, Supruniuk E, Reszeć J, Prokop-Bielenia I, Polityńska B, Jadeszko M, Rybaczek M, Latoch E, Gorbacz K, Łysoń T, Miltyk W. Proline Metabolism in WHO G4 Gliomas Is Altered as Compared to Unaffected Brain Tissue. Cancers (Basel) 2024; 16:456. [PMID: 38275897 PMCID: PMC10814259 DOI: 10.3390/cancers16020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Proline metabolism has been identified as a significant player in several neoplasms, but knowledge of its role in gliomas is limited despite it providing a promising line of pursuit. Data on proline metabolism in the brain are somewhat historical. This study aims to investigate alterations of proline metabolism in gliomas of WHO grade 4 (GG4) in the context of the brain. A total of 20 pairs of samples were studied, consisting of excised tumor and unaffected brain tissue, obtained when partial brain resection was required to reach deep-seated lesions. Levels of proline oxidase/proline dehydrogenase (POX/PRODH), Δ1-pyrroline-5-carboxylate reductases (PYCR1/2/3), prolidase (PEPD), and metalloproteinases (MMP-2, MMP-9) were assessed, along with the concentration of proline and proline-related metabolites. In comparison to normal brain tissue, POX/PRODH expression in GG4 was found to be suppressed, while PYCR1 expression and activity of PEPD, MMP-2, and -9 were upregulated. The GG4 proline concentration was 358% higher. Hence, rewiring of the proline metabolism in GG4 was confirmed for the first time, with a low-POX/PRODH/high-PYCR profile. High PEPD and MMPs activity is in keeping with GG4-increased collagen turnover and local aggressiveness. Further studies on the mechanisms of the interplay between altered proline metabolism and the GG4 microenvironment are warranted.
Collapse
Affiliation(s)
- Magdalena M. Sawicka
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| | - Karol Sawicki
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Marek Jadeszko
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Katarzyna Bielawska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Izabela Prokop-Bielenia
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Barbara Polityńska
- Department of Psychology and Philosophy, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Mateusz Jadeszko
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Magdalena Rybaczek
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Eryk Latoch
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Krzysztof Gorbacz
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Tomasz Łysoń
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| |
Collapse
|
41
|
Yang J, Yang S, Cai J, Chen H, Sun L, Wang J, Hou G, Gu S, Ma J, Ge J. A Transcription Factor ZNF384, Regulated by LINC00265, Activates the Expression of IFI30 to Stimulate Malignant Progression in Glioma. ACS Chem Neurosci 2024; 15:290-299. [PMID: 38141017 DOI: 10.1021/acschemneuro.3c00562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Glioma remains one of the most challenging primary brain malignancies to treat. Long noncoding RNAs (lncRNAs) and mRNAs (mRNAs) are implicated in regulating the malignant phenotypes of cancers including glioma. This study aimed to elucidate the functions and mechanisms of lncRNA LINC00265 and mRNA IFI30 in the pathogenesis of glioma. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis revealed the upregulated expression of LINC00265 and IFI30 in glioma cells compared to normal human astrocytes. Western blot (WB) quantified the associated proteins. Glioma stemness and epithelial-to-mesenchymal transition (EMT) were assessed by aldehyde dehydrogenase 1 (ALDH1) activity, sphere formation, and WB. Mechanistic and rescue assays evaluated the LINC00265/miR-let-7d-5p/IFI30/ZNF384/IGF2BP2 axis. The results demonstrated that LINC00265 and IFI30 were highly expressed in glioma cells, promoting stemness and EMT. ZNF384 was identified as a transcription factor that upregulates IFI30. Moreover, LINC00265 elevated ZNF384 by sponging miR-let-7d-5p and recruiting IGF2BP2. In conclusion, LINC00265 and IFI30 act as oncogenes in glioma by driving stemness and EMT, underscoring their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jian Yang
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.160 Pujian Road, Pudong New Area, Shanghai 200127, China
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Shenghe Yang
- Yancheng Tinghu District People's Hospital, Yancheng, Jiangsu 224002, China
| | - Jinlian Cai
- 910 Hospital of the Joint Logistics Team, Quanzhou, Fujian 362000, China
| | - Hongjin Chen
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200240, China
| | - Lihua Sun
- Hainan Women and Children's Medical Center, Haikou, Hainan 571199, China
| | - Jiajia Wang
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Guoqiang Hou
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.160 Pujian Road, Pudong New Area, Shanghai 200127, China
| | - Shuo Gu
- Hainan Women and Children's Medical Center, Haikou, Hainan 571199, China
| | - Jie Ma
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jianwei Ge
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.160 Pujian Road, Pudong New Area, Shanghai 200127, China
| |
Collapse
|
42
|
Moubarak MM, Pagano Zottola AC, Larrieu CM, Cuvellier S, Daubon T, Martin OCB. Exploring the multifaceted role of NRF2 in brain physiology and cancer: A comprehensive review. Neurooncol Adv 2024; 6:vdad160. [PMID: 38221979 PMCID: PMC10785770 DOI: 10.1093/noajnl/vdad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Chronic oxidative stress plays a critical role in the development of brain malignancies due to the high rate of brain oxygen utilization and concomitant production of reactive oxygen species. The nuclear factor-erythroid-2-related factor 2 (NRF2), a master regulator of antioxidant signaling, is a key factor in regulating brain physiology and the development of age-related neurodegenerative diseases. Also, NRF2 is known to exert a protective antioxidant effect against the onset of oxidative stress-induced diseases, including cancer, along with its pro-oncogenic activities through regulating various signaling pathways and downstream target genes. In glioblastoma (GB), grade 4 glioma, tumor resistance, and recurrence are caused by the glioblastoma stem cell population constituting a small bulk of the tumor core. The persistence and self-renewal capacity of these cell populations is enhanced by NRF2 expression in GB tissues. This review outlines NRF2's dual involvement in cancer and highlights its regulatory role in human brain physiology and diseases, in addition to the development of primary brain tumors and therapeutic potential, with a focus on GB.
Collapse
Affiliation(s)
- Maya M Moubarak
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | | | | | | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | |
Collapse
|
43
|
Nafe R, Hattingen E. Cellular Components of the Tumor Environment in Gliomas-What Do We Know Today? Biomedicines 2023; 12:14. [PMID: 38275375 PMCID: PMC10813739 DOI: 10.3390/biomedicines12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A generation ago, the molecular properties of tumor cells were the focus of scientific interest in oncology research. Since then, it has become increasingly apparent that the tumor environment (TEM), whose major components are non-neoplastic cell types, is also of utmost importance for our understanding of tumor growth, maintenance and resistance. In this review, we present the current knowledge concerning all cellular components within the TEM in gliomas, focusing on their molecular properties, expression patterns and influence on the biological behavior of gliomas. Insight into the TEM of gliomas has expanded considerably in recent years, including many aspects that previously received only marginal attention, such as the phenomenon of phagocytosis of glioma cells by macrophages and the role of the thyroid-stimulating hormone on glioma growth. We also discuss other topics such as the migration of lymphocytes into the tumor, phenotypic similarities between chemoresistant glioma cells and stem cells, and new clinical approaches with immunotherapies involving the cells of TEM.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
44
|
Zimmer N, Trzeciak ER, Müller A, Licht P, Sprang B, Leukel P, Mailänder V, Sommer C, Ringel F, Tuettenberg J, Kim E, Tuettenberg A. Nuclear Glycoprotein A Repetitions Predominant (GARP) Is a Common Trait of Glioblastoma Stem-like Cells and Correlates with Poor Survival in Glioblastoma Patients. Cancers (Basel) 2023; 15:5711. [PMID: 38136258 PMCID: PMC10741777 DOI: 10.3390/cancers15245711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GB) is notoriously resistant to therapy. GB genesis and progression are driven by glioblastoma stem-like cells (GSCs). One goal for improving treatment efficacy and patient outcomes is targeting GSCs. Currently, there are no universal markers for GSCs. Glycoprotein A repetitions predominant (GARP), an anti-inflammatory protein expressed by activated regulatory T cells, was identified as a possible marker for GSCs. This study evaluated GARP for the detection of human GSCs utilizing a multidimensional experimental design that replicated several features of GB: (1) intratumoral heterogeneity, (2) cellular hierarchy (GSCs with varied degrees of self-renewal and differentiation), and (3) longitudinal GSC evolution during GB recurrence (GSCs from patient-matched newly diagnosed and recurrent GB). Our results indicate that GARP is expressed by GSCs across various cellular states and disease stages. GSCs with an increased GARP expression had reduced self-renewal but no alterations in proliferative capacity or differentiation commitment. Rather, GARP correlated inversely with the expression of GFAP and PDGFR-α, markers of astrocyte or oligodendrocyte differentiation. GARP had an abnormal nuclear localization (GARPNU+) in GSCs and was negatively associated with patient survival. The uniformity of GARP/GARPNU+ expression across different types of GSCs suggests a potential use of GARP as a marker to identify GSCs.
Collapse
Affiliation(s)
- Niklas Zimmer
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
| | - Emily R. Trzeciak
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
| | - Andreas Müller
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
- Laboratory of Experimental Neurooncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Philipp Licht
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
| | - Bettina Sprang
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
- Laboratory of Experimental Neurooncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
- Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Jochen Tuettenberg
- Department of Neurosurgery, SHG-Klinikum Idar-Oberstein, 55743 Idar-Oberstein, Germany;
| | - Ella Kim
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
- Laboratory of Experimental Neurooncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
- Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
45
|
Zhang Z, Chen Y, Guo Y, Shen H, Wang J, Chen H. RFX2 promotes tumor cell stemness through epigenetic regulation of PAF1 in spinal ependymoma. J Neurooncol 2023; 165:487-497. [PMID: 38057505 DOI: 10.1007/s11060-023-04506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Spinal ependymoma (SE) is a rare tumor that is most commonly low-grade and tends to recur when complete tumor resection is not feasible. We investigated the molecular mechanism induces stem cell features in SE. METHODS Immunohistochemical staining was conducted to analyze the expression of RFX2 in tumor tissues of SE patients at different stages. The expression of tumor stemness markers (Netsin and CD133) was analyzed using western blot analysis and IF, and the efficiency of sphere formation in SE cells was analyzed. The biological activities of SE cells were analyzed by EdU proliferation assay, TUNEL, wound healing, and Transwell assays. The regulatory relationship of RFX2 on PAF1 was verified by ChIP-qPCR and the dual-luciferase assay. SE cells were injected into the spinal cord of nude mice for in vivo assays. RESULTS RFX2 was higher in the tumor tissues of SE-III patients than in the tumor tissues of SE-I patients. RFX2 knockdown reduced the expression of tumor stemness markers in SE cells and inhibited the sphere formation efficiency. Moreover, RFX2 knockdown ameliorated the malignant progression of SE in nude mice, as manifested by prolonged survival and alleviated SE tumor infiltration. RFX2 bound to the PAF1 promoter to induce its transcription. Overexpression of PAF1 overturned the effects of RFX2 knockdown on stem cell features and biological activities of SE cells, thereby reducing survival in mice. CONCLUSIONS RFX2 activates PAF1 transcription, which promotes tumor stemness of SE cells and leads to the malignant progression of SE.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yusheng Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yang Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Hanwei Shen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jiangtao Wang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Hang Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China.
| |
Collapse
|
46
|
Su F, Liu Y, Zong Y, Gao Z, Zhou G, Deng C, Liu Y, Zeng Y, Ma X, Wang Y, Wu Y, Xu F, Guan L, Liu B. Identification of circulating miRNA as early diagnostic molecular markers in malignant glioblastoma base on decision tree joint scoring algorithm. J Cancer Res Clin Oncol 2023; 149:17823-17836. [PMID: 37943358 DOI: 10.1007/s00432-023-05448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE The lack of clinical markers prevents early diagnosis of glioblastoma (GBM). Many studies have found that circulating microRNAs (miRNAs) can be used as early diagnostic markers of malignant tumours. Therefore, the identification of novel circulating miRNA biomolecular markers could be beneficial to clinicians in the early diagnosis of GBM. METHODS We developed a decision tree joint scoring algorithm (DTSA), systematically integrating significance analysis of microarray (SAM), Pearson hierarchical clustering, T test, Decision tree and Entropy weight score algorithm, to screen out circulating miRNA molecular markers with high sensitivity and accuracy for early diagnosis of GBM. RESULTS DTSA was developed and applied for GBM datasets and three circulating miRNA molecular markers were identified, namely, hsa-miR-2278, hsa-miR-555 and hsa-miR-892b. We have found that hsa-miR-2278 and hsa-miR-892b regulate the GBM pathway through target genes, promoting the development of GBM and affecting the survival of patients. DTSA has better classification effect in all data sets than other classification algorithms, and identified miRNAs are better than existing markers of GBM. CONCLUSION These results suggest that DTSA can effectively identify circulating miRNA, thus contributing to the early diagnosis and personalised treatment of GBM.
Collapse
Affiliation(s)
- Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yueyang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yonghua Zong
- Department of Modern Medicine, University of Tibetan Medicine, Lhasa, 850000, China
| | - Ziyu Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Guiqin Zhou
- Department of Immunology, Harbin Medical University, Harbin, 150081, China
| | - Chao Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yuyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yue Zeng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyan Ma
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yongxia Wang
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yinwei Wu
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Fusheng Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Lili Guan
- Department of Information Management, Shanghai Lixin University of Accounting and Finance, Shanghai, 200438, China.
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China.
- Department of Modern Medicine and Pharmacy, University of Tibetan Medicine, Lhasa, 850000, China.
| |
Collapse
|
47
|
Zhang F, Cheng L, Ding Z, Wang S, Zhao X, Zhao Z, Liang C, Wu K, Zhang D, Wang Y, Fan T. Does H3K27M Mutation Impact Survival Outcome of High-Grade Spinal Cord Astrocytoma? Neurospine 2023; 20:1480-1489. [PMID: 38171314 PMCID: PMC10762395 DOI: 10.14245/ns.2346650.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE To evaluate the impact of H3K27M mutation in the prognosis of histological high-grade intramedullary astrocytoma. METHODS A total of 78 patients who were diagnosed with high-grade spinal cord astrocytoma were included. Clinical data consisting demographic, radiological, molecular features and treatment data were recorded. Univariate and multivariate Cox analysis were performed to investigate variables associated with survival outcome of histological high-grade spinal cord astrocytoma. RESULTS Median survival time was 21 months. Overall survival (OS) at 1 and 3 years was 65.7% and 40.7%, respectively. Sex, location, and tumor span did not present significant association with OS. Patients with H3K27M mutation showed significant shorter duration of symptom than patients with H3K27 wild-type. As respect to adjuvant treatment, adjuvant radiotherapy and chemotherapy were associated with favorable OS (both p = 0.01). Younger patients (age ≤ 18 years) had shorter OS (p = 0.008) than adult patients (age > 18 years). Of note, H3K27M mutation did not show significant impact on the survival outcome, regardless of histology grade 3 or grade 4 (p = 0.3). CONCLUSION Histological high-grade spinal cord astrocytoma has dismal prognosis. Our study demonstrated that H3K27M mutation did not show significant impact on survival outcome of histological high-grade spinal cord astrocytoma.
Collapse
Affiliation(s)
- Fan Zhang
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lei Cheng
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Ze Ding
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Shengxi Wang
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xingang Zhao
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zijun Zhao
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Cong Liang
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Kun Wu
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Dongao Zhang
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yinqian Wang
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tao Fan
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Chen Y, Hu D, Wang F, Huang C, Xie H, Jin L. A systematic framework for identifying prognostic necroptosis-related lncRNAs and verification of lncRNA CRNDE/miR-23b-3p/IDH1 regulatory axis in glioma. Aging (Albany NY) 2023; 15:12296-12313. [PMID: 37934582 PMCID: PMC10683586 DOI: 10.18632/aging.205180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Glioma remains the most frequent malignancy of the central nervous system. Recently, necroptosis has been identified as a cell death process that mediates the proliferation and development of tumor cells. LncRNAs play a key role in the diagnosis and treatment of various diseases. However, the impact that necrosis-related lncRNAs (NRLs) have on glioma remains unclear. In our studies, we selected 9 NRLs to construct a prognostic model. Meanwhile, we assessed the survival curves of these 9 NRLs. Our findings found ADGRA1-AS1 and WAC-AS1 were protective lncRNAs, while MIR210HG, LINC01503, CRNDE, HOXC-AS1, ZIM2-AS1, MIR22HG and PLBD1-AS1 were risk lncRNAs. Specifically, 12 immune cells, 25 immune-correlated pathways, and TME score were differentially expressed in the both risk groups. Additionally, the study predicted and validated the necroptosis-related lncRNA CRNDE/miR-23b-3p/IDH1 axis. CRNDE was strongly expressed in glioma specimens and several cell lines. Inhibiting CRNDE resulted in a substantial reduction in the proliferation and migration of U-118MG and U251 cells. Furthermore, the study predicted that CRNDE may exhibit oncogenic features by adsorbing miR-23b-3p and positively regulating IDH1 expression. Overall, the study constructed a prognostic model in glioma, and predicted a lncRNA CRNDE/miR-23b-3p/IDH1 axis, which could potentially be useful for gene therapy of glioma.
Collapse
Affiliation(s)
- Yangxia Chen
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fang Wang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Cheng Huang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hesong Xie
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ling Jin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
49
|
Rehbein S, Possmayer AL, Bozkurt S, Lotsch C, Gerstmeier J, Burger M, Momma S, Maletzki C, Classen CF, Freiman TM, Dubinski D, Lamszus K, Stringer BW, Herold-Mende C, Münch C, Kögel D, Linder B. Molecular Determinants of Calcitriol Signaling and Sensitivity in Glioma Stem-like Cells. Cancers (Basel) 2023; 15:5249. [PMID: 37958423 PMCID: PMC10648216 DOI: 10.3390/cancers15215249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma is the most common primary brain cancer in adults and represents one of the worst cancer diagnoses for patients. Suffering from a poor prognosis and limited treatment options, tumor recurrences are virtually inevitable. Additionally, treatment resistance is very common for this disease and worsens the prognosis. These and other factors are hypothesized to be largely due to the fact that glioblastoma cells are known to be able to obtain stem-like traits, thereby driving these phenotypes. Recently, we have shown that the in vitro and ex vivo treatment of glioblastoma stem-like cells with the hormonally active form of vitamin D3, calcitriol (1α,25(OH)2-vitamin D3) can block stemness in a subset of cell lines and reduce tumor growth. Here, we expanded our cell panel to over 40 different cultures and can show that, while half of the tested cell lines are sensitive, a quarter can be classified as high responders. Using genetic and proteomic analysis, we further determined that treatment success can be partially explained by specific polymorphism of the vitamin D3 receptor and that high responders display a proteome suggestive of blockade of stemness, as well as migratory potential.
Collapse
Affiliation(s)
- Sarah Rehbein
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Anna-Lena Possmayer
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Süleyman Bozkurt
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (S.B.); (C.M.)
| | - Catharina Lotsch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany (C.H.-M.)
| | - Julia Gerstmeier
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Michael Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, 60596 Frankfurt am Main, Germany;
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, 60596 Frankfurt am Main, Germany;
| | - Claudia Maletzki
- Department of Medicine, Clinic III-Hematology, Oncology, Alliative Care Rostock, 18057 Rostock, Germany;
| | - Carl Friedrich Classen
- Division of Pediatric Oncology, Hematology and Palliative Medicine Section, Department of Pediatrics and Adolescent Medicine, University Medicine Rostock, 18057 Rostock, Germany;
| | - Thomas M. Freiman
- Department of Neurosurgery, University Hospital Rostock, 18057 Rostock, Germany; (T.M.F.); (D.D.)
| | - Daniel Dubinski
- Department of Neurosurgery, University Hospital Rostock, 18057 Rostock, Germany; (T.M.F.); (D.D.)
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg—Eppendorf, 20251 Hamburg, Germany;
| | - Brett W. Stringer
- College of Medicine and Public Health, Flinders University, Sturt Rd., Bedford Park, SA 5042, Australia;
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany (C.H.-M.)
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (S.B.); (C.M.)
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
- German Cancer Consortium DKTK Partner Site Frankfurt/Main, 60590 Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| |
Collapse
|
50
|
Du P, Wu X, Liu X, Chen J, Cao A, Geng D. Establishment of a Prediction Model Based on Preoperative MRI Radiomics for Diffuse Astrocytic Glioma, IDH-Wildtype, with Molecular Features of Glioblastoma. Cancers (Basel) 2023; 15:5094. [PMID: 37894461 PMCID: PMC10605913 DOI: 10.3390/cancers15205094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE In 2021, the WHO central nervous system (CNS) tumor classification criteria added the diagnosis of diffuse astrocytic glioma, IDH wild-type, with molecular features of glioblastoma, WHO grade 4 (DAG-G). DAG-G may exhibit the aggressiveness and malignancy of glioblastoma (GBM) despite the lower histological grade, and thus a precise preoperative diagnosis can help neurosurgeons develop more refined individualized treatment plans. This study aimed to establish a predictive model for the non-invasive identification of DAG-G based on preoperative MRI radiomics. PATIENTS AND METHODS Patients with pathologically confirmed glioma in Huashan Hospital, Fudan University, between September 2019 and July 2021 were retrospectively analyzed. Furthermore, two external validation datasets from Wuhan Union Hospital and Xuzhou Cancer Hospital were also utilized to verify the reliability and accuracy of the prediction model. Two regions of interest (ROI) were delineated on the preoperative MRI images of the patients using the semi-automatic tool ITK-SNAP (version 4.0.0), which were named the maximum anomaly region (ROI1) and the tumor region (ROI2), and Pyradiomics 3.0 was applied for feature extraction. Feature selection was performed using a least absolute shrinkage and selection operator (LASSO) filter and a Spearman correlation coefficient. Six classifiers, including Gauss naive Bayes (GNB), K-nearest neighbors (KNN), Random forest (RF), Adaptive boosting (AB), and Support vector machine (SVM) with linear kernel and multilayer perceptron (MLP), were used to build the prediction models, and the prediction performance of the six classifiers was evaluated by fivefold cross-validation. Moreover, the performance of prediction models was evaluated using area under the curve (AUC), precision (PRE), and other metrics. RESULTS According to the inclusion and exclusion criteria, 172 patients with grade 2-3 astrocytoma were finally included in the study, and a total of 44 patients met the diagnosis of DAG-G. In the prediction task of DAG-G, the average AUC of GNB classifier was 0.74 ± 0.07, that of KNN classifier was 0.89 ± 0.04, that of RF classifier was 0.96 ± 0.03, that of AB classifier was 0.97 ± 0.02, that of SVM classifier was 0.88 ± 0.05, and that of MLP classifier was 0.91 ± 0.03, among which, AB classifier achieved the best prediction performance. In addition, the AB classifier achieved AUCs of 0.91 and 0.89 in two external validation datasets obtained from Wuhan Union Hospital and Xuzhou Cancer Hospital, respectively. CONCLUSIONS The prediction model constructed based on preoperative MRI radiomics established in this study can basically realize the prospective, non-invasive, and accurate diagnosis of DAG-G, which is of great significance to help further optimize treatment plans for such patients, including expanding the extent of surgery and actively administering radiotherapy, targeted therapy, or other treatments after surgery, to fundamentally maximize the prognosis of patients.
Collapse
Affiliation(s)
- Peng Du
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xuefan Wu
- Shanghai Gamma Hospital, Shanghai 200040, China
| | - Xiao Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Jiawei Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai 200040, China
| | - Aihong Cao
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|