1
|
Li Y, Wang Y, Han X, Xu J, Liu E, Cheng J, Ma Y, Yang T, Wu J, Sun H, Fan K, Shen D, Li J, Chen X, Yu S, Shu H. Glioma-derived SPARCL1 promotes the formation of peritumoral neuron-glioma synapses. J Neurooncol 2025:10.1007/s11060-025-05007-y. [PMID: 40227556 DOI: 10.1007/s11060-025-05007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025]
Abstract
PURPOSE Gliomas are the most common type of primary malignant brain tumor with high degree of malignancy and rapid progression, and patients often have complications such as epilepsy and cognitive impairment. Thus, identifying related therapeutic targets, prolonging patient survival time and improving patient quality of life are urgently needed. Recent studies have shown that glutamatergic neurons around tumors and glioma cells form synapses, neuron-glioma synapses (NGSs), which have electrophysiological properties and participate in the proliferation, infiltration and invasion of tumors. Therefore, we aimed to explore the molecular mechanisms underlying NGS formation. METHODS We used bioinformatic analysis to screen for the expression of SPARCL1, which may play a role in promoting NGS formation, and we evaluated clinical samples through immunofluorescence, Western blot, and reverse transcriptase polymerase chain reaction (RT‒PCR) assays to validate the bioinformatic analysis results. Vitro neuron-glioma cell coculture model was established and allowed us to edit SPARCL1 expression in glioma cells, further allowing us to investigate the role of SPARCL1 in NGS formation. RESULTS Bioinformatic analysis revealed that SPARCL1 is highly expressed in glioma cells and is associated with synaptogenesis. Clinical samples were evaluated to verify the bioinformatics results, and SPARCL1 was found to be highly distributed in the tumor peripheral region. In the vitro neuron-glioma cell coculture model, NGSs were clearly observed, and SPARCL1 overexpression promoted NGS formation. CONCLUSION Taken together, these findings suggest that SPARCL1 is one of the molecules that promotes NGS formation in the tumor peripheral region.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, 200092, China
| | - Yao Wang
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xingyue Han
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jing Xu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Enyu Liu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingmin Cheng
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuan Ma
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Tao Yang
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianping Wu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haodong Sun
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Kexia Fan
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Danyi Shen
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Li
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xin Chen
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sixun Yu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haifeng Shu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
2
|
Mongrédien R, Anesio A, Fernandes GJD, Eagle AL, Maldera S, Pham C, Robert S, Bezerra F, Vilette A, Bianchi PC, Franco C, Louis F, Gruszczynski C, Niépon ML, Betancur C, Erdozain AM, Robison AJ, Boucard AA, Cruz FC, Li D, Heck N, Gautron S, Vialou V. Astrocytes Control Cocaine-Induced Synaptic Plasticity and Reward Through the Matricellular Protein Hevin. Biol Psychiatry 2025:S0006-3223(25)01072-8. [PMID: 40113121 DOI: 10.1016/j.biopsych.2025.02.904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Astrocytes in the nucleus accumbens (NAc) play a dynamic role in regulating synaptic plasticity induced by drugs of abuse through modulation of glutamatergic neurotransmission. Astrocyte-secreted factors may also contribute to the reprogramming of brain circuitry that leads to drug-seeking behavior. Here, we investigated the role of astrocyte Ca2+ signals in vivo and of the astrocyte-secreted protein hevin in the rewarding properties of cocaine. METHODS Ca2+ signals in NAc astrocytes were measured by in vivo fiber photometry during conditioned place preference (CPP) to cocaine. Depletion of Ca2+ and chemogenetic activation were used to evaluate the contribution of astrocyte Ca2+ signals to cocaine CPP. The effects of cocaine in hevin-null mice and after hevin knockdown in NAc astrocytes were evaluated by imaging of medium spiny neuron spines, electrophysiology, and CPP. Hevin secretion was monitored by light-sheet imaging in brain slices. RESULTS Cocaine increased the amplitude of Ca2+ signals in astrocytes during conditioning. Attenuating Ca2+ signals in astrocytes prevented cocaine CPP, whereas augmenting these signals potentiated this conditioning. Astrocyte activation induced a surge in hevin secretion ex vivo. Hevin knockdown in NAc astrocytes led to a decrease in CPP and in structural and synaptic plasticity induced by cocaine in medium spiny neurons. CONCLUSIONS These findings reveal a fine-tuning by cocaine of in vivo Ca2+ signals in NAc astrocytes. Astrocyte Ca2+ signals are sufficient and necessary for the acquisition of cocaine-seeking behavior. Hevin can be released upon astrocyte activation and is a major effector of the action of cocaine and Ca2+ signals on reward and neuronal plasticity.
Collapse
Affiliation(s)
| | - Augusto Anesio
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gustavo J D Fernandes
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andrew L Eagle
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Steeve Maldera
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Cuong Pham
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Séverine Robert
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Fernando Bezerra
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adèle Vilette
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Paula C Bianchi
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clara Franco
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | | | - Marie-Laure Niépon
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Amaia M Erdozain
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Biomedical Research Networking Center for Mental Health, Institute of Health Carlos III, Spain
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Antony A Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fabio C Cruz
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Dongdong Li
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Nicolas Heck
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| |
Collapse
|
3
|
Duffy AS, Eyo UB. Microglia and Astrocytes in Postnatal Neural Circuit Formation. Glia 2025; 73:232-250. [PMID: 39568399 DOI: 10.1002/glia.24650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Over the past two decades, microglia and astrocytes have emerged as critical mediators of neural circuit formation. Particularly during the postnatal period, both glial subtypes play essential roles in orchestrating nervous system development through communication with neurons. These functions include regulating synapse elimination, modulating neuronal density and activity, mediating synaptogenesis, facilitating axon guidance and organization, and actively promoting neuronal survival. Despite the vital roles of both microglia and astrocytes in ensuring homeostatic brain development, the extent to which the postnatal functions of these cells are regulated by sex and the manner in which these glial cells communicate with one another to coordinate nervous system development remain less well understood. Here, we review the critical functions of both microglia and astrocytes independently and synergistically in mediating neural circuit formation, focusing our exploration on the postnatal period from birth to early adulthood.
Collapse
Affiliation(s)
- Abigayle S Duffy
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Astrocytes regulate neuronal network activity by mediating synapse remodeling. Neurosci Res 2023; 187:3-13. [PMID: 36170922 DOI: 10.1016/j.neures.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022]
Abstract
Based on experience during our life, neuronal connectivity continuously changes through structural remodeling of synapses. Recent studies have shown that the complex interaction between astrocytes and synapses regulates structural synapse remodeling by inducing the formation and elimination of synapses, as well as their functional maturation. Defects in this astrocyte-mediated synapse remodeling cause problems in not only neuronal network activities but also animal behaviors. Moreover, in various neurological disorders, astrocytes have been shown to play central roles in the initiation and progression of synaptic pathophysiology through impaired interactions with synapses. In this review, we will discuss recent studies identifying the novel roles of astrocytes in neuronal circuit remodeling, focusing on synapse formation and elimination. We will also discuss the potential implication of defective astrocytic function in evoking various brain disorders.
Collapse
|
5
|
Extracellular matrix and synapse formation. Biosci Rep 2023; 43:232259. [PMID: 36503961 PMCID: PMC9829651 DOI: 10.1042/bsr20212411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is a complex molecular network distributed throughout the extracellular space of different tissues as well as the neuronal system. Previous studies have identified various ECM components that play important roles in neuronal maturation and signal transduction. ECM components are reported to be involved in neurogenesis, neuronal migration, and axonal growth by interacting or binding to specific receptors. In addition, the ECM is found to regulate synapse formation, the stability of the synaptic structure, and synaptic plasticity. Here, we mainly reviewed the effects of various ECM components on synapse formation and briefly described the related diseases caused by the abnormality of several ECM components.
Collapse
|
6
|
Chen L, Yang N, Li Y, Li Y, Hong J, Wang Q, Liu K, Han D, Han Y, Mi X, Shi C, Zhou Y, Li Z, Liu T, Guo X. Cholecystokinin octapeptide improves hippocampal glutamatergic synaptogenesis and postoperative cognition by inhibiting induction of A1 reactive astrocytes in aged mice. CNS Neurosci Ther 2021; 27:1374-1384. [PMID: 34402181 PMCID: PMC8504528 DOI: 10.1111/cns.13718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022] Open
Abstract
Aims Delayed neurocognitive recovery (dNCR) is a common postoperative complication in geriatric surgical patients for which there is no efficacious therapy. Cholecystokinin octapeptide (CCK‐8), an immunomodulatory peptide, regulates memory and learning. Here, we explored the effects and mechanism of action of CCK‐8 on dNCR. Methods We applied laparotomy to establish a model of dNCR in aged mice. Morris water maze and fear conditioning tests were used to evaluate cognition. Immunofluorescence was used to detect the density of CCK‐8, A1 reactive astrocytes, glutamatergic synapses, and activation of microglia in the hippocampus. Quantitative PCR was performed to determine mRNA levels of synapse‐associated factors. A1 reactive astrocytes, activated microglia, and glutamatergic synapse‐associated protein levels in the hippocampus were assessed by western blotting. Results Administration of CCK‐8 suppressed the activation of microglia, the induction of A1 reactive astrocytes, and the expression of tumor necrosis factor alpha, complement 1q, and interleukin 1 alpha in the hippocampus. Furthermore, it promoted glutamatergic synaptogenesis and neurocognitive recovery in aged dNCR model mice. Conclusion Our findings indicated that CCK‐8 alleviated cognitive impairment and promoted glutamatergic synaptogenesis by inhibiting the induction of A1 reactive astrocytes and the activation of microglia. CCK‐8 is, therefore, a potential therapeutic target for dNCR.
Collapse
Affiliation(s)
- Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Qian Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Characterization of Hevin (SPARCL1) Immunoreactivity in Postmortem Human Brain Homogenates. Neuroscience 2021; 467:91-109. [PMID: 34033869 DOI: 10.1016/j.neuroscience.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Hevin is a matricellular glycoprotein that plays important roles in neural developmental processes such as neuronal migration, synaptogenesis and synaptic plasticity. In contrast to other matricellular proteins whose expression decreases when development is complete, hevin remains highly expressed, suggesting its involvement in adult brain function. In vitro studies have shown that hevin can have different post-translational modifications. However, the glycosylation pattern of hevin in the human brain remains unknown, as well as its relative distribution and localization. The present study provides the first thorough characterization of hevin protein expression by Western blot in postmortem adult human brain. Our results demonstrated two major specific immunoreactive bands for hevin: an intense band migrating around 130 kDa, and a band migrating around 100 kDa. Biochemical assays revealed that both hevin bands have a different glycosylation pattern. Subcellular fractionation showed greater expression in membrane-enriched fraction than in cytosolic preparation, and a higher expression in prefrontal cortex (PFC) compared to hippocampus (HIP), caudate nucleus (CAU) and cerebellum (CB). We confirmed that a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and matrixmetalloproteinase 3 (MMP-3) proteases digestion led to an intense double band with similar molecular weight to that described as SPARC-like fragment (SLF). Finally, hevin immunoreactivity was also detected in human astrocytoma, meningioma, cerebrospinal fluid and serum samples, but was absent from any blood cell type.
Collapse
|
8
|
Interplay between hevin, SPARC, and MDGAs: Modulators of neurexin-neuroligin transsynaptic bridges. Structure 2021; 29:664-678.e6. [PMID: 33535026 DOI: 10.1016/j.str.2021.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Hevin is secreted by astrocytes and its synaptogenic effects are antagonized by the related protein, SPARC. Hevin stabilizes neurexin-neuroligin transsynaptic bridges in vivo. A third protein, membrane-tethered MDGA, blocks these bridges. Here, we reveal the molecular underpinnings of a regulatory network formed by this trio of proteins. The hevin FS-EC structure differs from SPARC, in that the EC domain appears rearranged around a conserved core. The FS domain is structurally conserved and it houses nanomolar affinity binding sites for neurexin and neuroligin. SPARC also binds neurexin and neuroligin, competing with hevin, so its antagonist action is rooted in its shortened N-terminal region. Strikingly, the hevin FS domain competes with MDGA for an overlapping binding site on neuroligin, while the hevin EC domain binds the extracellular matrix protein collagen (like SPARC), so that this trio of proteins can regulate neurexin-neuroligin transsynaptic bridges and also extracellular matrix interactions, impacting synapse formation and ultimately neural circuits.
Collapse
|
9
|
Tan CX, Burrus Lane CJ, Eroglu C. Role of astrocytes in synapse formation and maturation. Curr Top Dev Biol 2021; 142:371-407. [PMID: 33706922 DOI: 10.1016/bs.ctdb.2020.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astrocytes are the most abundant glial cells in the mammalian brain and directly participate in the proper functioning of the nervous system by regulating ion homeostasis, controlling glutamate reuptake, and maintaining the blood-brain barrier. In the last two decades, a growing body of work also identified critical roles for astrocytes in regulating synaptic connectivity. Stemming from the observation that functional and morphological development of astrocytes occur concurrently with synapse formation and maturation, these studies revealed that both developmental processes are directly linked. In fact, astrocytes both physically contact numerous synaptic structures and actively instruct many aspects of synaptic development and function via a plethora of secreted and adhesion-based molecular signals. The complex astrocyte-to-neuron signaling modalities control different stages of synaptic development such as regulating the initial formation of structural synapses as well as their functional maturation. Furthermore, the synapse-modulating functions of astrocytes are evolutionarily conserved and contribute to the development and plasticity of diverse classes of synapses and circuits throughout the central nervous system. Importantly, because impaired synapse formation and function is a hallmark of many neurodevelopmental disorders, deficits in astrocytes are likely to be major contributors to disease pathogenesis. In this chapter, we review our current understanding of the cellular and molecular mechanisms by which astrocytes contribute to synapse development and discuss the bidirectional secretion-based and contact-mediated mechanisms responsible for these essential developmental processes.
Collapse
Affiliation(s)
- Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Caley J Burrus Lane
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC, United States; Duke Institute for Brain Sciences, Durham, NC, United States; Regeneration Next Initiative, Duke University, Durham, NC, United States.
| |
Collapse
|
10
|
SPARCL1 Promotes Excitatory But Not Inhibitory Synapse Formation and Function Independent of Neurexins and Neuroligins. J Neurosci 2020; 40:8088-8102. [PMID: 32973045 DOI: 10.1523/jneurosci.0454-20.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/17/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence supports roles for secreted extracellular matrix proteins in boosting synaptogenesis, synaptic transmission, and synaptic plasticity. SPARCL1 (also known as Hevin), a secreted non-neuronal protein, was reported to increase synaptogenesis by simultaneously binding to presynaptic neurexin-1α and to postsynaptic neuroligin-1B, thereby catalyzing formation of trans-synaptic neurexin/neuroligin complexes. However, neurexins and neuroligins do not themselves mediate synaptogenesis, raising the question of how SPARCL1 enhances synapse formation by binding to these molecules. Moreover, it remained unclear whether SPARCL1 acts on all synapses containing neurexins and neuroligins or only on a subset of synapses, and whether it enhances synaptic transmission in addition to boosting synaptogenesis or induces silent synapses. To explore these questions, we examined the synaptic effects of SPARCL1 and their dependence on neurexins and neuroligins. Using mixed neuronal and glial cultures from neonatal mouse cortex of both sexes, we show that SPARCL1 selectively increases excitatory but not inhibitory synapse numbers, enhances excitatory but not inhibitory synaptic transmission, and augments NMDAR-mediated synaptic responses more than AMPAR-mediated synaptic responses. None of these effects were mediated by SPARCL1-binding to neurexins or neuroligins. Neurons from triple neurexin-1/2/3 or from quadruple neuroligin-1/2/3/4 conditional KO mice that lacked all neurexins or all neuroligins were fully responsive to SPARCL1. Together, our results reveal that SPARCL1 selectively boosts excitatory but not inhibitory synaptogenesis and synaptic transmission by a novel mechanism that is independent of neurexins and neuroligins.SIGNIFICANCE STATEMENT Emerging evidence supports roles for extracellular matrix proteins in boosting synapse formation and function. Previous studies demonstrated that SPARCL1, a secreted non-neuronal protein, promotes synapse formation in rodent and human neurons. However, it remained unclear whether SPARCL1 acts on all or on only a subset of synapses, induces functional or largely inactive synapses, and generates synapses by bridging presynaptic neurexins and postsynaptic neuroligins. Here, we report that SPARCL1 selectively induces excitatory synapses, increases their efficacy, and enhances their NMDAR content. Moreover, using rigorous genetic manipulations, we show that SPARCL1 does not require neurexins and neuroligins for its activity. Thus, SPARCL1 selectively boosts excitatory synaptogenesis and synaptic transmission by a novel mechanism that is independent of neurexins and neuroligins.
Collapse
|
11
|
Wang Z, Tao Y, Song C, Liu P, Wang C, Li Y, Cui W, Xie K, Zhang L, Wang G. Spinal hevin mediates membrane trafficking of GluA1-containing AMPA receptors in remifentanil-induced postoperative hyperalgesia in mice. Neurosci Lett 2020; 722:134855. [PMID: 32088196 DOI: 10.1016/j.neulet.2020.134855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Hevin, a matricellular protein involved in tissue repair and remodeling, is crucial for initiation and development of excitatory synapses. Besides, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) is an ionotropic transmembrane receptor for glutamate that mediates fast synaptic transmission in the central nervous system (CNS). This study aimed to investigate the correlation between spinal Hevin and AMPA receptors in remifentanil-induced postoperative hyperalgesia in mice. METHODS Remifentanil (1.33 μg/kg/min for 60 min) was subcutaneously injected into a mouse model of postoperative pain. The von Frey and hot plate tests were performed to assess mechanical and thermal hyperalgesia. The gene and protein expression of Hevin and the membrane trafficking of GluA1-containing AMPA receptors in the dorsal horn of spinal cord were detected by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot analysis. In addition, Hevin-shRNA, exogenous Hevin, and 1-naphtylacetyl-spermine (NASPM) were administrated intrathecally to assess the relationship between spinal Hevin and AMPA receptors. RESULTS Perioperative administration of remifentanil can aggravate and prolong incision-induced mechanical and thermal hyperalgesia. Treatment with remifentanil increased the expression of spinal Hevin and the membrane trafficking of AMPA receptors. Additionally, knockdown of spinal Hevin attenuated pain hypersensitivity and downregulated membrane trafficking of AMPA receptors after treatment with remifentanil. Meanwhile, preadministration of NASPM reversed spontaneous pain and membrane trafficking of spinal GluA1-containing AMPA receptors induced by exogenous Hevin in naïve mice. CONCLUSIONS Spinal Hevin was involved in the maintenance of remifentanil-induced postoperative hyperalgesia via modulating membrane trafficking of AMPA receptors.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yuzhu Tao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Chengcheng Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Peng Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Wei Cui
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| |
Collapse
|
12
|
Kim MH, Leem YH. The effects of peripherally-subacute treatment with irisin on hippocampal dendritogenesis and astrocyte-secreted factors. Phys Act Nutr 2019; 23:32-35. [PMID: 32018344 PMCID: PMC7004566 DOI: 10.20463/jenb.2019.0029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
[Purpose] Fibronectin type III domain containing 5 (FNDC5)/irisin is an exercise-induced myokine, which contributes to cognitive functions. However, the relationship between the neuroprotective effects of FNDC5/irisin and hippocampal dendritic remodeling and astrocyte-secreted factors remains unclear. Therefore, we explored whether subchronic recombinant irisin treatment affected hippocampal morphology and some astrocyte-derived molecules. [Methods] Mice were intraperitoneally injected with irisin (0.5 μg/kg/day) for seven days, followed by their sacrifice two days later. Hippocampal morphometric parameters were analyzed and pgc-1a, fndc5, bdnf, and some astrocyte-derived factors mRNA levels were measured. [Results] Dendritic length, arborization, and spine density were enhanced by irisin regimen in hippocampal CA1 and CA3 areas. Hippocampal pgc-1a, fndc5, and bdnf mRNA levels were significantly increased by irisin treatment. Moreover, hevin mRNA levels were significantly enhanced, whereas tgf-b1 levels downregulated by irisin treatment. [Conclusion] FNDC5/irisin has dendritogenic activity probably through hevin induction and TGF-β1 suppression.
Collapse
|
13
|
Ge L, Zhuo Y, Wu P, Liu Y, Qi L, Teng X, Duan D, Chen P, Lu M. Olfactory ensheathing cells facilitate neurite sprouting and outgrowth by secreting high levels of hevin. J Chem Neuroanat 2019; 104:101728. [PMID: 31783092 DOI: 10.1016/j.jchemneu.2019.101728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Transplantation of olfactory ensheathing cells (OECs) has been shown to enhance synapse formation. However, the mechanisms underlying this effect are not completely understood. We performed profiling of the OEC and astrocyte secretomes via a proteomics approach, in case hevin secreted by astrocytes might be involved in the formation of synapses. Semi-quantitative proteomic analysis revealed that 25 proteins were highly expressed, and 22 were weakly expressed in OEC conditioned medium compared with astrocyte conditioned medium. These molecules are highly associated with neural differentiation and regeneration, enzyme regulatory activity, and growth factor binding. The quantification data of clusterin, fibronectin, hevin, insulin-like growth factor binding protein 2 and secreted protein acidic and rich in cysteine were further confirmed by western blotting. Moreover, the addition of hevin in the culture medium improved neurite sprouting and outgrowth of differentiated neural stem cells. The greater expression of hevin in OEC conditioned medium than in astrocyte conditioned medium was associated with a greater capacity of synaptic formation. Thus, our results indicate that soluble factors secreted by OECs provide a permissive environment for nerve repair, and hevin is one of the key molecules facilitating neurite sprouting and outgrowth.
Collapse
Affiliation(s)
- Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China; Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha,China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China; Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha,China
| | - Pei Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Linyu Qi
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaohua Teng
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha,China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha,China.
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China; Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha,China.
| |
Collapse
|
14
|
Ferrer-Ferrer M, Dityatev A. Shaping Synapses by the Neural Extracellular Matrix. Front Neuroanat 2018; 12:40. [PMID: 29867379 PMCID: PMC5962695 DOI: 10.3389/fnana.2018.00040] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM) for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i) synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs), neuronal pentraxins (NPs) and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii) maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii) regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.
Collapse
Affiliation(s)
- Maura Ferrer-Ferrer
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
15
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Abstract
Research in the last two decades has identified many synaptic organizers in the central nervous system that directly regulate the assembly of pre- and/or postsynaptic molecules, such as synaptic vesicles, active zone proteins, and neurotransmitter receptors. They are classified into secreted factors and cell adhesion molecules, such as neurexins and neuroligins. Certain secreted factors are termed extracellular scaffolding proteins (ESPs) because they are components of the synaptic extracellular matrix and serve as a scaffold at the synaptic cleft. These include Lgi1, Cbln1, neuronal pentraxins, Hevin, thrombospondins, and glypicans. Diffusible secreted factors, such as Wnts, fibroblast growth factors, and semaphorins, tend to act from a distance. In contrast, ESPs remain at the synaptic cleft and often help synaptic adhesion and/or accumulation of postsynaptic receptors. Many fundamental questions remain about when, how, and why various synaptic organizers establish and modify the vast numbers of connections during development and throughout life.
Collapse
Affiliation(s)
- Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
17
|
Miller SJ, Zhang PW, Glatzer J, Rothstein JD. Astroglial transcriptome dysregulation in early disease of an ALS mutant SOD1 mouse model. J Neurogenet 2016; 31:37-48. [DOI: 10.1080/01677063.2016.1260128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sean J. Miller
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ping-wu Zhang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jenna Glatzer
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D. Rothstein
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Hashimoto N, Sato T, Yajima T, Fujita M, Sato A, Shimizu Y, Shimada Y, Shoji N, Sasano T, Ichikawa H. SPARCL1-containing neurons in the human brainstem and sensory ganglion. Somatosens Mot Res 2016; 33:112-7. [PMID: 27357901 DOI: 10.1080/08990220.2016.1197115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is a member of the osteonectin family of proteins. In this study, immunohistochemistry for SPARCL1 was performed to obtain its distribution in the human brainstem, cervical spinal cord, and sensory ganglion. SPARCL1-immunoreactivity was detected in neuronal cell bodies including perikarya and proximal dendrites, and the neuropil. The motor nuclei of the IIIrd, Vth, VIth, VIIth, IXth, Xth, XIth, and XIIth cranial nerves and spinal nerves contained many SPARCL1-immunoreactive (-IR) neurons with medium-sized to large cell bodies. Small and medium-sized SPARCL1-IR neurons were distributed in sensory nuclei of the Vth, VIIth, VIIIth, IXth, and Xth cranial nerves. In the medulla oblongata, the dorsal column nuclei also had small to medium-sized SPARCL1-IR neurons. In addition, SPARCL1-IR neurons were detected in the nucleus of the trapezoid body and pontine nucleus within the pons and the arcuate nucleus in the medulla oblongata. In the cervical spinal cord, the ventral horn contained some SPARCL1-IR neurons with large cell bodies. These findings suggest that SPARCL1-containing neurons function to relay and regulate motor and sensory signals in the human brainstem. In the dorsal root (DRG) and trigeminal ganglia (TG), primary sensory neurons contained SPARCL1-immunoreactivity. The proportion of SPARCL1-IR neurons in the TG (mean ± SD, 39.9 ± 2.4%) was higher than in the DRG (30.6 ± 2.1%). SPARCL1-IR neurons were mostly medium-sized to large (mean ± SD, 1494.5 ± 708.3 μm(2); range, 320.4-4353.4 μm(2)) in the DRG, whereas such neurons were of various cell body sizes in the TG (mean ± SD, 1291.2 ± 532.8 μm(2); range, 209.3-4326.4 μm(2)). There appears to be a SPARCL1-containing sensory pathway in the ganglion and brainstem of the spinal and trigeminal nervous systems.
Collapse
Affiliation(s)
- Naoya Hashimoto
- a Division of Oral Diagnosis , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Tadasu Sato
- b Division of Oral and Craniofacial Anatomy , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Takehiro Yajima
- c Division of Operative Dentistry , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Masatoshi Fujita
- d Division of Dental Anesthesiology and Pain Management , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Ayumi Sato
- b Division of Oral and Craniofacial Anatomy , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Yoshinaka Shimizu
- b Division of Oral and Craniofacial Anatomy , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Yusuke Shimada
- a Division of Oral Diagnosis , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Noriaki Shoji
- a Division of Oral Diagnosis , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Takashi Sasano
- a Division of Oral Diagnosis , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Hiroyuki Ichikawa
- b Division of Oral and Craniofacial Anatomy , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| |
Collapse
|
19
|
SPARCL1 is a novel predictor of tumor recurrence and survival in hilar cholangiocarcinoma. Tumour Biol 2015; 37:4159-67. [PMID: 26490986 DOI: 10.1007/s13277-015-4206-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Secreted protein acidic and rich in cysteines-like protein 1 (SPARCL1) has been implicated in tumor initiation, formation, and progression of various cancers, yet its role in hilar cholangiocarcinoma remains largely uncharacterized. In the present study, tissue microarrays containing resected hilar cholangiocarcinoma specimens from 92 patients were used to evaluate the expression of SPARCL1 protein by immunohistochemistry (IHC). In vitro assays were used to determine the effect of SPARCL1 overexpression on cell growth and migration. Loss of SPARCL1 expression was observed in 46 (50.0 %) of the 92 primary tumors. SPARCL1 expression is inversely associated with poorly or undifferentiation specimens (P = 0.030) in addition to lymph node metastasis (P = 0.047). Survival analysis demonstrated that SPARCL1 is an independent factor in predicting the outcome of patients with hilar cholangiocarcinoma. SPARCL1 overexpression suppressed tumor cell migration in vitro by inhibiting MMP-9, MMP-2, Vimentin, and Fibronectin expression, whereas did not inhibit cell proliferation in vitro. Our results suggest that loss of SPARCL1 is involved in the tumorigenesis of hilar cholangiocarcinoma and may serve as a novel molecular biomarker for patients' outcome.
Collapse
|
20
|
Risher WC, Patel S, Kim IH, Uezu A, Bhagat S, Wilton DK, Pilaz LJ, Singh Alvarado J, Calhan OY, Silver DL, Stevens B, Calakos N, Soderling SH, Eroglu C. Astrocytes refine cortical connectivity at dendritic spines. eLife 2014; 3. [PMID: 25517933 PMCID: PMC4286724 DOI: 10.7554/elife.04047] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/16/2014] [Indexed: 11/13/2022] Open
Abstract
During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines.
Collapse
Affiliation(s)
- W Christopher Risher
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Sagar Patel
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Il Hwan Kim
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Srishti Bhagat
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Daniel K Wilton
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | | | - Osman Y Calhan
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Debra L Silver
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Beth Stevens
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
21
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
22
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
23
|
Differences in brain transcriptomes of closely related Baikal coregonid species. BIOMED RESEARCH INTERNATIONAL 2014; 2014:857329. [PMID: 24719892 PMCID: PMC3956407 DOI: 10.1155/2014/857329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 10/02/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022]
Abstract
The aim of this work was to get deeper insight into genetic factors involved in the adaptive divergence of closely related species, specifically two representatives of Baikal coregonids—Baikal whitefish (Coregonus baicalensis Dybowski) and Baikal omul (Coregonus migratorius Georgi)—that diverged from a common ancestor as recently as 10–20 thousand years ago. Using the Serial Analysis of Gene Expression method, we obtained libraries of short representative cDNA sequences (tags) from the brains of Baikal whitefish and omul. A comparative analysis of the libraries revealed quantitative differences among ~4% tags of the fishes under study. Based on the similarity of these tags with cDNA of known organisms, we identified candidate genes taking part in adaptive divergence. The most important candidate genes related to the adaptation of Baikal whitefish and Baikal omul, identified in this work, belong to the genes of cell metabolism, nervous and immune systems, protein synthesis, and regulatory genes as well as to DTSsa4 Tc1-like transposons which are widespread among fishes.
Collapse
|
24
|
|
25
|
Lloyd-Burton S, Roskams AJ. SPARC-like 1 (SC1) is a diversely expressed and developmentally regulated matricellular protein that does not compensate for the absence of SPARC in the CNS. J Comp Neurol 2013; 520:2575-90. [PMID: 22173850 DOI: 10.1002/cne.23029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SPARC-like 1 (SC1) is a member of the SPARC family of matricellular proteins that has been implicated in the regulation of processes such as cell migration, proliferation, and differentiation. Here we show that SC1 exhibits remarkably diverse and dynamic expression in the developing and adult nervous system. During development, SC1 localizes to radial glia and pial-derived structures, including the vasculature, choroid plexus, and pial membranes. SC1 is not downregulated in postnatal development, but its expression shifts to distinct time windows in subtypes of glia and neurons, including astrocytes, large projection neurons, Bergmann glia, Schwann cells, and ganglionic satellite cells. In addition, SC1 expression levels and patterns are not altered in the SPARC null mouse, suggesting that SC1 does not compensate for the absence of SPARC. We conclude that SC1 and SPARC may share significant homology, but are likely to have distinct but complementary roles in nervous system development.
Collapse
Affiliation(s)
- Samantha Lloyd-Burton
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
26
|
SC1/hevin identifies early white matter injury after ischemia and intracerebral hemorrhage in young and aged rats. J Neuropathol Exp Neurol 2012; 71:480-93. [PMID: 22588386 DOI: 10.1097/nen.0b013e318256901c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The progression of white matter damage after ischemic and hemorrhagic strokes can exacerbate the initial injury, but little is known about the processes involved. We show that the antiadhesive matricellular glycoprotein SC1 is a novel early marker of white matter damage in 3 models of acute injury in the rat striatum: transient focal ischemia, intracerebral hemorrhage, and a needle penetration wound. SC1 was restricted to the damaged portions of axon bundles that bordered stroke lesions in young-adult and aged rats. SC1 peaked at 1 and 3 days after intracerebral hemorrhage and at 7 days after ischemia. The SC1-positive bundles usually expressed degraded myelin basic protein and amyloid precursor protein, a marker of axonal injury. At the hematoma edge, SC1 was seen in a few axon bundles that retained myelin basic protein staining. In these bundles, punctate SC1 staining filled individual axons, extended beyond a core of pan-axonal neurofilament and NF200 and was inside or overlapped with myelin basic protein staining when it was present. Aged rats had less SC1 (and amyloid precursor protein) after both types of stroke, suggesting a reduced axonal response. SC1 also labeled amyloid precursor protein-positive axon bundles along the needle penetration tract of saline-injected rats; thus, SC1 appears to characterize damaged striatal white matter damage after multiple types of injury.
Collapse
|
27
|
SC1/hevin and reactive gliosis after transient ischemic stroke in young and aged rats. J Neuropathol Exp Neurol 2011; 70:913-29. [PMID: 21937915 DOI: 10.1097/nen.0b013e318231151e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SC1 is a member of the SPARC family of glycoproteins that regulate cell-matrix interactions in the developing brain. SC1 is expressed in astrocytes, but nothing is known about the expression in the aged or after stroke. We found that after focal striatal ischemic infarction in adult rats, SC1 increased in astrocytes surrounding the infarct and in the glial scar, but in aged rats, SC1 was lower at the lesion edge. Glial fibrillary acidic protein (GFAP) also increased, but it was less prominent in reactive astrocytes further from the lesion in the aged rats. On the basis of their differential expression of several molecules, 2 types of reactive astrocytes with differing spatiotemporal distributions were identified. On Days 3 and 7, SC1 was prevalent in cells expressing markers of classic reactive astrocytes (GFAP, vimentin, nestin, S100β), as well as apoliprotein E (ApoE), interleukin 1β, aggrecanase 1 (ADAMTS4), and heat shock protein 25 (Hsp25). Adjacent to the lesion on Days 1 and 3, astrocytes with low GFAP levels and a "starburst" SC1 pattern expressed S100β, ApoE, and Hsp32 but not vimentin, nestin, interleukin 1β, ADAMTS4, or Hsp25. Neither cell type was immunoreactive for NG2,CC-1, CD11b, or ionized calcium-binding adapter-1. Their differing expression of inflammation-related and putatively protective molecules suggests different roles for starburst and classic reactive astrocytes in the early glial responses to ischemia.
Collapse
|
28
|
Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci U S A 2011; 108:E440-9. [PMID: 21788491 DOI: 10.1073/pnas.1104977108] [Citation(s) in RCA: 470] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Astrocytes regulate synaptic connectivity in the CNS through secreted signals. Here we identified two astrocyte-secreted proteins, hevin and SPARC, as regulators of excitatory synaptogenesis in vitro and in vivo. Hevin induces the formation of synapses between cultured rat retinal ganglion cells. SPARC is not synaptogenic, but specifically antagonizes synaptogenic function of hevin. Hevin and SPARC are expressed by astrocytes in the superior colliculus, the synaptic target of retinal ganglion cells, concurrent with the excitatory synaptogenesis. Hevin-null mice had fewer excitatory synapses; conversely, SPARC-null mice had increased synaptic connections in the superior colliculus. Furthermore, we found that hevin is required for the structural maturation of the retinocollicular synapses. These results identify hevin as a positive and SPARC as a negative regulator of synapse formation and signify that, through regulation of relative levels of hevin and SPARC, astrocytes might control the formation, maturation, and plasticity of synapses in vivo.
Collapse
|
29
|
Xu Y, Zhang H, Yang H, Zhao X, Lovas S, Lundberg YYW. Expression, functional, and structural analysis of proteins critical for otoconia development. Dev Dyn 2011; 239:2659-73. [PMID: 20803598 DOI: 10.1002/dvdy.22405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Otoconia, developed during late gestation and perinatal stages, couple mechanic force to the sensory hair cells in the vestibule for motion detection and bodily balance. In the present work, we have investigated whether compensatory deposition of another protein(s) may have taken place to partially alleviate the detrimental effects of Oc90 deletion by analyzing a comprehensive list of plausible candidates, and have found a drastic increase in the deposition of Sparc-like 1 (aka Sc1 or hevin) in Oc90 null versus wt otoconia. We show that such up-regulation is specific to Sc1, and that stable transfection of Oc90 and Sc1 full-length expression constructs in NIH/3T3 cells indeed promotes matrix calcification. Analysis and modeling of Oc90 and Sc1 protein structures show common features that may be critical requirements for the otoconial matrix backbone protein. Such information will serve as the foundation for future regenerative purposes.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | |
Collapse
|
30
|
Weaver MS, Workman G, Cardo-Vila M, Arap W, Pasqualini R, Sage EH. Processing of the matricellular protein hevin in mouse brain is dependent on ADAMTS4. J Biol Chem 2009; 285:5868-77. [PMID: 20018883 DOI: 10.1074/jbc.m109.070318] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The matricellular SPARC family member hevin (SPARC-like 1/SPARCL-1/SC1/Mast9) contributes to neural development and alters tumor progression in a range of mammalian models. The distribution of hevin in mouse tissues was reexamined with a novel monoclonal antibody that discriminates between hevin and its ortholog SPARC. We now report proteolysis of hevin in many tissues, with the most extensive processing in the brain. We demonstrate a cleavage site within the hevin sequence for the neural tissue proteinase ADAMTS4. Digestion of hevin by ADAMTS4 in vitro produced fragments similar to those present in brain lysates. Monoclonal antibodies revealed a SPARC-like fragment generated from hevin that was co-localized with ADAMTS4 in vivo. We show that proteolysis of hevin by ADAMTS4 in the mouse cerebellum is important for the normal development of this tissue. In conclusion, we have identified the fragmentation of hevin by ADAMTS4 in the mouse brain and propose that this specific proteolysis is integral to cell morphology and extracellular matrix deposition in the developing brain.
Collapse
Affiliation(s)
- Matt S Weaver
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101-2795, USA
| | | | | | | | | | | |
Collapse
|
31
|
Eroglu C. The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J Cell Commun Signal 2009; 3:167-76. [PMID: 19904629 PMCID: PMC2778595 DOI: 10.1007/s12079-009-0078-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 10/01/2009] [Indexed: 11/28/2022] Open
Abstract
Matricellular proteins, such as thrombospondins (TSPs1-4), SPARC, SPARC-like1 (hevin) and tenascin C are expressed by astrocytes in the central nervous system (CNS) of rodents. The spatial and temporal expression patterns of these proteins suggest that they may be involved in important developmental processes such as cell proliferation and maturation, cell migration, axonal guidance and synapse formation. In addition, upon injury to the nervous system the expression of these proteins is upregulated, suggesting that they play a role in tissue remodeling and repair in the adult CNS. The genes encoding these proteins have been disrupted in mice. Interestingly, none of these proteins are required for survival, and furthermore, there are no evident abnormalities at the gross anatomical level in the CNS. However, detailed analyses of some of these mice in the recent years have revealed interesting CNS phenotypes. Here we will review the expression of these proteins in the CNS. We will discuss a newly described function for thrombospondins in synapse formation in the CNS in detail, and speculate whether other matricellular proteins could play similar roles in nervous system development and function.
Collapse
Affiliation(s)
- Cagla Eroglu
- Cell Biology, Duke University Medical Center, 333A Nanaline Duke Bldg., Box 3709, Durham, NC 27710 USA
| |
Collapse
|
32
|
Lively S, Brown IR. The extracellular matrix protein SC1/Hevin localizes to multivesicular bodies in Bergmann glial fibers in the adult rat cerebellum. Neurochem Res 2009; 35:315-22. [PMID: 19757034 DOI: 10.1007/s11064-009-0057-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/28/2009] [Indexed: 02/06/2023]
Abstract
SC1 is an extracellular matrix molecule prominent in the mammalian brain. In the cerebellum, SC1 localizes to Bergmann glial cells and perisynaptic glial processes that envelop synapses in the molecular layer. In the present study, confocal microscopy revealed a punctate distribution of SC1 along Bergmann glial fibers that colocalized with the intermediate filament GFAP when fibers were viewed in cross-section. Immunoelectron microscopy showed that the punctate SC1 pattern corresponded to the localization of SC1 in multivesicular bodies situated within Bergmann glial fibers. The pattern of SC1 localization was not disrupted following hyperthermia or pilocarpine-induced status epilepticus. The present study suggests that SC1 protein may reach its destination in perisynaptic glial processes and glial endfeet by transport along Bergmann glial fibers in multivesicular bodies and that this process is preserved following stress.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | | |
Collapse
|
33
|
Lively S, Brown IR. The extracellular matrix protein SC1/hevin localizes to excitatory synapses following status epilepticus in the rat lithium-pilocarpine seizure model. J Neurosci Res 2008; 86:2895-905. [PMID: 18488994 DOI: 10.1002/jnr.21735] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The epileptic brain is characterized by increased susceptibility to neuronal hyperexcitability. The rat lithium-pilocarpine model, which mimics many features of temporal lobe epilepsy, has been used to study processes leading to the development of recurrent seizures. After a prolonged seizure episode, termed status epilepticus (SE), neural changes occur during a period known as epileptogenesis and include neuronal cell death, reactive gliosis, axonal sprouting, and synaptogenesis. Extracellular matrix adhesion molecules are important regulators of synaptogenesis and axonal sprouting resulting from SE. SC1, also known as hevin, is an antiadhesive extracellular matrix molecule that localizes to synapses in the mammalian brain. In this study, the distribution of SC1 protein in neurons following SE was examined using the lithium-pilocarpine model. SC1 protein levels in neuronal cell bodies showed a transient decrease at 1 day post-SE, which coincided with an increase of SC1 in the synapse-rich neuropil that was identified with the synaptic marker synaptophysin. Immunoelectron microscopy confirmed the decrease of SC1 signal in neurons at 1 day post-SE and showed that SC1 remained localized to postsynaptic elements throughout the seizure time course. Increased colocalization of SC1 was detected with the excitatory synaptic markers vesicular glutamate transporter 1 (VGLUT1), AMPA receptor subunit GluR1, and N-methyl-D-aspartate receptor subunit NR1, but not with the inhibitory synaptic markers vesicular gamma-aminobutyric acid (GABA) transporter (VGAT) and GABA(A) receptor subunit beta2 (GABA(A) beta2), which could reflect enhanced association of SC1 with excitatory synapses. These findings suggest that SC1 may be involved in synaptic modifications underlying epileptogenesis.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Takahata T, Komatsu Y, Watakabe A, Hashikawa T, Tochitani S, Yamamori T. Differential expression patterns of occ1-related genes in adult monkey visual cortex. ACTA ACUST UNITED AC 2008; 19:1937-51. [PMID: 19073625 PMCID: PMC2705702 DOI: 10.1093/cercor/bhn220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins.
Collapse
Affiliation(s)
- Toru Takahata
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Weimer JM, Stanco A, Cheng JG, Vargo AC, Voora S, Anton ES. A BAC transgenic mouse model to analyze the function of astroglial SPARCL1 (SC1) in the central nervous system. Glia 2008; 56:935-41. [PMID: 18381651 DOI: 10.1002/glia.20666] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Extracellular matrix associated Sparc-like 1 (SC1/SPARCL1) can influence the function of astroglial cells in the developing and mature central nervous system (CNS). To examine SC1's significance in the CNS, we generated a BAC transgenic mouse model in which Sc1 is expressed in radial glia and their astrocyte derivatives using the astroglial-specific Blbp (Brain-lipid binding protein; [Feng et al., (1994) Neuron 12:895-908]) regulatory elements. Characterization of these Blbf-Sc1 transgenic mice show elevated Sc1 transcript and protein in an astroglial selective pattern throughout the CNS. This model provides a novel in vivo system for evaluating the role of SC1 in brain development and function, in general, and for understanding SC1's significance in the fate and function of astroglial cells, in particular.
Collapse
Affiliation(s)
- Jill M Weimer
- UNC Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lively S, Brown IR. Extracellular matrix protein SC1/hevin in the hippocampus following pilocarpine-induced status epilepticus. J Neurochem 2008; 107:1335-46. [PMID: 18808451 DOI: 10.1111/j.1471-4159.2008.05696.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pilocarpine-induced status epilepticus (SE) mimics many features of temporal lobe epilepsy and is a useful model to study neural changes that result from prolonged seizure activity. In this study, distribution of the anti-adhesive extracellular matrix protein SC1 was examined in the rat hippocampus following SE. Western blotting showed decreased levels of SC1 protein in the week following SE. Immunohistochemistry demonstrated that the decrease in overall SC1 protein levels was reflected by a reduction of SC1 signal in granule cells of the dentate gyrus. Interestingly, levels of SC1 protein in neurons of the seizure-resistant CA2 sector of the hippocampus did not change throughout the seizure time course. However, at 1 day post-SE, a subset of neurons of the hippocampal CA1, CA3, and hilar regions, which are noted for extensive neuronal degeneration after SE, exhibited a transient increase in SC1 signal. Neurons exhibiting enhanced SC1 signal were not detected at 7 days post-SE. The cellular stress response was also examined. A prominent induction of heat-shock protein (Hsp70) and Hsp27 was detected following SE, while levels of constitutively expressed Hsp40, Hsp90, Hsp110, and Hsc70 showed little change at the time points examined. The subset of neurons that demonstrated a transient increase in SC1 colocalized with the cellular stress marker Hsp70, the degeneration marker Fluoro-Jade B, and the neuron activity marker activity-regulated cytoskeleton-associated protein (Arc). Taken together, these findings suggest that SC1 may be a component of the 'matrix response' involved in remodeling events associated with neuronal degeneration following neural injury.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
The phenomics and expression quantitative trait locus mapping of brain transcriptomes regulating adaptive divergence in lake whitefish species pairs (Coregonus sp.). Genetics 2008; 180:147-64. [PMID: 18757926 DOI: 10.1534/genetics.108.089938] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We used microarrays and a previously established linkage map to localize the genetic determinants of brain gene expression for a backcross family of lake whitefish species pairs (Coregonus sp.). Our goals were to elucidate the genomic distribution and sex specificity of brain expression QTL (eQTL) and to determine the extent to which genes controlling transcriptional variation may underlie adaptive divergence in the recently evolved dwarf (limnetic) and normal (benthic) whitefish. We observed a sex bias in transcriptional genetic architecture, with more eQTL observed in males, as well as divergence in genome location of eQTL between the sexes. Hotspots of nonrandom aggregations of up to 32 eQTL in one location were observed. We identified candidate genes for species pair divergence involved with energetic metabolism, protein synthesis, and neural development on the basis of colocalization of eQTL for these genes with eight previously identified adaptive phenotypic QTL and four previously identified outlier loci from a genome scan in natural populations. Eighty-eight percent of eQTL-phenotypic QTL colocalization involved growth rate and condition factor QTL, two traits central to adaptive divergence between whitefish species pairs. Hotspots colocalized with phenotypic QTL in several cases, revealing possible locations where master regulatory genes, such as a zinc-finger protein in one case, control gene expression directly related to adaptive phenotypic divergence. We observed little evidence of colocalization of brain eQTL with behavioral QTL, which provides insight into the genes identified by behavioral QTL studies. These results extend to the transcriptome level previous work illustrating that selection has shaped recent parallel divergence between dwarf and normal lake whitefish species pairs and that metabolic, more than morphological, differences appear to play a key role in this divergence.
Collapse
|
38
|
Lively S, Brown IR. Localization of the extracellular matrix protein SC1 coincides with synaptogenesis during rat postnatal development. Neurochem Res 2008; 33:1692-700. [PMID: 18335312 DOI: 10.1007/s11064-008-9606-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 01/23/2008] [Indexed: 12/12/2022]
Abstract
SC1 is an extracellular matrix protein that belongs to the SPARC family of matricellular molecules. This anti-adhesive protein localizes to synapses in the adult rat brain and has been postulated to modulate synapse shape. In this study, increased levels of SC1 were detected from postnatal days 10-20, with a peak at postnatal day 15, a period of intense synaptogenesis. During this time, increased colocalization of SC1 with the synaptic marker synaptophysin was observed in synapse-rich regions of the cerebellum and the cerebral cortex. These findings indicate that the pattern of SC1 localization coincided with synaptogenesis during rat postnatal development.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON, Canada, M1C 1A4
| | | |
Collapse
|
39
|
Lively S, Brown IR. Analysis of the extracellular matrix protein SC1 during reactive gliosis in the rat lithium-pilocarpine seizure model. Brain Res 2007; 1163:1-9. [PMID: 17628511 DOI: 10.1016/j.brainres.2007.05.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/11/2007] [Accepted: 05/19/2007] [Indexed: 01/13/2023]
Abstract
When the nervous system is subjected to stressful stimuli, reactive gliosis often ensues. This phenomenon consists of the hypertrophy of astrocyte processes as well as the proliferation of these cells. In this study, the lithium-pilocarpine model of temporal lobe epilepsy was employed to study the effects of status epilepticus (SE) on the localization of SC1 protein in reactive astrocytes. SC1 is an anti-adhesive extracellular matrix protein strongly expressed in the mammalian brain. At 1 day following SE, SC1 transiently localized to hypertrophied astrocyte processes that were closely associated with neurons and blood vessels. SC1 was also detected at 7 days post-SE in proliferating astrocytes labeled with the cell division marker PCNA. These findings indicate that the anti-adhesive protein SC1 is ideally localized to create an environment conducive to process extension and cellular proliferation in reactive astrocytes.
Collapse
Affiliation(s)
- Starlee Lively
- Center for Neurobiology of Stress, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | | |
Collapse
|