1
|
Zeng S, Li Y, Yao Z, Li Y, Cao Y, Wen L, Li M, Zheng J, Wang H. Edaravone combined with hyperbaric oxygen therapy in delayed encephalopathy after acute carbon monoxide poisoning: A meta-analysis. J Clin Neurosci 2024; 126:270-283. [PMID: 38986338 DOI: 10.1016/j.jocn.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The use of both edaravone (EDA) and hyperbaric oxygen therapy (HBOT) is increasingly prevalent in the treatment of delayed encephalopathy after carbon monoxide poisoning (DEACMP). This meta-analysis aims to evaluate the efficacy of using EDA and HBOT in combination with HBOT alone in the treatment of DEACMP. METHODS We searched and included all randomized controlled trials (RCTs) published before November 6, 2023, from 12 Chinese and English databases and clinical trial centers in China and the United States. The main outcome indicator was the total effective rate. The secondary outcome indicators included the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), National Institutes of Health Stroke Scale (NIHSS), Barthel Index (BI), Hasegawa Dementia Scale (HDS), Fugl-Meyer Assessment (FMA), Superoxide Dismutase (SOD), and Malondialdehyde (MDA). Statistical measures utilized include risk ratios (RR), weighted mean difference (WMD), and 95 % confidence intervals (95 % CI). RESULTS Thirty studies involving a combined total of 2075 participants were ultimately incorporated. It was observed that the combination of EDA with HBOT for the treatment of DEACMP demonstrated an improvement in the total effective rate (RR: 1.25; 95 % CI: 1.20-1.31; P < 0.01), MMSE (WMD: 3.67; 95 % CI: 2.59-4.76; P < 0.01), MoCA (WMD: 4.38; 95 % CI: 4.00-4.76; P < 0.01), BI (WMD: 10.94; 95 % CI: 5.23-16.66; P < 0.01), HDS (WMD: 6.80; 95 % CI: 4.05-9.55; P < 0.01), FMA (WMD: 8.91; 95 % CI: 7.22-10.60; P < 0.01), SOD (WMD: 18.45; 95 % CI: 16.93-19.98; P < 0.01); and a reduction in NIHSS (WMD: -4.12; 95 % CI: -4.93 to -3.30; P < 0.01) and MDA (WMD: -3.05; 95 % CI: -3.43 to -2.68; P < 0.01). CONCLUSION Low-quality evidence suggests that for DEACMP, compared to using HBOT alone, the combined use of EDA and HBOT may be associated with better cognition and activity of daily living. In the future, conducting more meticulously designed multicenter and large-sample RCTs to substantiate our conclusions is essential.
Collapse
Affiliation(s)
- Siyao Zeng
- Harbin Medical University Graduate School, Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Yue Li
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Zhipeng Yao
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Yunlong Li
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Yang Cao
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Lianghe Wen
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Ming Li
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Junbo Zheng
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China.
| | - Hongliang Wang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China.
| |
Collapse
|
2
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Chen Q, Cai Y, Zhu X, Wang J, Gao F, Yang M, Mao L, Zhang Z, Sun B. Edaravone Dexborneol Treatment Attenuates Neuronal Apoptosis and Improves Neurological Function by Suppressing 4-HNE-Associated Oxidative Stress After Subarachnoid Hemorrhage. Front Pharmacol 2022; 13:848529. [PMID: 35529450 PMCID: PMC9068884 DOI: 10.3389/fphar.2022.848529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Edaravone dexborneol is a novel neuroprotective drug that comprises edaravone and (+)-borneol in a 4:1 ratio. Phase II and III studies have demonstrated that Chinese patients treated with edaravone dexborneol within 48 h of AIS onset have better functional outcomes than those treated with edaravone alone. However, the effect of edaravone dexborneol on subarachnoid hemorrhage (SAH) has not yet been elucidated. This study aimed to investigate the therapeutic effects of edaravone dexborneol on SAH-induced brain injury and long-term behavioral deficits and to explore the possible mechanisms. The experimental rat SAH model was induced by an intraluminal puncture of the left middle cerebral artery (MCA). Edaravone dexborneol or edaravone at a clinical dose was infused into the tail vein for 3 days post-SAH surgery. Behavioral outcomes were assessed by a modified Garcia scoring system and rotarod, foot-fault, and corner tests. Immunofluorescence, Western blot, and ELISA methods were used to evaluate neuronal damage and oxidative stress. Our results showed that a post-SAH therapeutic regimen with edaravone dexborneol helped improve neurological function up to 21 days after SAH surgery and demonstrated a greater beneficial effect than edaravone alone, accompanied by an obvious inhibition of neuronal apoptosis in the CA1 hippocampus and basal cortex regions. Mechanistically, edaravone dexborneol not only suppressed the lipid peroxidation product malondialdehyde (MDA) but also improved the total antioxidant capability (TAC) 3 days after SAH. Notably, edaravone dexborneol treatment significantly inhibited the expression of another lipid peroxidation product, 4-hydroxynonenal (4-HNE), in the CA1 hippocampus and basal cortex, which are vital participants in the process of neuronal oxidative damage and death after SAH because of their acute cytotoxicity. Together, our results demonstrate that edaravone dexborneol confers neuroprotection and stabilizes long-term behavioral ability after SAH injury, possibly by suppressing 4-HNE-associated oxidative stress. These results may help develop new clinical strategies for SAH treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leilei Mao
- The Second Affiliated Hospital, Brain Science Institute, School of Basic Medical Sciences of Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Zongyong Zhang
- The Second Affiliated Hospital, Brain Science Institute, School of Basic Medical Sciences of Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Baoliang Sun
- The Second Affiliated Hospital, Brain Science Institute, School of Basic Medical Sciences of Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
4
|
Shakkour Z, Issa H, Ismail H, Ashekyan O, Habashy KJ, Nasrallah L, Jourdi H, Hamade E, Mondello S, Sabra M, Zibara K, Kobeissy F. Drug Repurposing: Promises of Edaravone Target Drug in Traumatic Brain Injury. Curr Med Chem 2021; 28:2369-2391. [PMID: 32787753 DOI: 10.2174/0929867327666200812221022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Edaravone is a potent free-radical scavenger that has been in the market for more than 30 years. It was originally developed in Japan to treat strokes and has been used there since 2001. Aside from its anti-oxidative effects, edaravone demonstrated beneficial effects on proinflammatory responses, nitric oxide production, and apoptotic cell death. Interestingly, edaravone has shown neuroprotective effects in several animal models of diseases other than stroke. In particular, edaravone administration was found to be effective in halting amyotrophic lateral sclerosis (ALS) progression during the early stages. Accordingly, after its success in Phase III clinical studies, edaravone has been approved by the FDA as a treatment for ALS patients. Considering its promises in neurological disorders and its safety in patients, edaravone is a drug of interest that can be repurposed for traumatic brain injury (TBI) treatment. Drug repurposing is a novel approach in drug development that identifies drugs for purposes other than their original indication. This review presents the biochemical properties of edaravone along with its effects on several neurological disorders in the hope that it can be adopted for treating TBI patients.
Collapse
Affiliation(s)
- Zaynab Shakkour
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Hawraa Issa
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Helene Ismail
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Ohanes Ashekyan
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Karl John Habashy
- Faculty of Medicine, American, University of Beirut, Beirut, Lebanon
| | - Leila Nasrallah
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Hussam Jourdi
- Biology & Environmental Sciences Division at University of Balamand, Souk El Gharb, Aley, Lebanon
| | - Eva Hamade
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mirna Sabra
- Faculty of Medicine, Lebanese University, Neuroscience Research Center (NRC), Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Firas Kobeissy
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| |
Collapse
|
5
|
Kurt S, Aygun H. Anticonvulsive effects of edaravone on penicillin-induced focal onset seizure model in the conscious rats. Fundam Clin Pharmacol 2021; 35:861-869. [PMID: 33484001 DOI: 10.1111/fcp.12651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 01/15/2023]
Abstract
Edaravone is a potent antioxidant and anti-inflammatory agent that is used in the clinic. The aim of the present study was to evaluate the chronic treatment effect of edaravone on penicillin-induced epileptiform activity. Twenty-eight Wistar rats were randomly divided into a total of four groups as penicillin control and edaravone pretreatment groups (1, 10, and 30mg/kg). Firstly, permanent electrodes for electrocorticography (ECoG) recording and canula for penicillin injection were placed as stereotactic under anesthesia. At the end of the recovery period, edaravone pretreatment groups received different doses of edaravone by intraperitoneal injection for 14 days and before 30-min penicillin microinjection. Epileptiform activity was induced by injecting 500 IU penicillin through the intracortical cannula. The effects of edaravone pretreatment on epileptiform activity were evaluated by using both electrophysiological and behavioral parameters. Edaravone pretreatment suppressed epileptiform activity by reducing the mean spike frequency and the behavior scores in ECoG recording. The results of the present study indicated that the use of chronic edaravone had an anticonvulsant effect on penicillin-induced focal onset epileptic activity. Edaravone had an anticonvulsant effect even at low doses.
Collapse
Affiliation(s)
- Semiha Kurt
- Department of Neurology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
6
|
Ding Y, Zhu W, Kong W, Li T, Zou P, Chen H. Edaravone attenuates neuronal apoptosis in hippocampus of rat traumatic brain injury model via activation of BDNF/TrkB signaling pathway. Arch Med Sci 2021; 17:514-522. [PMID: 33747286 PMCID: PMC7959085 DOI: 10.5114/aoms.2019.89849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION The purpose of our study was to explore the effects of edaravone on rats with traumatic brain injury (TBI) and investigate the underlying mechanism. MATERIAL AND METHODS All rats were separated randomly into 3 groups as follows: sham group (n = 25), TBI group (n = 25), TBI + edaravone group (n = 25). Edaravone was administered intraperitoneally (i.p.) at a dose of 3 mg/kg at 30 min, 12 h, and 24 h after TBI. The neurological impairment and spatial cognitive function were assessed by the neurologic severity score (NSS) and Morris water maze (MWM), respectively. Western blot and reverse transcription polymerase chain reaction (RT-PCR) were used to determine the expression levels of caspase-3, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB). Transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay as well as flow cytometry assay was used to determine the apoptosis rate of cells. RESULTS Edaravone administration significantly attenuated neurological impairment induced by TBI and promoted cognitive function outcome. The expression of BDNF and TrkB was elevated with treatment of edaravone, which was increased after TBI. The expression of apoptosis related proteins such as caspase-3 and Bax-2 was decreased while that of Bcl-2 was enhanced with edaravone administration following TBI. In addition, edaravone treatment reduced TBI-induced cell apoptosis in the hippocampus. CONCLUSIONS Our study showed that administration with edaravone was able to inhibit neuronal apoptosis in the hippocampus in a rat TBI model. The neuroprotective function of edaravone may relate to modulation of the BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Yuexia Ding
- Department of Pharmacy, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Wei Zhu
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Wei Kong
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Tuo Li
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peng Zou
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongguang Chen
- Department of Neurosurgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
7
|
Shakkour Z, Habashy KJ, Berro M, Takkoush S, Abdelhady S, Koleilat N, Eid AH, Zibara K, Obeid M, Shear D, Mondello S, Wang KK, Kobeissy F. Drug Repurposing in Neurological Disorders: Implications for Neurotherapy in Traumatic Brain Injury. Neuroscientist 2020; 27:620-649. [PMID: 33089741 DOI: 10.1177/1073858420961078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) remains a significant leading cause of death and disability among adults and children globally. To date, there are no Food and Drug Administration-approved drugs that can substantially attenuate the sequelae of TBI. The innumerable challenges faced by the conventional de novo discovery of new pharmacological agents led to the emergence of alternative paradigm, which is drug repurposing. Repurposing of existing drugs with well-characterized mechanisms of action and human safety profiles is believed to be a promising strategy for novel drug use. Compared to the conventional discovery pathways, drug repurposing is less costly, relatively rapid, and poses minimal risk of the adverse outcomes to study on participants. In recent years, drug repurposing has covered a wide range of neurodegenerative diseases and neurological disorders including brain injury. This review highlights the advances in drug repurposing and presents some of the promising candidate drugs for potential TBI treatment along with their possible mechanisms of neuroprotection. Edaravone, glyburide, ceftriaxone, levetiracetam, and progesterone have been selected due to their potential role as putative TBI neurotherapeutic agents. These drugs are Food and Drug Administration-approved for purposes other than brain injuries; however, preclinical and clinical studies have shown their efficacy in ameliorating the various detrimental outcomes of TBI.
Collapse
Affiliation(s)
- Zaynab Shakkour
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Moussa Berro
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samira Takkoush
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nadia Koleilat
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Makram Obeid
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Deborah Shear
- Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Sicilia, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Ismail H, Shakkour Z, Tabet M, Abdelhady S, Kobaisi A, Abedi R, Nasrallah L, Pintus G, Al-Dhaheri Y, Mondello S, El-Khoury R, Eid AH, Kobeissy F, Salameh J. Traumatic Brain Injury: Oxidative Stress and Novel Anti-Oxidants Such as Mitoquinone and Edaravone. Antioxidants (Basel) 2020; 9:antiox9100943. [PMID: 33019512 PMCID: PMC7601591 DOI: 10.3390/antiox9100943] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health concern worldwide and is classified based on severity into mild, moderate, and severe. The mechanical injury in TBI leads to a metabolic and ionic imbalance, which eventually leads to excessive production of reactive oxygen species (ROS) and a state of oxidative stress. To date, no drug has been approved by the food and drug administration (FDA) for the treatment of TBI. Nevertheless, it is thought that targeting the pathology mechanisms would alleviate the consequences of TBI. For that purpose, antioxidants have been considered as treatment options in TBI and were shown to have a neuroprotective effect. In this review, we will discuss oxidative stress in TBI, the history of antioxidant utilization in the treatment of TBI, and we will focus on two novel antioxidants, mitoquinone (MitoQ) and edaravone. MitoQ can cross the blood brain barrier and cellular membranes to accumulate in the mitochondria and is thought to activate the Nrf2/ARE pathway leading to an increase in the expression of antioxidant enzymes. Edaravone is a free radical scavenger that leads to the mitigation of damage resulting from oxidative stress with a possible association to the activation of the Nrf2/ARE pathway as well.
Collapse
Affiliation(s)
- Helene Ismail
- Department of Neurology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
| | - Maha Tabet
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt;
| | - Abir Kobaisi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
| | - Reem Abedi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
| | - Leila Nasrallah
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, UAE;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE;
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98165 Messina, Italy;
| | - Riyad El-Khoury
- Department of Pathology and Laboratory Medicine, Neuromuscular Diagnostic Laboratory, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Biomedical Sciences, Qatar University, Doha 2713, Qatar
- Correspondence: (A.H.E.); (F.K.); (J.S.); Tel.: +961-1-350000 (ext. 4891) (A.H.E.); +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 7359) (J.S.)
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (Z.S.); (M.T.); (A.K.); (R.A.); (L.N.)
- Correspondence: (A.H.E.); (F.K.); (J.S.); Tel.: +961-1-350000 (ext. 4891) (A.H.E.); +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 7359) (J.S.)
| | - Johnny Salameh
- Department of Neurology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
- Correspondence: (A.H.E.); (F.K.); (J.S.); Tel.: +961-1-350000 (ext. 4891) (A.H.E.); +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 7359) (J.S.)
| |
Collapse
|
9
|
Vanka R, Nakka VP, Kumar SP, Baruah UK, Babu PP. Molecular targets in cerebral malaria for developing novel therapeutic strategies. Brain Res Bull 2020; 157:100-107. [PMID: 32006570 DOI: 10.1016/j.brainresbull.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Cerebral malaria (CM) is the severe neurological complication associated with Plasmodium falciparum infection. In clinical settings CM is predominantly characterized by fever, epileptic seizures, and asexual forms of parasite on blood smears, coma and even death. Cognitive impairment in the children and adults even after survival is one of the striking consequences of CM. Poor diagnosis often leads to inappropriate malaria therapy which in turn progress into a severe form of disease. Activation of multiple cell death pathways such as Inflammation, oxidative stress, apoptosis and disruption of blood brain barrier (BBB) plays critical role in the pathogenesis of CM and secondary brain damage. Thus, understanding such mechanisms of neuronal cell death might help to identify potential molecular targets for CM. Mitigation strategies for mortality rate and long-term cognitive deficits caused by existing anti-malarial drugs still remains a valid research question to ask. In this review, we discuss in detail about critical neuronal cell death mechanisms and the overall significance of adjunctive therapy with recent trends, which provides better insight towards establishing newer therapeutic strategies for CM.
Collapse
Affiliation(s)
- Ravisankar Vanka
- Department of Pharmaceutics, Aditya Pharmacy College, Suramaplem, Gandepalli Mandal, East Godavari, Andhra Pradesh, 533437, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Simhadri Praveen Kumar
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Tamil Nadu 643001, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
10
|
D’Arrigo JS. Nanotargeting of Drug(s) for Delaying Dementia: Relevance of Covid-19 Impact on Dementia. Am J Alzheimers Dis Other Demen 2020; 35:1533317520976761. [PMID: 33307726 PMCID: PMC10623919 DOI: 10.1177/1533317520976761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By incorporating appropriate drug(s) into lipid (biobased) nanocarriers, one obtains a combination therapeutic for dementia treatment that targets certain cell-surface scavenger receptors (mainly class B type I, or "SR-BI") and thereby crosses the blood-brain barrier. The cardiovascular risk factors for dementia trigger widespread inflammation -- which lead to neurodegeneration, gradual cognitive/memory decline, and eventually (late-onset) dementia. Accordingly, one useful strategy to delay dementia could be based upon nanotargeting drug(s), using lipid nanocarriers, toward a major receptor class responsible for inflammation-associated (cytokine-mediated) cell signaling events. At the same time, the immune response and excessive inflammation, commonly observed in the very recent human coronavirus (COVID-19) pandemic, may accelerate the progression of brain inflammatory neurodegeneration-which increases the probability of post-infection memory impairment and accelerating progression of Alzheimer's disease. Hence, the proposed multitasking combination therapeutic, using a (biobased) lipid nanocarrier, may also display greater effectiveness at different stages of dementia.
Collapse
Affiliation(s)
- Joseph S. D’Arrigo
- Cavitation-Control Technology Inc, Farmington, CT, USA. D’Arrigo is now with Cav-Con, Inc, Bellevue, WA, USA
| |
Collapse
|
11
|
Anthonymuthu TS, Kenny EM, Lamade AM, Kagan VE, Bayır H. Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 2018; 124:493-503. [PMID: 29964171 PMCID: PMC6098726 DOI: 10.1016/j.freeradbiomed.2018.06.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Oxidative stress is a major contributor to secondary injury signaling cascades following traumatic brain injury (TBI). The role of lipid peroxidation in the pathophysiology of a traumatic insult to neural tissue is increasingly recognized. As the methods to quantify lipid peroxidation have gradually improved, so has the understanding of mechanistic details of lipid peroxidation and related signaling events in the injury pathogenesis. While free-radical mediated, non-enzymatic lipid peroxidation has long been studied, recent advances in redox lipidomics have demonstrated the significant contribution of enzymatic lipid peroxidation to TBI pathogenesis. Complex interactions between inflammation, phospholipid peroxidation, and hydrolysis define the engagement of different cell death programs and the severity of injury and outcome. This review focuses on enzymatic phospholipid peroxidation after TBI, including the mechanism of production, signaling roles in secondary injury pathology, and temporal course of production with respect to inflammatory response. In light of the newly identified phospholipid oxidation mechanisms, we also discuss possible therapeutic targets to improve neurocognitive outcome after TBI. Finally, we discuss current limitations in identifying oxidized phospholipids and possible methodologic improvements that can offer a deeper insight into the region-specific distribution and subcellular localization of phospholipid oxidation after TBI.
Collapse
Affiliation(s)
- Tamil S Anthonymuthu
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Elizabeth M Kenny
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Andrew M Lamade
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States; Laboratory of Navigational Redox Lipidomics in Biomedicine, Department of Human Pathology, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, United States.
| |
Collapse
|
12
|
Abstract
Mild traumatic brain injury (mTBI) represents a significant public healthcare concern, accounting for the majority of all head injuries. While symptoms are generally transient, some patients go on to experience long-term cognitive impairments and additional mild impacts can result in exacerbated and persisting negative outcomes. To date, studies using a range of experimental models have reported chronic behavioral deficits in the presence of axonal injury and inflammation following repeated mTBI; assessments of oxidative stress and myelin pathology have thus far been limited. However, some models employed induced acute focal damage more suggestive of moderate–severe brain injury and are therefore not relevant to repeated mTBI. Given that the nature of mechanical loading in TBI is implicated in downstream pathophysiological changes, the mechanisms of damage and chronic consequences of single and repeated closed-head mTBI remain to be fully elucidated. This review covers literature on potential mechanisms of damage following repeated mTBI, integrating known mechanisms of pathology underlying moderate–severe TBIs, with recent studies on adult rodent models relevant to direct impact injuries rather than blast-induced damage. Pathology associated with excitotoxicity and cerebral blood flow-metabolism uncoupling, oxidative stress, cell death, blood-brain barrier dysfunction, astrocyte reactivity, microglial activation, diffuse axonal injury, and dysmyelination is discussed, followed by a summary of functional deficits and preclinical assessments of therapeutic strategies. Comprehensive characterization of the pathology underlying delayed and persisting deficits following repeated mTBI is likely to facilitate further development of therapeutic strategies to limit long-term sequelae.
Collapse
Affiliation(s)
- Brooke Fehily
- 1 Experimental and Regenerative Neurosciences, School of Biological sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Melinda Fitzgerald
- 1 Experimental and Regenerative Neurosciences, School of Biological sciences, The University of Western Australia, Perth, Western Australia, Australia.,2 Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.,3 Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
13
|
Nanotherapy for Alzheimer's disease and vascular dementia: Targeting senile endothelium. Adv Colloid Interface Sci 2018; 251:44-54. [PMID: 29274774 DOI: 10.1016/j.cis.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022]
Abstract
Due to the complexity of Alzheimer's disease, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted lipid nanoemulsion) are available. Versatile small molecule drug(s) targeting multiple pathways of Alzheimer's disease pathogenesis are known. By incorporating such drug(s) into the targeted "lipid-coated microbubble" [LCM]/"nanoparticle-derived" [ND] (or LCM/ND) nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly class B type I), or SR-BI, making possible for various Alzheimer's-related cell types to be simultaneously searched out for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble [LCM] subpopulation (i.e., a stable LCM suspension); such film-stabilized microbubbles are well known to substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer's patient.
Collapse
|
14
|
Qin H, Qin J, Hu J, Huang H, Ma L. Malva Sylvestris Attenuates Cognitive Deficits in a Repetitive Mild Traumatic Brain Injury Rat Model by Reducing Neuronal Degeneration and Astrocytosis in the Hippocampus. Med Sci Monit 2017; 23:6099-6106. [PMID: 29276216 PMCID: PMC5749139 DOI: 10.12659/msm.905429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The aim of our study was to evaluate the effect of Malva sylvestris (MS) on cognitive dysfunction in a repetitive mild traumatic brain injury (MTBI). Material/Methods MTBI was induced in all the study animals by hitting a metallic pendulum near the parietal-occipital area of the skull three times a day for ten days. Animals were treated with MS (250 mg/kg and 500 mg/kg) intragastrically per day for seven consecutive days. Cognitive function was estimated by the Morris water maze (MWM) method. Histopathology studies were performed on the hippocampal region by Nissl staining and anti GFAP staining. Concentrations of reactive oxygen species (ROS), and oxidative parameters including superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (LPO), and inflammatory cytokines in the brain tissues were measured. Result Treatment with MS significantly improved cognitive function compared to the negative control. Histopathology studies suggested that treatment with MS significantly decreased (p<0.01) the count of neurodegenerative cells and induction of astrocytosis in the MTBI treated group compared to the negative control group. However, the concentrations of ROS and LPO, and the activities of SOD and CAT were significantly decreased in the MS treated groups of MTBI rats compared to the negative control group. Inflammatory cytokines, such as IL-1β, IL6, and TNF-α were significantly decreased (p<0.01) in the brain tissues of the MTBI treated group compared to the control group of rats. Conclusions This study concluded that treatment with MS significantly improved cognitive dysfunction by reducing neurodegeneration and astrocytosis in brain tissues via decreasing oxidative stress and inflammation in neuronal cells.
Collapse
Affiliation(s)
- Hailin Qin
- Department of Neurosurgery, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei, China (mainland)
| | - Jie Qin
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei, China (mainland)
| | - Junmin Hu
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei, China (mainland)
| | - He Huang
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei, China (mainland)
| | - Lianting Ma
- Department of Neurosurgery, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei, China (mainland)
| |
Collapse
|
15
|
Alzheimer’s Disease, Brain Injury, and C.N.S. Nanotherapy in Humans: Sonoporation Augmenting Drug Targeting. Med Sci (Basel) 2017. [PMCID: PMC5753658 DOI: 10.3390/medsci5040029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Owing to the complexity of neurodegenerative diseases, multiple cellular types need to be targeted simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-sensitive coated microbubbles (in a targeted nanoemulsion) are available. Versatile small-molecule drug(s) targeting multiple pathways of Alzheimer’s disease pathogenesis are known. By incorporating such drug(s) into the targeted lipid-coated microbubble/nanoparticle-derived (LCM/ND) lipid nanoemulsion type, one obtains a multitasking combination therapeutic for translational medicine. This multitasking therapeutic targets cell-surface scavenger receptors (mainly scavenger receptor class B type I (SR-BI)), making it possible for various Alzheimer’s-related cell types to be simultaneously sought for localized drug treatment in vivo. Besides targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) include a characteristic lipid-coated microbubble (LCM) subpopulation (i.e., a stable LCM suspension); such LCM substantially reduce the acoustic power levels needed for accomplishing temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired for the Alzheimer’s patient.
Collapse
|
16
|
Yates NJ, Lydiard S, Fehily B, Weir G, Chin A, Bartlett CA, Alderson J, Fitzgerald M. Repeated mild traumatic brain injury in female rats increases lipid peroxidation in neurons. Exp Brain Res 2017; 235:2133-2149. [PMID: 28417146 DOI: 10.1007/s00221-017-4958-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/07/2017] [Indexed: 11/30/2022]
Abstract
Negative outcomes of mild traumatic brain injury (mTBI) can be exacerbated by repeated insult. Animal models of repeated closed-head mTBI provide the opportunity to define acute pathological mechanisms as the number of mTBI increases. Furthermore, little is known about the effects of mTBI impact site, and how this may affect brain function. We use a closed head, weight drop model of mTBI that allows head movement following impact, in adult female rats to determine the role of the number and location of mTBI on brain pathology and behaviour. Biomechanical assessment of two anatomically well-defined mTBI impact sites were used, anterior (bregma) and posterior (lambda). Location of the impact had no significant effect on impact forces (450 N), and the weight impact locations were on average 5.4 mm from the desired impact site. No between location vertical linear head kinematic differences were observed immediately following impact, however, in the 300 ms post-impact, significantly higher mean vertical head displacement and velocity were observed in the mTBI lambda trials. Breaches of the blood brain barrier were observed with three mTBI over bregma, associated with immunohistochemical indicators of damage. However, an increased incidence of hairline fractures of the skull and macroscopic haemorrhaging made bregma an unsuitable impact location to model repeated mTBI. Repeated mTBI over lambda did not cause skull fractures and were examined more comprehensively, with outcomes following one, two or three mTBI or sham, delivered at 1 day intervals, assessed on days 1-4. We observe a mild behavioural phenotype, with subtle deficits in cognitive function, associated with no identifiable neuroanatomical or inflammatory changes. However, an increase in lipid peroxidation in a subset of cortical neurons following two mTBI indicates increasing oxidative damage with repeated injury in female rats, supported by increased amyloid precursor protein immunoreactivity with three mTBI. This study of acute events following closed head mTBI identifies lipid peroxidation in neurons at the same time as cognitive deficits. Our study adds to existing literature, providing biomechanics data and demonstrating mild cognitive disturbances associated with diffuse injury, predominantly to grey matter, acutely following repeated mTBI.
Collapse
Affiliation(s)
- Nathanael J Yates
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Stephen Lydiard
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Brooke Fehily
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Gillian Weir
- School of Sport Science, Exercise and Health, The University of Western Australia, Perth, WA, 6009, Australia
| | - Aaron Chin
- School of Sport Science, Exercise and Health, The University of Western Australia, Perth, WA, 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Jacqueline Alderson
- School of Sport Science, Exercise and Health, The University of Western Australia, Perth, WA, 6009, Australia.,Auckland University of Technology, Sports Performance Research Institute New Zealand (SPRINZ), Auckland, New Zealand
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia. .,Perron Institute for Nerurological and Translational Science, Sarich Neuroscience Research Institute, Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
17
|
Shen LH, Chen J, Shen HC, Ye M, Liu XF, Ding WS, Sheng YF, Ding XS. Possible Mechanism of Therapeutic Effect of 3-Methyl-1-phenyl-2-pyrazolin-5-one and Bone Marrow Stromal Cells Combination Treatment in Rat Ischemic Stroke Model. Chin Med J (Engl) 2017; 129:1471-6. [PMID: 27270545 PMCID: PMC4910373 DOI: 10.4103/0366-6999.183418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: The functional improvement following bone marrow stromal cells (BMSCs) transplantation after stroke is directly related to the number of engrafted cells and neurogenesis in the injured brain. Here, we tried to evaluate whether 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), a free radical scavenger, might influence BMSCs migration to ischemic brain, which could promote neurogenesis and thereby enhance treatment effects after stroke. Methods: Rat transient middle cerebral artery occlusion (MCAO) model was established. Two separate MCAO groups were administered with either MCI-186 or phosphate-buffered saline (PBS) solution to evaluate the expression of stromal cell-derived factor-1 (SDF-1) in ischemic brain, and compared to that in sham group (n = 5/group/time point[at 1, 3, and 7 days after operation]). The content of chemokine receptor-4 (CXCR4, a main receptor of SDF-1) at 7 days after operation was also observed on cultured BMSCs. Another four MCAO groups were intravenously administered with either PBS, MCI-186, BMSCs (2 × 106), or a combination of MCI-186 and BMSCs (n = 10/group). 5-bromo-2-deoxyuridine (BrdU) and Nestin double-immunofluorescence staining was performed to identify the engrafted BMSCs and neuronal differentiation. Adhesive-removal test and foot-fault evaluation were used to test the neurological outcome. Results: MCI-186 upregulated the expression of SDF-1 in ischemic brain and CXCR4 content in BMSCs was enhanced after hypoxic stimulation. When MCAO rats were treated with either MCI-186, BMSCs, or a combination of MCI-186 and BMSCs, the neurologic function was obviously recovered as compared to PBS control group (P < 0.01 or 0.05, respectively). Combination therapy represented a further restoration, increased the number of BMSCs and Nestin+ cells in ischemic brain as compared with BMSCs monotherapy (P < 0.01). The number of engrafted-BMSCs was correlated with the density of neuronal cells in ischemic brain (r = 0.72, P < 0.01) and the improvement of foot-fault (r = 0.70, P < 0.01). Conclusion: MCI-186 might promote BMSCs migration to the ischemic brain, amplify the neurogenesis, and improve the effects of cell therapy.
Collapse
Affiliation(s)
- Li-Hua Shen
- Department of Neurology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jin Chen
- Department of Neurology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Hua-Chao Shen
- The BenQ Neurological Institute of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Min Ye
- The BenQ Neurological Institute of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao-Fei Liu
- Department of Neurology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Wen-Sen Ding
- Department of Neurology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Ya-Feng Sheng
- Department of Neurology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xin-Sheng Ding
- The BenQ Neurological Institute of Nanjing Medical University, Nanjing, Jiangsu 210029; Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
18
|
Jangra A, Sriram CS, Dwivedi S, Gurjar SS, Hussain MI, Borah P, Lahkar M. Sodium Phenylbutyrate and Edaravone Abrogate Chronic Restraint Stress-Induced Behavioral Deficits: Implication of Oxido-Nitrosative, Endoplasmic Reticulum Stress Cascade, and Neuroinflammation. Cell Mol Neurobiol 2017; 37:65-81. [PMID: 26886752 PMCID: PMC11482225 DOI: 10.1007/s10571-016-0344-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/03/2016] [Indexed: 01/21/2023]
Abstract
Chronic stress exposure can produce deleterious effects on the hippocampus (HC) which eventually leads to cognitive impairment and depression. Endoplasmic reticulum (ER) stress has been reported as one of the major culprits in the development of stress-induced cognitive impairment and depression. We investigated the neuroprotective efficacy of sodium phenylbutyrate (SPB), an ER stress inhibitor, and edaravone, a free radical scavenger, against chronic restraint stress (CRS)-induced cognitive deficits and anxiety- and depressive-like behavior in mice. Adult male Swiss albino mice were restrained for 6 h/day for 28 days and injected (i.p.) with SPB (40 and 120 mg/kg) or edaravone (3 and 10 mg/kg) for the last seven days. After stress cessation, the anxiety- and depressive-like behavior along with spatial learning and memory were examined. Furthermore, oxido-nitrosative stress, proinflammatory cytokines, and gene expression level of ER stress-related genes were assessed in HC and prefrontal cortex (PFC). CRS-exposed mice showed anxiety- and depressive-like behavior, which was significantly improved by SPB and edaravone treatment. In addition, SPB and edaravone treatment significantly alleviated CRS-induced spatial learning and memory impairment. Furthermore, CRS-evoked oxido-nitrosative stress, neuroinflammation, and depletion of Brain-derived neurotrophic factor were significantly ameliorated by SPB and edaravone treatment. We found significant up-regulation of ER stress-related genes in both HC and PFC regions, which were suppressed by SPB and edaravone treatment in CRS mice. Our study provides evidence that SPB and edaravone exerted neuroprotective effects on CRS-induced cognitive deficits and anxiety- and depressive-like behavior, which is possibly coupled with inhibition of oxido-nitrosative stress, neuroinflammation, and ER stress cascade.
Collapse
Affiliation(s)
- Ashok Jangra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Chandra Shaker Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Shubham Dwivedi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Satendra Singh Gurjar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India
| | - Md Iftikar Hussain
- State Biotech Hub, College of Veterinary Science, Khanapara, Guwahati, Assam, 781022, India
| | - Probodh Borah
- State Biotech Hub, College of Veterinary Science, Khanapara, Guwahati, Assam, 781022, India
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, 781032, India.
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, 781032, India.
| |
Collapse
|
19
|
Song H, Xu L, Zhang R, Cao Z, Zhang H, Yang L, Guo Z, Qu Y, Yu J. Rosemary extract improves cognitive deficits in a rats model of repetitive mild traumatic brain injury associated with reduction of astrocytosis and neuronal degeneration in hippocampus. Neurosci Lett 2016; 622:95-101. [DOI: 10.1016/j.neulet.2016.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/08/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|
20
|
Zhou Y, Zhang XM, Ma A, Zhang YL, Chen YY, Zhou H, Li WJ, Jin X. Orally administrated pterostilbene attenuates acute cerebral ischemia–reperfusion injury in a dose- and time-dependent manner in mice. Pharmacol Biochem Behav 2015; 135:199-209. [DOI: 10.1016/j.pbb.2015.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 01/28/2023]
|
21
|
Ding K, Wang H, Wu Y, Zhang L, Xu J, Li T, Ding Y, Zhu L, He J. Rapamycin protects against apoptotic neuronal death and improves neurologic function after traumatic brain injury in mice via modulation of the mTOR-p53-Bax axis. J Surg Res 2015; 194:239-47. [DOI: 10.1016/j.jss.2014.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 09/13/2014] [Accepted: 09/23/2014] [Indexed: 01/10/2023]
|
22
|
Purushothuman S, Stone J. The reaction of cerebral cortex to a nearby lesion: damage, survival, self-protection. Brain Res 2015; 1601:52-63. [PMID: 25591482 DOI: 10.1016/j.brainres.2015.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/02/2015] [Indexed: 01/13/2023]
Abstract
A needlestick injury to cerebral cortex causes immediate damage along the track of the needle (haemorrhage, cell death) and sequelae (the formation of amyloid-positive plaques, extracellular deposits of hyperphosphorylated tau protein, microglial proliferation, astrogliosis) that are long lasting, and mimic the neuropathology associated with Alzheimer's disease. We report here that the same injury also elicits a distinctive response in the cortex flanking (up to 1mm from) the direct injury. Needlestick injury was made in the neo- and hippocampal cortex of young (3 months) healthy Sprague-Dawley rats. After survival times of up to 7d, the response of the cortex was assessed with histology, immunohistochemistry and stereology. Uptake of FluoroJade B at 1d survival and labelling for 4-hydroxynonenal (4-HNE) gave measures of membrane damage; labelling for 8-hydroxy-2'-deoxyguanosine (8-OHDG) gave a measure of DNA damage, and labelling with the AT8 antibody gave a measure of the hyperphosphorylation of tau. Two probes, for neuroglobin and basic fibroblast growth factor (FGF-2), gave measures of a self-protective response in the tissue. Results indicate that neurones in the flanking region are damaged by the nearby lesion, and within 1d upregulate self-protective mechanisms. Over the next 6d survival, evidence of neuronal damage reduces markedly. In summary, cells in the region flanking a lesion are stressed by the lesion, and react to the stress with a self-protective response, which prevents their death. This response may be an important, previously unrecognised feature of brain tissue close to a focus of stress, such as a microhaemorrhage.
Collapse
Affiliation(s)
- Sivaraman Purushothuman
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, The University of Sydney, Camperdown, NSW 2006, Australia; Discipline of Clinical Ophthalmology & Save Sight Institute, The University of Sydney & Sydney Eye Hospital, Sydney NSW 2000, Australia.
| | - Jonathan Stone
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
23
|
Role of melatonin in traumatic brain injury and spinal cord injury. ScientificWorldJournal 2014; 2014:586270. [PMID: 25587567 PMCID: PMC4283270 DOI: 10.1155/2014/586270] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/03/2023] Open
Abstract
Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS). Traumatic brain injury (TBI) is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB), and oxidative stress. Spinal cord injury (SCI) includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.
Collapse
|
24
|
Yuan Y, Zha H, Rangarajan P, Ling EA, Wu C. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neurosci 2014; 15:125. [PMID: 25416145 PMCID: PMC4247200 DOI: 10.1186/s12868-014-0125-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 01/13/2023] Open
Abstract
Background In response to cerebral ischemia, activated microglia release excessive inflammatory mediators which contribute to neuronal damage. Therefore, inhibition of microglial over-activation could be a therapeutic strategy to alleviate various microglia-mediated neuroinflammation. This study was aimed to elucidate the anti-inflammatory effects of Scutellarin and Edaravone given either singly, or in combination in activated microglia in rats subjected to middle cerebral artery occlusion (MCAO), and in lipopolysaccharide (LPS)-induced BV-2 microglia. Expression of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and inducible nitric oxide synthase (iNOS) was assessed by immunofluorescence staining and Western blot. Reactive oxygen species (ROS) and nitric oxide (NO) levels were determined by flow cytometry and fluorescence microscopy, respectively. Results In vivo, both Edaravone and Scutellarin markedly reduced the infarct cerebral tissue area with the latter drug being more effective with the dosage used; furthermore, when used in combination the reduction was more substantial. Remarkably, a greater diminution in distribution of activated microglia was observed with the combined drug treatment which also attenuated the immunoexpression of TNF-α, IL-1β and iNOS to a greater extent as compared to the drugs given separately. In vitro, both drugs suppressed upregulated expression of inflammatory cytokines, iNOS, NO and ROS in LPS-induced BV-2 cells. Furthermore, Edaravone and Scutellarin in combination cumulatively diminished the expression levels of the inflammatory mediators being most pronounced for TNF-α as evidenced by Western blot. Conclusion The results suggest that Edaravone and Scutellarin effectively suppressed the inflammatory responses in activated microglia, with Scutellarin being more efficacious within the dosage range used. Moreover, when both drugs were used in combination, the infarct tissue area was reduced more extensively; also, microglia-mediated inflammatory mediators notably TNF-α expression was decreased cumulatively. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0125-3) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Shang H, Cui D, Yang D, Liang S, Zhang W, Zhao W. The radical scavenger edaravone improves neurologic function and perihematomal glucose metabolism after acute intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2014; 24:215-22. [PMID: 25440340 DOI: 10.1016/j.jstrokecerebrovasdis.2014.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/29/2014] [Accepted: 08/22/2014] [Indexed: 12/30/2022] Open
Abstract
Oxidative injury caused by reactive oxygen species plays an important role in the progression of intracerebral hemorrhage (ICH)-induced secondary brain injury. Previous studies have demonstrated that the free radical scavenger edaravone may prevent neuronal injury and brain edema after ICH. However, the influence of edaravone on cerebral metabolism in the early stages after ICH and the underlying mechanism have not been fully investigated. In the present study, we investigated the effect of edaravone on perihematomal glucose metabolism using (18)F-fluorordeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Additionally, the neurologic deficits, brain edemas, and cell death that followed ICH were quantitatively analyzed. After blood infusion, the rats treated with edaravone showed significant improvement in both forelimb placing and corner turn tests compared with those treated with vehicle. Moreover, the brain water content of the edaravone-treated group was significantly decreased compared with that of the vehicle group on day 3 after ICH. PET/CT images of ICH rats exhibited obvious decreases in FDG standardized uptake values in perihematomal region on day 3, and the lesion-to-normal ratio of the edaravone-treated ICH rats was significantly increased compared with that of the control rats. Calculation of the brain injury volumes from the PET/CT images revealed that the volumes of the blood-induced injuries were significantly smaller in the edaravone group compared with the vehicle group. Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling assays performed 3 days after ICH revealed that the numbers of apoptotic cells in perihematomal region of edaravone-treated ICH rats were decreased relative to the vehicle group. Thus, the present study demonstrates that edaravone has scavenging properties that attenuate neurologic behavioral deficits and brain edema in the early period of ICH. Additionally, edaravone may improve cerebral metabolism around the hematoma by attenuating apoptotic cell death after ICH.
Collapse
Affiliation(s)
- Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Derong Cui
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dehua Yang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Liang
- Department of Nuclear Medicine and Micro PET/CT Research Center, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Zhang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Lei S, Zhang P, Li W, Gao M, He X, Zheng J, Li X, Wang X, Wang N, Zhang J, Qi C, Lu H, Chen X, Liu Y. Pre- and posttreatment with edaravone protects CA1 hippocampus and enhances neurogenesis in the subgranular zone of dentate gyrus after transient global cerebral ischemia in rats. ASN Neuro 2014; 6:6/6/1759091414558417. [PMID: 25388889 PMCID: PMC4357607 DOI: 10.1177/1759091414558417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Edaravone is clinically used for treatment of patients with acute cerebral infarction. However, the effect of double application of edaravone on neurogenesis in the hippocampus following ischemia remains unknown. In the present study, we explored whether pre- and posttreatment of edaravone had any effect on neural stem/progenitor cells (NSPCs) in the subgranular zone of hippocampus in a rat model of transient global cerebral ischemia and elucidated the potential mechanism of its effects. Male Sprague-Dawley rats were divided into three groups: sham-operated (n = 15), control (n = 15), and edaravone-treated (n = 15) groups. Newly generated cells were labeled by 5-bromo-2-deoxyuridine. Immunohistochemistry was used to detect neurogenesis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling was used to detect cell apoptosis. Reactive oxygen species (ROS) were detected by 2,7-dichlorofluorescien diacetate assay in NSPCs in vitro. Hypoxia-inducible factor-1α (HIF-1α) and cleaved caspase-3 proteins were quantified by western blot analysis. Treatment with edaravone significantly increased the number of NSPCs and newly generated neurons in the subgranular zone (p < .05). Treatment with edaravone also decreased apoptosis of NSPCs (p < .01). Furthermore, treatment with edaravone significantly decreased ROS generation and inhibited HIF-1α and cleaved caspase-3 protein expressions. These findings indicate that pre- and posttreatment with edaravone enhances neurogenesis by protecting NSPCs from apoptosis in the hippocampus, which is probably mediated by decreasing ROS generation and inhibiting protein expressions of HIF-1α and cleaved caspase-3 after cerebral ischemia.
Collapse
Affiliation(s)
- Shan Lei
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Pengbo Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Weisong Li
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Ming Gao
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Juan Zheng
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xu Li
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xiao Wang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Ning Wang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Junfeng Zhang
- Department of Anatomy, Xi'an Medical University, Xi'an, China
| | - Cunfang Qi
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University School of Medicine, Xi'an, China
| |
Collapse
|
27
|
Changes in cerebrospinal fluid biomarkers in human herpesvirus-6-associated acute encephalopathy/febrile seizures. Mediators Inflamm 2014; 2014:564091. [PMID: 25294958 PMCID: PMC4177780 DOI: 10.1155/2014/564091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022] Open
Abstract
To determine the involvement of oxidative stress in the pathogenesis of acute encephalopathy associated with human herpesvirus-6 (HHV-6) infection, we measured the levels of oxidative stress markers 8-hydroxy-2'-deoxyguanosine (8-OHdG) and hexanoyl-lysine adduct (HEL), tau protein, and cytokines in cerebrospinal fluid (CSF) obtained from patients with HHV-6-associated acute encephalopathy (HHV-6 encephalopathy) (n = 16) and complex febrile seizures associated with HHV-6 (HHV-6 complex FS) (n = 10). We also examined changes in CSF-8OHdG and CSF-HEL levels in patients with HHV-6 encephalopathy before and after treatment with edaravone, a free radical scavenger. CSF-8-OHdG levels in HHV-6 encephalopathy and HHV-6 complex FS were significantly higher than in control subjects. In contrast, CSF-HEL levels showed no significant difference between groups. The levels of total tau protein in HHV-6 encephalopathy were significantly higher than in control subjects. In six patients with HHV-6 infection (5 encephalopathy and 1 febrile seizure), the CSF-8-OHdG levels of five patients decreased after edaravone treatment. Our results suggest that oxidative DNA damage is involved in acute encephalopathy associated with HHV-6 infection.
Collapse
|
28
|
Higashi Y, Hoshijima M, Yawata T, Nobumoto A, Tsuda M, Shimizu T, Saito M, Ueba T. Suppression of oxidative stress and 5-lipoxygenase activation by edaravone improves depressive-like behavior after concussion. J Neurotrauma 2014; 31:1689-99. [PMID: 24849726 DOI: 10.1089/neu.2014.3331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Brain concussions are a serious public concern and are associated with neuropsychiatric disorders, such as depression. Patients with concussion who suffer from depression often experience distress. Nevertheless, few pre-clinical studies have examined concussion-induced depression, and there is little information regarding its pharmacological management. Edaravone, a free radical scavenger, can exert neuroprotective effects in several animal models of neurological disorders. However, the effectiveness of edaravone in animal models of concussion-induced depression remains unclear. In this study, we examined whether edaravone could prevent concussion-induced depression. Mice were subjected to a weight-drop injury and intravenously administered edaravone (3.0 mg/kg) or vehicle immediately after impact. Serial magnetic resonance imaging showed no abnormalities of the cerebrum on diffusion T1- and T2-weighted images. We found that edaravone suppressed concussion-induced depressive-like behavior in the forced swim test, which was accompanied by inhibition of increased hippocampal and cortical oxidative stress (OS) and suppression of 5-lipoxygenase (5-LOX) translocation to the nuclear envelope in hippocampal astrocytes. Hippocampal OS in concussed mice was also prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, and administration of BWB70C, a 5-LOX inhibitor, immediately and 24 h after injury prevented depressive-like behaviors in concussed mice. Further, antidepressant effects of edaravone were observed in mice receiving 1.0 or 3.0 mg/kg of edaravone immediately after impact, but not at a lower dose of 0.1 mg/kg. This antidepressant effect persisted up to 1 h after impact, whereas edaravone treatment at 3 h after impact had no effect on concussion-induced depressive-like behavior. These results suggest that edaravone protects against concussion-induced depression, and this protection is mediated by suppression of OS and 5-LOX translocation.
Collapse
Affiliation(s)
- Youichirou Higashi
- 1 Department of Neurosurgery, Kochi Medical School, Kochi University , Kochi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Inhibitory effects of edaravone in β-amyloid-induced neurotoxicity in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:370368. [PMID: 24804216 PMCID: PMC3996961 DOI: 10.1155/2014/370368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/24/2014] [Indexed: 01/02/2023]
Abstract
Amyloid protein can damage nerve cells through a variety of biological mechanisms including oxidative stress, alterations in calcium homeostasis, and proapoptosis. Edaravone, a potent free radical scavenger possessing antioxidant effects, has been proved neuroprotective effect in stroke patients. The current study aimed to investigate the effects of EDA in an Aβ-induced rat model of AD, by studying Aβ1–40-induced voltage-gated calcium channel currents in hippocampal CA1 pyramidal neurons, learning and memory behavioral tests, the number of surviving cholinergic neurons in the basal forebrain, and the acetylcholine level in the hippocampus in this rat model of AD. The results showed that the Aβ1–40-induced increase of ICa can be inhibited by EDA in a dose-dependent manner. Treatment with EDA significantly improved Aβ1–40-induced learning and memory performance. Choline acetyltransferase positive cells in basal forebrain and acetylcholine content in the hippocampus were increased by the administration of EDA as compared with the non-EDA treated Aβ1–40 group. These results demonstrate that EDA can inhibit the neurotoxic effect of Aβ toxicity. Collectively, these findings suggest that EDA may serve as a potential complemental treatment strategy for AD.
Collapse
|
30
|
Effects of edaravone, a free radical scavenger, on photochemically induced cerebral infarction in a rat hemiplegic model. ScientificWorldJournal 2013; 2013:175280. [PMID: 23853531 PMCID: PMC3703327 DOI: 10.1155/2013/175280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/06/2013] [Indexed: 11/17/2022] Open
Abstract
Edaravone is a free radical scavenger that protects the adjacent cortex during cerebral infarction. We created a hemiparetic model of cerebral thrombosis from a photochemically induced infarction with the photosensitive dye, rose bengal, in rats. We examined the effects of edaravone on recovery in the model. A total of 36 adult Wistar rats were used. The right sensorimotor area was irradiated with green light with a wavelength of 533 nm (10 mm diameter), and the rose bengal was injected intravenously to create an infarction. The edaravone group was injected intraperitoneally with edaravone (3 mg/kg), and the control group was injected with saline. The recovery process of the hemiplegia was evaluated with the 7-step scale of Fenny. The infarcted areas were measured after fixation. The recovery of the paralysis in the edaravone-treated group was significantly earlier than that in the untreated group. Seven days later, both groups were mostly recovered and had scores of 7, and the infarction region was significantly smaller in the edaravone-treated group. Edaravone reduced the infarction area and promoted the functional recovery of hemiparesis from cerebral thrombosis in a rat model. These findings suggest that edaravone treatment would be effective in clinical patients recovering from cerebral infarction.
Collapse
|
31
|
Chaudhuri P. Edaravon: Caution for use in traumatic brain injury. Experience in 127 patients. INDIAN JOURNAL OF NEUROTRAUMA 2013. [DOI: 10.1016/j.ijnt.2013.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Therapeutic time window for edaravone treatment of traumatic brain injury in mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:379206. [PMID: 23710445 PMCID: PMC3654699 DOI: 10.1155/2013/379206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in young people. No effective therapy is available to ameliorate its damaging effects. Our aim was to investigate the optimal therapeutic time window of edaravone, a free radical scavenger which is currently used in Japan. We also determined the temporal profile of reactive oxygen species (ROS) production, oxidative stress, and neuronal death. Male C57Bl/6 mice were subjected to a controlled cortical impact (CCI). Edaravone (3.0 mg/kg), or vehicle, was administered intravenously at 0, 3, or 6 hours following CCI. The production of superoxide radicals (O2∙−) as a marker of ROS, of nitrotyrosine (NT) as an indicator of oxidative stress, and neuronal death were measured for 24 hours following CCI. Superoxide radical production was clearly evident 3 hours after CCI, with oxidative stress and neuronal cell death becoming apparent after 6 hours. Edaravone administration after CCI resulted in a significant reduction in the injury volume and oxidative stress, particularly at the 3-hour time point. Moreover, the greatest decrease in O2∙− levels was observed when edaravone was administered 3 hours following CCI. These findings suggest that edaravone could prove clinically useful to ameliorate the devastating effects of TBI.
Collapse
|
33
|
Al Nimer F, Ström M, Lindblom R, Aeinehband S, Bellander BM, Nyengaard JR, Lidman O, Piehl F. Naturally occurring variation in the Glutathione-S-Transferase 4 gene determines neurodegeneration after traumatic brain injury. Antioxid Redox Signal 2013; 18:784-94. [PMID: 22881716 PMCID: PMC3555113 DOI: 10.1089/ars.2011.4440] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM Genetic factors are important for outcome after traumatic brain injury (TBI), although exact knowledge of relevant genes/pathways is still lacking. We here used an unbiased approach to define differentially activated pathways between the inbred DA and PVG rat strains. The results prompted us to study further if a naturally occurring genetic variation in glutathione-S-transferase alpha 4 (Gsta4) affects the outcome after TBI. RESULTS Survival of neurons after experimental TBI is increased in PVG compared to the DA strain. Global expression profiling analysis shows the glutathione metabolism pathway to be the most regulated between the strains, with increased Gsta4 in PVG among top regulated transcripts. A congenic strain (R5) with a PVG genomic insert containing the Gsta4 gene on DA background displays a reversal of the strain pattern for Gsta4 expression and increased survival of neurons compared to DA. Gsta4 is known to effectively reduce 4-hydroxynonenal (4-HNE), a noxious by-product of lipid peroxidation. Immunostaining of 4-HNE was evident in both rat and human TBI. Intracerebral injection of 4-HNE resulted in neurodegeneration with increased levels of a marker for nerve injury in cerebrospinal fluid of DA compared to R5. INNOVATION These findings provide strong support for the notion that the inherent capability of coping with increased 4-HNE after TBI affects outcome in terms of nerve cell loss. CONCLUSION A naturally occurring variation in Gsta4 expression in rats affects neurodegeneration after TBI. Further studies are needed to explore if genetic variability in Gsta4 can be associated to outcome also in human TBI.
Collapse
Affiliation(s)
- Faiez Al Nimer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Smith JA, Park S, Krause JS, Banik NL. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem Int 2013; 62:764-75. [PMID: 23422879 DOI: 10.1016/j.neuint.2013.02.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 01/19/2023]
Abstract
Oxidative stress has been identified as an important contributor to neurodegeneration associated with acute CNS injuries and diseases such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic stroke. In this review, we briefly detail the damaging effects of oxidative stress (lipid peroxidation, protein oxidation, etc.) with a particular emphasis on DNA damage. Evidence for DNA damage in acute CNS injuries is presented along with its downstream effects on neuronal viability. In particular, unchecked oxidative DNA damage initiates a series of signaling events (e.g. activation of p53 and PARP-1, cell cycle re-activation) which have been shown to promote neuronal loss following CNS injury. These findings suggest that preventing DNA damage might be an effective way to promote neuronal survival and enhance neurological recovery in these conditions. Finally, we identify the telomere and telomere-associated proteins (e.g. telomerase) as novel therapeutic targets in the treatment of neurodegeneration due to their ability to modulate the neuronal response to both oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Joshua A Smith
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas St., Clinical Sciences Building Room 309, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
35
|
Protective effect of edaravone against Alzheimer's disease-relevant insults in neuroblastoma N2a cells. Neurosci Lett 2012; 531:160-5. [DOI: 10.1016/j.neulet.2012.10.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/02/2012] [Accepted: 10/11/2012] [Indexed: 11/17/2022]
|
36
|
Itoh T, Tabuchi M, Mizuguchi N, Imano M, Tsubaki M, Nishida S, Hashimoto S, Matsuo K, Nakayama T, Ito A, Munakata H, Satou T. Neuroprotective effect of (-)-epigallocatechin-3-gallate in rats when administered pre- or post-traumatic brain injury. J Neural Transm (Vienna) 2012. [PMID: 23180302 DOI: 10.1007/s00702-012-0918-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our previous study indicated that consuming (-)-epigallocatechin gallate (EGCG) before or after traumatic brain injury (TBI) eliminated free radical generation in rats, resulting in inhibition of neuronal degeneration and apoptotic death, and improvement of cognitive impairment. Here we investigated the effects of administering EGCG at various times pre- and post-TBI on cerebral function and morphology. Wistar rats were divided into five groups and were allowed access to (1) normal drinking water, (2) EGCG pre-TBI, (3) EGCG pre- and post-TBI, (4) EGCG post-TBI, and (5) sham-operated group with access to normal drinking water. TBI was induced with a pneumatic controlled injury device at 10 weeks of age. Immunohistochemistry and lipid peroxidation studies revealed that at 1, 3, and 7 days post-TBI, the number of 8-Hydroxy-2'-deoxyguanosine-, 4-Hydroxy-2-nonenal- and single-stranded DNA (ssDNA)-positive cells, and levels of malondialdehyde around the damaged area were significantly decreased in all EGCG treatment groups compared with the water group (P < 0.05). Although there was a significant increase in the number of surviving neurons after TBI in each EGCG treatment group compared with the water group (P < 0.05), significant improvement of cognitive impairment after TBI was only observed in the groups with continuous and post-TBI access to EGCG (P < 0.05). These results indicate that EGCG inhibits free radical-induced neuronal degeneration and apoptotic death around the area damaged by TBI. Importantly, continuous and post-TBI access to EGCG improved cerebral function following TBI. In summary, consumption of green tea may be an effective therapy for TBI patients.
Collapse
Affiliation(s)
- Tatsuki Itoh
- Department of Pathology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama, Osaka, 589-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
SHEN L, YE M, DING X, HAN Q, ZHANG C, LIU X, HUANG H, WU E, HUANG H, GU X. Protective effects of MCI-186 on transplantation of bone marrow stromal cells in rat ischemic stroke model. Neuroscience 2012; 223:315-24. [DOI: 10.1016/j.neuroscience.2012.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 12/11/2022]
|
38
|
Ohta M, Higashi Y, Yawata T, Kitahara M, Nobumoto A, Ishida E, Tsuda M, Fujimoto Y, Shimizu K. Attenuation of axonal injury and oxidative stress by edaravone protects against cognitive impairments after traumatic brain injury. Brain Res 2012; 1490:184-92. [PMID: 22982593 DOI: 10.1016/j.brainres.2012.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/30/2012] [Accepted: 09/07/2012] [Indexed: 12/21/2022]
Abstract
Traumatic axonal injury (TAI), a feature of traumatic brain injury (TBI), progressively evolves over hours through impaired axonal transport and is thought to be a major contributor to cognitive dysfunction. In spite of various studies suggesting that pharmacologic or physiologic interventions might reduce TAI, clinical neuroprotective treatments are still unavailable. Edaravone, a free radical scavenger, has been shown to exert neuroprotective effects in animal models of several brain disorders. In this study, to evaluate whether edaravone suppresses TAI following TBI, mice were subjected to weight drop injury and had either edaravone (3.0mg/kg) or saline administered intravenously immediately after impact. Axonal injury and oxidative stress were assessed using immunohistochemistry with antibodies against amyloid precursor protein, a marker of impaired axonal transport, and with 8-hydroxy-2'-deoxyguanosine, a marker of oxidative DNA damage. Edaravone significantly suppressed axonal injury and oxidative stress in the cortex, corpus callosum, and hippocampus 24h after injury. The neuroprotective effects of edaravone were observed in mice receiving 1.0, 3.0, or 10mg/kg of edaravone immediately after impact, but not after 0.3mg/kg of edaravone. With treatment 1h after impact, axonal injury was also significantly suppressed and this therapeutic effect persisted up to 6h after impact. Furthermore, behavioral tests performed 9 days after injury showed memory deficits in saline-treated traumatized mice, which were not evident in the edaravone-treated group. These results suggest that edaravone protects against memory deficits following TBI and that this protection is mediated by suppression of TAI and oxidative stress.
Collapse
Affiliation(s)
- Manabu Ohta
- Department of Neurosurgery, Kochi Medical School, Kohasu, Okoh-cho, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Appearance of neural stem cells around the damaged area following traumatic brain injury in aged rats. J Neural Transm (Vienna) 2012; 120:361-74. [PMID: 22955958 DOI: 10.1007/s00702-012-0895-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/12/2012] [Indexed: 10/27/2022]
Abstract
We have previously reported free radical production after traumatic brain injury (TBI), which induces neural stem cell (NSC) degeneration and death. However, the effects of aging on NSC proliferation around the damaged area following TBI have not been investigated. Therefore, in this study, we used 10-week (young group) and 24-month-old (aged group) rat TBI models to investigate the effects of aging on NSC proliferation around damaged tissue using immunohistochemical and ex vivo techniques. Young and aged rats received TBI. At 1, 3 and 7 days after TBI, immunohistochemical and lipid peroxidation studies were performed. Immunohistochemistry revealed that the number of nestin-positive cells around the damaged area after TBI in the aged group decreased significantly when compared with those in the young group (P < 0.01). However, the number of 8-hydroxy-2'-deoxyguanosine-, 4-hydroxy-2-nonenal- and single-stranded DNA (ssDNA)-positive cells and the level of peroxidation around the damaged area after TBI significantly increased in the aged group, compared with those in the young group (P < 0.01). Furthermore, almost all ssDNA-positive cells in young and aged groups co-localized with NeuN and nestin staining. Ex vivo studies revealed that neurospheres, which differentiated into neurons and glia in culture, could only be isolated from injured brain tissue in young and aged groups at 3 days after TBI. These results indicate that, although there were fewer NSCs that have the potential to differentiate into neurons and glia, these NSCs escaped free radical-induced degeneration around the damaged area after TBI in the aged rat brain.
Collapse
|
40
|
McConeghy KW, Hatton J, Hughes L, Cook AM. A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 2012; 26:613-36. [PMID: 22668124 DOI: 10.2165/11634020-000000000-00000] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury (TBI) affects 1.6 million Americans annually. The injury severity impacts the overall outcome and likelihood for survival. Current treatment of acute TBI includes surgical intervention and supportive care therapies. Treatment of elevated intracranial pressure and optimizing cerebral perfusion are cornerstones of current therapy. These approaches do not directly address the secondary neurological sequelae that lead to continued brain injury after TBI. Depending on injury severity, a complex cascade of processes are activated and generate continued endogenous changes affecting cellular systems and overall outcome from the initial insult to the brain. Homeostatic cellular processes governing calcium influx, mitochondrial function, membrane stability, redox balance, blood flow and cytoskeletal structure often become dysfunctional after TBI. Interruption of this cascade has been the target of numerous pharmacotherapeutic agents investigated over the last two decades. Many agents such as selfotel, pegorgotein (PEG-SOD), magnesium, deltibant and dexanabinol were ineffective in clinical trials. While progesterone and ciclosporin have shown promise in phase II studies, success in larger phase III, randomized, multicentre, clinical trials is pending. Consequently, no neuroprotective treatment options currently exist that improve neurological outcome after TBI. Investigations to date have extended understanding of the injury mechanisms and sites for intervention. Examination of novel strategies addressing both pathological and pharmacological factors affecting outcome, employing novel trial design methods and utilizing biomarkers validated to be reflective of the prognosis for TBI will facilitate progress in overcoming the obstacles identified from previous clinical trials.
Collapse
|
41
|
Edaravone ameliorates oxidative stress associated cholinergic dysfunction and limits apoptotic response following focal cerebral ischemia in rat. Mol Cell Biochem 2012; 367:215-25. [DOI: 10.1007/s11010-012-1335-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
|
42
|
Itoh T, Imano M, Nishida S, Tsubaki M, Mizuguchi N, Hashimoto S, Ito A, Satou T. Increased apoptotic neuronal cell death and cognitive impairment at early phase after traumatic brain injury in aged rats. Brain Struct Funct 2012; 218:209-20. [PMID: 22374222 DOI: 10.1007/s00429-012-0394-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/31/2012] [Indexed: 01/29/2023]
Abstract
Progressive age-associated increases in cerebral dysfunction have been shown to occur following traumatic brain injury (TBI). Moreover, levels of neuronal mitochondrial antioxidant enzymes in the aged brain are reduced, resulting in free radical-induced cell death. It was hypothesized that cognitive impairment after TBI in the aged progresses to a greater degree than in younger individuals, and that damage involves neuronal degeneration and death by free radicals. In this study, we investigated the effects of free radicals on neuronal degeneration, cell death, and cognitive impairment in 10-week-old (young group) and 24-month-old rats (aged group) subjected to TBI. Young and aged rats received TBI with a pneumatic controlled injury device. At 1, 3 and 7 days after TBI, immunohistochemistry, lipid peroxidation and behavioral studies were performed. At 1, 3 and 7 days post-TBI, the number of 8-hydroxy-2'-deoxyguanosine-, 4-hydroxy-2-nonenal- and single-stranded DNA (ssDNA)-positive cells, and the levels of malondialdehyde around the damaged area after TBI significantly increased in the aged group when compared with the young group (P < 0.05). In addition, the majority of ssDNA-positive cells in both groups co-localized with neuronal cells around the damaged area. There was a significant decrease in the number of surviving neurons and an increase in cognitive impairment after TBI in the aged group when compared with the young group (P < 0.05). These results indicate that following TBI, high levels of free radicals are produced in the aged rat brain, which induces neuronal degeneration and apoptotic cell death around the damaged area, resulting in cognitive impairment.
Collapse
Affiliation(s)
- Tatsuki Itoh
- Department of Pathology, Faculty of Medicine, Kinki University, 377-2 Ohno-higashi, Osakasayama, Osaka 589-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hu Y, Peng Y, Long Y, Xu S, Feng N, Wang L, Wang X. Potassium 2-(1-hydroxypentyl)-benzoate attenuated hydrogen peroxide-induced apoptosis in neuroblastoma SK-N-SH cells. Eur J Pharmacol 2012; 680:49-54. [PMID: 22329894 DOI: 10.1016/j.ejphar.2012.01.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
Abstract
Potassium 2-(1-hydroxypentyl)-benzoate (dl-PHPB) has been shown to have potent neuroprotective effects, such as reducing the infarct volume and improving neurobehavioral deficits in the transient focal cerebral ischemic rat model. The present study is to evaluate the neuroprotective effect of dl-PHPB on hydrogen peroxide (H(2)O(2))-induced apoptosis and the possible mechanism in the human neuroblastoma SK-N-SH cells. Our results showed that dl-PHPB significantly attenuated H(2)O(2)-induced cell death, and reduced neuronal apoptosis. Dl-PHPB partially reversed the decrease of B-cell CLL/lymphoma 2 (Bcl-2) protein level induced by H(2)O(2). Furthermore, dl-PHPB inhibited the elevation of pro-apoptotic Bcl-2-associated X protein (Bax) and caspase3, and alleviated the down-regulation of protein kinase C alpha (PKCα). The PKC inhibitor, Calphostin C significantly attenuated the protective effects of dl-PHPB. The findings suggest that dl-PHPB may protect neurons against H(2)O(2)-induced apoptosis by modulating apoptosis-related proteins, and PKC signaling pathway may be involved in the neuroprotection of dl-PHPB.
Collapse
Affiliation(s)
- Yanli Hu
- State Key laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Barreto GE, Gonzalez J, Capani F, Morales L. Neuroprotective agents in brain injury: a partial failure? Int J Neurosci 2012; 122:223-6. [PMID: 22176297 DOI: 10.3109/00207454.2011.648292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Brain injury leads to inflammation, stress, and cell death. Neurons are more susceptible to injury than astrocytes, as they have limited antioxidant capacity, and rely heavily on their metabolic coupling with astrocytes to combat oxidative stress. Both normally and after brain injury, astrocytes support neurons by providing antioxidant protection, substrates for neuronal metabolism, and glutamate clearance. Although astrocytes are generally more resilient than neurons after injury, severe damage also results in astrocyte dysfunction, leading to increased neuronal death. This mini review provides a very insightful and brief overview on a few examples of promising neuroprotective compounds targeting astrocyte function, with specific attention on how these treatments alter astrocyte response or viability, and how this may be critical for neuronal survival following brain injury.
Collapse
Affiliation(s)
- George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| | | | | | | |
Collapse
|
45
|
Treatment with edaravone attenuates ischemic brain injury and inhibits neurogenesis in the subventricular zone of adult rats after focal cerebral ischemia and reperfusion injury. Neuroscience 2012; 201:297-306. [DOI: 10.1016/j.neuroscience.2011.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/18/2011] [Accepted: 11/02/2011] [Indexed: 01/18/2023]
|
46
|
Archer T. Influence of Physical Exercise on Traumatic Brain Injury Deficits: Scaffolding Effect. Neurotox Res 2011; 21:418-34. [DOI: 10.1007/s12640-011-9297-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022]
|
47
|
Kurland D, Hong C, Aarabi B, Gerzanich V, Simard JM. Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma 2011; 29:19-31. [PMID: 21988198 DOI: 10.1089/neu.2011.2122] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The magnitude of damage to cerebral tissues following head trauma is determined by the primary injury, caused by the kinetic energy delivered at the time of impact, plus numerous secondary injury responses that almost inevitably worsen the primary injury. When head trauma results in a cerebral contusion, the hemorrhagic lesion often progresses during the first several hours after impact, either expanding or developing new, non-contiguous hemorrhagic lesions, a phenomenon termed hemorrhagic progression of a contusion (HPC). Because a hemorrhagic contusion marks tissues with essentially total unrecoverable loss of function, and because blood is one of the most toxic substances to which the brain can be exposed, HPC is one of the most severe types of secondary injury encountered following traumatic brain injury (TBI). Historically, HPC has been attributed to continued bleeding of microvessels fractured at the time of primary injury. This concept has given rise to the notion that continued bleeding might be due to overt or latent coagulopathy, prompting attempts to normalize coagulation with agents such as recombinant factor VIIa. Recently, a novel mechanism was postulated to account for HPC that involves delayed, progressive microvascular failure initiated by the impact. Here we review the topic of HPC, we examine data relevant to the concept of a coagulopathy, and we detail emerging data elucidating the mechanism of progressive microvascular failure that predisposes to HPC after head trauma.
Collapse
Affiliation(s)
- David Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA
| | | | | | | | | |
Collapse
|
48
|
Yu X, Lu S, Yang Y, Li X, Yi P. The investigation of the interaction between NCP-EDA and bovine serum albumin by spectroscopic approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 83:609-613. [PMID: 21963191 DOI: 10.1016/j.saa.2011.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 05/31/2023]
Abstract
The fluorescence and ultraviolet spectroscopies were explored to study the interaction between N-confused porphyrins-edaravone diad (NCP-EDA) and bovine serum albumin (BSA) under simulative physiological condition at different temperatures. The experimental results show that the fluorescence quenching mechanism between NCP-EDA and BSA is a combined quenching (dynamic and static quenching). The binding constants, binding sites and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction system were calculated at different temperatures. According to Förster non-radiation energy transfer theory, the binding distance between NCP-EDA and BSA was calculated to be 3.63 nm. In addition, the effect of NCP-EDA on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy.
Collapse
Affiliation(s)
- Xianyong Yu
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | | | | | | | | |
Collapse
|
49
|
Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, Satou T. (-)-Epigallocatechin-3-gallate protects against neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neuromolecular Med 2011; 13:300-9. [PMID: 22038400 DOI: 10.1007/s12017-011-8162-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/07/2011] [Indexed: 12/17/2022]
Abstract
A major component of green tea, a widely consumed beverage, is (-)-epigallocatechin gallate (EGCG), which has strong antioxidant properties. Our previous study has indicated that free radical production following rat traumatic brain injury (TBI) induces neural degeneration. In this study, we investigated the effects of EGCG on cerebral function and morphology following TBI. Six-week-old male Wistar rats that had access to normal drinking water, or water containing 0.1% (w/v) EGCG ad libitum, received TBI with a pneumatic controlled injury device at 10 weeks of age. Immunohistochemistry and lipid peroxidation studies revealed that at 1, 3 and 7 days post-TBI, the number of 8-hydroxy-2'-deoxyguanosine-, 4-hydroxy-2-nonenal- and single-stranded DNA (ssDNA)-positive cells, and the levels of malondialdehyde (MDA) around the damaged area after TBI, significantly decreased in the EGCG treatment group compared with the water group (P < 0.05). Most ssDNA-positive cells in the water group co-localized with neuronal cells. However, in the EGCG treatment group, few ssDNA-positive cells co-localized with neurons. In addition, there was a significant increase in the number of surviving neuronal cells and an improvement in cerebral dysfunction after TBI in the EGCG treatment group compared with the water group (P < 0.05). These results indicate that consumption of water containing EGCG pre- and post-TBI inhibits free radical-induced neuronal degeneration and apoptotic cell death around the damaged area, resulting in the improvement of cerebral function following TBI. In summary, consumption of green tea may be an effective therapy for TBI patients.
Collapse
Affiliation(s)
- Tatsuki Itoh
- Department of Pathology, Faculty of Medicine, Kinki University, 377-2, Ohno-higashi, Osakasayama-city, Osaka, 589-8511, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang GH, Jiang ZL, Li YC, Li X, Shi H, Gao YQ, Vosler PS, Chen J. Free-radical scavenger edaravone treatment confers neuroprotection against traumatic brain injury in rats. J Neurotrauma 2011; 28:2123-34. [PMID: 21732763 DOI: 10.1089/neu.2011.1939] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of neurological disability in young adults. Edaravone, a novel synthetic small-molecule free-radical scavenger, has been shown to have a neuroprotective effect in both animal models of cerebral ischemia and stroke patients; however, the underlying mechanism is poorly understood. In this report, we investigated the potential mechanisms of edaravone treatment in a rat model of TBI. TBI was induced in the right cerebral cortex of male adult rats using Feeney's weight-drop method. Edaravone (0.75, 1.5, or 3 mg/kg) or vehicle (normal saline) was intravenously administered at 2 and 12 h after TBI. Edaravone treatment significantly decreased hippocampal CA3 neuron loss, reduced oxidative stress, and decreased neuronal programmed cell death compared to vehicle treatment. The protective effects of edaravone treatment were also related to the pathology of TBI on non-neuronal cells, as edaravone decreased astrocyte and glial activation. Lastly, edaravone treatment significantly reduced the presence of inflammatory cytokines, cerebral edema, blood-brain barrier (BBB) permeability, and, importantly, neurological deficits following TBI. Our results suggest that edaravone exerts a neuroprotective effect in the rat model of TBI. The likely mechanism is via inhibiting oxidative stress, leading to a decreased inflammatory response and glial activation, and thereby reducing neuronal death and improving neurological function.
Collapse
Affiliation(s)
- Guo-Hua Wang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|