1
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
2
|
Dutta A, Bhattacharya P, Chutia P, Borah A. Targeting of wnt signalling pathway by small bioactive molecules for the treatment of Alzheimer's disease. In Silico Pharmacol 2024; 12:50. [PMID: 38840665 PMCID: PMC11147993 DOI: 10.1007/s40203-024-00226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Alzheimer's disease (AD) is the most occurring neurodegenerative disorder that destroys learning, memory, and thinking skills. Although the pathophysiology of the disease is least understood, the post-mortem brain of AD patients as well as animal models revealed the part of down regulated Wnt signalling in progression of the disease. The deficit in the Wnt signalling leads to the accumulation of amyloid beta peptides, phosphorylation of tau proteins, and synaptic dysfunctions, which are regarded as the major pathological features of AD. As the available drugs for AD are only able to mitigate the symptoms and are also associated with several side effects, the therapeutic potential of the bioactive compounds is being explored for their efficacies in managing the major pathologies. Consequently, a few bioactive compounds fundamentally isolated from Garcinia species are established as promising neuroprotective agents in AD, however; their potential to regulate the Wnt signalling pathway is yet to be discovered. Considering the neuroprotective properties, in the present study efficiency of six small bioactive compounds viz., amentoflavone, isovitexin, orientin, apigenin, kaempferol, and garcinol have been investigated in modulating the receptor proteins (LRP6, DKK1, WIF1 and GSK3β) of the Wnt signalling pathway by molecular docking technique. While all the bioactive compounds could efficiently interact with the target proteins, amentoflavone, orientin, and isovitexin interact with all the target proteins viz., LRP6, DKK1, WIF1, and GSK3β with higher free energy of binding, more number of interactions, and similar mode of binding in comparison to their known or reported modulators. Thus, the present study set forth the investigated small bioactive molecules as potential drug candidates in AD therapeutics.
Collapse
Affiliation(s)
- Ankumoni Dutta
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar, Assam 788011 India
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Behali, Biswanath, Assam 784184 India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355 India
| | - Pavitra Chutia
- Department of Life Sciences, Debraj Roy College, Golaghat, Assam 785621 India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar, Assam 788011 India
| |
Collapse
|
3
|
Alhawarri MB, Al-Thiabat MG, Dubey A, Tufail A, Fouad D, Alrimawi BH, Dayoob M. ADME profiling, molecular docking, DFT, and MEP analysis reveal cissamaline, cissamanine, and cissamdine from Cissampelos capensis L.f. as potential anti-Alzheimer's agents. RSC Adv 2024; 14:9878-9891. [PMID: 38528929 PMCID: PMC10961956 DOI: 10.1039/d4ra01070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
The current pharmacotherapies for Alzheimer's disease (AD) demonstrate limited efficacy and are associated with various side effects, highlighting the need for novel therapeutic agents. Natural products, particularly from medicinal plants, have emerged as a significant source of potential neuroprotective compounds. In this context, Cissampelos capensis L.f., renowned for its medicinal properties, has recently yielded three new proaporphine alkaloids; cissamaline, cissamanine, and cissamdine. Despite their promising bioactive profiles, the biological targets of these alkaloids in the context of AD have remained unexplored. This study undertakes a comprehensive in silico examination of the binding affinity and molecular interactions of these alkaloids with human protein targets implicated in AD. The drug likeness and ADME analyses indicate favorable pharmacokinetic profiles for these compounds, suggesting their potential efficacy in targeting the central nervous system. Molecular docking studies indicate that cissamaline, cissamanine, and cissamdine interact with key AD-associated proteins. These interactions are comparable to, or in some aspects slightly less potent than, those observed with established AD drugs, highlighting their potential as novel therapeutic agents for Alzheimer's disease. Crucially, Density Functional Theory (DFT) calculations offer deep insights into the electronic and energetic characteristics of these alkaloids. These calculations reveal distinct electronic properties, with differences in total energy, binding energy, HOMO-LUMO gaps, dipole moments, and electrophilicity indices. Such variations suggest unique reactivity profiles and molecular stability, pertinent to their pharmacological potential. Moreover, Molecular Electrostatic Potential (MEP) analyses provide visual representations of the electrostatic characteristics of these alkaloids. The analyses highlight areas prone to electrophilic and nucleophilic attacks, indicating their potential for specific biochemical interactions. This combination of DFT and MEP results elucidates the intricate electronic, energetic, and electrostatic properties of these compounds, underpinning their promise as AD therapeutic agents. The in silico findings of this study shed light on the promising potential of cissamaline, cissamanine, and cissamdine as agents for AD treatment. However, further in vitro and in vivo studies are necessary to validate these theoretical predictions and to understand the precise mechanisms through which these alkaloids may exert their therapeutic effects.
Collapse
Affiliation(s)
- Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University P.O.Box 733 Irbid 21110 Jordan
| | - Mohammad G Al-Thiabat
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Gelugor 11800 Penang Malaysia
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences Chennai-600077 Tamil Nadu India
- Computational Chemistry and Drug Discovery Division Quanta Calculus Greater Noida-201310 Uttar Pradesh India
| | - Aisha Tufail
- Computational Chemistry and Drug Discovery Division Quanta Calculus Greater Noida-201310 Uttar Pradesh India
| | - Dania Fouad
- Faculty of Dentistry, Ibn Sina University for Medical and Pharmaceutical Sciences Baghdad Iraq
| | | | | |
Collapse
|
4
|
Ding Y, Li L, Wang S, Cao Y, Yang M, Dai Y, Lin H, Li J, Liu Y, Wang Z, Liu W, Tao J. Electroacupuncture promotes neurogenesis in the dentate gyrus and improves pattern separation in an early Alzheimer's disease mouse model. Biol Res 2023; 56:65. [PMID: 38041203 PMCID: PMC10693055 DOI: 10.1186/s40659-023-00472-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Impaired pattern separation occurs in the early stage of Alzheimer's disease (AD), and hippocampal dentate gyrus (DG) neurogenesis participates in pattern separation. Here, we investigated whether spatial memory discrimination impairment can be improved by promoting the hippocampal DG granule cell neogenesis-mediated pattern separation in the early stage of AD by electroacupuncture (EA). METHODS Five familial AD mutations (5 × FAD) mice received EA treatment at Baihui and Shenting points for 4 weeks. During EA, mice were intraperitoneally injected with BrdU (50 mg/kg) twice a day. rAAV containing Wnt5a shRNA was injected into the bilateral DG region, and the viral efficiency was evaluated by detecting Wnt5a mRNA levels. Cognitive behavior tests were conducted to assess the impact of EA treatment on cognitive function. The hippocampal DG area Aβ deposition level was detected by immunohistochemistry after the intervention; The number of BrdU+/CaR+ cells and the gene expression level of calretinin (CaR) and prospero homeobox 1(Prox1) in the DG area of the hippocampus was detected to assess neurogenesis by immunofluorescence and western blotting after the intervention; The gene expression levels of FZD2, Wnt5a, DVL2, p-DVL2, CaMKII, and p-CaMKII in the Wnt signaling pathway were detected by Western blotting after the intervention. RESULTS Cognitive behavioral tests showed that 5 × FAD mice had impaired pattern separation (P < 0.001), which could be improved by EA (P < 0.01). Immunofluorescence and Western blot showed that the expression of Wnt5a in the hippocampus was decreased (P < 0.001), and the neurogenesis in the DG was impaired (P < 0.001) in 5 × FAD mice. EA could increase the expression level of Wnt5a (P < 0.05) and promote the neurogenesis of immature granule cells (P < 0.05) and the development of neuronal dendritic spines (P < 0.05). Interference of Wnt5a expression aggravated the damage of neurogenesis (P < 0.05), weakened the memory discrimination ability (P < 0.05), and inhibited the beneficial effect of EA (P < 0.05) in AD mice. The expression level of Wnt pathway related proteins such as FZD2, DVL2, p-DVL2, CAMKII, p-CAMKII increased after EA, but the effect of EA was inhibited after Wnt5a was knocked down. In addition, EA could reduce the deposition of Aβ plaques in the DG without any impact on Wnt5a. CONCLUSION EA can promote hippocampal DG immature granule cell neogenesis-mediated pattern separation to improve spatial memory discrimination impairment by regulating Wnt5a in 5 × FAD mice.
Collapse
Affiliation(s)
- Yanyi Ding
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Long Li
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Sinuo Wang
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yajun Cao
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Minguang Yang
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yaling Dai
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Huawei Lin
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jianhong Li
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yulu Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Zhifu Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, Fujian, 350122, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
- Fujian Key Laboratory of Rehabilitation Technology, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
5
|
Guo T, Chen M, Liu J, Wei Z, Yuan J, Wu W, Wu Z, Lai Y, Zhao Z, Chen H, Liu N. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia. J Transl Med 2023; 21:297. [PMID: 37138283 PMCID: PMC10155168 DOI: 10.1186/s12967-023-04125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVES Available literature documents that ischemic stroke can disrupt the morphology and function of mitochondria and that the latter in other disease models can be preserved by neuropilin-1 (NRP-1) via oxidative stress suppression. However, whether NRP-1 can repair mitochondrial structure and promote functional recovery after cerebral ischemia is still unknown. This study tackled this very issue and explored the underlying mechanism. METHODS Adeno-associated viral (AAV)-NRP-1 was stereotaxically inoculated into the cortex and ipsilateral striatum posterior of adult male Sprague-Dawley (SD) rats before a 90-min transient middle cerebral artery occlusion (tMCAO) and subsequent reperfusion. Lentivirus (LV)-NRP-1 was transfected into rat primary cortical neuronal cultures before a 2-h oxygen-glucose deprivation and reoxygenation (OGD/R) injury to neurons. The expression and function of NRP-1 and its specific protective mechanism were investigated by Western Blot, immunofluorescence staining, flow cytometry, magnetic resonance imaging, transmission electron microscopy, etc. The binding was detected by molecular docking and molecular dynamics simulation. RESULTS Both in vitro and in vivo models of cerebral ischemia/reperfusion (I/R) injury presented a sharp increase in NRP-1 expression. The expression of AAV-NRP-1 markedly ameliorated the cerebral I/R-induced damage to the motor function and restored the mitochondrial morphology. The expression of LV-NRP-1 alleviated mitochondrial oxidative stress and bioenergetic deficits. AAV-NRP-1 and LV-NRP-1 treatments increased the wingless integration (Wnt)-associated signals and β-catenin nuclear localization. The protective effects of NRP-1 were reversed by the administration of XAV-939. CONCLUSIONS NRP-1 can produce neuroprotective effects against I/R injury to the brain by activating the Wnt/β-catenin signaling pathway and promoting mitochondrial structural repair and functional recovery, which may serve as a promising candidate target in treating ischemic stroke.
Collapse
Affiliation(s)
- Ting Guo
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zengyu Wei
- Emergency Department, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinjin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Wenwen Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhiyun Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zijun Zhao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Manandhar S, Sankhe R, Priya K, Hari G, Kumar B H, Mehta CH, Nayak UY, Pai KSR. Molecular dynamics and structure-based virtual screening and identification of natural compounds as Wnt signaling modulators: possible therapeutics for Alzheimer's disease. Mol Divers 2022; 26:2793-2811. [PMID: 35146638 PMCID: PMC9532339 DOI: 10.1007/s11030-022-10395-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022]
Abstract
Wnt signaling pathway is an evolutionarily conserved pathway responsible for neurogenesis, axon outgrowth, neuronal polarity, synapse formation, and maintenance. Downregulation of Wnt signaling has been found in patients with Alzheimer's disease (AD). Several experimental approaches to activate Wnt signaling pathway have proven to be beneficial in alleviating AD, which is one of the new therapeutic approaches for AD. The current study focuses on the computational structure-based virtual screening followed by the identification of potential phytomolecules targeting different markers of Wnt signaling like WIF1, DKK1, LRP6, GSK-3β, and acetylcholine esterase. Initially, screening of 1924 compounds from the plant-based library of Zinc database was done for the selected five proteins using docking approach followed by MM-GBSA calculations. The top five hit molecules were identified for each protein. Based on docking score, and binding interactions, the top two hit molecules for each protein were selected as promising molecules for the molecular dynamic (MD) simulation study with the five proteins. Therefore, from this in silico based study, we report that Mangiferin could be a potential molecule targeting Wnt signaling pathway modulating the LRP6 activity, Baicalin for AChE activity, Chebulic acid for DKK1, ZINC103539689 for WIF1, and Morin for GSk-3β protein. However, further validation of the activity is warranted based on in vivo and in vitro experiments for better understanding and strong claim. This study provides an in silico approach for the identification of modulators of the Wnt signaling pathway as a new therapeutic approach for AD.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Keerthi Priya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
7
|
Jean WH, Huang CT, Hsu JH, Chiu KM, Lee MY, Shieh JS, Lin TY, Wang SJ. Anticonvulsive and Neuroprotective Effects of Eupafolin in Rats Are Associated with the Inhibition of Glutamate Overexcitation and Upregulation of the Wnt/β-Catenin Signaling Pathway. ACS Chem Neurosci 2022; 13:1594-1603. [PMID: 35500294 DOI: 10.1021/acschemneuro.2c00227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several plant compounds have been found to possess neuroactive properties. The aim of this study was to investigate the anticonvulsant effect of eupafolin, a major active component extracted from Salvia plebeia, a herb used in traditional medicine for its anti-inflammatory properties. To this end, we assessed the anticonvulsant effects of eupafolin in rats intraperitoneally (i.p.) injected with kainic acid (KA) to elucidate this mechanism. Treatment with eupafolin (i.p.) for 30 min before KA administration significantly reduced behavioral and electrographic seizures induced by KA, similar to carbamazepine (i.p.), a widely used antiepileptic drug. Eupafolin treatment also significantly decreased KA seizure-induced neuronal cell death and glutamate elevation in the hippocampus. In addition, eupafolin notably reversed KA seizure-induced alterations in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluR2, glutamate decarboxylase 67 (GAD67, GABAergic enzyme), and Wnt signaling-related proteins, including porcupine, Wnt1, phosphorylated-glycogen synthase kinase-3β, β-catenin, and Bcl-2 in the hippocampus. Furthermore, the increased level of Dickkopf-related protein 1 (Dkk-1, a Wnt signaling antagonist) and the decreased level of Disheveled1 (Dvl-1, a Wnt signaling activator) in the hippocampus of KA-treated rats were reversed by eupafolin. This study provides evidence of the anticonvulsant and neuroprotective properties of eupafolin and of the involvement of regulation of glutamate overexcitation and Wnt signaling in the mechanisms of these properties. These findings support the benefits of eupafolin in treating epilepsy.
Collapse
Affiliation(s)
- Wei-Horng Jean
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chih-Ta Huang
- Department of Neurosurgery, Cathay General Hospital, Taipei City 106, Taiwan
| | - Jung-Hsuan Hsu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Jiann-Shing Shieh
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
8
|
Shi Y, Dai Q, Ji B, Huang L, Zhuang X, Mo Y, Wang J. Electroacupuncture Pretreatment Prevents Cognitive Impairment Induced by Cerebral Ischemia-Reperfusion via Adenosine A1 Receptors in Rats. Front Aging Neurosci 2021; 13:680706. [PMID: 34413765 PMCID: PMC8369428 DOI: 10.3389/fnagi.2021.680706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
A previous study has demonstrated that pretreatment with electroacupuncture (EA) induces rapid tolerance to focal cerebral ischemia. In the present study, we investigated whether adenosine receptor 1 (A1 R) is involved in EA pretreatment-induced cognitive impairment after focal cerebral ischemia in rats. Two hours after EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion for 120 min in male Sprague-Dawley rats. The neurobehavioral score, cognitive function [as determined by the Morris water maze (MWM) test], neuronal number, and the Bax/Bcl-2 ratio was evaluated at 24 h after reperfusion in the presence or absence of CCPA (a selective A1 receptor agonist), DPCPX (a selective A1 receptor antagonist) into left lateral ventricle, or A1 short interfering RNA into the hippocampus area. The expression of the A1 receptor in the hippocampus was also investigated. The result showed that EA pretreatment upregulated the neuronal expression of the A1 receptor in the rat hippocampus at 90 min. And EA pretreatment reversed cognitive impairment, improved neurological outcome, and inhibited apoptosis at 24 h after reperfusion. Pretreatment with CCPA could imitate the beneficial effects of EA pretreatment. But the EA pretreatment effects were abolished by DPCPX. Furthermore, A1 receptor protein was reduced by A1 short interfering RNA which attenuated EA pretreatment-induced cognitive impairment.
Collapse
Affiliation(s)
- Yiyi Shi
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Ji
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luping Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Spicer LJ. Wingless-type mouse mammary tumor virus integration site regulation of bovine theca cells. J Anim Sci 2021; 99:6309027. [PMID: 34166505 DOI: 10.1093/jas/skab197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 11/14/2022] Open
Abstract
Ovarian paracrine mediation by components of the wingless-type mouse mammary tumor virus integration site ligands (WNT1 to 11) and their receptors, frizzled family members (FZD1 to 10), has been proposed. Secreted truncated forms of FZD proteins (e.g., secreted frizzled-related protein 4 [SFRP4]) block the action of WNT ligands. Dickkopf-1 (DKK1) is another WNT antagonist, and R-spondin-1 (RSPO1) is one of a group of four secreted proteins that enhance WNT/β-catenin signaling. Our hypothesis was that granulosa cells signal theca cells (TCs) via SFRP4, DKK1, RSPO1, and WNT secretion to regulate TC differentiation and proliferation. Therefore, in vitro experiments were conducted to study the effects of WNT family member 3A (WNT3A), WNT5A, RSPO1, DKK1, insulin-like growth factor 1 (IGF1), bone morphogenetic protein 7 (BMP7), Indian hedgehog (IHH), and fibroblast growth factor 9 (FGF9) on bovine TC proliferation and steroidogenesis. TCs of large (8 to 20 mm) and small (3 to 6 mm) follicles were collected from bovine ovaries; TC monolayers were established in vitro and treated with various doses of recombinant human WNT3A, WNT5A, RSPO1, DKK1, IGF1, FGF9, BMP7, IHH, and/or ovine luteinizing hormone (LH) in serum-free medium for 48 h. In experiment 1, using LH-treated TC, IGF1, IHH, and WNT3A increased (P < 0.05) cell numbers and androstenedione production, whereas WNT3A and BMP7 inhibited (P < 0.05) progesterone production. In experiment 2, FGF9 blocked (P < 0.05) the WNT3A-induced increase in androstenedione production in LH plus IGF1-treated TC. In experiment 3, RSPO1 further increased (P < 0.05) LH plus IGF1-induced progesterone and androstenedione production. In experiment 4, SFRP4 and DKK1 alone had no significant effect on TC proliferation or progesterone production of large-follicle TC but both blocked the inhibitory effect of WNT5A on androstenedione production. In contrast, DKK1 alone inhibited (P < 0.05) small-follicle TC androstenedione production whereas SFRP4 was without effect. We conclude that the ovarian TC WNT system is functional in cattle, with WNT3A increasing proliferation and androstenedione production of TC.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
10
|
Zhou B, Peng K, Wang G, Chen W, Liu P, Chen F, Kang Y. miR‑483‑3p promotes the osteogenesis of human osteoblasts by targeting Dikkopf 2 (DKK2) and the Wnt signaling pathway. Int J Mol Med 2020; 46:1571-1581. [PMID: 32945363 PMCID: PMC7447299 DOI: 10.3892/ijmm.2020.4694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a systemic metabolic bone disease during which bone mass decreases and bone quality is reduced. Maintaining the bone formation capacity of osteoblasts is crucial for the treatment of osteoporosis. In the present study, bioinformatics analysis was performed on online microarray expression profiles to identify miRNA(s) related to osteoblast proliferation and bone marrow‑derived mesenchymal stem cell (BMSC) osteogenic differentiation. The specific effects of candidate miRNAs on cell proliferation, osteogenic differentiation and Wnt signaling‑related factors were examined. As regards the downstream mechanisms, online tools were employed to predict the downstream targets of candidate miRNAs and the predicted miRNA‑mRNA binding was verified. Finally, the dynamic effects of miRNAs and mRNAs were examined. The results revealed that miR‑483‑3p expression was decreased in bone tissue samples from patients with osteoporosis. In miR‑483‑3p‑overexpressing human osteoblasts, cell viability, DNA synthesis capacity and osteogenesis were promoted, and the protein levels of Wnt1, β‑catenin and cyclin D1 were increased. However, the protein receptor activator of nuclear factor kappa‑Β ligand (RANKL)/osteoprotegerin (OPG) ratio and cell apoptotic rate were decreased. The Wnt signaling, antagonist Dikkopf 2 (DKK2), was targeted and negatively regulated by miR‑483‑3p. DKK2 knockdown exerted similar effects as miR‑483‑3p overexpression, while DKK2 overexpression inhibited cell viability, DNA synthesis capacity and osteogenesis. DKK2 overexpression also decreased the Wnt1, β‑catenin, and cyclin D1 protein levels, whereas it promoted the the RANKL/OPG ratio and the apoptosis of human osteoblasts. DKK2 overexpression reversed the functions of miR‑483‑3p overexpression. On the whole, the findings of the present study demonstrate that the miR‑483‑3p/DKK2 axis modulates the bone formation process by affecting osteoblast proliferation, pre‑osteoblast differentiation into mature osteoblasts and new bone matrix formation.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Kun Peng
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Guoqiang Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Weihua Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Ping Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Fei Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| | - Yijun Kang
- Department of Spine Surgery, The Second Xiangya Hospital, Central University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
11
|
Xu D, Li F, Xue G, Hou K, Fang W, Li Y. Effect of Wnt signaling pathway on neurogenesis after cerebral ischemia and its therapeutic potential. Brain Res Bull 2020; 164:1-13. [PMID: 32763283 DOI: 10.1016/j.brainresbull.2020.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/08/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Neurogenesis process in the chronic phase of ischemic stroke has become the focus of research on stroke treatment recently, mainly through the activation of related pathways to increase the differentiation of neural stem cells (NSCs) in the brain sub-ventricular zone (SVZ) and subgranular zone (SGZ) of hippocampal dentate gyrus (DG) areas into neurons, promoting neurogenesis. While there is still debate about the longevity of active adult neurogenesis in humans, the SVZ and SGZ have the capacity to upregulate neurogenesis in response to cerebral ischemia, which opens discussion about potential treatment strategies to harness this neuronal regenerative response. Wnt signaling pathway is one of the most important approaches potentially targeting on neurogenesis after cerebral ischemia, appropriate activation of which in NSCs may help to improve the sequelae of cerebral ischemia. Various therapeutic approaches are explored on preclinical stage to target endogenous neurogenesis induced by Wnt signaling after stroke onset. This article describes the composition of Wnt signaling pathway and the process of neurogenesis after cerebral ischemia, and emphatically introduces the recent studies on the mechanisms of this pathway for post-stroke neurogenesis and the therapeutic possibility of activating the pathway to improve neurogenesis after stroke.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Gou Xue
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: Phytochemical based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153243. [PMID: 32535482 DOI: 10.1016/j.phymed.2020.153243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Wnt signaling pathway plays a major role during development like gastrulation, axis formation, organ development and organization of body plan development. Wnt signaling aberration has been linked with various disease conditions like osteoporosis, colon cancer, hair follicle tumor, Leukemia, and Alzheimer's disease. Phytochemicals like flavonoid, glycosides, polyphenols, have been reported to directly target the markers of Wnt signaling in different disease models. PURPOSE The study deals in detail about the different phytochemical targeting key players of Wnt signaling pathway in diseases like Cancer, Osteoporosis, and Alzheimer's disease. We have focused on the Pharmacological basis of disease alleviation by phytochemical specifically targeting the Wnt signaling markers in this study. METHODS The study focused on the published articles from the preclinical rodent and invitro cell line studies related to Wnt signaling and Phytochemicals related to Cancer, Alzheimer's and Osteoporosis. The electronic databases Scopus, Web of Science and Pubmed database were used for the systematic search of literatures from 2005 up to 2019 using keywords Canonical Wnt signaling pathway, Cancer, Alzheimer's disease, Osteoporosis, Phytochemicals. The focus was to identify the target specific modulation of Wnt signaling mediated by phytochemicals. RESULTS Approximately 30 phytochemicals of different class have been identified to modulate Wnt signaling pathway acting through Axin, β-catenin translocation, GSK-3β, AKT, Wif-1 in various experimental studies. The down regulation of Wnt signaling is observed in Cancer mostly colorectal cancer, breast cancer mediated through mutations in APC and Axin genes. Different class of Phytochemicals such as flavonoid, glycosides, polyphenol, alkaloids etc. have been found to target Wnt signaling markers and alleviate Cancer. Similarly, Up regulation of Wnt signaling has been reported in Osteoporosis and neurodegenerative disease like Alzheimer's disease. CONCLUSION This review highlights the possibility of the Phytochemicals to target Wnt markers and its potential to either activate or deactivate the Wnt signaling pathway. It also describes the challenges in proper targeting of Wnt signaling and the potential risk and consequences of either up regulation or down regulation of the signaling pathway. This article highlights the possibility of Wnt signaling pathway as a therapeutic option in different diseases.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
13
|
Hadi F, Akrami H, Shahpasand K, Fattahi MR. Wnt signalling pathway and tau phosphorylation: A comprehensive study on known connections. Cell Biochem Funct 2020; 38:686-694. [PMID: 32232872 DOI: 10.1002/cbf.3530] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022]
Abstract
The Wnt pathway is the most important cascade in the nervous system; evidence has indicated that deregulation of the Wnt pathway induced pathogenic hallmarks of neurodegenerative diseases. Glycogen synthase kinase-3β (GSK-3β) as the main member of the Wnt pathway increases tau inclusions, the main marker in the neurodegenerative diseases. Phosphorylated tau is observed in the pre-tangle of the neurons in the early stage of neurodegenerative diseases. The researchers always try to improve pharmacological approaches of new therapeutic strategies to the treatment of neurodegenerative diseases that are required to represent a significant entry point by understanding the theoretical interactions of the molecular pathways. In this review, we have discussed the recent knowledge about the canonical and non-canonical Wnt signalling pathway, GSK-3β, Wnt/β-catenin antagonists, tau phosphorylation, and their important roles in the neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Hadi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad R Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Elbaz EM, Helmy HS, El-Sahar AE, Saad MA, Sayed RH. Lercanidipine boosts the efficacy of mesenchymal stem cell therapy in 3-NP-induced Huntington's disease model rats via modulation of the calcium/calcineurin/NFATc4 and Wnt/β-catenin signalling pathways. Neurochem Int 2019; 131:104548. [PMID: 31539560 DOI: 10.1016/j.neuint.2019.104548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
Abstract
3-Nitropropionic acid (3-NP) induces a spectrum of Huntington's disease (HD)-like neuropathologies in the rat striatum. The present study aimed to demonstrate the neuroprotective effect of lercanidipine (LER) in rats with 3-NP-induced neurotoxicity, address the possible additional protective effect of combined treatment with bone marrow-derived mesenchymal stem cells (BM-MSCs) and LER, and investigate the possible involvement of the Ca2+/calcineurin (CaN)/nuclear factor of activated T cells c4 (NFATc4) and Wnt/β-catenin signalling pathways. Rats were injected with 3-NP (10 mg/kg/day, i.p.) for two weeks and were divided into four subgroups; the first served as the control HD group, the second received a daily dose of LER (0.5 mg/kg, i.p.), the third received a single injection of BM-MSCs (1 x 106/rat, i.v.) and the last received a combination of both BM-MSCs and LER. The combined therapy improved motor and behaviour performance. Meanwhile, this treatment led to a marked reduction in striatal cytosolic Ca2+, CaN, tumour necrosis factor-alpha, and NFATc4 expression and the Bax/Bcl2 ratio. Combined therapy also increased striatal brain-derived neurotrophic factor, FOXP3, Wnt, and β-catenin protein expression. Furthermore, haematoxylin-eosin and Nissl staining revealed an amelioration of striatum tissue injury with the combined treatment. In conclusion, the current study provides evidence for a neuroprotective effect of LER and/or BM-MSCs in 3-NP-induced neurotoxicity in rats. Interestingly, combined LER/BM-MSC therapy was superior to cell therapy alone in inhibiting 3-NP-induced neurological insults via modulation of the Ca2+/CaN/NFATc4 and Wnt/β-catenin signalling pathways. LER/BM-MSC combined therapy may represent a feasible approach for improving the beneficial effects of stem cell therapy in HD.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatullah S Helmy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
15
|
Ren C, Gu X, Li H, Lei S, Wang Z, Wang J, Yin P, Zhang C, Wang F, Liu C. The role of DKK1 in Alzheimer's disease: A potential intervention point of brain damage prevention? Pharmacol Res 2019; 144:331-335. [PMID: 31042564 DOI: 10.1016/j.phrs.2019.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/24/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Dickkopf-1 (DKK1), a secretory glycoprotein discovered for 'inducing generation of head', is an endogenous inhibitor of the canonical Wnt/β-catenin signaling pathway. It was found to be involved in many pathophysiological processes in vivo. Abnormal expression of DKK1 will alter expressions of related proteins and genes not only in canonical Wnt/β-catenin signaling pathway but also in other signaling pathways. Previous studies of DKK1 focused on its function in tumors. In recent years, a large number of studies have shown that it plays an important role in embryonic development, neural regeneration, synaptogenesis and so on. Therefore, its role in neuropsychiatric disorders, such as neurodysplasia, cognitive impairment and emotional disorder, has attracted increasing attention. At present, the role of DKK1 in Alzheimer's disease (AD) is one of the research hot topics. This article reviewed the research progress of its role in AD in order to provide new ideas and directions for further studies on the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China; Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China; Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Xinxin Gu
- Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Huihua Li
- Zhenjiang Mental Health Center, Zhenjiang 212000, Jiangsu Province, China.
| | - Shihui Lei
- Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Zhe Wang
- Department of Clinical Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China.
| | - Jiahui Wang
- Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China.
| | - Peiyuan Yin
- Department of Blood Supply, Yantai Center Blood Station, Yantai 264000, Shandong Province, China.
| | - Caiyi Zhang
- Department of Emergency and Rescue Medicine, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China.
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Chunfeng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China; Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
16
|
Lee JM, Kim TW, Park SS, Kim CJ, Shin MS, Lee SJ, Kim SH, Baek SS. Wnt signaling pathway is implicated in the alleviating effect of treadmill exercise on maternal separation-induced depression. J Exerc Rehabil 2019; 15:200-205. [PMID: 31111001 PMCID: PMC6509450 DOI: 10.12965/jer.1938148.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/21/2019] [Indexed: 01/31/2023] Open
Abstract
Maternal separation in the developmental stage has a negative influence on brain development and causes depression. The extracellular ligand, Wnt, and its receptors play an important role in axis formation and neural development. Exercise inhibits apoptosis, increases cell proliferation, and exerts antidepressive effect. In this study, the effect of treadmill exercise on the maternal separation-induced depression was investigated in the aspect of Wnt signaling pathway. The maternal separation started on the postnatal day 14. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. The rat pups in the maternal separation and fluoxetine-treated group were intraperitoneally injected with 5-mg/kg fluoxetine once a day from postnatal day 21 to postnatal day 34. Forced swimming test was performed to evaluate the depression level. Western blotting was performed for the expressions of Wnt signaling ligands, Wnt2 and Wnt3a, and Wnt signaling inhibitors, Dkk1, and sFRP3. Maternal separation showed depressive behaviors in the forced swimming test. Treadmill exercise alleviated depressive behaviors in the maternal separation rat pups. Expressions of Wnt2 and Wnt3a were decreased by maternal separation. Treadmill exercise alleviated maternal separation-induced reduction of Wnt2 and Wnt3a expressions. Expressions of Dkk1 and sFRP3 in the hippocampus were increased by maternal separation. Treadmill exercise alleviated maternal separation-induced reduction of Dkk1 and sFRP3 expressions. Our study demonstrated that treadmill exercise activates Wnt signaling pathway, and then exerted antidepressive effect.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Sam-Jun Lee
- Department of Physical Education, College of Health, Welfare, and Education, Tong Myong University, Busan, Korea
| | - Sang-Hoon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Sport & Health Care, College of Art & Culture, Sangmyung University, Seoul, Korea
| | - Seung-Soo Baek
- Department of Sport & Health Care, College of Art & Culture, Sangmyung University, Seoul, Korea
| |
Collapse
|
17
|
Gadd45b Acts as Neuroprotective Effector in Global Ischemia-Induced Neuronal Death. Int Neurourol J 2019; 23:S11-21. [PMID: 30832463 PMCID: PMC6433207 DOI: 10.5213/inj.1938040.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/15/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Transient global ischemia arising in human due to cardiac arrest causes selective, delayed neuronal death in hippocampal CA1 and cognitive impairment. Growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) is a wellknown molecule in both DNA damage-related pathogenesis and therapies. Emerging evidence suggests that Gadd45b is an anti-apoptotic factor in nonneuronal cells and is an intrinsic neuroprotective molecule in neurons. However, the mechanism of Gadd45b pathway is not fully examined in neurodegeneration associated with global ischemia. METHODS Rats were subjected to transient global ischemia by the 4-vessel occlusion or sham operation. The animals were sacrificed at 24 hours, 48 hours, and 7 days after ischemia. The hippocampal CA1 was microdissected and processed to examine mRNA and protein level. To assess neuronal death, tissue sections were cut and processed for Fluoro-Jade and Nissl staining. RESULTS Here we show that ischemic insults increase abundance of Gadd45b and brain-derived neurotrophic factor, a known target of Gadd45 mediated demethylation, in selectively-vulnerable hippocampal CA1 neurons. We further show that knockdown of Gadd45b increases abundance of a pro-apoptotic Bcl-2 family member Bax while decreasing the antiapoptotic protein Bcl-2, which together promote neuronal death. CONCLUSION These findings document a protective role of Gadd45b against neuronal insults associated with global ischemia and identify Gadd45b as a potential therapeutic target for the amelioration of hippocampal neurodegeneration.
Collapse
|
18
|
Caruso G, Fresta CG, Musso N, Giambirtone M, Grasso M, Spampinato SF, Merlo S, Drago F, Lazzarino G, Sortino MA, Lunte SM, Caraci F. Carnosine Prevents Aβ-Induced Oxidative Stress and Inflammation in Microglial Cells: A Key Role of TGF-β1. Cells 2019; 8:E64. [PMID: 30658430 PMCID: PMC6356400 DOI: 10.3390/cells8010064] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Carnosine is involved in cellular defense mechanisms against oxidative stress, including the inhibition of amyloid-beta (Aβ) aggregation and the scavenging of reactive species. Microglia play a central role in the pathogenesis of Alzheimer's disease, promoting neuroinflammation through the secretion of inflammatory mediators and free radicals. However, the effects of carnosine on microglial cells and neuroinflammation are not well understood. In the present work, carnosine was tested for its ability to protect BV-2 microglial cells against oligomeric Aβ1-42-induced oxidative stress and inflammation. Carnosine prevented cell death in BV-2 cells challenged with Aβ oligomers through multiple mechanisms. Specifically, carnosine lowered the oxidative stress by decreasing NO and O₂-• intracellular levels as well as the expression of iNOS and Nox enzymes. Carnosine also decreased the secretion of pro-inflammatory cytokines such as IL-1β, simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1. Carnosine also prevented Aβ-induced neurodegeneration in mixed neuronal cultures challenged with Aβ oligomers, and these neuroprotective effects were completely abolished by SB431542, a selective inhibitor of the type-1 TGF-β receptor. Our data suggest a multimodal mechanism of action of carnosine underlying its protective effects on microglial cells against Aβ toxicity with a key role of TGF-β1 in mediating these protective effects.
Collapse
Affiliation(s)
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy.
| | | | - Margherita Grasso
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 95125 Catania, Italy.
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
19
|
Dengler-Crish CM, Ball HC, Lin L, Novak KM, Cooper LN. Evidence of Wnt/β-catenin alterations in brain and bone of a tauopathy mouse model of Alzheimer's disease. Neurobiol Aging 2018; 67:148-158. [DOI: 10.1016/j.neurobiolaging.2018.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
|
20
|
Gene Expression Profiling Confirms the Dosage-Dependent Additive Neuroprotective Effects of Jasminoidin in a Mouse Model of Ischemia-Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2785636. [PMID: 29862259 PMCID: PMC5976973 DOI: 10.1155/2018/2785636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/13/2017] [Accepted: 03/13/2018] [Indexed: 02/05/2023]
Abstract
Recent evidence demonstrates that a double dose of Jasminoidin (2·JA) is more effective than Jasminoidin (JA) in cerebral ischemia therapy, but its dosage-effect mechanisms are unclear. In this study, the software GeneGo MetaCore was used to perform pathway analysis of the differentially expressed genes obtained in microarrays of mice belonging to four groups (Sham, Vehicle, JA, and 2·JA), aiming to elucidate differences in JA and 2·JA's dose-dependent pharmacological mechanism from a system's perspective. The top 10 enriched pathways in the 2·JA condition were mainly involved in neuroprotection (70% of the pathways), apoptosis and survival (40%), and anti-inflammation (20%), while JA induced pathways were mainly involved in apoptosis and survival (60%), anti-inflammation (20%), and lipid metabolism (20%). Regarding shared pathways and processes, 3, 1, and 3 pathways overlapped between the Vehicle and JA, Vehicle and 2·JA, and JA and 2·JA conditions, respectively; for the top ten overlapped processes these numbers were 3, 0, and 4, respectively. The common pathways and processes in the 2·JA condition included differentially expressed genes significantly different from those in JA. Seven representative pathways were only activated by 2·JA, such as Gamma-Secretase regulation of neuronal cell development. Process network comparison indicated that significant nodes, such as alpha-MSH, ACTH, PKR1, and WNT, were involved in the pharmacological mechanism of 2·JA. Function distribution was different between JA and 2·JA groups, indicating a dosage additive mechanism in cerebral ischemia treatment. Such systemic approach based on whole-genome multiple pathways and networks may provide an effective and alternative approach to identify alterations underlining dosage-dependent therapeutic benefits of pharmacological compounds on complex disease processes.
Collapse
|
21
|
Kumar A, Singh S, Verma A, Mishra VN. Proteomics based identification of differential plasma proteins and changes in white matter integrity as markers in early detection of mild cognitive impaired subjects at high risk of Alzheimer’s disease. Neurosci Lett 2018; 676:71-77. [DOI: 10.1016/j.neulet.2018.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 04/06/2018] [Indexed: 01/07/2023]
|
22
|
Brogi S, Maramai S, Brindisi M, Chemi G, Porcari V, Corallo C, Gennari L, Novellino E, Ramunno A, Butini S, Campiani G, Gemma S. Activation of the Wnt Pathway by Small Peptides: Rational Design, Synthesis and Biological Evaluation. ChemMedChem 2017; 12:2074-2085. [PMID: 29131552 DOI: 10.1002/cmdc.201700551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/03/2017] [Indexed: 12/13/2022]
Abstract
A computational analysis of the X-ray structure of the low-density lipoprotein receptor-related protein 6 (LRP6) with the Dickkopf-1 (DKK1) C-terminal fragment has allowed us to rationally design a small set of decapeptides. These compounds behave as agonists of the canonical Wnt pathway in the micromolar range when tested on a dual luciferase Wnt functional assay in glioblastoma cells. Two of the oligopeptides showed a lack of cytotoxicity in human primary osteoblasts isolated from sponge bone tissue (femoral heads or knees of elderly patients). According to the mechanism of action, the studies revealed a dose- and time-dependent increase in the viability of human osteoblasts. These results may indicate a potential therapeutic application of this class of compounds in the treatment of bone diseases related to aging, such as osteoporosis.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Samuele Maramai
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giulia Chemi
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Valentina Porcari
- Siena Biotech S.p.A., Strada del Petriccio e Belriguardo 35, Siena, 53100, Italy
| | - Claudio Corallo
- Department of Medical, Surgical and Neurological Sciences, S. Maria alle Scotte Hospital Siena, University of Siena, viale Mario Bracci 1, 53100, Siena, Italy
| | - Luigi Gennari
- Department of Medical, Surgical and Neurological Sciences, S. Maria alle Scotte Hospital Siena, University of Siena, viale Mario Bracci 1, 53100, Siena, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Anna Ramunno
- Dipartimento di Farmacia/DIFARMA, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
23
|
Sodium selenate activated Wnt/β-catenin signaling and repressed amyloid-β formation in a triple transgenic mouse model of Alzheimer's disease. Exp Neurol 2017; 297:36-49. [PMID: 28711506 DOI: 10.1016/j.expneurol.2017.07.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/21/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Accumulating evidences show that selenium dietary intake is inversely associated with the mortality of Alzheimer's disease (AD). Sodium selenate has been reported to reduce neurofibrillary tangles (NFT) in the tauopathic mouse models, but its effects on the Wnt/β-catenin signaling pathway and APP processing remain unknown during AD formation. In this paper, triple transgenic AD mice (3×Tg-AD) had been treated with sodium selenate in drinking water for 10month before the detection of hippocampal pathology. Increased Aβ generation, tau hyperphosphorylation and neuronal apoptosis were found in the hippocampus of AD model mouse. Down-regulation of Wnt/β-catenin signaling is closely associated with the alteration of AD pathology. Treatment with sodium selenate significantly promoted the activity of protein phosphatases of type 2A (PP2A) and repressed the hallmarks of AD. Activation of PP2A by sodium selenate could increase active β-catenin level and inhibit GSK3β activity in the hippocampal tissue and primarily cultured neurons of AD model mouse, leading to activation of Wnt/β-catenin signaling and transactivation of target genes, including positively-regulated genes c-myc, survivin, TXNRD2 and negatively-regulated gene BACE1. Meanwhile, APP phosphorylation was also reduced on the Thr668 residue after selenate treatment, causing the decreases of APP cleavage and Aβ generation. These findings reveal that the Wnt/β-catenin signaling is a potential target for prevention of AD and sodium selenate may be developed as a new drug for AD treatment.
Collapse
|
24
|
Di M, Wang L, Li M, Zhang Y, Liu X, Zeng R, Wang H, Chen Y, Chen W, Zhang Y, Zhang M. Dickkopf1 destabilizes atherosclerotic plaques and promotes plaque formation by inducing apoptosis of endothelial cells through activation of ER stress. Cell Death Dis 2017; 8:e2917. [PMID: 28703797 PMCID: PMC5550842 DOI: 10.1038/cddis.2017.277] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022]
Abstract
Several clinical studies reported that Dickkopf1 (DKK1) plasma levels are correlated with atherosclerosis. However, the impact of DKK1 on the formation and vulnerability of atherosclerotic plaques remains elusive. This study investigated DKK1’s effects on enlargement and destabilization of plaques by targeting endothelial cells and assessing the possible cellular mechanisms involved. The effects of DKK1 on atherogenesis and plaque stability were evaluated in ApoE−/− mice using lentivirus injections to knockdown and knock-in the DKK1 gene. The presence of DKK1 resulted in enlarged and destabilized atherosclerotic lesions and increased apoptosis, while silencing of DKK1 alleviated plaque formation and vulnerability in the whole progression of atherosclerosis. DKK1 expression was upregulated in response to ox-LDL treatment in a time- and concentration-dependent manner on human umbilical vein endothelial cell (HUVEC). The interference of DKK1 reversed ox-LDL-induced apoptosis in HUVECs. The mechanism underlying this effect was DKK1’s activation of the JNK signal transduction pathway and inhibition of canonical Wnt signaling, following by activation of the IRE1α and eif2α/CHOP pathways. In conclusion, DKK1 promotes plaque formation and vulnerability partly by inducing apoptosis in endothelial cells, which partly through inducing the JNK-endoplasmic reticulum stress pathway and inhibiting canonical Wnt signaling.
Collapse
Affiliation(s)
- Mingxue Di
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China
| | - Lin Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China.,Department of Gerontology, The Second Hosipital of Shandong University, Jinan 250012, China
| | - Mengmeng Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China
| | - Yu Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China
| | - Xinxin Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China
| | - Renya Zeng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China
| | - Han Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China
| | - Yifei Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China
| | - Weijia Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China
| | - Mei Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan 250012, China.,The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Shandong 250012, China
| |
Collapse
|
25
|
Kim DY, Jung SY, Kim K, Kim CJ. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats. J Exerc Rehabil 2016; 12:276-83. [PMID: 27656623 PMCID: PMC5031391 DOI: 10.12965/jer.1632678.339] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2′-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Sports Healthcare, College of Humanities & Social Sciences, Inje University, Gimhae, Korea
| | - Sun-Young Jung
- Department of Physical Therapy, Hosan University, Gyeongsan, Korea
| | - Kijeong Kim
- School of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
26
|
Gonzalez P, Rodríguez FJ. Analysis of the expression of the Wnt family of proteins and its modulatory role on cytokine expression in non activated and activated astroglial cells. Neurosci Res 2016; 114:16-29. [PMID: 27562517 DOI: 10.1016/j.neures.2016.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 12/23/2022]
Abstract
Despite the essential functions of astrocytes and the emerging relevance of the Wnt family of proteins in the CNS under physiological and pathological conditions, the astroglial expression of this family of proteins and its potential modulatory role on astroglial activation is almost unknown. Thus, we have evaluated the expression of all Wnt ligands, receptors and regulators, and the activation state of Wnt-related signaling pathways in non-activated and differentially activated astroglial cultures. We found that numerous Wnt ligands, receptors and regulators were expressed in non-activated astrocytes, while the Wnt-dependent pathways were constitutively active. Moreover, the expression of most detectable Wnt-related molecules and the activity of the Wnt-dependent pathways suffered post-activation variations which frequently depended on the activation system. Finally, the analysis of the effects exerted by Wnt1 and 5a on the astroglial expression of prototypical genes related to astroglial activation showed that both Wnt ligands increased the astroglial expression of interleukin 1β depending on the experimental context, while did not modulate tumor necrosis factor α, interleukin 6, transforming growth factor β1 and glial fibrillary acidic protein expression. These results strongly suggest that the Wnt family of proteins is involved in how astrocytes modulate and respond to the physiological and pathological CNS.
Collapse
Affiliation(s)
- Pau Gonzalez
- Laboratory of Molecular Neurology, National Hospital for Paraplegics, Finca la Peraleda s/n, 45071 Toledo, Spain.
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, National Hospital for Paraplegics, Finca la Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
27
|
He X, Mo Y, Geng W, Shi Y, Zhuang X, Han K, Dai Q, Jin S, Wang J. Role of Wnt/β-catenin in the tolerance to focal cerebral ischemia induced by electroacupuncture pretreatment. Neurochem Int 2016; 97:124-32. [DOI: 10.1016/j.neuint.2016.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 01/19/2023]
|
28
|
Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci 2016; 158:78-88. [PMID: 27370940 DOI: 10.1016/j.lfs.2016.06.024] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023]
Abstract
The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.
Collapse
Affiliation(s)
- Rosaliana Libro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
29
|
sFRP-mediated Wnt sequestration as a potential therapeutic target for Alzheimer’s disease. Int J Biochem Cell Biol 2016; 75:104-11. [DOI: 10.1016/j.biocel.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023]
|
30
|
Richens JL, Spencer HL, Butler M, Cantlay F, Vere KA, Bajaj N, Morgan K, O'Shea P. Rationalising the role of Keratin 9 as a biomarker for Alzheimer's disease. Sci Rep 2016; 6:22962. [PMID: 26973255 PMCID: PMC4789650 DOI: 10.1038/srep22962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
Keratin 9 was recently identified as an important component of a biomarker panel which demonstrated a high diagnostic accuracy (87%) for Alzheimer's disease (AD). Understanding how a protein which is predominantly expressed in palmoplantar epidermis is implicated in AD may shed new light on the mechanisms underlying the disease. Here we use immunoassays to examine blood plasma expression patterns of Keratin 9 and its relationship to other AD-associated proteins. We correlate this with the use of an in silico analysis tool VisANT to elucidate possible pathways through which the involvement of Keratin 9 may take place. We identify possible links with Dickkopf-1, a negative regulator of the wnt pathway, and propose that the abnormal expression of Keratin 9 in AD blood and cerebrospinal fluid may be a result of blood brain barrier dysregulation and disruption of the ubiquitin proteasome system. Our findings suggest that dysregulated Keratin 9 expression is a consequence of AD pathology but, as it interacts with a broad range of proteins, it may have other, as yet uncharacterized, downstream effects which could contribute to AD onset and progression.
Collapse
Affiliation(s)
- Joanna L Richens
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Hannah L Spencer
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Molly Butler
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Fiona Cantlay
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Kelly-Ann Vere
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Nin Bajaj
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, United Kingdom
| | - Kevin Morgan
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul O'Shea
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| |
Collapse
|
31
|
The Role of Wnt/β-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target? Neurochem Res 2015; 40:1319-32. [PMID: 26012365 DOI: 10.1007/s11064-015-1614-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 02/05/2023]
Abstract
Temporal lobe epilepsy is one of the most common clinical neurological disorders. One of the major pathological findings in temporal lobe epilepsy is hippocampal sclerosis, characterized by massive neuronal loss and severe gliosis. The epileptogenesis process of temporal lobe epilepsy usually starts with initial precipitating insults, followed by neurodegeneration, abnormal hippocampus circuitry reorganization, and the formation of hypersynchronicity. Experimental and clinical evidence strongly suggests that dysfunctional neurogenesis is involved in the epileptogenesis. Recent data demonstrate that neurogenesis is induced by acute seizures or precipitating insults, whereas the capacity of neuronal recruitment and proliferation substantially decreases in the chronic phase of epilepsy. Participation of the Wnt/β-catenin signaling pathway in neurogenesis reveals its importance in epileptogenesis; its dysfunction contributes to the structural and functional abnormality of temporal lobe epilepsy, while rescuing this pathway exerts neuroprotective effects. Here, we summarize data supporting the involvement of Wnt/β-catenin signaling in the epileptogenesis of temporal lobe epilepsy. We also propose that the Wnt/β-catenin signaling pathway may serve as a promising therapeutic target for temporal lobe epilepsy treatment.
Collapse
|
32
|
Zhang Y, Ge C, Wang L, Liu X, Chen Y, Li M, Zhang M. Induction of DKK1 by ox-LDL negatively regulates intracellular lipid accumulation in macrophages. FEBS Lett 2014; 589:52-8. [PMID: 25436422 DOI: 10.1016/j.febslet.2014.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 01/15/2023]
Abstract
Dickkopf1 (DKK1), a canonical Wnt/β-catenin pathway antagonist, is closely associated with cardiovascular disease and adipogenesis. We performed an in vitro study to determine whether oxidized low-density lipoprotein (ox-LDL) increased the expression of DKK1 in macrophages and whether β-catenin and liver X receptor α (LXRα) were involved in this regulation. Induction of DKK1 expression by ox-LDL decreased the level of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) via a Wnt/β-catenin pathway and increased ATP-binding cassette transporter A/G1 (ABCA/G1) levels via a signal transducer and activator of transcription 3 (STAT3) pathway. Lower LOX-1 and higher ABCA/G1 levels inhibited cholesterol loading in macrophages. In conclusion, ox-LDL may induce DKK1 expression in macrophages to inhibit the accumulation of lipids through a mechanism that involves downregulation of LOX-1-mediated lipid uptake and upregulation of ABCA/G1-dependent cholesterol efflux.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Cheng Ge
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lin Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xinxin Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yifei Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Mengmeng Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Mei Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
33
|
Involvement of RARRES3 in the regulation of Wnt proteins acylation and signaling activities in human breast cancer cells. Cell Death Differ 2014; 22:801-14. [PMID: 25361079 DOI: 10.1038/cdd.2014.175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 12/24/2022] Open
Abstract
The Wnt/β-catenin signaling pathway has emerged as a key regulator of complex biological processes, such as embryonic development, cell proliferation, cell fate decision and tumorigenesis. Recent studies have shown that the deregulation of Wnt/β-catenin signaling is frequently observed and leads to abnormal cell growth in human breast cancer cells. In this study, we identified a novel regulatory mechanism of Wnt/β-catenin signaling through RARRES3 that targets and modulates the acylation status of Wnt proteins and co-receptor low-density lipoprotein receptor-related protein 6, resulting in the suppression of epithelial-mesenchymal transition and cancer stem cell properties. Mutation of the conserved active site residues of RARRES3 indicates that RARRES3 serves as an acyl protein thioesterase that tethers its target proteins and modulates their acylation status. Furthermore, the functions of p53 in cell proliferation and Wnt/β-catenin signaling are significantly associated with the induction of RARRES3. Thus our findings provide a new insight into the molecular link between p53, protein acylation and Wnt/β-catenin signaling whereby RARRES3 plays a pivotal role in modulating the acylation status of signaling proteins.
Collapse
|
34
|
González-Fernández C, Fernández-Martos CM, Shields SD, Arenas E, Javier Rodríguez F. Wnts are expressed in the spinal cord of adult mice and are differentially induced after injury. J Neurotrauma 2014; 31:565-81. [PMID: 24367909 DOI: 10.1089/neu.2013.3067] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Wnt family of proteins plays key roles during central nervous system development and has been involved in several neuropathologies during adulthood, including spinal cord injury (SCI). However, Wnts expression knowledge is relatively limited during adult stages. Here, we sought to define the Wnt family expression pattern after SCI in adult mice by using quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). Under physiological conditions, the messenger RNAs (mRNAs) of most Wnt ligands, inhibitors, receptors, and coreceptors are constitutively expressed in healthy adult mice. After dorsal hemisection, we found significant time-dependent variations, with a prominent up-regulation of Wnt inhibitory factor 1 (Wif1). IHC against Frizzled (Fz) 1 and Fz4, as representatives of late and acute up-regulated receptors, showed a differential expression in the uninjured spinal cord of Fz1 by neurons and oligodendrocytes and Fz4 by astrocytes. After injury, both receptors were maintained in the same type of cells. Finally, by using BATgal reporter mice, our results revealed active β-catenin signaling in neurons of the dorsal horn and cells of the central canal of uninjured spinal cords, besides a lack of additional SCI-induced activation. In conclusion, we demonstrate Wnt expression in the adult spinal cord of mice that is modulated by SCI, which differs from that previously described in rats. Further, Fz receptors are differentially expressed by neurons and glial cells, suggestive for cell-specific patterns and thus diverse physiological roles. Further studies will help toward in-depth characterization of the role of all Wnt factors and receptors described and eventually allow for the design of novel therapies.
Collapse
|
35
|
Kanan Y, Siefert JC, Kinter M, Al-Ubaidi MR. Complement factor H, vitronectin, and opticin are tyrosine-sulfated proteins of the retinal pigment epithelium. PLoS One 2014; 9:e105409. [PMID: 25136834 PMCID: PMC4138151 DOI: 10.1371/journal.pone.0105409] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 01/09/2023] Open
Abstract
Lack of tyrosine sulfation of ocular proteins results in disorganized photoreceptor structure and drastically reduced visual function, demonstrating the importance of this post-translational modification to vision. To understand the role that tyrosine sulfation plays in the function of ocular proteins, we identified some tyrosine-sulfated proteins in the retinal pigment epithelium using two independent methods, immuno-affinity column purification with an anti-sulfotyrosine specific antibody and computer-based sequence analysis of retinal pigment epithelium secretome by means of the prediction program Sulfinator. Radioactive labeling followed by thin layer electrophoresis revealed that three proteins, vitronectin, opticin, and complement factor H (CFH), were post-translationally modified by tyrosine sulfation. The identification of vitronectin and CFH as tyrosine-sulfated proteins is significant, since both are deposited in drusen in the eyes of patients with age-related macular degeneration (AMD). Furthermore, mutations in CFH have been determined to be a major risk factor in the development of AMD. Future studies that seek to understand the role of CFH in the development of AMD should take into account the role that tyrosine sulfation plays in the interaction of this protein with its partners, and examine whether modulating sulfation provides a potential therapeutic target.
Collapse
Affiliation(s)
- Yogita Kanan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Joseph C. Siefert
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Michael Kinter
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Muayyad R. Al-Ubaidi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
36
|
Wan W, Xia S, Kalionis B, Liu L, Li Y. The role of Wnt signaling in the development of Alzheimer's disease: a potential therapeutic target? BIOMED RESEARCH INTERNATIONAL 2014; 2014:301575. [PMID: 24883305 PMCID: PMC4026919 DOI: 10.1155/2014/301575] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 04/10/2014] [Indexed: 12/31/2022]
Abstract
Accumulating evidence supports a key role for Wnt signaling in the development of the central nervous system (CNS) during embryonic development and in the regulation of the structure and function of the adult brain. Alzheimer's disease (AD) is the most common form of senile dementia, which is characterized by β -amyloid (A β ) deposition in specific brain regions. However, the molecular mechanism underlying AD pathology remains elusive. Dysfunctional Wnt signaling is associated with several diseases such as epilepsy, cancer, metabolic disease, and AD. Increasing evidence suggests that downregulation of Wnt signaling, induced by A β , is associated with disease progression of AD. More importantly, persistent activation of Wnt signaling through Wnt ligands, or inhibition of negative regulators of Wnt signaling, such as Dickkopf-1 (DKK-1) and glycogen synthase kinase-3 β (GSK-3 β ) that are hyperactive in the disease state, is able to protect against A β toxicity and ameliorate cognitive performance in AD. Together, these data suggest that Wnt signaling might be a potential therapeutic target of AD. Here, we review recent studies related to the progression of AD where Wnt signaling might be relevant and participate in the development of the disease. Then, we focus on the potential relevance of manipulating the Wnt signaling pathway for the treatment of AD.
Collapse
Affiliation(s)
- Wenbin Wan
- Geriatrics Department of Traditional Chinese Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Bill Kalionis
- Department of Perinatal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - Lumei Liu
- Geriatrics Department of Traditional Chinese Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Yaming Li
- Geriatrics Department of Traditional Chinese Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
37
|
Ortiz-Matamoros A, Salcedo-Tello P, Avila-Muñoz E, Zepeda A, Arias C. Role of wnt signaling in the control of adult hippocampal functioning in health and disease: therapeutic implications. Curr Neuropharmacol 2014; 11:465-76. [PMID: 24403870 PMCID: PMC3763754 DOI: 10.2174/1570159x11311050001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/16/2013] [Accepted: 03/16/2013] [Indexed: 12/12/2022] Open
Abstract
It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity.
Collapse
Affiliation(s)
- Abril Ortiz-Matamoros
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Pamela Salcedo-Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Evangelina Avila-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F
| |
Collapse
|
38
|
Xu D, Zhao W, Pan G, Qian M, Zhu X, Liu W, Cai G, Cui Z. Expression of Nemo-like kinase after spinal cord injury in rats. J Mol Neurosci 2014; 52:410-8. [PMID: 24395089 DOI: 10.1007/s12031-013-0191-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/20/2013] [Indexed: 12/13/2022]
Abstract
Wnt can induce signal transduction via the canonical pathway, which was involved in many processes in the nervous system. Nemo-like kinase (NLK) acts as a negative regulator of β-catenin/T-cell factor/lymphoid enhancer factor (LEF) and functions downstream of transforming growth factor β-activated kinase-1 in the Wnt signaling pathway. In this study, we performed a spinal cord injury (SCI) test in adult Sprague-Dawley rats and investigated the dynamic changes and role of NLK expression in the spinal cord. Western blot analysis revealed that NLK expression was low in normal spinal cord. It then increased markedly, peaked at 3 days, and declined to basal levels from 5 days after injury. Immunohistochemistry confirmed that NLK immunoactivity was expressed at low levels in gray and white matter under normal conditions and increased prominently in gray matter after the SCI test. Double immunofluorescent staining for NLK, caspase-3, β-catenin, and NeuN (neuronal nuclei) revealed that NLK and β-catenin were markedly increased and colocalized in apoptotic neurons. Coimmunoprecipitation data demonstrated that overexpression of NLK protein reduced β-catenin binding to LEF-1. Our results suggested that NLK was associated with neuronal apoptosis through attenuating the Wnt/β-catenin signaling pathway after SCIs.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Dickins EM, Salinas PC. Wnts in action: from synapse formation to synaptic maintenance. Front Cell Neurosci 2013; 7:162. [PMID: 24223536 PMCID: PMC3819050 DOI: 10.3389/fncel.2013.00162] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/04/2013] [Indexed: 11/13/2022] Open
Abstract
A proper balance between synapse assembly and disassembly is crucial for the formation of functional neuronal circuits and synaptic plasticity in the adult brain. During development, synaptogenesis generates a vast excess of synapses, which are subsequently eliminated. Importantly, aberrant synaptic disassembly during development underpins many neurological disorders. Wnt secreted proteins are robust synaptogenic factors that regulate synapse assembly and function in the developing and mature brain. Recent studies show that Wnt blockade with the antagonist Dickkopf-1 (Dkk1) induces the rapid disassembly of synapses in mature neurons. Importantly, Dkk1 mediates synaptic loss induced by Amyloid-ß, a key pathogenic molecule in Alzheimer's disease (AD). These findings provide new insights into the potential contribution of dysfunctional Wnt signaling to synaptic loss observed in neurodegenerative diseases. In this review, we discuss the role of Wnt signaling in vertebrate synaptic assembly, function and maintenance, and consider how dysfunction of Wnt signaling could contribute to synaptic disassembly in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Ellen M Dickins
- Department of Cell and Developmental Biology, University College London London, UK
| | | |
Collapse
|
40
|
Bayod S, Mennella I, Menella I, Sanchez-Roige S, Lalanza JF, Escorihuela RM, Camins A, Pallàs M, Canudas AM. Wnt pathway regulation by long-term moderate exercise in rat hippocampus. Brain Res 2013; 1543:38-48. [PMID: 24183784 DOI: 10.1016/j.brainres.2013.10.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 10/24/2013] [Indexed: 12/25/2022]
Abstract
An active lifestyle involving regular exercise reduces the deleterious effects of the aging process. At the cerebral level, both synaptic plasticity and neurogenesis are modulated by exercise, although the molecular mechanisms underlying these effects are not clearly understood. In the mature nervous system, the canonical Wnt (Wnt/β-catenin) signaling pathway is implicated in neuroprotection and synaptic plasticity. Here, we examined whether the Wnt pathway could be modulated in adult male rat hippocampus by long-term moderate exercise (treadmill running) or enrichment (handling/environmental stimulation). Sedentary animals showed higher protein levels of the Wnt antagonist, Dkk-1, the lowest levels being found in the exercised group. Although there was no evidence of any changes in activation of the LRP6 receptor, the total levels of LRP6 were higher in exercised and enriched animals. Analysis of some of the components implicated in the phosphorylation of β-catenin, which leads ultimately to its proteasomal degradation, revealed higher levels and activation of Axin1 and GSK-3α/β respectively in sedentary animals. However neither different phosphorylated forms nor total β-catenin protein levels differed between the experimental groups. Higher protein levels of Axin2 and the antiapoptotic protein, Bcl-2, were found with exercise and handling, whereas the proapototic, Bax, was unaffected. Thus, our results suggest activation of the Wnt pathway not only with moderate exercise, but also with the handling of the animals.
Collapse
Affiliation(s)
- S Bayod
- Unitat de Farmacologia i Farmacognòsia. Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona. Nucli Universitari de Pedralbes. 08028 Barcelona. Spain; Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | | | - I Menella
- Unitat de Farmacologia i Farmacognòsia. Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona. Nucli Universitari de Pedralbes. 08028 Barcelona. Spain; Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - S Sanchez-Roige
- Dept de Psiquiatria i Medicina Legal, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - J F Lalanza
- Dept de Psiquiatria i Medicina Legal, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - R M Escorihuela
- Dept de Psiquiatria i Medicina Legal, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - A Camins
- Unitat de Farmacologia i Farmacognòsia. Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona. Nucli Universitari de Pedralbes. 08028 Barcelona. Spain; Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - M Pallàs
- Unitat de Farmacologia i Farmacognòsia. Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona. Nucli Universitari de Pedralbes. 08028 Barcelona. Spain; Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - A M Canudas
- Unitat de Farmacologia i Farmacognòsia. Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona. Nucli Universitari de Pedralbes. 08028 Barcelona. Spain; Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
41
|
Abstract
Wnt signaling has emerged as a potent regulator of hippocampal synaptic function, although no evidence yet supports a critical role for Wnt signaling in hippocampal memory. Here, we sought to determine whether canonical β-catenin-dependent Wnt signaling is necessary for hippocampal memory consolidation. Immediately after training in a hippocampal-dependent object recognition task, mice received a dorsal hippocampal (DH) infusion of vehicle or the canonical Wnt antagonist Dickkopf-1 (Dkk-1; 50, 100, or 200 ng/hemisphere). Twenty-four hours later, mice receiving vehicle remembered the familiar object explored during training. However, mice receiving Dkk-1 exhibited no memory for the training object, indicating that object recognition memory consolidation is dependent on canonical Wnt signaling. To determine how Dkk-1 affects canonical Wnt signaling, mice were infused with vehicle or 50 ng/hemisphere Dkk-1 and protein levels of Wnt-related proteins (Dkk-1, GSK3β, β-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, Wnt1, and PSD95) were measured in the dorsal hippocampus 5 min or 4 h later. Dkk-1 produced a rapid increase in Dkk-1 protein levels and a decrease in phosphorylated GSK3β levels, followed by a decrease in β-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, and PSD95 protein levels 4 h later. These data suggest that alterations in Wnt/GSK3β/β-catenin signaling may underlie the memory impairments induced by Dkk-1. In a subsequent experiment, object training alone rapidly increased DH GSK3β phosphorylation and levels of β-catenin and Cyclin D1. These data suggest that canonical Wnt signaling is regulated by object learning and is necessary for hippocampal memory consolidation.
Collapse
|
42
|
Scott EL, Zhang QG, Han D, Desai BN, Brann DW. Long-term estrogen deprivation leads to elevation of Dickkopf-1 and dysregulation of Wnt/β-Catenin signaling in hippocampal CA1 neurons. Steroids 2013; 78. [PMID: 23178162 PMCID: PMC3593754 DOI: 10.1016/j.steroids.2012.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surgically menopausal women incur a 2- to 5-fold increased risk for dementia and mortality from neurological diseases, but the mechanisms underlying these increased risks remain unclear. Previously, we demonstrated that after global cerebral ischemia (GCI), 17β-estradiol (E2 or estrogen) suppresses hippocampal elevation of the Wnt antagonist Dickkopf-1 (Dkk1), a neurodegenerative factor. We, thus, hypothesized that prolonged loss of E2 may lead to dysregulation of neural Dkk1 and Wnt/β-Catenin signaling, which could contribute to an increased risk of neurodegeneration. To test this hypothesis, we examined the effect of short-term (1 week - STED) and long-term E2 deprivation (10 weeks - LTED) via ovariectomy upon basal and E2-regulated Dkk1 levels and Wnt/β-Catenin signaling in the hippocampal CA1 region following GCI. In STED rats, E2 exerted robust neuroprotection against GCI, suppressed post-ischemic elevation of Dkk1, and enhanced pro-survival Wnt/β-Catenin signaling, effects that were lost in LTED rats. Intriguingly, LTED rats displayed modest basal changes in Dkk1 and survivin expression. Further work showed that c-Jun N-terminal Kinase (JNK) mediated GCI-induced changes in Dkk1 and survivin, and JNK inhibition afforded neuroprotection in LTED rats. Finally, we extended our findings to natural aging, as 24-month-old, reproductively senescent female rats also displayed a modest increase in basal Dkk1 in the CA1, which consistently co-localized with the apoptotic marker TUNEL after GCI and coincided with a loss of E2 neuroprotection. As a whole, this study supports the "critical period hypothesis" and further suggests that perimenopausal estradiol replacement may prevent neurodegenerative changes in the hippocampus by maintaining favorable Wnt/β-Catenin signaling.
Collapse
Affiliation(s)
- Erin L. Scott
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, U.S.A
- University System of Georgia MD/PhD Program, Georgia Health Sciences University, Augusta, GA 30912, U.S.A
| | - Quan-guang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, U.S.A
| | - Dong Han
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, U.S.A
| | - Bhavna N. Desai
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, U.S.A
| | - Darrell W. Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, U.S.A
- Corresponding author: Dr. Darrell Brann, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15 Street, CA-4004, Augusta, GA 30912, USA. Phone: 1-706-721-7779, Fax: 1-706-721-8685,
| |
Collapse
|
43
|
González P, Fernández-Martos CM, Arenas E, Rodríguez FJ. The Ryk receptor is expressed in glial and fibronectin-expressing cells after spinal cord injury. J Neurotrauma 2013; 30:806-17. [PMID: 23320533 DOI: 10.1089/neu.2012.2613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Wnt proteins play a critical role in central nervous system development and have been implicated in several neuropathologies, including spinal cord injury (SCI). Ryk, an unconventional Wnt receptor, regulates axonal regeneration after SCI, although its expression pattern in this neuropathology remains unclear. Therefore, we sought to define the spatiotemporal and cellular pattern of Ryk expression after a contusive SCI in adult rats using quantitative reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical analysis. Under physiological conditions, Ryk is expressed in neurons, astrocytes, and blood vessels, but not in oligodendrocytes, microglia, NG2+ glial precursor cells, or axonal projections. Following SCI, we observed an increase in Ryk mRNA expression from 24 h post-injury until 7 days post-injury, whereas its protein levels were significantly augmented at 7 and 14 days post-injury. Moreover, the spatial and cellular Ryk expression pattern was altered in the damaged tissue, where this receptor was observed in reactive astrocytes and microglia/macrophages, NG2+ glial precursors, fibronectin+ cells, oligodendrocytes, and axons. In conclusion, we demonstrate that Ryk is expressed in the unlesioned spinal cord and that, after SCI, its spatiotemporal and cellular expression pattern changed dramatically, being expressed in cells involved in the spinal cord response to damage.
Collapse
Affiliation(s)
- Pau González
- Molecular Neurology Laboratory, Hospital Nacional de Paraplejicos-HNP, Toledo, Spain
| | | | | | | |
Collapse
|
44
|
Grunda JM, Wang D, Clines GA. Development and characterization of murine models of medulloblastoma extraneural growth in bone. Clin Exp Metastasis 2013; 30:769-79. [PMID: 23494821 DOI: 10.1007/s10585-013-9577-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/27/2013] [Indexed: 01/02/2023]
Abstract
Medulloblastoma is a malignant pediatric brain neoplasm with an unusual predilection for metastasis to the skeleton. The objective of this study was to generate and characterize murine models of medulloblastoma extraneural growth in bone as 'discovery tools' for the identification of unrecognized signal transduction pathways and factors driving metastatic bone disease. To this end, the human Daoy and D283 medulloblastoma cell lines were inoculated into the intratibial medullary space of athymic nude mice. Daoy injected mice developed a primarily osteolytic radiographic and histological phenotype. In contrast, both areas of osteolytic and osteosclerotic activity were evident in D283 inoculated bones. D283 and Daoy cell conditioned media increased in vitro osteoblast differentiation and is consistent with the enhanced bone turnover characteristic of bone metastases. Daoy cells also significantly increased bone marrow osteoclast formation, consistent with the robust in vivo osteolytic phenotype. A survey of secreted factors implicated in bone metastasis and expressed by D283 and Daoy was performed. High expression of the bone-homing factor, CXCR4, was observed in both Daoy and D283 tissues. Consistent with the skeletal phenotypes, Daoy cells, while secreting the osteoblastic factor ET-1, abundantly produced the osteolytic factors RANKL, PTHrP and TNFα. D283 cells produced high levels of both RANKL and ET-1. These newly described animal models of medulloblastoma bone metastasis are expected to serve as platforms to aid in the elucidation of novel bone metastasis signaling cascades and to test therapeutics that target both medulloblastoma metastasis and the primary tumor.
Collapse
Affiliation(s)
- Jessica M Grunda
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Boshell Diabetes Building RM 730B, 1808 7th Avenue South, Birmingham, AL, 35294-0012, USA
| | | | | |
Collapse
|
45
|
Estrogen regulation of Dkk1 and Wnt/β-Catenin signaling in neurodegenerative disease. Brain Res 2012; 1514:63-74. [PMID: 23261660 DOI: 10.1016/j.brainres.2012.12.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/11/2012] [Indexed: 11/22/2022]
Abstract
17β-estradiol (E2 or estrogen) is an endogenous steroid hormone that is well known to exert neuroprotection. Along these lines, one mechanism through which E2 protects the hippocampus from cerebral ischemia is by preventing the post-ischemic elevation of Dkk1, a neurodegenerative factor that serves as an antagonist of the canonical Wnt signaling pathway, and simultaneously inducing pro-survival Wnt/β-Catenin signaling in hippocampal neurons. Intriguingly, while expression of Dkk1 is required for proper neural development, overexpression of Dkk1 is characteristic of many neurodegenerative diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and temporal lobe epilepsy. In this review, we will briefly summarize the canonical Wnt signaling pathway, highlight the current literature linking alterations of Dkk1 and Wnt/β-Catenin signaling with neurological disease, and discuss E2's role in maintaining the delicate balance of Dkk1 and Wnt/β-Catenin signaling in the adult brain. Finally, we will consider the implications of long-term E2 deprivation and hormone therapy on this crucial neural pathway. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
|
46
|
Spatio-temporal expression pattern of frizzled receptors after contusive spinal cord injury in adult rats. PLoS One 2012; 7:e50793. [PMID: 23251385 PMCID: PMC3519492 DOI: 10.1371/journal.pone.0050793] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/24/2012] [Indexed: 02/01/2023] Open
Abstract
Background Wnt proteins are a large family of molecules that are critically involved in multiple central nervous system (CNS) developmental processes. Experimental evidences suggest a role for this family of proteins in many CNS disorders, including spinal cord injury (SCI), which is a major neuropathology owing to its high prevalence and chronic sensorimotor functional sequelae. Interestingly, most Wnt proteins and their inhibitors are expressed in the uninjured spinal cord, and their temporal expression patterns are dramatically altered after injury. However, little is known regarding the expression of their better-known receptors, the Frizzled family, after SCI. Thus, the aim of the present study was to evaluate the expression of Frizzled receptors in the damaged spinal cord. Findings Based on the evidence that Wnts are expressed in the spinal cord and are transcriptionally regulated by SCI in adulthood, we analysed the spatio-temporal mRNA and protein expression patterns of Frizzled receptors after contusive SCI using quantitative RT-PCR and single and double immunohistochemistry, respectively. Our results show that almost all of the 10 known Frizzled receptors were expressed in specific spatial patterns in the uninjured spinal cords. Moreover, the Frizzled mRNAs and proteins were expressed after SCI, although their expression patterns were altered during the temporal progression of SCI. Finally, analysis of cellular Frizzled 5 expression pattern by double immunohistochemistry showed that, in the uninjured spinal cord, this receptor was expressed in neurons, oligodendrocytes, astrocytes, microglia and NG2+ glial precursors. After injury, Frizzled 5 was not only still expressed in oligodendrocytes, astrocytes and NG2+ glial precursors but also in axons at all evaluated time points. Moreover, Frizzled 5 was expressed in reactive microglia/macrophages from 3 to 14 days post-injury. Conclusions Our data suggest the involvement of Frizzled receptors in physiological spinal cord function and in the cellular and molecular events that characterise its neuropathology.
Collapse
|
47
|
Xing Y, Zhang X, Zhao K, Cui L, Wang L, Dong L, Li Y, Liu Z, Wang C, Zhang X, Zhu C, Qiao H, Ji Y, Cao X. Beneficial effects of sulindac in focal cerebral ischemia: a positive role in Wnt/β-catenin pathway. Brain Res 2012; 1482:71-80. [PMID: 22981403 DOI: 10.1016/j.brainres.2012.08.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/09/2012] [Accepted: 08/31/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Accumulated evidences have established that inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Sulindac is well known as a nonsteroidal anti-inflammatory drug. However, little is known regarding the effect of sulindac in acute cerebral ischemia. Here, we designed this study to investigate the potential protective effects of sulindac in focal cerebral ischemia and the mechanisms underlying in vivo. METHODS Focal cerebral ischemia was induced in male Sprague-Dawley rats by permanent middle cerebral artery occlusion (pMCAO). Sulindac was administrated at dose of 4, 10, or 20mg/kg at 30 min before the operation. Neurological deficit scores, brain water content and infarct volumes were measured at 24h after pMCAO. Immunohistochemistry, western blot and reverse transcription-polymerase chain reaction were used for examining the mediators involved in Wnt/β-catenin signaling pathway, including the positive regulators dishevelled (Dvl) and β-catenin, the negative regulators adenomatous polyposis coli (APC), and P-β-catenin, as well as the downstream targets Bcl-2, Bax and claudin-5. RESULTS Compared with Vehicle group, 20mg/kg sulindac reduced neurological deficits, brain water content and infarct volumes. The same dose of sulindac upregulated the expression of Dvl, β-catenin, Bcl2 and claudin-5, and downregulated APC, P-β-catenin and Bax compared with Vehicle group. CONCLUSIONS These results showed that sulindac had a significant beneficial effect in cerebral ischemia; this effect may be correlated with the activation of the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yinxue Xing
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wexler EM, Rosen E, Lu D, Osborn GE, Martin E, Raybould H, Geschwind DH. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways. Sci Signal 2012; 4:ra65. [PMID: 21971039 DOI: 10.1126/scisignal.2002282] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.
Collapse
Affiliation(s)
- Eric M Wexler
- Department of Psychiatry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Fernández-Martos CM, González-Fernández C, González P, Maqueda A, Arenas E, Rodríguez FJ. Differential expression of Wnts after spinal cord contusion injury in adult rats. PLoS One 2011; 6:e27000. [PMID: 22073235 PMCID: PMC3206916 DOI: 10.1371/journal.pone.0027000] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/07/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Spinal cord injury is a major cause of disability that has no clinically accepted treatment. Functional decline following spinal cord injury is caused by mechanical damage, secondary cell death, reactive gliosis and a poor regenerative capacity of damaged axons. Wnt proteins are a family of secreted glycoproteins that play key roles in different developmental processes although little is known of the expression patterns and functions of Wnts in the adult central nervous system in normal or diseased states. FINDINGS Using qRT-PCR analysis, we demonstrate that mRNA encoding most Wnt ligands and soluble inhibitors are constitutively expressed in the healthy adult spinal cord. Strikingly, contusion spinal cord injury induced a time-dependent increase in Wnt mRNA expression from 6 hours until 28 days post-injury, and a narrow peak in the expression of soluble Wnt inhibitors between 1 and 3 days post-injury. These results are consistent with the increase in the migration shift, from day 1 to 7, of the intracellular Wnt signalling component, Dishevelled-3. Moreover, after an initial decrease by 1 day, we also found an increase in phosphorylation of the Wnt co-receptor, low-density lipoprotein receptor-related protein 6, and an increase in active β-catenin protein, both of which suffer a dramatic change, from a homogeneous expression pattern in the grey matter to a disorganized injury-induced pattern. CONCLUSIONS Our results suggest a role for Wnts in spinal cord homeostasis and injury. We demonstrate that after injury Wnt signalling is activated via the Wnt/β-catenin and possibly other pathways. These findings provide an important foundation to further address the function of individual Wnt proteins in vivo and the pathophysiology of spinal cord injury.
Collapse
Affiliation(s)
| | | | - Pau González
- Laboratorio de Neurología Molecular, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | - Alfredo Maqueda
- Laboratorio de Neurología Molecular, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | - Ernest Arenas
- Molecular Neurobiology Unit, MBB, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
50
|
Moors M, Bose R, Johansson-Haque K, Edoff K, Okret S, Ceccatelli S. Dickkopf 1 mediates glucocorticoid-induced changes in human neural progenitor cell proliferation and differentiation. Toxicol Sci 2011; 125:488-95. [PMID: 22048647 DOI: 10.1093/toxsci/kfr304] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoids (GC) are critical for normal development of the fetal brain, and alterations in their levels can induce neurotoxicity with detrimental consequences. Still, there is little information available on the effects of GC on human neural stem/progenitor cells (hNPC). In the present study, we have investigated the effects of the synthetic GC dexamethasone (Dex) on hNPC grown as neurospheres, with special focus on their proliferation and differentiation capacity and the underlying molecular mechanisms. Immunocytochemical stainings showed that Dex markedly decreases proliferation and neuronal differentiation while promoting glia cell formation. Analysis of pathway-specific genes revealed that Dex induces an upregulation of the Wnt-signaling antagonist DKK1. Moreover, Dex- or DKK1-treated hNPCs showed reduced transcriptional levels of the two canonical Wnt target genes cyclin D1 and inhibitor of DNA binding 2 (ID2). Chromatin immunoprecipitation showed that Dex, via the glucocorticoid receptor, interacts with the DKK1 promotor. Treatment of hNPC with recombinant DKK1 or neutralizing antibodies indicated that DKK1 has a critical role in the Dex-induced inhibition of proliferation and neuronal differentiation with a concomitant increase in glial cells. Taken together, our findings show that GC reduce proliferation and interfere with differentiation of hNPCs via the canonical Wnt-signaling pathway.
Collapse
Affiliation(s)
- Michaela Moors
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|