1
|
Asadi Y, Moundounga RK, Chakroborty A, Pokokiri A, Wang H. FOXOs and their roles in acute and chronic neurological disorders. Front Mol Biosci 2025; 12:1538472. [PMID: 40260403 PMCID: PMC12010098 DOI: 10.3389/fmolb.2025.1538472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 04/23/2025] Open
Abstract
The forkhead family of transcription factors of class O (FOXOs) consisting of four functionally related proteins, FOXO1, FOXO3, FOXO4, and FOXO6, are mammalian homologs of daf-16 in Caenorhabditis elegans and were previously identified as tumor suppressors, oxidative stress sensors, and cell survival modulators. Under normal physiological conditions, FOXO protein activities are negatively regulated by phosphorylation via the phosphoinositide 3-kinase (PI3K)-Akt pathway, a well-known cell survival pathway: Akt phosphorylates FOXOs to inactivate their transcriptional activity by relocalizing FOXOs from the nucleus to the cytoplasm for degradation. However, under oxidative stress or absent the cellular survival drive of growth factors, FOXO proteins translocate to the nucleus and upregulate a series of target genes, thereby promoting cell growth arrest and cell death and altering mitochondrial homeostasis. FOXO gene expression is also regulated by other transcriptional factors such as p53 or autoregulation by their activities and end products. Here we summarize the structure, posttranslational modifications, and translocation of FOXOs linking to their transcriptional control of cellular functions, survival, and death, emphasizing their role in regulating the cellular response to some acute insults and chronic neurological disorders. This review will conclude with a brief section on potential therapeutic interventions that can be used to modulate FOXOs' activities when treating acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Yasin Asadi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rozenn K. Moundounga
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Anand Chakroborty
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Augustina Pokokiri
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hongmin Wang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
2
|
Zheng H, Li L, Wang D, Zhang S, Li W, Cheng M, Ge C, Chen J, Qiang Y, Chen F, Yu Y. FoxO is required for neoblast differentiation during planarian regeneration. Int J Biol Macromol 2025; 288:138729. [PMID: 39672403 DOI: 10.1016/j.ijbiomac.2024.138729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Stem cells are of great importance in the maintenance and regeneration of tissues, with Forkhead box O (FoxO) proteins emerging as pivotal regulators of their functions. However, the precise impact of FoxO proteins on stem cell behavior within regenerative environments remains ambiguous. Planarians, renowned for their abundance of adult stem cells (neoblasts), serve as an excellent model for investigating the dynamics of stem cells during regeneration. In this study, we identified DjfoxO, a conserved foxO gene in the planarian Dugesia japonica, and demonstrated its expression in neoblasts, with elevated levels detected in the regenerative blastema during the regeneration process. Using a FoxO inhibitor (AS1842856) together with RNA interference techniques, we demonstrated that inhibition of FoxO signaling in planarians hinders the regeneration of missing tissues, including the central nervous system, eyespots, anterior intestinal branches, and pharynx. It is noteworthy that the knockdown of DjfoxO does not significantly affect the mitotic activity of neoblasts. Conversely, it impedes the production of lineage-specific progenitors, potentially via modulation of the Erk pathway. These findings elucidate the instructive function of FoxO signaling in regulating stem cell differentiation and provide valuable insights into its potential for improving stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Linfeng Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Du Wang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Shengchao Zhang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Wenhui Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Cui Ge
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jiayi Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yanmei Qiang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
3
|
Khaitin AM, Guzenko VV, Bachurin SS, Demyanenko SV. c-Myc and FOXO3a-The Everlasting Decision Between Neural Regeneration and Degeneration. Int J Mol Sci 2024; 25:12621. [PMID: 39684331 DOI: 10.3390/ijms252312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The transcription factors c-Myc and FoxO3a play significant roles in neurodegenerative processes, yet their interaction in neurological disorders remains largely unexplored. In contrast, much of the available information about their relationship comes from cancer research. While it is well-established that FoxO3a inhibits c-Myc activity, this interaction represents only a basic understanding of a far more complex dynamic, which includes exceptions under specific conditions and the involvement of additional regulatory factors. Given the critical need to address this gap for the treatment and prevention of neurodegenerative disorders, this review consolidates current knowledge on the joint roles of these two factors in neuropathology. It also highlights their conformational flexibility, post-translational modifications, and outlines potential directions for future research.
Collapse
Affiliation(s)
- Andrey M Khaitin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Valeria V Guzenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Stanislav S Bachurin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Svetlana V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| |
Collapse
|
4
|
Zhang W, Ni Y, Li J, Hua R, Wang Y, Yang H, Li X, Gan M, Chu G. NUAK2 mediated regulation of Schwann Cell proliferation and migration in peripheral nerve injury via YAP. Heliyon 2024; 10:e34127. [PMID: 39071701 PMCID: PMC11282989 DOI: 10.1016/j.heliyon.2024.e34127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
NUAK2 is a member of the AMP-activated protein kinase (AMPK) family, which plays an essential role in cellular processes such as apoptosis, proliferation, and cell fate. Recent studies have already shown that silencing of NUAK2 blocks proliferation and promotes apoptosis of human melanoma cells and liver cancer cells. In addition, NUAK2 is involved in the development of glioblastoma via regulating the expression of cancer stem cell-related genes, and it promotes the cell cycle entry in the glioblastoma cells. However, the expression and the role of NUAK2 in the progress of peripheral nerve regeneration after injury are yet to be elucidated. We observed that NUAK2 was upregulated following distal sciatic nerve crush (SNC). Interestingly, we discovered that NUAK2 showed co-localization with S100 (Schwann cell marker). Furthermore, we found that the NUAK2 had a spatiotemporal protein expression, which was consistent with proliferating cell nuclear-antigen (PCNA). The protein level of NUAK2 and YAP was upregulated in the model of TNF-α-induced Schwann cell (SC) proliferation. Furthermore, flow cytometry analysis, CCK-8, transwell assays, and wound healing assays were all performed with the purpose of exploring the role of NUAK2 in the regulation of SC proliferation and migration. More importantly, we found that NUAK2-deficient SCs showed significantly reduced expression of Yes-associated protein (YAP). Bioinformatic analysis identified upstream regulators of NUAK2 and NUAK2-associated genes (e.g., YAP1). Finally, we investigated the recovery changes during regeneration progress through the walking track analysis. Thus, we speculated that NUAK2 was involved in biochemical and physiological responses of SCs after SNC via YAP-driven proliferation and migration, and this study determined the importance of NUAK2 as a potential target in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yingchen Ni
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianxin Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Runjia Hua
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yudong Wang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xuefeng Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Minfeng Gan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Zainul Z, Ma B, Koka M, Wilkerson JL, Ortiz YT, Kerosuo L, Chandran V. Novel roles of phentolamine in protecting axon myelination, muscle atrophy, and functional recovery following nerve injury. Sci Rep 2022; 12:3344. [PMID: 35228612 PMCID: PMC8885794 DOI: 10.1038/s41598-022-07253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Incomplete functional recovery after peripheral nerve injury (PNI) often results in devastating physical disabilities in human patients. Despite improved progress in surgical and non-surgical approaches, achieving complete functional recovery following PNI remains a challenge. This study demonstrates that phentolamine may hold a significant promise in treating nerve injuries and denervation induced muscle atrophy following PNI. In a sciatic nerve crush injury mouse model, we found that phentolamine treatment enhanced motor and functional recovery, protected axon myelination, and attenuated injury-induced muscle atrophy in mice at 14 days post-injury (dpi) compared to saline treatment. In the soleus of phentolamine treated animals, we observed the downregulation of phosphorylated signal transducer and activator of transcription factor 3 (p-STAT3) as well as muscle atrophy-related genes Myogenin, muscle ring finger 1 (MuRF-1), and Forkhead box O proteins (FoxO1, FoxO3). Our results show that both nerve and muscle recovery are integral components of phentolamine treatment-induced global functional recovery in mice at 14 dpi. Moreover, phentolamine treatment improved locomotor functional recovery in the mice after spinal cord crush (SCC) injury. The fact that phentolamine is an FDA approved non-selective alpha-adrenergic blocker, clinically prescribed for oral anesthesia reversal, hypertension, and erectile dysfunction makes this drug a promising candidate for repurposing in restoring behavioral recovery following PNI and SCC injuries, axonal neuropathy, and muscle wasting disorders.
Collapse
Affiliation(s)
- Zarin Zainul
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Bo Ma
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mert Koka
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Yuma T Ortiz
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health Intramural Research Program, Bethesda, MD, 20892, USA
| | - Vijayendran Chandran
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, College of Medicine, University of Florida, and McKnight Brain Institute, Gainesville, FL, 32610, USA.
| |
Collapse
|
6
|
Marinkovic T, Marinkovic D. Obscure Involvement of MYC in Neurodegenerative Diseases and Neuronal Repair. Mol Neurobiol 2021; 58:4169-4177. [PMID: 33954904 DOI: 10.1007/s12035-021-02406-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
MYC is well known as a potent oncogene involved in regulating cell cycle and metabolism. Augmented MYC expression leads to cell cycle dysregulation, intense cell proliferation, and carcinogenesis. Surprisingly, its increased expression in neurons does not induce their proliferation, but leads to neuronal cell death and consequent development of a neurodegenerative phenotype. Interestingly, while cancer and neurodegenerative diseases such as Alzheimer's disease are placed at the opposite sides of cell division spectrum, both start with cell cycle dysregulation and stimulation of proliferation. It seems that MYC action directed toward neuron cell proliferation and neural tissue repair collides with evolutional loss of regenerative capacity of CNS neurons in order to strengthen synaptic structure, to protect our cognitive abilities and therefore character. Accordingly, there are abundant mechanisms that block its expression and action specifically in the brain. Moreover, while MYC expression in brain neurons during neurodegenerative processes is related to their death, there are obvious evidences that MYC action after physical injury is beneficial in case of peripheral nerve recovery. MYC might be a useful tool to repair brain cells upon development of neurodegenerative disease or CNS trauma, including stroke and traumatic brain and spinal cord injury, as even imperfect axonal growth and regeneration strategies will likely be of profound benefit. Understanding complex control of MYC action in the brain might have important therapeutic significance, but also it may contribute to the comprehension of development of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Visokog Stevana 2, 11000, Belgrade, Serbia.
| |
Collapse
|
7
|
Hasmatali JCD, De Guzman J, Johnston JM, Noyan H, Juurlink BH, Misra V, Verge VMK. FOXO3a as a sensor of unilateral nerve injury in sensory neurons ipsilateral, contralateral and remote to injury. Neural Regen Res 2020; 15:2353-2361. [PMID: 32594060 PMCID: PMC7749464 DOI: 10.4103/1673-5374.284999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence supports that the stress response to peripheral nerve injury extends beyond the injured neuron, with alterations in associated transcription factors detected both locally and remote to the lesion. Stress-induced nuclear translocation of the transcription factor forkhead class box O3a (FOXO3a) was initially linked to activation of apoptotic genes in many neuronal subtypes. However, a more complex role of FOXO3a has been suggested in the injury response of sensory neurons, with the injured neuron expressing less FOXO3a. To elucidate this response and test whether non-injured sensory neurons also alter FOXO3a expression, the temporal impact of chronic unilateral L4–6 spinal nerve transection on FOXO3a expression and nuclear localization in adult rat dorsal root ganglion neurons ipsilateral, contralateral or remote to injury relative to naïve controls was examined. In naïve neurons, high cytoplasmic and nuclear levels of FOXO3a colocalized with calcitonin gene related peptide, a marker of the nociceptive subpopulation. One hour post-injury, an acute increase in nuclear FOXO3a in small size injured neurons occurred followed by a significant decrease after 1, 2 and 4 days, with levels increasing toward pre-injury levels by 1 week post-injury. A more robust biphasic response to the injury was observed in uninjured neurons contralateral to and those remote to injury. Nuclear levels of FOXO3a peaked at 1 day, decreased by 4 days, then increased by 1 week post-injury, a response mirrored in C4 dorsal root ganglion neurons remote to injury. This altered expression contralateral and remote to injury supports that spinal nerve damage has broader systemic impacts, a response we recently reported for another stress transcription factor, Luman/CREB3. The early decreased expression and nuclear localization of FOXO3a in the injured neuron implicate these changes in the cell body response to injury that may be protective. Finally, the broader systemic changes support the existence of stress/injury-induced humeral factor(s) influencing transcriptional and potentially behavioral changes in uninjured dorsal root ganglion neurons. Approval to conduct this study was obtained from the University of Saskatchewan Animal Research Ethics Board (protocol #19920164).
Collapse
Affiliation(s)
- Jovan C D Hasmatali
- Department of Anatomy, Physiology, and Pharmacology; Cameco MS Neuroscience Research Center; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK; Current affiliation: Department of Critical Care Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jolly De Guzman
- Department of Anatomy, Physiology, and Pharmacology; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jayne M Johnston
- Department of Anatomy, Physiology, and Pharmacology; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hossein Noyan
- Department of Anatomy, Physiology, and Pharmacology; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK; Current affiliation: Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Bernhard H Juurlink
- Department of Anatomy, Physiology, and Pharmacology; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Vikram Misra
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Valerie M K Verge
- Department of Anatomy, Physiology, and Pharmacology; Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Almurshidi B, Carver W, Scott G, Ray SK. Roles of miRNAs in spinal cord injury and potential therapeutic interventions. NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2019; 6:11. [PMID: 33869675 PMCID: PMC8052101 DOI: 10.20517/2347-8659.2019.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Spinal cord injury (SCI) affects approximately 200,000 individuals per year worldwide. There are more than 27 million people worldwide living with long-term disability due to SCI. Historically, it was thought that the central nervous system (CNS) had little ability for regeneration; however, more recent studies have demonstrated potential for repair within the CNS. Because of this, there exists a renewed interest in the discovery of novel approaches to promote regeneration in the CNS including the spinal cord. It is important to know the roles of the microRNAs (miRNAs) in modulation of pathogenesis in SCI and the potentials of the miRNA-based clinical interventions for controlling post-injury symptoms and improving functional recovery. The miRNAs, which are non-coding RNAs with an average of 22 nucleotides in length, are post-transcriptional gene regulators that cause degradation of the target mRNAs and thus negatively control their translation. This review article focuses on current research related to miRNAs and their roles in modulating SCI symptoms, asserting that miRNAs contribute to critical post-SCI molecular processes including neuroplasticity, functional recovery, astrogliosis, neuropathic pain, inflammation, and apoptosis. In particular, miR-96 provides a promising therapeutic opportunity to improve the outcomes of clinical interventions, including the way SCI injuries are evaluated and treated.
Collapse
Affiliation(s)
- Badria Almurshidi
- Department of Environmental Health Sciences, Arnold School of Public Health, CENR, University of South Carolina, Columbia, SC 29209, USA
| | - Wayne Carver
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Geoff Scott
- Department of Environmental Health Sciences, Arnold School of Public Health, CENR, University of South Carolina, Columbia, SC 29209, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
9
|
Abstract
The FOXO family of transcription factors plays a conserved role in longevity and tissue homeostasis across species. In the mammalian nervous system, emerging evidence has implicated FOXOs in cognitive performance, stem cell maintenance, regeneration, and protection against stress. Much of what we know about neuronal functions of FOXO emerged from recent studies in C. elegans. Similar to mammalian FOXO, the worm FOXO ortholog, called DAF-16, regulates learning and memory, regeneration, and stress resistance in neurons. Here, we discuss the current state of our knowledge of FOXO’s functions in neurons in mammals and invertebrates, and highlight areas where our understanding is limited. Defining the function of FOXO factors in the healthy, aged, and diseased brain may have important implications for improving healthspan and treating neurodegenerative disease.
Collapse
Affiliation(s)
- Sun Y Kim
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Krishnan A, Duraikannu A, Zochodne DW. Releasing 'brakes' to nerve regeneration: intrinsic molecular targets. Eur J Neurosci 2015; 43:297-308. [PMID: 26174154 DOI: 10.1111/ejn.13018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023]
Abstract
Restoring critical neuronal architecture after peripheral nerve injury is challenging. Although immediate regenerative responses to peripheral axon injury involve the synthesis of regeneration-associated proteins in neurons and Schwann cells, an unfavorable balance between growth facilitatory and growth inhibitory signaling impairs the growth continuum of injured peripheral nerves. Molecules involved with the signaling network of tumor suppressors play crucial roles in shifting the balance between growth and restraint during axon regeneration. An understanding of the molecular framework of tumor suppressor molecules in injured neurons and its impact on stage-specific regeneration events may expose therapeutic intervention points. In this review we discuss how signaling networks of the specific tumor suppressors PTEN, Rb1, p53, p27 and p21 are altered in injured peripheral nerves and how this impacts peripheral nerve regeneration. Insights into the roles and importance of these pathways may open new avenues for improving the neurological deficits associated with nerve injury.
Collapse
Affiliation(s)
- Anand Krishnan
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Arul Duraikannu
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
11
|
Han J, Zhao J, Jiang J, Ma X, Liu X, Wang C, Jiang S, Wan C. Zinc deficiency impairs the renewal of hippocampal neural stem cells in adult rats: involvement of FoxO3a activation and downstream p27(kip1) expression. J Neurochem 2015; 134:879-91. [PMID: 26086369 DOI: 10.1111/jnc.13199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022]
Abstract
Zinc plays an important role in the development and maintenance of central neural system. Zinc deficiency has been known to alter normal brain function, whose molecular mechanism remains largely elusive. In the present study, we established a zinc deficiency-exposed rat model, and, using western blot and immunohistochemical analyses, found that the expression of FoxO3a and p27(kip1) was remarkably up-regulated in the rat brain hippocampus. Immunofluorescence assay showed that FOXO3a and p27(kip1) were significantly co-localized with nestin, the marker of neural stem cells (NSCs). Furthermore, we identified that the proportion of proliferating NSCs was markedly decreased in zinc-deficient rat hippocampaus. Using C17.2 neural stem cells, it was revealed that exposure to zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethy) ethylenediamine induced the expression of FoxO3a and p27(kip1) , which coincided with reduced NSC proliferation. Furthermore, depletion of FoxO3a inhibited p27(kip1) expression and restored the growth of NSCs. On the basis of these data, we concluded that FoxO3a/p27(kip1) signaling might play a significant role in zinc deficiency-induced growth impairment of NSCs and consequent neurological disorders. We describe here that zinc deficiency induces the proliferative impairment of hippocampal neural stem cells partially through the activation of FOXO3a-p27 axis in rats. Neural progenitor cells exhibited significantly up-regulated expression of FOXO3a and p27 after zinc deficiency in vivo and in vitro. Depletion of FOXO3a ameliorates zinc deficiency-induced expression of p27 and growth impairment of neural stem cells. We provide novel insight into the mechanisms underlying zinc deficiency-induced neurological deficits.
Collapse
Affiliation(s)
- Jingling Han
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Jianya Zhao
- Department of Nutrition and Food hygiene, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Junkang Jiang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Xia Ma
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Xinhang Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Cheng Wang
- Department of Nutrition and Food hygiene, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Shengyang Jiang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Occupational Medicine and Environmental Toxicity, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| | - Chunhua Wan
- Department of Nutrition and Food hygiene, School of Public Health, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
12
|
Cui Z, Zhou L, Liu C, Zhu G, Wu X, Yan Y, Xia X, Ben Z, Song Y, Zhou Y, Zhang H, Zhang D. The role of Homer1b/c in neuronal apoptosis following LPS-induced neuroinflammation. Neurochem Res 2014; 40:204-15. [PMID: 25503822 DOI: 10.1007/s11064-014-1460-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 10/16/2014] [Accepted: 10/18/2014] [Indexed: 02/07/2023]
Abstract
Homer, also designated Vesl, is one member of the newly found postsynaptic density scaffold proteins, playing a vital role in maintaining synaptic integrity, regulating intracellular calcium mobilization, and being critical for the regulation of cellular apoptosis. However, its function in the inflamed central nervous system (CNS) is not fully elucidated. Here, we investigated the role of Homer1b/c, a long form of Homer1, in lipopolysaccharide (LPS) induced neuroinflammation in CNS. Western blot analysis indicated that LPS administration significantly increased the expression of Homer1b/c in rat brain. Moreover, double immunofluorescent staining suggested Homer1b/c was mainly distributed in the cytoplasm of neurons and had a close association with cleaved caspase-3 level in neurons in rat brain after LPS injection. In vitro studies indicated that up-regulation of Homer1b/c might be related to the subsequent apoptosis in neurons treated by conditioned media (CM), collected from LPS-stimulated mixed glial cultures (MGC). We also found down-regulation of Homer1b/c partly blocked the increase of cleaved caspase-3 and the proportion of Bax/Bcl-2 in neurons induced by MGC-CM. Taken together, these findings suggested that Homer1b/c might promote neuronal apoptosis via the Bax/Bcl-2 dependent pathway during neuroinflammation in CNS, and inhibiting Homer1b/c expression might provide a novel neuroprotective strategy against the inflammation-related neuronal apoptosis.
Collapse
Affiliation(s)
- Zhiming Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226002, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhou Z, Liu Y, Nie X, Cao J, Zhu X, Yao L, Zhang W, Yu J, Wu G, Liu Y, Yang H. Involvement of upregulated SYF2 in Schwann cell differentiation and migration after sciatic nerve crush. Cell Mol Neurobiol 2014; 34:1023-36. [PMID: 24962097 PMCID: PMC11488921 DOI: 10.1007/s10571-014-0078-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/02/2014] [Indexed: 01/22/2023]
Abstract
SYF2 is a putative homolog of human p29 in Saccharomyces cerevisiae. It seems to be involved in pre-mRNA splicing and cell cycle progression. Disruption of SYF2 leads to reduced α-tubulin expression and delayed nerve system development in zebrafish. Due to the potential of SYF2 in modulating microtubule dynamics in nervous system, we investigated the spatiotemporal expression of SYF2 in a rat sciatic nerve crush (SNC) model. We found that SNC resulted in a significant upregulation of SYF2 from 3 days to 1 week and subsequently returned to the normal level at 4 weeks. At its peak expression, SYF2 distributed predominantly in Schwann cells. In addition, upregulation of SYF2 was approximately in parallel with Oct-6, and numerous Schwann cells expressing SYF2 were Oct-6 positive. In vitro, we observed enhanced expression of SYF2 during the process of cyclic adenosine monophosphate (cAMP)-induced Schwann cell differentiation. SYF2-specific siRNA-transfected Schwann cells did not show significant morphological change in the process of Schwann cell differentiation. Also, we found shorter and disorganized microtubule structure and a decreased migration in SYF2-specific siRNA-transfected Schwann cells. Together, these findings indicated that the upregulation of SYF2 was associated with Schwann cell differentiation and migration following sciatic nerve crush.
Collapse
Affiliation(s)
- Zhengming Zhou
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Yang Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiaoke Nie
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Jianhua Cao
- Department of Orthopaedics, Affiliated Mental Health Center of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiaojian Zhu
- Department of Orthopaedics, Affiliated Mental Health Center of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Li Yao
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Jiang Yu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Gang Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Yonghua Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Huiguang Yang
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
14
|
Yao L, Cao J, Sun H, Guo A, Li A, Ben Z, Zhang H, Wang X, Ding Z, Yang X, Huang X, Ji Y, Zhou Z. FBP1 and p27kip1 expression after sciatic nerve injury: implications for Schwann cells proliferation and differentiation. J Cell Biochem 2014; 115:130-40. [PMID: 23939805 DOI: 10.1002/jcb.24640] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/30/2013] [Indexed: 11/09/2022]
Abstract
Far Upstream Element (FUSE) Binding Protein 1 (FBP1), first identified as a single-stranded DNA (ssDNA) binding protein that binds to the FUSE, could modulate c-myc mRNA levels and also has been shown to regulate tumor cell proliferation and replication of virus. Typically, FBP1 could active the translation of p27kip1 (p27) and participate in tumor growth. However, the expression and roles of FBP1 in peripheral system lesions and repair are still unknown. In our study, we found that FBP1 protein levels was relatively higher in the normal sciatic nerves, significantly decreased and reached a minimal level at Day 3, and then returned to the normal level at 4 weeks. Spatially, we observed that FBP1 had a major colocation in Schwann cells and FBP1 was connected with Ki-67 and Oct-6. In vitro, we detected the decreased level of FBP1 and p27 in the TNF-α-induced Schwann cells proliferation model, while increased expression in cAMP-induced Schwann cells differentiation system. Specially, FBP1-specific siRNA-transfected SCs did not show fine and longer morphological change after cAMP treatment and had a decreased motility compared with normal. At 3 days after cAMP treatment and SC/neuron co-cultures, p27 was transported to cytoplasm to form CDK4/6-p27 to participate in SCs differentiation. In conclusion, we speculated that FBP1 and p27 were involved in SCs proliferation and the following differentiation in the sciatic nerve after crush by transporting p27 from nucleus to cytoplasm.
Collapse
Affiliation(s)
- Li Yao
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cao J, Cheng X, Zhou Z, Sun H, Zhou F, Zhao J, Liu Y, Cui G. Changes in the Foxj1 expression of Schwann cells after sciatic nerve crush. J Mol Histol 2013; 44:391-9. [DOI: 10.1007/s10735-013-9500-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/12/2013] [Indexed: 02/03/2023]
|
16
|
Cheng X, Gan L, Zhao J, Chen M, Liu Y, Wang Y. Changes in Ataxin-10 Expression after Sciatic Nerve Crush in Adult Rats. Neurochem Res 2013; 38:1013-21. [DOI: 10.1007/s11064-013-1011-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/19/2013] [Accepted: 02/23/2013] [Indexed: 01/22/2023]
|
17
|
Nechipurenko IV, Broihier HT. FoxO limits microtubule stability and is itself negatively regulated by microtubule disruption. ACTA ACUST UNITED AC 2012; 196:345-62. [PMID: 22312004 PMCID: PMC3275378 DOI: 10.1083/jcb.201105154] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
FoxO inhibits microtubule stability in the central nervous system, making its degradation an essential component of a cell’s protective response to cytoskeletal insult. Transcription factors are essential for regulating neuronal microtubules (MTs) during development and after axon damage. In this paper, we identify a novel neuronal function for Drosophila melanogaster FoxO in limiting MT stability at the neuromuscular junction (NMJ). foxO loss-of-function NMJs displayed augmented MT stability. In contrast, motor neuronal overexpression of wild-type FoxO moderately destabilized MTs, whereas overexpression of constitutively nuclear FoxO severely destabilized MTs. Thus, FoxO negatively regulates synaptic MT stability. FoxO family members are well-established components of stress-activated feedback loops. We hypothesized that FoxO might also be regulated by cytoskeletal stress because it was well situated to shape neuronal MT organization after cytoskeletal damage. Indeed, levels of neuronal FoxO were strongly reduced after acute pharmacological MT disruption as well as sustained genetic disruption of the neuronal cytoskeleton. This decrease was independent of the dual leucine zipper kinase–Wallenda pathway and required function of Akt kinase. We present a model wherein FoxO degradation is a component of a stabilizing, protective response to cytoskeletal insult.
Collapse
Affiliation(s)
- Inna V Nechipurenko
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
18
|
Yoo KY, Kwon SH, Lee CH, Yan B, Park JH, Ahn JH, Choi JH, Ohk TG, Cho JH, Won MH. FoxO3a Changes in Pyramidal Neurons and Expresses in Non-Pyramidal Neurons and Astrocytes in the Gerbil Hippocampal CA1 Region After Transient Cerebral Ischemia. Neurochem Res 2011; 37:588-95. [DOI: 10.1007/s11064-011-0648-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/08/2011] [Accepted: 11/02/2011] [Indexed: 12/17/2022]
|
19
|
Vakharia KT, Lindsay RW, Knox C, Edwards C, Henstrom D, Weinberg J, Hadlock TA, Heaton JT. The effects of potential neuroprotective agents on rat facial function recovery following facial nerve injury. Otolaryngol Head Neck Surg 2011; 144:53-9. [PMID: 21493387 DOI: 10.1177/0194599810390892] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate whether a series of pharmacologic agents with potential neuroprotective effects accelerate and/or improve facial function recovery after facial nerve crush injury. STUDY DESIGN Randomized animal study. SETTING Tertiary care facility. METHODS Eighty female Wistar-Hannover rats underwent head restraint implantation and daily conditioning. Animals then underwent unilateral crush injury to the main trunk of the facial nerve and were randomized to receive treatment with atorvastatin (n = 10), sildenafil (n = 10), darbepoetin (n = 20), or a corresponding control agent (n = 40). The return of whisking function was tracked throughout the recovery period. RESULTS All rats initiated the return of whisking function from nerve crush by day 12. Darbepoetin-treated rats (n = 20) showed significantly improved whisking amplitude and velocity across the recovery period, with several days of significant pairwise differences vs comparable control rats (n = 16) across the first 2 weeks of whisking function return. In contrast, rats treated with sildenafil (n = 10) and atorvastatin (n = 10) did not show significant improvement in whisking function recovery after facial nerve crush compared to controls. By week 8, all darbepoetin-treated animals and comparable nerve crush control animals fully recovered whisking function and were statistically indistinguishable. CONCLUSION Among the 3 potentially neuroprotective agents evaluated, only darbepoetin administration resulted in accelerated recovery of whisking parameters after facial nerve crush injury. Further efforts to define the mechanism of action and translate these findings to the use of darbepoetin in the care of patients with traumatic facial paralysis are needed.
Collapse
Affiliation(s)
- Kalpesh T Vakharia
- Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang Q, Wang Y, Zhou Z, Lu X, Cao Y, Liu Y, Yan M, He F, Pan X, Qian X, Ji Y, Yang H. Expressions of forkhead class box O 3a on crushed rat sciatic nerves and differentiated primary Schwann cells. Cell Mol Neurobiol 2011; 31:509-18. [PMID: 21259047 PMCID: PMC11498445 DOI: 10.1007/s10571-010-9644-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Forkhead box-containing protein, class O 3 a (FOXO3a), an Akt downstream target, plays an important role in peripheral nervous system. FOXO3a shares the ability to be inhibited and translocated from the nucleus on phosphorylation by proteins such as Akt/PKB in the PI3K signaling pathway. To elucidate the expression and possible function of FOXO3a in lesion and repair, we performed an acute sciatic nerve crush model and studied differential expressions of FOXO3a. We observed that expressions of FOXO3a in Schwann cells (SCs) of the peripheral nervous system and cAMP-induced differentiation were dynamically regulated. Western blot analysis showed FOXO3a level significantly decreased post injury. Moreover, Immunofluorescence double labeling suggested the changes were striking especially in SCs. In vitro, Western blot analysis showed that the expression of FOXO3a was decreased in cAMP-induced differentiated primary SCs. The FOXO3a siRNA-transfected SCs treated by cAMP promote differentiation of SCs through the PI3K/Akt pathway. The results indicate that FOXO3a plays an important role during differentiation of SCs.
Collapse
Affiliation(s)
- Qiuhong Wang
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| | - Zhengming Zhou
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| | - Xiang Lu
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| | - Yi Cao
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| | - Yonghua Liu
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Meijuan Yan
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Fei He
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Xia Pan
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Xiaoli Qian
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Yuhong Ji
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 China
| | - Huiguang Yang
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| |
Collapse
|
21
|
Peng K, Li Y, Long L, Li D, Jia Q, Wang Y, Shen Q, Tang Y, Wen L, Kung HF, Peng Y. Knockdown of FoxO3a induces increased neuronal apoptosis during embryonic development in zebrafish. Neurosci Lett 2010; 484:98-103. [PMID: 20674670 DOI: 10.1016/j.neulet.2010.07.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/20/2010] [Accepted: 07/24/2010] [Indexed: 10/19/2022]
Abstract
Neuronal apoptosis sculpts the developing brain, and nearly all identified classes of neurons seem to be produced "in excess" during development. FoxO transcription factors regulate apoptosis in vitro in deprived of neurotrophins. It is unknown if FoxO3a is involved in the development of neurons. Here, we report a role of FoxO3a during neuronal development in zebrafish. By using in situ hybridization, we revealed that FoxO3a transcripts in zebrafish were gradually confined to regions of the central nervous system during embryonic development, including the forebrain, midbrain, midbrain-hindbrain boundary and hindbrain. By using FoxO3a morpholino antisense oligonucleotides, we observed that FoxO3a loss-of-function led to neural developmental defects, including increased neural apoptosis as detected by acridine orange and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling. These defects could be partially rescued by the injection of FoxO3a mRNA. In this study, we found that FoxO3a loss-of-function resulted in the decreased expression of neuronal markers as determined by in situ hybridization and relative quantitative real-time PCR. Furthermore, the activation of FoxO3a was required for the maintenance of neuron survival but not necessary for the induction of neurogenesis. Our results indicated that FoxO3a might be essential for the maintenance of neural development in zebrafish. Therefore, this work provides novel evidence of FoxO3a in the embryonic neurodevelopment from zebrafish to other mammals.
Collapse
Affiliation(s)
- Kou Peng
- Laboratory of Integrated Bioscience, School of Life Science, Sun Yat-sen University, No. 135 West XinGang Road, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|