1
|
Adams DP, Gozlan EC, Medikonda N, Song JJ, Sahoo A, Yeagley M, Blanck G. Stratification of Wilms tumor patients using physicochemical properties of the adaptive immune receptor polypeptides, IGL and TRG. J Pediatr Urol 2025; 21:130-135. [PMID: 39443216 DOI: 10.1016/j.jpurol.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Wilms tumor (WT) is the most common pediatric renal malignancy. Current guidelines that stratify WT risk and determine treatment courses are inadequate, as over 60 % of WT survivors develop treatment-related complications. Recently, numerous advances in establishing patient sub-groups with different clinical features have been realized by evaluating the adaptive immune receptor (IR) complementarity determining region-3 (CDR3) amino acid (AA) sequences, a reasonable series of successes, given the prominent role of the CDR3 in antigen binding, including tumor antigen binding. However, the possibility that adaptive IR chemical variability correlates with distinct survival outcomes for WT has not yet been explored. OBJECTIVE The goal of this study was to isolate the T-cell receptor and B-cell receptor recombination, sequencing reads from WT RNAseq files, representing the actual tumor tissue, translate the sequences to AAs, identify the adaptive IR CDR3 domains, and determine whether the physicochemical properties of those CDR3 AA sequences correlated with survival probability distinctions. STUDY DESIGN WT RNA-seq files were mined to obtain the CDR3 AAs for various adaptive IRs. The physicochemical properties of these CDR3s were examined for trends in how those properties correlated with survival probabilities for WT patients, using a Kaplan-Meier analyses, verified via several approaches. RESULTS The above processes indicated the association of the (a) IGL CDR3s' instability index and the (b) TRG CDR3s' fraction disorder promoting features with better outcomes. Additionally, the IGL CDR3 data were assessed using the Predictor of Natural Disordered Regions web tool, which strengthened the evidence for the association with the IGL CDR3 instability index with a better outcome. DISCUSSION The approaches described here indicate that greater adaptive IR CDR3 instability and flexibility may serve as prognostic indicators; and may indicate the flexibility of CDR3 domains provides for greater opportunity to bind tumor antigens. CONCLUSION Further exploration and development of these approaches and findings may lead to new guidelines for more precise treatment regimens, or even watchful waiting periods, that could thereby decrease the lifetime occurrence of adverse events.
Collapse
Affiliation(s)
- David P Adams
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Nikhila Medikonda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Arpan Sahoo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Michelle Yeagley
- University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Huda TI, Nguyen D, Sahoo A, Song JJ, Gutierrez AF, Chobrutskiy BI, Blanck G. Adaptive Immune Receptor Distinctions Along the Colorectal Polyp-Tumor Timelapse. Clin Colorectal Cancer 2024; 23:402-411. [PMID: 39174387 DOI: 10.1016/j.clcc.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third-most common cancer diagnosed worldwide, with 1.85 million new cases per year. While mortality has significantly decreased due to preventive colonoscopy, only 5% of polyps identified progress to cancer. Studies have found that immunological alterations in other solid tumor microenvironments are associated with worse prognoses. METHODS We applied an immunogenomics approach to assess adaptive immune receptor gene expression changes that were associated with development of adenocarcinoma, utilizing 79 samples that represented normal, tubular, villous, and tumor colorectal tissue for 32 patients. RESULTS Results indicated that the number of productive TRD and TRG recombination reads, representing gamma-delta (γδ) T-cells, significantly decreased with progression from normal to tumor tissue. A further assessment of two independent CRC datasets was consistent with a decrease in TRD recombination reads with progression to CRC. Further, we identified three physicochemical parameters for immunoglobulin, complementarity determining region-3 (CDR3) amino acids associated with progression from normal to tumor tissue. CONCLUSIONS Overall, this study points towards a need for further investigation of γδ T-cells in relation to CRC development; and indicates immunoglobulin CDR3 physicochemical features as potential CRC biomarkers.
Collapse
Affiliation(s)
- Taha I Huda
- Department of Internal Medicine, HCA Healthcare/University of South Florida Morsani College of Medicine, Graduate Medical Education, HCA Florida Bayonet Point Hospital, Hudson, FL; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Diep Nguyen
- Department of Child and Family Studies, College of Behavioral and Community Sciences, University of South Florida, Tampa, FL
| | - Arpan Sahoo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Alexander F Gutierrez
- Department of Internal Medicine, HCA Healthcare/University of South Florida Morsani College of Medicine, Graduate Medical Education, HCA Florida Bayonet Point Hospital, Hudson, FL
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Sciences University Hospital, Portland, OR
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL.
| |
Collapse
|
3
|
Sahoo A, Gozlan EC, Song JJ, Angelakakis G, Yeagley M, Chobrutskiy BI, Huda TI, Blanck G. Survival Distinctions for Cases Representing Immunologically Cold Tumors via Intrinsic Disorder Assessments for Blood-Sourced TRB Variable Regions. Int J Mol Sci 2024; 25:11691. [PMID: 39519243 PMCID: PMC11547141 DOI: 10.3390/ijms252111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
T cell receptor beta (TRB) sequences were recovered from the Cancer Genome Atlas Uveal Melanoma blood exome files. Intrinsic disorder scores for amino acid (AA) sequences of the entire TRB variable region were obtained and evaluated as potentially representative of overall survival (OS) distinctions, i.e., for cases representing the upper and lower 50th percentiles for intrinsic disorder scores. Analyses using four intrinsic disorder assessment tools indicated that a lower intrinsic disorder of the blood-sourced TRB variable regions, including continuous AA sequences of the V-gene segment, the complementarity-determining region-3, and the J-gene segment, was associated with a better OS probability (with log-rank p-values ranging from 0.002 to 0.014). We further determined that intrinsic disorder assessments could be used for OS stratification for a second, immunologically cold cancer: MYCN amplified neuroblastoma. Thus, intrinsic disorder assessments of blood-sourced, full TRB variable regions may provide a novel patient stratification approach for patients with immunologically cold cancers.
Collapse
Affiliation(s)
- Arpan Sahoo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
| | - Etienne C. Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
| | - Joanna J. Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
| | - George Angelakakis
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
| | - Michelle Yeagley
- University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Boris I. Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| | - Taha I. Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Neerumalla P, Jain R, Aboujaoude MT, Hudock TR, Song JJ, Cao BH, Chobrutskiy A, Chobrutskiy BI, Blanck G. Chemical Complementarity of Blood-Sourced, Breast Cancer-Related TCR CDR3s and the CMV UL29 and IE1 Antigens is Associated with Worse Overall Survival. Biochem Genet 2024:10.1007/s10528-024-10934-y. [PMID: 39356353 DOI: 10.1007/s10528-024-10934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
Cytomegalovirus (CMV) infection is common and becomes a particular concern in immunocompromised patients. Understanding the potential role CMV plays in breast cancer patients' disease progression is important for providing more patient-specific treatments. In this study, we analyzed whether a breast cancer patient's blood-sourced T-cell receptor (TCR) complementarity determining-3 (CDR3) amino acid (AA) sequences could provide an indication of the impact of a systemic CMV infection. Specifically, we assessed the chemical complementarity of patient TCR CDR3 AAs and CMV antigens to determine whether patients with greater complementarity also represented different survival probabilities. Initially, we examined five distinct CMV antigens, of which two, IE1 and UL29, represented TCR (TRA+ RB)-CDR3-CMV antigen complementarity scores (CSs) whereby cases representing the upper 50th percentile of CSs had a worse overall survival (log-rank p = 5.034E-3, for IE1). Then, an analysis of CSs representing previously identified, TCR IE1 epitopes indicated that greater TRB CDR3-IE1 epitope complementarities represented a worse OS (log-rank p = 0.0111). These results raise the question of whether a systemic, anti-CMV response leads to increased systemic inflammation, which is either directly or indirectly supportive of tumor growth; or are patients succumbing to a direct impact of CMV functions on tumor growth or metastasis?
Collapse
Affiliation(s)
- Pooja Neerumalla
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Rahul Jain
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Michael T Aboujaoude
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Tabitha R Hudock
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Bryan H Cao
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR, 97239, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, 97239, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
5
|
Zaman S, Gorelick FS, Chrobrutskiy A, Chobrutskiy BI, Desir GV, Blanck G. Chemical complementarity of tumor resident, T-cell receptor CDR3s and renalase-1 correlates with increased melanoma survival. Oncotarget 2024; 15:550-561. [PMID: 39102218 PMCID: PMC11299663 DOI: 10.18632/oncotarget.28633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Overexpression of the secretory protein renalase-1 negatively impacts the survival of melanoma and pancreatic cancer patients, while inhibition of renalase-1 signaling drives tumor rejection by promoting T-cell activation. Thus, we investigated the chemical complementarity between melanoma-resident, T-cell receptor (TCR) complementarity-determining region 3 (CDR3) amino acid sequences (AAs) and the renalase-1 protein. Increasing complementarity of TCR CDR3s to renalase-1 AAs, as assessed by a chemical complementarity scoring algorithm, was associated with improved overall survival (OS) in melanoma patients. The expression levels of several immune signature genes were significantly, positively correlated with increasing TCR CDR3-renalase-1 complementarity scores. Additionally, the survival association observed with high complementarity of TCR CDR3s to renalase-1 AAs was more robust in cases with low renalase-1 gene expression levels. Mapping of TCR CDR3-renalase-1 in silico interaction sites identified major epitope candidates including RP220, the signaling module of the renalase-1 protein, consistent with the fact that a monoclonal antibody to RP220 is a potent inhibitor of melanoma growth. These findings indicate that renalase-1 is a potential antigen for TCR recognition in melanoma and could be considered as a target for immunotherapy.
Collapse
Affiliation(s)
- Saif Zaman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fred S. Gorelick
- Veteran’s Administration Healthcare System, CT 06516, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Andrea Chrobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| | - Boris I. Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| | - Gary V. Desir
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Veteran’s Administration Healthcare System, CT 06516, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Hudock TR, Song JJ, Chobrutskiy A, Chobrutskiy BI, Blanck G. IGH Complementarity Determining Region-3-Cytomegalovirus Protein Chemical Complementarity Linked to Better Overall Survival Probabilities for Glioblastoma. Viral Immunol 2024; 37:259-265. [PMID: 38848306 DOI: 10.1089/vim.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Cytomegalovirus (CMV) has long been thought to have an association with glioblastoma multiforme (GBM), although the exact role of CMV and any subsequent implications for treatment have yet to be fully understood. This study addressed whether IGH complementarity determining region-3 (CDR3)-CMV protein chemical complementarity, with IGH CDR3s representing both tumor resident and blood-sourced IGH recombinations, was associated with overall survival (OS) distinctions. IGH recombination sequencing reads were obtained from (a) the Clinical Proteomic Tumor Analysis Consortium, tumor RNAseq files; and (b) the cancer genome atlas, blood exome-derived files. The Adaptive Match web tool was used to calculate chemical complementarity scores (CSs) based on hydrophobic interactions, and those scores were used to group GBM cases and assess survival probabilities. We found a higher OS probability for cases whose hydrophobic IGH CDR3-CMV protein chemical complementarity scores (Hydro CSs) were in the upper 50th percentile for several CMV proteins, including UL99 and UL123, as well as for CSs based on known B cell epitopes representing these proteins. We also identified multiple immune signature genes, including CD79A and TNFRSF17, for which higher RNA expression was associated with higher Hydro CSs. Results were consistent with the idea that stronger immunoglobulin responses to CMV are associated with better OS probabilities for GBM.
Collapse
Affiliation(s)
- Tabitha R Hudock
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
7
|
Charkowick SV, Huda TI, Patel DN, Yeagley M, Arturo JF, Cios KJ, Gozlan EC, Chobrutskiy A, Chobrutskiy BI, Blanck G. IGL CDR3 Hydropathy and Antigen Chemical Complementarity Associated with Greater Disease-Free Survival in Lung Adenocarcinoma: Implications for Gender Disparities. Biochem Genet 2024; 62:530-546. [PMID: 37392243 DOI: 10.1007/s10528-023-10437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
With lung cancer remaining a challenging disease, new approaches to biomarker discovery and therapy development are needed. Recent immunogenomics, adaptive immune receptor approaches have indicated that it is very likely that B cells play an important role in mediating better overall outcomes. As such, we assessed physicochemical features of lung adenocarcinoma resident IGL complementarity determining region-3 (CDR3) amino acid (AA) sequences and determined that hydrophobic CDR3 AA sequences were associated with a better disease-free survival (DFS) probability. Further, using a recently developed chemical complementarity scoring algorithm particularly suitable for the evaluation of large patient datasets, we determined that IGL CDR3 chemical complementarity with certain cancer testis antigens was associated with better DFS. Chemical complementarity scores for IGL CDR3-MAGEC1 represented a gender bias, with an overrepresentation of males among the higher IGL-CDR3-CTA complementarity scores that were in turn associated with better DFS (logrank p < 0.065). Overall, this study pointed towards potential biomarkers for prognoses that, in some cases are likely gender-specific; and towards biomarkers for guiding therapy, e.g., IGL-based opportunities for antigen targeting in the lung cancer setting.
Collapse
Affiliation(s)
- Shaun V Charkowick
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Juan F Arturo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, 97239, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, 97239, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
8
|
Zaman S, Chobrutskiy BI, Quach JU, Blanck G. Specific Intratumor Bacteria Genera and TRG Recombinations Associated with Greater Survival Probability in Alimentary Tract Cancers. J Gastrointest Cancer 2023; 54:1300-1307. [PMID: 37103748 DOI: 10.1007/s12029-023-00935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION There remains a lack of knowledge regarding the effects of the intratumor microbiome on the tumor immune milieu. We aimed to investigate whether intratumoral bacterial RNA sequence abundance in gastric and esophageal cancers is associated with T-cell infiltrate features. METHODS We assessed cases representing the stomach adenocarcinoma (STAD) and esophageal cancer (ESCA) databases of The Cancer Genome Atlas. RNA-seq data estimating intratumoral bacterial abundance was obtained from publicly available sources. TCR recombination reads were mined from exome files. Survival models were generated using the lifelines python package. RESULTS Increasing levels of the Klebsiella genus were associated with a better OS probability (hazard ratio, 0.5), via a Cox proportional hazards model. The higher Klebsiella abundance was associated with a significantly increased overall (p = 0.0001) and disease-specific survival (p = 0.0289) probability for the STAD dataset. Cases representing the upper 50th percentile of Klebsiella abundance also represented a significantly increased recovery of TRG and TRD recombination reads (p = 0.00192). Analogous results were found for the Aquincola genus in ESCA. CONCLUSIONS This is the first report of associations between low biomass bacterial samples from primary tumor samples with patient survival and with an increased gamma-delta T cell infiltrate. Results indicate that the gamma-delta T cells potentially play a role in the dynamics of the bacterial infiltration of primary tumors of the alimentary tract.
Collapse
Affiliation(s)
- Saif Zaman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, 97239, USA
| | - Jessica U Quach
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa Florida, 33612, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa Florida, 33612, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
Song JJ, Chobrutskiy A, Chobrutskiy BI, Cios KJ, Huda TI, Eakins RA, Diaz MJ, Blanck G. Chemical Complementarity of Tumor Resident, Adaptive Immune Receptor CDR3s and Previously Defined Hepatitis C Virus Epitopes Correlates with Improved Outcomes in Hepatocellular Carcinoma. Viral Immunol 2023; 36:669-677. [PMID: 38052065 DOI: 10.1089/vim.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
To better understand how adaptive immune receptors (IRs) in hepatocellular carcinoma (HCC) microenvironments are related to disease outcomes, we employed a chemical complementarity scoring algorithm to quantify electrostatic complementarity between HCC tumor TRB or IGH complementarity-determining region 3 (CDR3) amino acid (AA) sequences and previously characterized hepatitis C virus (HCV) epitopes. High electrostatic complementarity between HCC-resident CDR3s and 12 HCV epitopes was associated with greater survival probabilities, as indicated by two distinct HCC IR CDR3 datasets. Two of the HCV epitopes, HCV*71871 (TRB) and HCV*13458 (IGH), were also determined to represent significantly larger electrostatic CDR3-HCV epitope complementarity in HCV-positive HCC cases, compared with HCV-negative HCC cases, with the CDR3s representing yet a third, independent HCC dataset. Overall, the results indicated the utility of CDR3 AA sequences as biomarkers for HCC patient stratification and as potential guides for the development of therapeutic reagents.
Collapse
Affiliation(s)
- Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Rachel A Eakins
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
10
|
Cheng P, Cios KJ, Varkhedi M, Barker VR, Yeagley M, Chobrutskiy A, Chobrutskiy BI, Blanck G. An immunoinformatics assessment of the cancer testis antigen, DDX53, as a potential early esophageal cancer antigen. Oncoscience 2023; 10:59-66. [PMID: 37953875 PMCID: PMC10637345 DOI: 10.18632/oncoscience.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
T-lymphocytes have been implicated in facilitating a pro-inflammatory, pro-tumorigenic microenvironment that worsens prognosis for esophageal carcinoma (ESCA). In this study, we identified tumor resident, T-cell receptor (TCR) complementarity determining region-3 (CDR3) amino acid sequences and employed an algorithm particularly suited to the big data setting to evaluate TCR CDR3-cancer testis antigen (CTA) chemical complementarities. Chemical complementarity of the ESCA TCR CDR3s and the cancer testis antigen DDX53 represented a disease-free survival (DFS) distinction, whereby the upper fiftieth percentile complementarity group correlated with worse DFS. The high TCR CDR3-DDX53 complementarity group also represented a greater proportion of tumor samples lacking DDX53 expression. These data and analyses raise the question of whether the TCR CDR3-DDX53 chemical complementarity assessment detected an ESCA immune response that selected for DDX53-negative cells?
Collapse
Affiliation(s)
- Peter Cheng
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida (FL) 33612, USA
| | - Konrad J. Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida (FL) 33612, USA
| | - Mallika Varkhedi
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida (FL) 33612, USA
| | - Vayda R. Barker
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida (FL) 33612, USA
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida (FL) 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon (OR) 97239, USA
| | - Boris I. Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon (OR) 97239, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida (FL) 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (FL) 33612, USA
| |
Collapse
|
11
|
Kacsoh DB, Diaz MJ, Gozlan EC, Sahoo A, Song JJ, Yeagley M, Chobrutskiy A, Chobrutskiy BI, Blanck G. Blood-based T cell receptor anti-viral CDR3s are associated with worse overall survival for neuroblastoma. J Cancer Res Clin Oncol 2023; 149:12047-12056. [PMID: 37421457 DOI: 10.1007/s00432-023-05059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
With the advent of large collections of adaptive immune receptor recombination reads representing cancer, there is the opportunity to further investigate the adaptive immune response to viruses in the cancer setting. This is a particularly important goal due to longstanding but still not well-resolved questions about viral etiologies in cancer and viral infections as comorbidities. In this report, we assessed the T cell receptor complementarity determining region-3 (CDR3) amino acid (AA) sequences, for blood-sourced TCRs from neuroblastoma (NBL) cases, for exact AA sequence matches to previously identified anti-viral TCR CDR3 AA sequences. Results indicated the presence of anti-viral TCR CDR3 AA sequences in the NBL blood samples highly significantly correlated with worse overall survival. Furthermore, the TCR CDR3 AA sequences demonstrating chemical complementarity to many cytomegalovirus antigens represented cases with a worse outcome, including cases where such CDR3s were obtained from tumor samples. Overall, these results indicate a significant need for, and provide a novel strategy for assessing viral infection complications in NBL patients.
Collapse
Affiliation(s)
- Dorottya B Kacsoh
- College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Arpan Sahoo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Michelle Yeagley
- University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, 97239, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
12
|
Dabkowski TR, Varkhedi M, Song JJ, Gozlan EC, Blanck G. Neuroblastoma and Glioblastoma Cases With Amplified Oncogenes Have Reduced Numbers of Tumor-Resident Adaptive Immune Receptor Recombinations. JCO Precis Oncol 2023; 7:e2300057. [PMID: 38085056 DOI: 10.1200/po.23.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE In certain cancers, oncogene amplification is correlated with an immunologically cold or noninflamed, tumor immune microenvironment (TIME) and a worse prognosis, for example, in the case of MYCN-amplified neuroblastoma (NBL). However, for other cancer types, the relationship between oncogene amplification and immune response is more complicated or unresolved. One such cancer is glioblastoma multiforme (GBM), in which the epidermal growth factor receptor (EGFR) oncogene is commonly amplified. Unlike MYCN-amplified NBL, EGFR-amplified GBM has not been shown to correlate with a distinct survival probability. METHODS Given this contrasting state for NBL and GBM, we sought to apply a genomics approach to evaluating the immune response for cases with gene amplification. RESULTS Our results confirmed and added further specificity to the cold TIME of MYCN-amplified NBL. Moreover, we demonstrated a novel state of immunologically cold EGFR-amplified GBM tumors. CONCLUSION This approach to using copy number variation and immune receptor recombination read recovery levels to assess gene amplification and TIME, respectively, may be particularly efficient for the rapid evaluation of many other cancer types.
Collapse
Affiliation(s)
- Toriana R Dabkowski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Mallika Varkhedi
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
13
|
Kinskey JC, Huda TI, Gozlan EC, Quach JU, Arturo JF, Chobrutskiy A, Chobrutskiy BI, Blanck G. The presence of intratumoral Porphyromonas gingivalis correlates with a previously defined pancreatic adenocarcinoma, immune cell expression phenotype and with tumor resident, adaptive immune receptor features. Carcinogenesis 2023; 44:411-417. [PMID: 37195907 DOI: 10.1093/carcin/bgad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
The association between pancreatic adenocarcinoma (PAAD) and the pancreatic microbiome is not fully understood, although bacteria may decrease the effectiveness of chemotherapy and lead to anti-apoptotic, pro-inflammatory microenvironments. To better understand the relationship between the PAAD microbiome and the microenvironment, we identified Porphyromonas gingivalis-positive PAAD samples and found a strong association between intratumoral P. gingivalis and: (i) an immune cell gene expression phenotype previously defined by others as gene program 7; and (ii) recovery of immunoglobulin recombination, sequencing reads. We applied a novel chemical complementarity scoring algorithm, suitable for a big data setting, and determined that the previously established P. gingivalis antigen, rpgB had a reduced chemical complementarity with T-cell receptor (TCR) complementarity-determining region-3 amino acid sequences recovered from PAAD samples with P. gingivalis in comparison to TCR-rpgB chemical complementarity represented by the PAAD samples that lacked P. gingivalis. This finding strengthens the existing body of evidence correlating P. gingivalis with PAAD, which may have implications for the treatment and prognosis of patients. Furthermore, demonstrating the correlation of P. gingivalis and gene program 7 raises the question of whether P. gingivalis infection is responsible for the gene program 7 subdivision of PAAD?
Collapse
Affiliation(s)
- Jacob C Kinskey
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jessica U Quach
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Juan F Arturo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
14
|
Wolmarans HJ, Barker VR, Chobrutskiy A, Chobrutskiy BI, Huda TI, Blanck G. Exploiting big data survival information to unify risk-stratification related, adaptive immune receptor parameters for multiple myeloma. Genes Immun 2023; 24:194-199. [PMID: 37443300 DOI: 10.1038/s41435-023-00212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
With the improvement of treatment options, multiple myeloma related life expectancy has been prolonged, but the disease remains largely incurable. Immunotherapy is a growing field that shows promise in advancements for treatment, and recent work has demonstrated an opportunity to use immune receptor, complementarity determining region-3 (CDR3)-candidate antigen chemical complementarity scores to identify survival distinctions among subgroups of patients. Here, we have applied the complementarity scoring algorithm to identify multiple myeloma related, CDR3-cancer testis antigen (CTA) relationships associated with survival distinctions. Furthermore, we have overlapped these immune receptor features with a previous study that showed a dramatic survival distinction based on T-cell receptor, V- and J-gene segment usage, HLA allele combinations, whereby 100% of the patients in certain combination groups had no mortality related to multiple myeloma, during the study period. This overlap evaluation was consistent with the idea that there are likely considerable constraints on productive TRB-antigen-HLA combinations but more flexibility, and unpredictability, for the TRA-antigen-HLA combinations. Also, the approaches in this reported indicated the potential importance of the CTA, IGSF11, as a multiple myeloma antigen, an antigen previously, independently considered as a vaccine candidate in other settings.
Collapse
Affiliation(s)
- Hope J Wolmarans
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Vayda R Barker
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR, 97239, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, 97239, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
15
|
Waweru JW, Mwangi KW, Barker VR, Gozlan EC, Yeagley M, Blanck G, Makokha FW. Delineation of a T-cell receptor CDR3-cancer mutanome aromaticity factor, assessable via blood samples, that facilitates the establishment of survival distinctions in bladder cancer. J Cancer Res Clin Oncol 2023; 149:4359-4366. [PMID: 36098856 DOI: 10.1007/s00432-022-04339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE A very large and still expanding collection of adaptive immune receptor (IR) recombination reads, representing many diseases, is becoming available for downstream analyses. Among the most productive approaches has been to establish risk stratification parameters via the chemical features of the IR complementarity determining region-3 (CDR3) amino acid (AA) sequences, particularly for large datasets where clinical information is available. Because the IR CDR3 AA sequences often play a large role in antigen binding, the chemistry of these AAs has the likelihood of representing a disease-related fingerprint as well as providing pre-screening information for candidate antigens. To approach this issue in a novel manner, we developed a bladder cancer, case evaluation approach based on CDR3 aromaticity. METHODS We developed and applied a simple and efficient algorithm for assessing aromatic, chemical complementarity between T-cell receptor (TCR) CDR3 AA sequences and the cancer specimen mutanome. RESULTS Results indicated a survival distinction for aromatic CDR3-aromatic mutanome complementary, versus non-complementary, bladder cancer case sets. This result applied to both tumor resident and blood TCR CDR3 AA sequences and was supported by CDR3 AA sequences represented by both exome and RNAseq files. CONCLUSION The described aromaticity factor algorithm has the potential of assisting in prognostic assessments and guiding immunotherapies for bladder cancer.
Collapse
Affiliation(s)
- Jacqueline Wahura Waweru
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Kennedy Wanjau Mwangi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Vayda R Barker
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.
| | - Francis W Makokha
- Directorate of Research and Innovation, Mount Kenya University, Thika, 342-01000, Kenya
| |
Collapse
|
16
|
Pakasticali N, Chobrutskiy A, Patel DN, Hsiang M, Zaman S, Cios KJ, Blanck G, Chobrutskiy BI. Chemical Complementarity of Breast Cancer Resident, T-Cell Receptor CDR3 Domains and the Cancer Antigen, ARMC3, is Associated With Higher Levels of Survival and Granzyme Expression. Cancer Inform 2023; 22:11769351231177269. [PMID: 37313373 PMCID: PMC10259117 DOI: 10.1177/11769351231177269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction One of the most pressing goals for cancer immunotherapy at this time is the identification of actionable antigens. Methods This study relies on the following considerations and approaches to identify potential breast cancer antigens: (i) the significant role of the adaptive immune receptor, complementarity determining region-3 (CDR3) in antigen binding, and the existence cancer testis antigens (CTAs); (ii) chemical attractiveness; and (iii) informing the relevance of the integration of items (i) and (ii) with patient outcome and tumor gene expression data. Results We have assessed CTAs for associations with survival, based on their chemical complementarity with tumor resident T-cell receptor (TCR), CDR3s. Also, we have established gene expression correlations with the high TCR CDR3-CTA chemical complementarities, for Granzyme B, and other immune biomarkers. Conclusions Overall, for several independent TCR CDR3 breast cancer datasets, the CTA, ARMC3, stood out as a completely novel, candidate antigen based on multiple algorithms with highly consistent approaches. This conclusion was facilitated by use of the recently constructed Adaptive Match web tool.
Collapse
Affiliation(s)
- Nagehan Pakasticali
- Department of Pathology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Dhruv N. Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Monica Hsiang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Konrad J. Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Boris I. Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, USA
| |
Collapse
|
17
|
Mwangi KW, Kamita MK, Waweru JW, Sayed S, Figueroa JD, Ambs S, Cios KJ, Blanck G, Makokha FW. Adaptive immune receptor features related to breast cancer tissue in Kenyan patients: high immunoglobulin gene expression and high levels of gamma-delta T-cells. Breast Cancer Res Treat 2023; 199:207-214. [PMID: 36882607 PMCID: PMC10687744 DOI: 10.1007/s10549-023-06897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Characterization of the breast cancer (BC) immune response may provide information for a point of intervention, such as application of immunotherapeutic treatments. In this study, we sought to recover and characterize the adaptive immune receptor (IR) recombination reads from genomics files representing Kenyan patients, to better understand the immune response specifically related to those patients. METHODS We used a previously applied algorithm and software to obtain productive IR recombination reads from cancer and adjacent normal tissue samples representing 22 Kenyan BC patients. RESULTS From both the RNAseq and exome files, there were significantly more T-cell receptor (TCR) recombination reads recovered from tumor samples compared to marginal tissue samples. Also, the immunoglobulin (IG) genes were expressed at a much higher level than the TCR genes (p-value = 0.0183) in the tumor samples. And, the tumor IG CDR3s consistently represented more positively charged amino acid R-groups, in comparison to the marginal tissue, IG CDR3s. CONCLUSION For Kenyan patients, a high level of IG expression, representing specific CDR3 chemistries, was associated with BC. These results lay the foundation for studies that could support specific immunotherapeutic interventions for Kenyan BC patients.
Collapse
Affiliation(s)
- Kennedy W Mwangi
- Directorate of Research & Innovation, Mount Kenya University, Thika, Kenya
| | - Moses K Kamita
- Directorate of Research & Innovation, Mount Kenya University, Thika, Kenya
| | | | - Shahin Sayed
- Department of Pathology, Aga Khan University Hospital Nairobi, Nairobi, Kenya
| | - Jonine D Figueroa
- Usher Institute and the Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Stefan Ambs
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - Francis W Makokha
- Directorate of Research & Innovation, Mount Kenya University, Thika, Kenya
| |
Collapse
|
18
|
Arias MA, Cios KJ, Kacsoh DB, Montgomery BE, Song JJ, Patel AR, Chobrutskiy A, Chobrutskiy BI, Blanck G. Electrostatic Complementarities of Glioblastoma-Resident T-Cell Receptors and Cancer Testis Antigens Linked to Poor Outcomes and High Levels of Sphingosine Kinase-2 Expression. BIOLOGY 2023; 12:biology12040575. [PMID: 37106775 PMCID: PMC10135705 DOI: 10.3390/biology12040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most aggressive primary brain tumor in adults. Despite a growing understanding of glioblastoma pathology, the prognosis remains poor. METHODS In this study, we used a previously extensively benchmarked algorithm to retrieve immune receptor (IR) recombination reads from GBM exome files available from the cancer genome atlas. The T-cell receptor complementarity determining region-3 (CDR3) amino acid sequences that represent the IR recombination reads were assessed and used for the generation of chemical complementarity scores (CSs) that represent potential binding interactions with cancer testis antigens (CTAs), which is an approach particularly suited to a big data setting. RESULTS The electrostatic CSs representing the TRA and TRB CDR3s and the CTAs, SPAG9, GAGE12E, and GAGE12F, indicated that an increased electrostatic CS was associated with worse disease-free survival (DFS). We also assessed the RNA expression of immune marker genes, which indicated that a high-level expression of SPHK2 and CIITA genes also correlated with high CSs and worse DFS. Furthermore, apoptosis-related gene expression was revealed to be lower when the TCR CDR3-CTA electrostatic CSs were high. CONCLUSION Adaptive IR recombination reads from exome files have the potential to aid in GBM prognoses and may provide opportunities to detect unproductive immune responses.
Collapse
Affiliation(s)
- Miguel A Arias
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Dorottya B Kacsoh
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Bailey E Montgomery
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Anishaa R Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| | - Boris I Chobrutskiy
- Internal Medicine, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Tumor resident, TRA anti-viral CDR3 chemical sequence motifs are associated with a better breast cancer outcome. Genes Immun 2023; 24:92-98. [PMID: 36805542 DOI: 10.1038/s41435-023-00201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
While for certain cancers, such as cervical cancer, the link to viral infections is very strong and very clear, other cancers represent a history of links to viral infections that are either co-morbidities or drive the cancer in ways that are not yet fully understood, for example the "hit and run" possibility. To further understand the connection of viral infections and the progress of breast cancer, we identified the chemical features of known anti-viral, T-cell receptor alpha chain (TRA) complementarity determining region-3 (CDR3) amino acid sequences among the CDR3s of breast cancer patient TRA recombinations and assessed the association of those features with patient outcomes. The application of this novel paradigm indicated consistent associations of tumor-derived, anti-CMV CDR3 chemical sequence motifs with better breast cancer patient outcomes but did not indicate an opportunity to establish risk stratifications for other cancer types. Interestingly, breast cancer samples with no detectable TRA recombinations represented a better outcome than samples with the non-anti-CMV CDR3s, further adding to a rapidly developing series of results allowing a distinction between positive and possibly harmful cancer immune responses.
Collapse
|
20
|
Barker VR, Varkhedi M, Patel DN, Hsiang M, Chobrutskiy A, Chobrutskiy BI, Blanck G. TCR CDR3-antigen chemical complementarity associated with poor ovarian cancer outcomes: A vestigial immune response to early cancer antigens? Am J Reprod Immunol 2023; 89:e13639. [PMID: 36317868 DOI: 10.1111/aji.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/05/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
Ovarian cancer continues to present significant challenges for early detection and treatment, indicating a need for novel approaches to improve disease outcomes. In this report, we applied a previously described algorithm for detecting chemical complementarity between candidate cancer antigens and complementarity determining region-3 (CDR3) amino acid sequences from tumor resident T-cell receptors. Current literature indicates an association between high CDR3-cancer antigen complementarity and improved survival outcomes. For example, high CDR3-BRAF electrostatic complementarity is associated with a better melanoma outcome. However, such CDR3-cancer antigen chemical complementarity in ovarian cancer was largely associated with worse outcomes. Specifically, high CDR3-MAGEB4 and CDR3-TDRD1 electrostatic complementarity was associated with lower ovarian cancer disease free survival (DFS). Additionally, high CDR3-MAGEB4 and CDR3-TDRD1 electrostatic complementarity was associated with decreased MAGEB4/TDRD1 gene expression and gene copy numbers, consistent with a selection against ovarian cancer cells expressing these antigens. However, when TDRD1 was split into fragments, high CDR3-TDRD1 hydrophobicity complementarity, for a specific TDRD1 fragment, was associated with increased DFS and higher immune marker expression levels. This dichotomy highlights the myriad of opportunities to establish risk stratifications and to identify potential, actionable cancer antigens using immunogenomic parameters.
Collapse
Affiliation(s)
- Vayda R Barker
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mallika Varkhedi
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Monica Hsiang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
21
|
Hudock TR, Barker VR, Manley BJ, Chobrutskiy A, Chobrutskiy BI, Diaz MJ, Song JJ, Blanck G. TRB CDR3-cancer testis antigen chemical complementarity scoring for identifying productive immune responses in renal cell carcinoma. Cancer Biomark 2023; 38:103-110. [PMID: 37545223 DOI: 10.3233/cbm-230047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Immunogenomics approaches to the characterization of renal cell carcinoma (RCC) have helped to better our understanding of the features of RCC immune dysfunction. However, much is still unknown with regard to specific immune interactions and their impact in the tumor microenvironment. OBJECTIVE This study applied chemical complementarity scoring for the TRB complementarity determining region-3 (CDR3) amino acid sequences and cancer testis antigens (CTAs) to determine whether such complementarity correlated with survival and the expression of immune marker genes. METHODS TRB recombination reads from RCC tumor samples from RNAseq files obtained from two separate databases, Moffitt Cancer Center and The Cancer Genome Atlas (TCGA), were evaluated. Chemical complementarity scores (CSs) were calculated for TRB CDR3-CTA pairs and survival assessments based on those CSs were performed. RESULTS Moffitt Cancer Center and TCGA cases representing the upper 50th percentile of chemical CSs for TRB CDR3 amino acid sequences and the CTA POTEA were found to be associated with a better overall survival (OS) Also, greater tumor RNA expression of multiple immune signature genes, including granzyme A, granzyme B, and interferon-gamma were correlated with the higher chemical CSs. CONCLUSIONS These results indicate that TRB CDR3-CTA chemical complementarity scoring may be useful in distinguishing RCC cases with a productive, anti-tumor immune response from cases where basic immune parameter assessments are inconsistent with a productive immune response.
Collapse
Affiliation(s)
- Tabitha R Hudock
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Vayda R Barker
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brandon J Manley
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
22
|
Eakins RA, Chobrutskiy A, Teer JK, Patel DN, Hsiang M, Huda TI, Zaman S, Sexton WJ, Coppola D, Falasiri S, Blanck G, Chobrutskiy BI. Chemical complementarity between tumor resident, T-cell receptor CDR3s and MAGEA3/6 correlates with increased melanoma survival: Potential relevance to MAGE vaccine auto-reactivity. Mol Immunol 2022; 150:58-66. [PMID: 35987136 DOI: 10.1016/j.molimm.2022.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
Cancer testis antigens have been of interest as possible targets for cancer immunotherapies. To better understand the opportunities for the use of such immunotherapy targets, we used a chemical complementarity scoring algorithm and an original web tool to establish aspects of electrostatic complementarity of the CTAs, MAGEA3 and MAGEA6, with melanoma specimen resident, T-cell receptor (TCR) complementarity determining region 3 (CDR3) amino acid sequences. Greater electrostatic complementarity between T-cell receptor CDR3 and tumor CTAs MAGEA3/6 was associated with a greater probability of overall survival, for both the cancer genome atlas and Moffitt Cancer Center samples; and was associated with high levels of T-cell cytotoxicity-related gene expression. Most importantly, this approach allowed for the highly efficient screening of specific segments of the MAGEA3/6 antigens which indicated that certain MAGE segments would have either more or less risk of auto-reactivity. In sum, the chemical complementarity algorithm, and its efficient application via the web tool, adaptivematch.com, offers a convenient opportunity to identify likely parameters important for immunotherapy considerations and melanoma patient risk stratifications.
Collapse
Affiliation(s)
- Rachel A Eakins
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - Monica Hsiang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Domenico Coppola
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Shayan Falasiri
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| |
Collapse
|
23
|
Kacsoh DB, Patel DN, Hsiang M, Gozlan EC, Chobrutskiy A, Chobrutskiy BI, Blanck G. Tumor Resident, B-Cell Receptor Chemical Characteristics Associated with Better Overall Survival for Neuroblastoma. J Mol Neurosci 2022; 72:2011-2019. [PMID: 35896862 DOI: 10.1007/s12031-022-02050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Pediatric neuroblastoma (NBL) is one of the most common pediatric cancers, and it can often be aggressive. Genetic and demographic factors can correlate with the severity of NBL, but the variations in the B-cell receptors (BCRs) or immunoglobulin proteins present in the NBL tumors, and their relationships to survival, are not well understood. BCRs contain variations in their complementary determining region-3 (CDR3s) amino acid sequences, due to variable recombinations of the V- and J-gene segments. Accordingly, these variations in CDR3s may represent different antigen interactions and thereby different survival probabilities. Thus, we mined the TARGET project, NBL tumor RNAseq files for BCR recombination reads. Evaluations of the physicochemical properties of IGK, IGL, and IGH CDR3s from these tumors pointed to properties of IGK and IGL in particular as associated with survival distinctions, based on several independent bioinformatics approaches, including a novel homology grouping approach facilitated by a recently developed web tool, adaptivematch.com. In conclusion, tumor resident BCR chemical features are likely useful for better risk stratification and for guiding therapy, and the availability of a user-friendly web tool will likely facilitate using BCR chemical features to meet those goals.
Collapse
Affiliation(s)
- Dorottya B Kacsoh
- College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, USA
| | - Monica Hsiang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR, 97239, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, 97239, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, USA. .,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
24
|
Mcbreairty B, Chobrutskiy B, Chobrutskiy A, Gozlan E, Diaz M, Blanck G. Immune receptor CDR3 chemical features that preserve sequence information are highly efficient in reflecting survival distinctions: A pan‑cancer analysis. Biomed Rep 2022; 17:68. [DOI: 10.3892/br.2022.1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Brooke Mcbreairty
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Boris Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrea Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Etienne Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Michael Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
25
|
Huda TI, Diaz MJ, Gozlan EC, Chobrutskiy A, Chobrutskiy BI, Blanck G. Immunogenomics Parameters for Patient Stratification in Alzheimer's Disease. J Alzheimers Dis 2022; 88:619-629. [PMID: 35662120 DOI: 10.3233/jad-220119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Despite the fact that only modest adaptive immune system related approaches to treating Alzheimer's disease (AD) are available, an immunogenomics approach to the study of AD has not yet substantially advanced. OBJECTIVE Thus, we sought to better understand adaptive immune receptor chemical features in the AD setting. METHODS We characterized T-cell receptor alpha (TRA) complementarity determining region-3 (CDR3) physicochemical features and identified TRA CDR3 homology groups, represented by TRA recombination reads extracted from 2,665 AD-related, blood- and brain-derived exome files. RESULTS We found that a higher isoelectric value for the brain TRA CDR3s was associated with a higher (clinically worse) Braak stage and that a number of TRA CDR3 chemical homology groups, in particular representing bloodborne TRA CDR3s, were associated with higher or lower Braak stages. Lastly, greater chemical complementarity of both blood- and brain-derived TRA CDR3s and tau, based on a recently described CDR3-candidate antigen chemical complementarity scoring process (https://adaptivematch.com), was associated with higher Braak stages. CONCLUSION Overall, the data reported here raise the questions of (a) whether progression of AD is facilitated by the adaptive immune response to tau; and (b) whether assessment of such an anti-tau immune response could potentially serve as a basis for adaptive immune receptor related, AD risk stratification?
Collapse
Affiliation(s)
- Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
26
|
Patel AR, Patel DN, Tu YN, Yeagley M, Chobrutskiy A, Chobrutskiy BI, Blanck G. Chemical complementarity between immune receptor CDR3s and candidate cancer antigens correlating with reduced survival: evidence for outcome mitigation with corticosteroid treatments. J Biomol Struct Dyn 2022:1-9. [PMID: 35538689 DOI: 10.1080/07391102.2022.2070546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The evaluation of physicochemical characteristics of extensive adaptive immune receptor (IR) recombination sequence collections has led to the discovery of many correlations of those sequences and a variety of diseases, including cancer. In the cancer setting, these evaluations have recently focused on the adaptive IR, complementarity determining region-3 (CDR3) amino acid (AA) sequences, which play a major role in antigen binding. For example, the chemical complementarities of the tumor resident, CDR3 AA sequences and the BRAFV600E mutant, common in melanoma, have proved informative with regard to outcomes. Many of these evaluations led to the conclusion that a high affinity match, efficiently, algorithmically designated as a high chemical complementarity score (CS) for the patient specific, IR CDR3 AA sequences and the cancer antigens, correlated with improved survival outcomes. In this report, the complementarity scoring algorithms were used to investigate the opposite phenomenon, high complementarity chemistry between CRD3 AAs and cancer antigens that correlated with a worse survival, an approach that revealed potential risk stratification biomarkers for lung adenocarcinoma, lung squamous carcinoma, and likely other cancer types. Most importantly, analyses suggested that high IR CDR3 AA-candidate antigen CS, low overall survival results for low grade glioma were mitigated by neoadjuvant corticosteroid treatments. Overall, the analyses of this report, coupled with earlier work establishing the CS approach for identifying likely good outcomes, have the potential to distinguish patients who will benefit from (i) immune activating or (ii) immune augmenting or (iii) even immunosuppressive treatment strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anishaa R Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, USA
| | - Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, USA
| | - Yaping N Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, USA
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
27
|
Gozlan EC, Chobrutskiy BI, Blanck G. Exploiting adaptive immune receptor recombination read recoveries from exome files to identify subsets of
ALL
and to establish
TCR
features that correlate with better outcomes. Int J Lab Hematol 2022; 44:883-891. [DOI: 10.1111/ijlh.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Etienne C. Gozlan
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida Tampa Florida USA
| | - Boris I. Chobrutskiy
- Department of Internal Medicine Oregon Health and Science University Hospital Portland Oregon USA
| | - George Blanck
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida Tampa Florida USA
- Department of Immunology H. Lee Moffitt Cancer Center and Research Institute Tampa Florida USA
| |
Collapse
|
28
|
Ferrall-Fairbanks MC, Chakiryan N, Chobrutskiy BI, Kim Y, Teer JK, Berglund A, Mulé JJ, Fournier M, Siegel EM, Dhillon J, Falasiri SSA, Arturo JF, Katende EN, Blanck G, Manley BJ, Altrock PM. Quantification of T- and B-cell immune receptor distribution diversity characterizes immune cell infiltration and lymphocyte heterogeneity in clear cell renal cell carcinoma. Cancer Res 2022; 82:929-942. [DOI: 10.1158/0008-5472.can-21-1747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
|
29
|
Cios KJ, Huda TI, Eakins RA, Mihyu MM, Blanck G. Specific TCR V-J gene segment recombinations leading to the identification pan-V-J CDR3s associated with survival distinctions: diffuse large B-cell lymphoma. Leuk Lymphoma 2022; 63:1314-1322. [PMID: 35019822 DOI: 10.1080/10428194.2021.2020781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the diffuse large B-cell lymphoma (DLBCL) setting, we examined lymph node biopsy, T-cell receptor features, and the DLBLC patient human leukocyte antigen (HLA) alleles, to provide a basis for assessing survival distinctions represented by the National Cancer Institute Center for Cancer Research (NCICCR) dataset. While previous analyses of other cancer datasets have indicated that specific T-cell receptor (TCR) V or J gene segments, independently, can be associated with a survival distinction, we have here identified V-J recombinations, representing specific V and J gene segments associated with survival distinctions. As specific V-J recombinations represent relatively conserved complementarity determining region-3 (CDR3) amino acid sequences, we assessed the entire DLBCL NCICCR dataset for such conserved CDR3 features. Overall, this approach indicated the opportunity of identifying DLBCL patient subpopulations with TCR CDR3 features, and HLA alleles, with significant survival distinctions, possibly identifying cohorts more likely to benefit from a given immunotherapy.
Collapse
Affiliation(s)
- Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rachel A Eakins
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Moody M Mihyu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
30
|
Patel DN, Yeagley M, Arturo JF, Falasiri S, Chobrutskiy BI, Gozlan EC, Blanck G. A comparison of immune receptor recombination databases sourced from tumour exome or RNAseq files: Verifications of immunological distinctions between primary and metastatic melanoma. Int J Immunogenet 2021; 48:409-418. [PMID: 34298587 DOI: 10.1111/iji.12550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
It became apparent several years ago that RNAseq and exome files prepared from tissue could be mined for adaptive immune receptor (IR) recombinations, which has given extra value to datasets originally intended for gene expression or mutation studies. For example, recovery of IR recombination reads from tumour specimen genomics files can correlate with survival rates. In particular, many benchmarking processes have been applied to the two sets of the IR recombination reads obtained from the cancer genome atlas files, but these two sets have never been directly compared. Here we show that both sets largely agree regarding several parameters. For example, recovery of TRB recombination reads from both WXS and RNAseq files representing metastatic melanoma was associated with a better outcome (p < .0004 in both cases); and T-cell receptor recombination read recovery, for both genomics file types, associated very strongly with T-cell gene expression markers. However, the use of CDR3 chemical features for survival distinctions was not consistent. This topic, and the surprising result that both datasets indicated that primary melanoma with recovery of IR recombination reads, in stark contrast to metastatic melanoma, represents a worse outcome, are discussed.
Collapse
Affiliation(s)
- Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Juan F Arturo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Shayan Falasiri
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
31
|
Chobrutskiy BI, Chobrutskiy A, Zaman S, Yeagley M, Huda TI, Blanck G. High-throughput, sliding-window algorithm for assessing chemical complementarity between immune receptor CDR3 domains and cancer mutant peptides: TRG-PIK3CA interactions and breast cancer. Mol Immunol 2021; 135:247-253. [PMID: 33933816 DOI: 10.1016/j.molimm.2021.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/03/2021] [Accepted: 02/24/2021] [Indexed: 01/25/2023]
Abstract
Physicochemical assessments of a vast accumulation of adaptive immune receptor (IR) recombinations have led to correlations of those properties with sub-divisions of various diseases. In the cancer setting, such assessments, particularly for the complementarity determining region-3 (CDR3) immune receptor domain, have been used to establish chemical complementarity matches to mutant amino acids (AA). These matches, in some cases, over very large numbers of tumor samples, have correlated with survival and gene expression distinctions. For example, in melanoma, electrostatic charge based, T-cell receptor CDR3-DNAH9 mutant AA complementarity represents better survival over multiple datasets that represent tumor tissue, T-cell receptor CDR3s. In this report, the complementarity approach has been expanded to include a more comprehensive representation of the interaction of T-cell receptor CDR3s and mutant AAs by incorporating the impact of the wild-type AAs surrounding the mutant AA. This "sliding window" approach was benchmarked against two large datasets of empirically determined CDR3-epitope pairs; showed more significant patient subdivisions; revealed a novel, TRG CDR3-mutant PIK3CA linkage in breast cancer; and was particularly suited to use with big data collections using only modest and widely-available processors. Thus, the algorithm should support more rapid and convenient indications (or prescreens) of CDR3-mutant peptide interactions for more focused studies and more efficient development of patient immunology-related prognostic tools and therapies.
Collapse
Affiliation(s)
- Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, United States
| | - Andrea Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, United States
| | - Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, United States
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, United States
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, United States
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, United States.
| |
Collapse
|
32
|
Yeagley M, Chobrutskiy BI, Gozlan EC, Medikonda N, Patel DN, Falasiri S, Callahan BM, Huda T, Blanck G. Electrostatic Complementarity of T-Cell Receptor-Alpha CDR3 Domains and Mutant Amino Acids Is Associated with Better Survival Rates for Sarcomas. Pediatr Hematol Oncol 2021; 38:251-264. [PMID: 33616477 DOI: 10.1080/08880018.2020.1843576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
While sarcoma immunology has advanced with regard to basic, and even some applied topics, this disease has not been subject to more recent immunogenomics approaches. Thus, we assessed the immune receptor recombinations available from the cancer genome atlas (TCGA) sarcoma database via tumor sample exome and RNASeq files. Results indicated that recovery of T-cell receptor-alpha recombination reads (TRA) correlated with a better survival rate, with the expression of T-cell biomarkers, and with tumor sample apoptosis signatures consistent with the longer patient survival times. Furthermore, samples representing TRA complementarity determining region-3 (CDR3) net charge per residue (NCPR) based complementarity with the corresponding sarcoma mutanome had a better survival rate, and more granzyme expression, than samples lacking such complementarity. By specifically using RNASeq-recovered TRA CDR3s and related NCPR assessments, three genes, TP53, ATRX, and RB1, were identified as being key components of the mutanome-based complementarity. Thus, these genes may represent key immune system targets for soft tissue sarcomas. Also, several key results from above were reproduced with a pediatric osteosarcoma dataset, work that led to identification of MUC6 mutations as potentially linked to a strong immune response. In sum, TRA CDR3s are likely to be important prognostic indicators, and possibly a beginning tool for immunotherapy development strategies, for adult and pediatric sarcomas.
Collapse
Affiliation(s)
- Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Nikhila Medikonda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Shayan Falasiri
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Blake M Callahan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Taha Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
33
|
Chemical complementarity between immune receptors and cancer mutants, independent of antigen presentation protein binding, is associated with increased survival rates. Transl Oncol 2021; 14:101069. [PMID: 33780706 PMCID: PMC8039726 DOI: 10.1016/j.tranon.2021.101069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 01/09/2023] Open
Abstract
Establishment of an immunological distinction between endometrioid and serous uterine cancers. High priority CDR3s, mutant amino acids (AA) for endometrioid cancer prognosis, therapy tools. Further understanding of CDR3-mutant AA complementarity scoring factors, such as HLA binding.
Uterine cancer has been associated with a T-cell immune response that leads to increased survival. Therefore, we used several bioinformatics approaches to explore specific interactions between T-cell receptor (TCR) and tumor mutant peptide sequences. Using endometrioid uterine cancer exome files from the The Cancer Genome Atlas database, we obtained tumor resident V-J recombinations for the T-Cell Receptor alpha gene (TRA). The charged-based, chemical complementarity for each patient's LRP2 or TTN mutant amino acids (AAs) and the recovered, TRA complementarity determining region-3 (CDR3) sequences was calculated, allowing a division of patients into complementary and noncomplementary groups. Complementary groups with TTN mutants had increased disease-free survival and increased expression of complement genes. Furthermore, the survival distinction based on CDR3-mutant peptide complementarity was independent of programmatically assessed HLA class II binding and was not observable based on the CDR3 AA chemical features alone. The above approach provides a potential, highly efficient method for identifying TCR targets in uterine cancer and may aid in the development of novel prognostic tools.
Collapse
|
34
|
Gozlan EC, Chobrutskiy BI, Zaman S, Yeagley M, Blanck G. Systemic Adaptive Immune Parameters Associated with Neuroblastoma Outcomes: the Significance of Gamma-Delta T Cells. J Mol Neurosci 2021; 71:2393-2404. [DOI: 10.1007/s12031-021-01813-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
|
35
|
Huda TI, Mihyu M, Gozlan EC, Arndt MF, Diaz MJ, Zaman S, Chobrutskiy BI, Blanck G. Specific HLA alleles, paired with TCR V- and J-gene segment usage, link to distinct multiple myeloma survival rates. Leuk Lymphoma 2021; 62:1711-1720. [PMID: 33622167 DOI: 10.1080/10428194.2021.1885655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multiple myeloma (MM) immunogenomics studies related to T-cell characterizations and involving large patient sets have been lacking, particularly in comparison to solid tumor types. Thus, we evaluated (i) HLA alleles, and (ii) T-Cell Receptor (TCR) V- and J-gene segment, HLA allele combinations, based on TCR recombinations in blood samples, for their potential associations with overall survival distinctions among an MM cohort. Two HLA alleles, and seven TCR V- or J-gene segment, HLA allele combinations were found to be associated with distinct overall survival rates. For examples, HLA-C*08:02, and the TRAV19, HLA-C*07:01 combination, were found to be associated with negative outcomes. In addition, anti-cytomegalovirus immune receptor sequences, from blood samples, were found to be associated with a positive outcome (p = 0.012, n = 278). These data, and other related immunogenomics data, indicate a potential opportunity to use personal immunogenetics parameters as guides to prognosis and therapies.
Collapse
Affiliation(s)
- Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Moody Mihyu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mary F Arndt
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
36
|
Li L, Wei JR, Dong J, Lin QG, Tang H, Jia YX, Tan W, Chen QY, Zeng TT, Xing S, Qin YR, Zhu YH, Li Y, Guan XY. Laminin γ2-mediating T cell exclusion attenuates response to anti-PD-1 therapy. SCIENCE ADVANCES 2021; 7:7/6/eabc8346. [PMID: 33536206 PMCID: PMC7857690 DOI: 10.1126/sciadv.abc8346] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/17/2020] [Indexed: 05/10/2023]
Abstract
PD-1/PD-L1 blockade therapies provide notable clinical benefits for patients with advanced cancers, but the factors influencing the effectiveness of the treatment remain incompletely cataloged. Here, the up-regulation of laminin γ2 (Ln-γ2) predicted the attenuated efficacy of anti-PD-1 drugs and was associated with unfavorable outcomes in patients with lung cancer or esophageal cancer. Furthermore, Ln-γ2 was transcriptionally activated by transforming growth factor-β1 (TGF-β1) secreted from cancer-associated fibroblasts via JNK/AP1 signaling, which blocked T cell infiltration into the tumor nests by altering the expression of T cell receptors. Coadministration of the TGF-β receptor inhibitor galunisertib and chemotherapy drugs provoked vigorous antitumor activity of anti-PD-1 therapy in mouse tumor models. Therefore, Ln-γ2 may represent a useful biomarker to optimize clinical decisions and predict the response of cancer patients to treatment with anti-PD-1 drugs.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong 00852, China
- Department of Clinical Oncology Center, The University of Hongkong-Shenzhen Hospital, Shenzhen 518058, China
| | - Jia-Ru Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jun Dong
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qing-Guang Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hong Tang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yong-Xu Jia
- Department of Clinical Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wanlin Tan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qing-Yun Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shan Xing
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan-Ru Qin
- Department of Clinical Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong 00852, China
- Department of Clinical Oncology Center, The University of Hongkong-Shenzhen Hospital, Shenzhen 518058, China
- Department of Clinical Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
37
|
Chobrutskiy A, Chobrutskiy BI, Zaman S, Hsiang M, Blanck G. Chemical features of blood-borne TRG CDR3s associated with an increased overall survival in breast cancer. Breast Cancer Res Treat 2020; 185:591-600. [PMID: 33180235 DOI: 10.1007/s10549-020-05996-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Immunogenomics and earlier, pioneering studies, particularly by Whiteside and colleagues, have indicated a positive role for B-cells in breast cancer, as well as a positive role for gamma-delta T-cells. However, these studies have been completely limited to assessing breast cancer tumor tissue. METHODS AND RESULTS Our analyses here has shown that blood-borne T-cell receptor gamma (TRG) chain sequences were associated with greater overall survival, of particular note due to the comparative longevity of primary breast cancer patients, whereby assessments of disease-free, but rarely overall survival parameters are possible. Additional immunogenomics approaches narrowed the overall survival correlations to specific, TRG complementarity determining region-3, amino acid (AA) sequence chemical features, independently of many common, confounding variables in the breast cancer setting, such as estrogen or progesterone receptor status. CONCLUSIONS These results are discussed in the context of patient age and with regard to potential antigenic targets, based on the chemistry of the TRG CDR3 AA sequences associated with the higher survival rates.
Collapse
Affiliation(s)
- Andrea Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South, Florida, Tampa, USA
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South, Florida, Tampa, USA
| | - Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South, Florida, Tampa, USA
| | - Monica Hsiang
- Department of Molecular Medicine, Morsani College of Medicine, University of South, Florida, Tampa, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South, Florida, Tampa, USA. .,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.
| |
Collapse
|
38
|
Arndt MF, Koohestani DM, Chobrutskiy BI, Mihyu MM, Diaz M, Gozlan EC, Yeagley M, Zaman S, Roca AM, Blanck G. TRBV and TRBJ usage, when paired with specific HLA alleles, associates with distinct head and neck cancer survival rates. Hum Immunol 2020; 81:692-696. [PMID: 32950267 DOI: 10.1016/j.humimm.2020.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Common or dominant, T-cell receptor (TCR), V and J usage, in combination with particular human leukocyte antigen (HLA) alleles, has been associated with differing outcomes in viral infections, autoimmunity, and more recently, in cancer. Cervical cancer in particular represents the most dramatic series of distinctions of outcomes associated with differing combinations of dominant V or J usage and HLA alleles, possibly because of the strong association of cervical cancer with human papilloma virus (HPV), in turn leading to a likely molecular consistency in the mechanism of HPV antigen presentation. Thus, we considered assessing TRB V and J usage, HLA allele combinations, for their associations with survival rates and related data, in the cancer genome atlas head and neck cancer dataset. We obtained the TRB VDJ recombination reads from both the blood and tumor exome files and determined the V and J identities. We then established case ID (patient) subsets of V or J usage, HLA alleles, and determined, for example, that the TRBJ2-7, HLA-B*40:01 combination was associated with a better disease free survival rate than were either the TRBJ1-3, HLA-DPB1*03:01 or the TRBJ2-1, HLA-DPB1*02:01 combinations. Furthermore, these analyses led to the conclusion that TRBJ1-5 usage, and the HLA-C*08:02 and HLA-DRB1*03:01 alleles, had independent associations with distinct overall survival rates. In sum, the results suggest that dominant V or J usage, HLA allele combinations, and in certain cases, dominant V or J usage independently of HLA, could be useful in prognosis and in guiding immunotherapies.
Collapse
Affiliation(s)
- Mary F Arndt
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Darush M Koohestani
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Moody M Mihyu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Michael Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - Andrea M Roca
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
39
|
Immunogenomics of colorectal adenocarcinoma: Survival distinctions represented by immune receptor, CDR3 chemical features and high expression of BTN gene family members. Cancer Treat Res Commun 2020; 24:100196. [PMID: 32769037 DOI: 10.1016/j.ctarc.2020.100196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 11/24/2022]
Abstract
Immunogenomics studies of colon cancer have lagged behind other cancer types, such as melanoma and lung cancer, potentially limiting immunotherapy approaches to colon cancer, also less common than in the cases of melanoma and lung cancer. Here we applied an extensively benchmarked algorithm for retrieving immune receptor recombination sequencing reads from colon cancer exomes available via the cancer genome atlas. Assessment of the complementarity determining region-3 chemical features represented by the reads revealed associations of distinct chemical features with better or worse survival rates, for both T-cell and B-cell receptor, recombination reads. A follow up assessment of immune gene expression correlations with the recovery of the recombination reads revealed a consistent association of high level expression of BTN gene family members and better survival rates. Overall, these approaches provide several striking consistencies connecting immunogenomics features with colon cancer survival rates, potentially providing a basis for guiding immuno-therapy applications.
Collapse
|
40
|
Zaman S, Chobrutskiy BI, Patel JS, Diviney A, Tu YN, Tong WL, Gill T, Blanck G. Antiviral T Cell Receptor Complementarity Determining Region-3 Sequences Are Associated with a Worse Cancer Outcome: A Pancancer Analysis. Viral Immunol 2020; 33:404-412. [PMID: 32315578 DOI: 10.1089/vim.2019.0156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human papilloma virus has a clearly demonstrated role in cervical and head and neck cancers, but viral etiology for other solid tumors is less well understood. To expand this area of research, we obtained and analyzed the immune receptor recombinations available from both blood and tumor samples, through mining of exome files produced from those sources, for 32 cancer types represented by the cancer genome atlas (TCGA). Among TCGA data sets, the recovery frequency for antiviral complementarity determining region-3 sequences (CDR3s), for T cell receptor-alpha and T cell receptor-beta, ranged from 0% to 21% of the patients, for the different cancer types, with breast, lung, pancreatic, and thymus cancers representing the highest of that range, particularly for tumor tissue resident T cells. In several cases, recovery of the antiviral CDR3s associated with distinct survival rates, and in all of these cases, the recovery of an antiviral CDR3 associated with a worse survival rate.
Collapse
Affiliation(s)
- Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jay S Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Andrea Diviney
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaping N Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Wei Lue Tong
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Tommy Gill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
41
|
Chobrutskiy BI, Yeagley M, Diviney A, Zaman S, Gozlan EC, Tipping P, Koohestani DM, Roca AM, Blanck G. A scoring system for the electrostatic complementarities of T-cell receptors and cancer-mutant amino acids: multi-cancer analyses of associated survival rates. Immunology 2020; 159:373-383. [PMID: 31821535 DOI: 10.1111/imm.13165] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
The anti-tumor immune response is considered to be due to the T-cell receptor (TCR) binding to tumor antigens, which can be either wild-type, early stem cell proteins, presumably foreign to a developed immune system; or mutant peptides, foreign to the immune system because of a mutant amino acid (aa) or otherwise somatically altered aa sequence. Recently, very large numbers of TCR complementarity-determining region-3 (CDR3) aa sequences obtained from tumor specimens have become available. We developed a novel algorithm for assessing the complementarity of tumor mutant peptides and TCR CDR3s, based on the retrieval of TCR CDR3 aa sequences from both tumor specimen and patient blood exomes and by using an automated process of assessing CDR3 and mutant aa electrical charges. Results indicated many instances where high electrostatic complementarity was associated with a higher survival rate. In particular, our approach led to the identification of specific genes contributing significantly to the complementary, TCR CDR3-mutant aa. These results suggest a novel approach to tumor immunoscoring and may lead to the identification of high-priority neo-antigen, peptide vaccines; or to the identification of ex vivo stimulants of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Andrea Diviney
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Price Tipping
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Darush M Koohestani
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Andrea M Roca
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
42
|
Chemical complementarity between immune receptor CDR3s and IDH1 mutants correlates with increased survival for lower grade glioma. Oncogene 2019; 39:1773-1783. [DOI: 10.1038/s41388-019-1101-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
|
43
|
Pakasticali N, Gill T, Chobrutskiy BI, Tong WL, Ramsamooj M, Blanck G. TRAV gene segments further away from the TRAJ gene segment cluster appear more commonly in human tumor and blood samples. Mol Immunol 2019; 116:174-179. [PMID: 31704500 DOI: 10.1016/j.molimm.2019.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
We considered the possibility that the greater the distance between an immune receptor V and J, the more likely the V usage. Such a hypothesis is supported by results from mouse experiments. And, such a hypothesis is consistent with the fundamental nature of recombination and genomic distance: the further the distance, the greater the chance of a DNA break. Thus, we exploited the vast dataset of V and J recombination reads available for the human TRA gene, particularly from cancer and blood specimens, to assess the frequency of TRAV usage with respect to distance from the TRAJ cluster. Results indicated that, indeed, over the entire TRAV cluster, there is a greater chance of V usage the further the distance from the J cluster. These results do not address causation, and are not consistent for certain individual V gene segments, but the results do indicate that overall, the larger the distance between the V and J gene segment cluster, the more likely the appearance of at least a subset of TRAV segments, particularly among tumor infiltrating lymphocytes. With a similar approach, the distal TRAV gene segments were also found to be more commonly associated with a subset of distal TRAJ segments. These results have implications for restrictions on the apparent TRA repertoire in disease settings.
Collapse
Affiliation(s)
- Nagehan Pakasticali
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States; Department of Basic Sciences, National University of Health Sciences, Pinellas Park, Florida, 33781, United States
| | - Tommy Gill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - Boris I Chobrutskiy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - Wei Lue Tong
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - Michael Ramsamooj
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, 33612, United States.
| |
Collapse
|