1
|
Shin EJ, Jeong JH, Hwang Y, Sharma N, Dang DK, Nguyen BT, Nah SY, Jang CG, Bing G, Nabeshima T, Kim HC. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Arch Pharm Res 2021; 44:668-688. [PMID: 34286473 DOI: 10.1007/s12272-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, 900000, Can Tho City, Vietnam
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, KY, 40536, Lexington, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Science, Fujita Health University, 470-1192, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea. .,Neuropsychopharmacology & Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.
| |
Collapse
|
2
|
Chen Y, Yu T. Involvement of p53 in the Responses of Cardiac Muscle Cells to Heat Shock Exposure and Heat Acclimation. J Cardiovasc Transl Res 2020; 13:928-937. [PMID: 32314164 DOI: 10.1007/s12265-020-10003-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/07/2020] [Indexed: 11/28/2022]
Abstract
Intense heat stress induces damage to the heart, whereas mild to moderate heat stress protects the heart against subsequent ischemic injury. The mechanisms underlying the detrimental and beneficial effects of heat stress remain unclear. In this study, we investigated the role of p53 in the responses of cardiac muscle cells to acute heat exposure and heat acclimation (HA). Heat exposure increased the levels of caspase and annexin, and levels of cytosolic, nuclear, and mitochondrial p53 protein in H9c2 cells. Pifithrin-α or pifithrin-μ reduced heat-induced apoptotic response in these cells. HA reduced localization of p53 in the mitochondria and improved cell viability during heat exposure. The effects of heat exposure and HA on p53 were further verified in vivo in mouse heart tissue. These results suggest that p53 plays a role in heat-induced apoptosis in cardiac muscle cells. The protective effect of HA against heat injury likely involves a p53-dependent mechanism.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Military and Emergency Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Tianzheng Yu
- Department of Military and Emergency Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
3
|
Down-regulation of cyclin-dependent kinase 5 attenuates p53-dependent apoptosis of hippocampal CA1 pyramidal neurons following transient cerebral ischemia. Sci Rep 2019; 9:13032. [PMID: 31506563 PMCID: PMC6737192 DOI: 10.1038/s41598-019-49623-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2019] [Indexed: 01/09/2023] Open
Abstract
Abnormal activation of cyclin-dependent kinase 5 (Cdk5) is associated with pathophysiological conditions. Ischemic preconditioning (IPC) can provide neuroprotective effects against subsequent lethal ischemic insult. The objective of this study was to determine how Cdk5 and related molecules could affect neuroprotection in the hippocampus of gerbils after with IPC [a 2-min transient cerebral ischemia (TCI)] followed by 5-min subsequent TCI. Hippocampal CA1 pyramidal neurons were dead at 5 days post-TCI. However, treatment with roscovitine (a potent inhibitor of Cdk5) and IPC protected CA1 pyramidal neurons from TCI. Expression levels of Cdk5, p25, phospho (p)-Rb and p-p53 were increased in nuclei of CA1 pyramidal neurons at 1 and 2 days after TCI. However, these expressions were attenuated by roscovitine treatment and IPC. In particular, Cdk5, p-Rb and p-p53 immunoreactivities in their nuclei were decreased. Furthermore, TUNEL-positive CA1 pyramidal neurons were found at 5 days after TCI with increased expression levels of Bax, PUMA, and activated caspase-3. These TUNEL-positive cells and increased molecules were decreased by roscovitine treatment and IPC. Thus, roscovitine treatment and IPC could protect CA1 pyramidal neurons from TCI through down-regulating Cdk5, p25, and p-p53 in their nuclei. These findings indicate that down-regulating Cdk5 might be a key strategy to attenuate p53-dependent apoptosis of CA1 pyramidal neurons following TCI.
Collapse
|
4
|
Klacanova K, Kovalska M, Chomova M, Pilchova I, Tatarkova Z, Kaplan P, Racay P. Global brain ischemia in rats is associated with mitochondrial release and downregulation of Mfn2 in the cerebral cortex, but not the hippocampus. Int J Mol Med 2019; 43:2420-2428. [PMID: 31017259 PMCID: PMC6488171 DOI: 10.3892/ijmm.2019.4168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are crucial for neuronal cell survival and death through their functions in ATP production and the intrinsic pathway of apoptosis. Mitochondrial dysfunction is considered to play a central role in several serious human diseases, including neurodegenerative diseases, such as Parkinson's and Alzheimer's disease and ischemic neurodegeneration. The aim of the present study was to investigate the impact of transient global brain ischemia on the expression of selected proteins involved in mitochondrial dynamics and mitochondria‑associated membranes. The main foci of interest were the proteins mitofusin 2 (Mfn2), dynamin‑related protein 1 (DRP1), voltage‑dependent anion‑selective channel 1 (VDAC1) and glucose‑regulated protein 75 (GRP75). Western blot analysis of total cell extracts and mitochondria isolated from either the cerebral cortex or hippocampus of experimental animals was performed. In addition, Mfn2 was localized intracellularly by laser scanning confocal microscopy. It was demonstrated that 15‑min ischemia, or 15‑min ischemia followed by 1, 3, 24 or 72 h of reperfusion, was associated with a marked decrease of the Mfn2 protein in mitochondria isolated from the cerebral cortex, but not in hippocampal mitochondria. Moreover, a translocation of the Mfn2 protein to the cytoplasm was documented immediately after global brain ischemia in the neurons of the cerebral cortex by laser scanning confocal microscopy. Mfn2 translocation was followed by decreased expression of Mfn2 during reperfusion. Markedly elevated levels of the VDAC1 protein were also documented in total cell extracts isolated from the hippocampus of rats after 15 min of global brain ischemia followed by 3 h of reperfusion, and from the cerebral cortex of rats after 15 min of global brain ischemia followed by 72 h of reperfusion. The mitochondrial Mfn2 release observed during the early stages of reperfusion may thus represent an important mechanism of mitochondrial dysfunction associated with neuronal dysfunction or death induced by global brain ischemia.
Collapse
Affiliation(s)
- Katarina Klacanova
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Maria Chomova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University in Bratislava, SK‑81108 Bratislava, Slovak Republic
| | - Ivana Pilchova
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Peter Kaplan
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Peter Racay
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| |
Collapse
|
5
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
6
|
Cuomo O, Vinciguerra A, Cerullo P, Anzilotti S, Brancaccio P, Bilo L, Scorziello A, Molinaro P, Di Renzo G, Pignataro G. Ionic homeostasis in brain conditioning. Front Neurosci 2015; 9:277. [PMID: 26321902 PMCID: PMC4530315 DOI: 10.3389/fnins.2015.00277] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/23/2015] [Indexed: 12/26/2022] Open
Abstract
Most of the current focus on developing neuroprotective therapies is aimed at preventing neuronal death. However, these approaches have not been successful despite many years of clinical trials mainly because the numerous side effects observed in humans and absent in animals used at preclinical level. Recently, the research in this field aims to overcome this problem by developing strategies which induce, mimic, or boost endogenous protective responses and thus do not interfere with physiological neurotransmission. Preconditioning is a protective strategy in which a subliminal stimulus is applied before a subsequent harmful stimulus, thus inducing a state of tolerance in which the injury inflicted by the challenge is mitigated. Tolerance may be observed in ischemia, seizure, and infection. Since it requires protein synthesis, it confers delayed and temporary neuroprotection, taking hours to develop, with a pick at 1–3 days. A new promising approach for neuroprotection derives from post-conditioning, in which neuroprotection is achieved by a modified reperfusion subsequent to a prolonged ischemic episode. Many pathways have been proposed as plausible mechanisms to explain the neuroprotection offered by preconditioning and post-conditioning. Although the mechanisms through which these two endogenous protective strategies exert their effects are not yet fully understood, recent evidence highlights that the maintenance of ionic homeostasis plays a key role in propagating these neuroprotective phenomena. The present article will review the role of protein transporters and ionic channels involved in the control of ionic homeostasis in the neuroprotective effect of ischemic preconditioning and post-conditioning in adult brain, with particular regards to the Na+/Ca2+ exchangers (NCX), the plasma membrane Ca2+-ATPase (PMCA), the Na+/H+ exchange (NHE), the Na+/K+/2Cl− cotransport (NKCC) and the acid-sensing cation channels (ASIC). Ischemic stroke is the third leading cause of death and disability. Up until now, all clinical trials testing potential stroke neuroprotectants failed. For this reason attention of researchers has been focusing on the identification of brain endogenous neuroprotective mechanisms activated after cerebral ischemia. In this context, ischemic preconditioning and ischemic post-conditioning represent two neuroprotecive strategies to investigate in order to identify new molecular target to reduce the ischemic damage.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Pierpaolo Cerullo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Leonilda Bilo
- Division of Neurology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| |
Collapse
|
7
|
Wang Y, Reis C, Applegate R, Stier G, Martin R, Zhang JH. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke. Exp Neurol 2015; 272:26-40. [PMID: 25900056 DOI: 10.1016/j.expneurol.2015.04.009] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/06/2015] [Accepted: 04/11/2015] [Indexed: 11/17/2022]
Abstract
In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those recently reported methodological and mechanistic discoveries in the realm of ischemic conditioning. Due to the varied time differences of ischemic conditioning in different animal models and clinical trials, it is important to define optimal timing to achieve the best conditioning induced neuroprotection. This brings not only an opportunity in the treatment of stroke, but challenges as well, as data is just becoming available and the procedures are not yet optimized. The purpose of this review is to shed light on exploiting these ischemic conditioning modalities to protect the cerebrovascular system against diverse injuries and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Physiology, Jinan University School of Medicine, Guangzhou, China
| | - Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Richard Applegate
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, USA; Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
8
|
Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol 2015; 35:23-31. [PMID: 25187358 PMCID: PMC11486285 DOI: 10.1007/s10571-014-0104-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/23/2014] [Indexed: 01/08/2023]
Abstract
Proteins of Bcl-2 family are crucial regulators of intrinsic (mitochondrial) pathway of apoptosis that is implicated among the mechanisms of ischemic neuronal death. Initiation of mitochondrial apoptosis depends on changes of equilibrium between anti-apoptotic and pro-apoptotic proteins of Bcl-2 family as well as on translocation of pro-apoptotic proteins of Bcl-2 family to mitochondria. The aim of this work was to study the effect of transient global brain ischemia on expression and intracellular distribution of proteins of Bcl-2 family in relation to the ischemia-induced changes of ERK and Akt kinase pathways as well as disturbances in ubiquitin proteasome system. Using four vessel occlusion model of transient global brain ischemia, we have shown that both ischemia in duration of 15 min and the same ischemia followed by 1, 3, 24, and 72 h of reperfusion did not affect the levels of either pro-apoptotic (Bad, PUMA, Bim, Bax, Noxa) or anti-apoptotic (Bcl-2, Bcl-xl, Mcl-1) proteins of Bcl-2 family in total cell extracts from rat hippocampus. However, significantly elevated level of Bad protein in the mitochondria isolated from rat hippocampus was observed already 1 h after ischemia and remained elevated 3 and 24 h after ischemia. We did not observe significant changes of the levels of Puma, Bax, Bcl-2, and Bcl-xl in the mitochondria after ischemia and ischemia followed by reperfusion. Our results might indicate possible involvement of Bad translocation to mitochondria in the mechanisms of neuronal death following transient global brain ischemia.
Collapse
Affiliation(s)
- Ivana Pilchova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Katarina Klacanova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Maria Chomova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
- Present Address: Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovak Republic
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Dusan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovak Republic
| |
Collapse
|
9
|
Shi S, Yang W, Tu X, Chen C, Wang C. Ischemic preconditioning reduces ischemic brain injury by suppressing nuclear factor kappa B expression and neuronal apoptosis. Neural Regen Res 2014; 8:633-8. [PMID: 25206708 PMCID: PMC4145988 DOI: 10.3969/j.issn.1673-5374.2013.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke induces a series of complex pathophysiological events including blood-brain barrier disruption, inflammatory response and neuronal apoptosis. Previous studies demonstrate that ischemic preconditioning attenuates ischemic brain damage via inhibiting blood-brain barrier disruption and the inflammatory response. Rats underwent transient (15 minutes) occlusion of the bilateral common carotid artery with 48 hours of reperfusion, and were subjected to permanent middle cerebral artery occlusion. This study explored whether ischemic preconditioning could reduce ischemic brain injury and relevant molecular mechanisms by inhibiting neuronal apoptosis. Results found that at 72 hours following cerebral ischemia, myeloperoxidase activity was enhanced, malondialdehyde levels increased, and neurological function was obviously damaged. Simultaneously, neuronal apoptosis increased, and nuclear factor-κB and cleaved caspase-3 expression was significantly increased in ischemic brain tissues. Ischemic preconditioning reduced the cerebral ischemia-induced inflammatory response, lipid peroxidation, and neurological function injury. In addition, ischemic preconditioning decreased nuclear factor-κB p65 and cleaved caspase-3 expression. These results suggested that ischemic preconditioning plays a protective effect against ischemic brain injury by suppressing the inflammatory response, reducing lipid peroxidation, and neuronal apoptosis via inhibition of nuclear factor-κB and cleaved caspase-3 expression.
Collapse
Affiliation(s)
- Songsheng Shi
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fujian Neurosurgical Institute, Fuzhou 350001, Fujian Province, China
| | - Weizhong Yang
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fujian Neurosurgical Institute, Fuzhou 350001, Fujian Province, China
| | - Xiankun Tu
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fujian Neurosurgical Institute, Fuzhou 350001, Fujian Province, China
| | - Chunmei Chen
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fujian Neurosurgical Institute, Fuzhou 350001, Fujian Province, China
| | - Chunhua Wang
- Department of Neurosurgery, Affiliated Union Hospital of Fujian Medical University, Fujian Neurosurgical Institute, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
10
|
Lan R, Zhang Y, Xiang J, Zhang W, Wang GH, Li WW, Xu LL, Cai DF. Xiao-Xu-Ming decoction preserves mitochondrial integrity and reduces apoptosis after focal cerebral ischemia and reperfusion via the mitochondrial p53 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:307-316. [PMID: 24189031 DOI: 10.1016/j.jep.2013.10.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiao-Xu-Ming decoction (XXMD) has been used to treat stroke and other neurological diseases for more than 1000 years. The purpose of this study was to investigate the effects of XXMD on mitochondrial damage and apoptosis after cerebral ischemia and reperfusion. MATERIALS AND METHODS Male Sprague-Dawley rats were randomly divided into 3 groups: sham, cerebral ischemia and reperfusion (I/R), and cerebral ischemia and reperfusion plus XXMD (60 g/kg/day) (XXMD60). Focal cerebral ischemia and reperfusion models were induced by middle cerebral artery occlusion. Cerebral ischemic injury was evaluated by hematoxylin and eosin staining. Ultrastructural features of mitochondria in the penumbra of the ischemic cortex were analyzed by transmission electron microscopy. Apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) staining and cleaved caspase 3 immunohistochemistry. Proteins in the mitochondrial p53 pathway were detected by western blot and immunofluorescence. RESULTS The results showed that XXMD treatment markedly attenuated ischemic changes, preserved mitochondrial integrity, and significantly reduced apoptosis. In addition, we found that XXMD treatment reduced p53 and Bax levels and increased Bcl-2 levels in mitochondrial fractions. XXMD significantly blocked the release of cytochrome c and Smac/Diablo from mitochondria, and inhibited activation of caspase 9 and caspase 3 in cytoplasmic fractions. Increased expression of c-IAP1 was observed in the XXMD60 group. CONCLUSIONS The findings demonstrated that XXMD protected mitochondria from ischemic injury and inhibited apoptosis. The mitochondrial p53 pathway could be partially involved in the protective effects.
Collapse
Affiliation(s)
- Rui Lan
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Yong Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Guo-Hua Wang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Wen-Wei Li
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Li-Li Xu
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Ding-Fang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Racay P. Ischaemia-induced protein ubiquitinylation is differentially accompanied with heat-shock protein 70 expression after naïve and preconditioned ischaemia. Cell Mol Neurobiol 2012; 32:107-19. [PMID: 21789629 PMCID: PMC11498578 DOI: 10.1007/s10571-011-9740-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/08/2011] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the effect of transient global brain ischaemia, both naïve and preconditioned, on accumulation of ubiquitinylated proteins and induction of stress/chaperone proteins specific to cytoplasm and endoplasmic reticulum. In addition, possible correlation between stress response and ischaemia/induced translocation of p53 to mitochondria was investigated. Rats were subjected to 15-min forebrain ischaemia followed by 1, 3, 24 and 72 h of reperfusion. Transient cerebral ischaemia induced a massive increase in protein ubiquitinylation in the hippocampus as well as in both cerebral and cerebellar cortex. Enhanced ubiquitinylation of proteins was paralleled with transcriptional activation of hsp70.1 gene but not hsp70.3 gene. However, HSP70 protein level was significantly elevated 24 and 72 h after ischaemia. Neither ischaemia nor ischaemia followed by reperfusion was associated with significant changes of GRP78, GADD34 and GADD153 levels. Ubiquitinylated protein level was elevated 1 and 48 h after sub-lethal 5 min ischaemia. Preconditioned ischaemia (15 min ischaemia followed 48 h after sub-lethal ischaemia) was associated with even enhanced accumulation of ubiquitinylated proteins of molecular mass higher than 110 kDa. HSP70 protein was significantly elevated 48 h after sub-lethal ischaemia as well as after preconditioned ischaemia and all investigated time intervals of reperfusion. The elevated level of HSP70 might represent plausible explanation of inhibition of both translocation of p53 to mitochondria and ischaemia-induced apoptosis observed after preconditioned ischaemia.
Collapse
Affiliation(s)
- Peter Racay
- Jessenius Faculty of Medicine, Institute of Medical Biochemistry, Comenius University, Martin, Slovakia.
| |
Collapse
|
12
|
Abstract
p53 is a key modulator of cellular stress responses. It is activated in the ischemic areas of brain, and contributes to neuronal apoptosis. In various stroke models, p53 deficiency or applications of p53 inhibitors can significantly attenuate brain damage. p53-mediated neuronal apoptosis occurs through various molecular mechanisms. The transcriptional pathway is an important mechanism through which p53 induces neuronal apoptosis by up-regulating the expression of its target gene p21(WAF), Peg3/Pw1 or p53-up-regulated modulator of apoptosis (PUMA). In addition, p53 disrupts NF-kappaB binding to p300 and blocks NF-kappaB-mediated survival signaling. On the other hand, the transcription-independent pathway mechanism is also of great importance. In this pathway, p53 is translocated to mitochondrial and mediates the release of cytochrome c. In both pathways, p53 seems to play a key role in post-ischemic brain damage and has become a therapeutic target against stroke pathology.
Collapse
|
13
|
|
14
|
Racay P, Chomova M, Tatarkova Z, Kaplan P, Hatok J, Dobrota D. Ischemia-induced mitochondrial apoptosis is significantly attenuated by ischemic preconditioning. Cell Mol Neurobiol 2009; 29:901-8. [PMID: 19283470 PMCID: PMC11505820 DOI: 10.1007/s10571-009-9373-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 02/19/2009] [Indexed: 11/29/2022]
Abstract
Ischemic preconditioning (IPC) represents an important adaptation of CNS to sub-lethal ischemia, which results in increased tolerance of CNS to the lethal ischemia. Ischemia-induced mitochondrial apoptosis is considered to be an important event leading to neuronal cell death after cerebral blood flow arrest. In presented study, we have determined the effect of IPC on ischemia/reperfusion-induced mitochondrial apoptosis. Global brain ischemia was induced by permanent occlusion of vertebral arteries and temporal occlusion of carotid arteries for 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later 15 min of lethal ischemia was induced. With respect to mitochondrial apoptosis initiation, translocation of p53 to mitochondria was observed in hippocampus but not in cerebral cortex. However, level of both apoptotic bax and anti-apoptotic bcl-xl in both hippocampal and cortical mitochondria was unchanged after global brain ischemia. Detection of genomic DNA fragmentation as well as Fluoro-Jade C staining showed that ischemia induces apoptosis in vulnerable CA1 layer of rat hippocampus. IPC abolished completely ischemia-induced translocation of p53 to mitochondria and had significant protective effect on ischemia-induced DNA fragmentation. In addition, significant decrease of Fluoro-Jade C positive cells was observed as well. Our results indicate that IPC abolished almost completely both initiation and execution of mitochondrial apoptosis induced by global brain ischemia.
Collapse
Affiliation(s)
- Peter Racay
- Institute of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, 03601 Martin, Slovakia.
| | | | | | | | | | | |
Collapse
|
15
|
Danielisová V, Gottlieb M, Némethová M, Kravcuková P, Domoráková I, Mechírová E, Burda J. Bradykinin postconditioning protects pyramidal CA1 neurons against delayed neuronal death in rat hippocampus. Cell Mol Neurobiol 2009; 29:871-8. [PMID: 19259804 PMCID: PMC11505757 DOI: 10.1007/s10571-009-9369-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
AIMS The present study was undertaken to evaluate possible neuroprotective effect of bradykinin against delayed neuronal death in hippocampal CA1 neurons if applied two days after transient forebrain ischemia in the rat. METHODS Transient forebrain ischemia was induced in male Wistar rats by four-vessel occlusion for 8 min. To assess efficacy of bradykinin as a new stressor for delayed postconditioning we used two experimental groups of animals: ischemia 8 min and 3 days of survival, and ischemia 8 min and 3 days of survival with i.p. injection of bradykinin (150 microg/kg) applied 48 h after ischemia. RESULTS We found extensive neuronal degeneration in the CA1 region at day 3 after ischemia/reperfusion. The postischemic neurodegeneration was preceded by increased activity of mitochondrial enzyme MnSOD in cytoplasm, indicating release of MnSOD from mitochondria in the process of delayed neuronal death. Increased cytosolic cytochrome c and subsequently caspase-3 activation are additional signs of neuronal death via the mitochondrial pathway. Bradykinin administration significantly attenuated ischemia-induced neuronal death, and also suppressed the release of MnSOD, and cytochrome c, and prevented caspase-3 activation. CONCLUSIONS Bradykinin can be used as an effective stressor able to prevent mitochondrial failure leading to apoptosis-like delayed neuronal death in postischemic rat hippocampus.
Collapse
Affiliation(s)
- Viera Danielisová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
16
|
Racay P, Tatarkova Z, Chomova M, Hatok J, Kaplan P, Dobrota D. Mitochondrial calcium transport and mitochondrial dysfunction after global brain ischemia in rat hippocampus. Neurochem Res 2009; 34:1469-78. [PMID: 19252983 DOI: 10.1007/s11064-009-9934-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2009] [Indexed: 01/24/2023]
Abstract
Here we report effect of ischemia-reperfusion on mitochondrial Ca2+ uptake and activity of complexes I and IV in rat hippocampus. By performing 4-vessel occlusion model of global brain ischemia, we observed that 15 min ischemia led to significant decrease of mitochondrial capacity to accumulate Ca2+ to 80.8% of control whereas rate of Ca2+ uptake was not significantly changed. Reperfusion did not significantly change mitochondrial Ca2+ transport. Ischemia induced progressive inhibition of complex I, affecting final electron transfer to decylubiquinone. Minimal activity of complex I was observed 24 h after ischemia (63% of control). Inhibition of complex IV activity to 80.6% of control was observed 1 h after ischemia. To explain the discrepancy between impact of ischemia on rate of Ca2+ uptake and activities of both complexes, we performed titration experiments to study relationship between inhibition of particular complex and generation of mitochondrial transmembrane potential (DeltaPsi(m)). Generation of a threshold curves showed that complex I and IV activities must be decreased by approximately 40, and 60%, respectively, before significant decline in DeltaPsi(m) was documented. Thus, mitochondrial Ca2+ uptake was not significantly affected by ischemia-reperfusion, apparently due to excess capacity of the complexes I and IV. Inhibition of complex I is favourable of reactive oxygen species (ROS) generation. Maximal oxidative modification of membrane proteins was documented 1 h after ischemia. Although enhanced formation of ROS might contribute to neuronal injury, depressed activities of complex I and IV together with unaltered rate of Ca2+ uptake are conditions favourable of initiation of other cell degenerative pathways like opening of mitochondrial permeability transition pore or apoptosis initiation, and might represent important mechanism of ischemic damage to neurones.
Collapse
Affiliation(s)
- Peter Racay
- Institute of Biochemistry, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4, 03601 Martin, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
17
|
Vaseva AV, Moll UM. The mitochondrial p53 pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:414-20. [PMID: 19007744 DOI: 10.1016/j.bbabio.2008.10.005] [Citation(s) in RCA: 460] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/13/2008] [Accepted: 10/15/2008] [Indexed: 12/29/2022]
Abstract
p53 is one of the most mutated tumor suppressors in human cancers and as such has been intensively studied for a long time. p53 is a major orchestrator of the cellular response to a broad array of stress types by regulating apoptosis, cell cycle arrest, senescence, DNA repair and genetic stability. For a long time it was thought that these functions of p53 solely rely on its function as a transcription factor, and numerous p53 target genes have been identified [1]. In the last 8 years however, a novel transcription-independent proapoptotic function mediated by the cytoplasmic pool of p53 has been revealed. p53 participates directly in the intrinsic apoptosis pathway by interacting with the multidomain members of the Bcl-2 family to induce mitochondrial outer membrane permeabilization. Our review will discuss these studies, focusing on recent advances in the field.
Collapse
Affiliation(s)
- Angelina V Vaseva
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|