1
|
Yu L, Zhang C, Gu L, Chen H, Huo Y, Wang S, Tao J, Xu C, Zhang Q, Ma M, Zhang J. Hydroxysafflor Yellow A and Tenuigenin Exhibit Neuroprotection Effects Against Focal Cerebral Ischemia Via Differential Regulation of JAK2/STAT3 and SOCS3 Signaling Interaction. Mol Neurobiol 2024; 61:5584-5600. [PMID: 38214838 DOI: 10.1007/s12035-023-03896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Numerous natural bioactive compounds extracted from Chinese medicines have been proved to be promising and potent agents in the treatment of ischemic stroke. Hydroxysafflor yellow A (HSYA), separated from Carthamus tinctorius, has increasingly attracted attention for its broad spectrum of pharmacological effects, especially of its neuroprotective action. Our previous studies revealed that HSYA plays significant beneficial roles in a dose-dependent manner in rats with focal cerebral ischemia. However, treatment with higher doses of HSYA appeared to bring about adverse reactions in the rats. In present study, we adopted tenuigenin (TEN), extracted from the Polygala tenuifolia root, in combination with HSYA to optimize the therapeutic strategy against ischemic stroke, and further explored the underlying mechanisms of action of the combination in vivo and in vitro. We firstly confirmed the pharmacological efficacies of co-treatment of HSYA and TEN in middle cerebral ischemia occlusion (MCAO) rats and observed the synergistic improvement of infarct volume, cerebral edema, and morphology of neuron cell body. Behavioral experiments indicated that combination of HSYA and TEN could synergistically improve motor and cognitive function in MCAO rats. We also observed increased viability and suppressed cell apoptosis after HSYA and TEN co-treatments in the oxygen-glucose deprivation/reperfusion (OGD/R) SH-SY5Y cells. Furthermore, JAK2/STAT3 and SOCS3 signaling interaction was demonstrated to be a critical responsor to the co-treatment of HSYA and TEN. In the subsequent experiments with silencing SOCS3 in OGD/R-exposed cells, we found that HSYA and TEN might suppress JAK2/STAT3 pathway through different regulatory mechanisms targeting SOCS3-negative feedback signaling. HSYA seemed to impose excessive activation of JAK2/STAT3 to trigger SOCS3-negative feedback signaling, while TEN appeared to provoke SOCS3 inhibitory feedback role directly to further attenuate JAK2-mediated signaling. Collectively, HSYA and TEN might modulate the crosstalk between JAK2/STAT3 and SOCS3 signaling pathways in different manners that eventually contributed to their synergistic therapeutic effects against cerebral ischemic stroke.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Cheng Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Lingling Gu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Hong Chen
- Department of Clinical Laboratory, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Huo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shuyan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jie Tao
- Comprehensive Department of Traditional Chinese Medicine, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Chuan Xu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Mingliang Ma
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Wang Q, Yang Z, Guo L, Li Z, Liu Y, Feng S, Wang Y. Chemical composition, pharmacology and pharmacokinetic studies of GuHong injection in the treatment of ischemic stroke. Front Pharmacol 2023; 14:1261326. [PMID: 37745083 PMCID: PMC10512552 DOI: 10.3389/fphar.2023.1261326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
GuHong injection is composed of safflower and N-acetyl-L-glutamine. It is widely used in clinical for cerebrovascular diseases, such as ischemic stroke and related diseases. The objective of this review is to comprehensively summarize the most recent information related to GuHong in the treatment of stroke, including chemical composition, clinical studies, potential pharmacological mechanisms and pharmacokinetics. Additionally, it examines possible scientific gaps in current study and aims to provide a reliable reference for future GuHong studies. The systematic review reveals that the chemical composition of safflower in GuHong is more than 300 chemical components in five categories. GuHong injection is primarily used in clinical applications for acute ischemic stroke and related diseases. Pharmacological investigations have indicated that GuHong acts in the early and recovery stages of ischemic stroke by anti-inflammatory, anti-oxidative stress, anti-coagulation, neuroprotective and anti-apoptotic mechanisms simultaneously. Pharmacokinetic studies found that the main exposed substances in rat plasma after GuHong administration are hydroxysafflor yellow A and N-acetyl-L-glutamine, and N-acetyl-L-glutamine could exert its pharmacological effect across the blood-brain barrier. As a combination of Chinese herb and chemical drug, GuHong injection has great value in drug research and clinical treatment, especially for ischemic stroke disease. This article represents a comprehensive and systematic review of existing studies on GuHong injection, including chemical composition, pharmacological mechanism, and pharmacokinetics, which provides reference significance for the clinical treatment of ischemic stroke with GuHong, as well as provides guidance for further study.
Collapse
Affiliation(s)
- Qiuyue Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liuli Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenzhen Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaoling Feng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxia Wang
- Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin, China
| |
Collapse
|
3
|
Aanisah N, Sulistiawati S, Djabir YY, Asri RM, Sumarheni S, Chabib L, Hamzah H, Permana AD. Development of Solid Lipid Nanoparticle-Loaded Polymeric Hydrogels Containing Antioxidant and Photoprotective Bioactive Compounds of Safflower ( Carthamus tinctorius L.) for Improved Skin Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1838-1851. [PMID: 36701815 DOI: 10.1021/acs.langmuir.2c02754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Safflower (Carthamus tinctorius L.) is a potent natural antioxidant because of active compounds such as quercetin (QU) and luteolin (LU). These components prevent damage to the skin caused by free radicals from UV rays. However, due to the poor solubility and transdermal permeation, the effectiveness of the compounds in showing their activity was limited. In this study, we develop solid lipid nanoparticle (SLN)-based hydrogel formulations to enhance the solubility and penetration of two bioactive compounds found in safflower petals extract (SPE). The hot emulsification-ultrasonication method was used to produce SLNs, and to obtain high antioxidant activity, 100% v/v ethanol was used in the extraction procedure. The results showed that this approach could encapsulate >80% of both QU and LU. Moreover, Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) spectra indicated that most of the QU and LU were trapped in a lipid matrix and dispersed homogeneously at the molecular level, increasing the solubility. Additionally, SLN-hydrogel composites are able to release two lipophilic bioactive compounds for 24 h, which also demonstrated increased skin retention and penetrability of the QU and LU up to 19-fold. In vitro blood biocompatibility showed that no hemolytic toxicity was observed below 500 μg/mL. Accordingly, the formulation was considered safe for use. Sun protective factor (SPF) test shows a value above 15, showing an excellent promising application as the photoprotective agent to prevent symptoms associated with photoinduced skin aging.
Collapse
Affiliation(s)
- Nuur Aanisah
- Department of Pharmacy, Faculty of Science, Tadulako University, Palu94118, Indonesia
| | | | | | | | | | - Lutfi Chabib
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta55584, Indonesia
| | - Hasyrul Hamzah
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda75124, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar90245, Indonesia
| |
Collapse
|
4
|
Yu L, Jin Z, Li M, Liu H, Tao J, Xu C, Wang L, Zhang Q. Protective potential of hydroxysafflor yellow A in cerebral ischemia and reperfusion injury: An overview of evidence from experimental studies. Front Pharmacol 2022; 13:1063035. [PMID: 36588739 PMCID: PMC9797593 DOI: 10.3389/fphar.2022.1063035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic stroke, mostly caused by thromboembolic or thrombotic arterial occlusions, is a primary leading cause of death worldwide with high morbidity and disability. Unfortunately, no specific medicine is available for the treatment of cerebral I/R injury due to its limitation of therapeutic window. Hydroxysafflor yellow A, a natural product extracted from Carthamus tinctorius, has been extensively investigated on its pharmacological properties in cerebrovascular diseases. However, review focusing on the beneficial role of HSYA against cerebral I/R injury is still lacking. In this paper, we reviewed the neuroprotective effect of HSYA in preclinical studies and the underlying mechanisms involved, as well as clinical data that support the pharmacological activities. Additionally, the sources, physicochemical properties, biosynthesis, safety and limitations of HSYA were also reviewed. As a result, HSYA possesses a wide range of beneficial effects against cerebral I/R injury, and its action mechanisms include anti-excitotoxicity, anti-oxidant stress, anti-apoptosis, anti-inflammation, attenuating BBB leakage and regulating autophagy. Collectively, HSYA might be applied as one of the promising alternatives in ischemic stroke treatment.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| | - Zhe Jin
- Department of Neurology, Renji Hospital Baoshan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mincheng Li
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huifang Liu
- Department of Neurology, Shanghai Jinshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jie Tao
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuan Xu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liwei Wang
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| |
Collapse
|
5
|
Shen Y, Zhou T, Liu X, Liu Y, Li Y, Zeng D, Zhong W, Zhang M. Sevoflurane-Induced miR-211-5p Promotes Neuronal Apoptosis by Inhibiting Efemp2. ASN Neuro 2021; 13:17590914211035036. [PMID: 34730432 PMCID: PMC8819752 DOI: 10.1177/17590914211035036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sevoflurane exposure can result in serious neurological side effects including neuronal
apoptosis and cognitive impairment. Although the microRNA miR-211-5p is profoundly
upregulated following sevoflurane exposure in neonatal rodent models, the impact of
miR-211-5p on neuronal apoptosis and cognitive impairment postsevoflurane exposure has not
yet been elucidated. Here, we found that sevoflurane upregulated miR-211-5p and
downregulated EGF-Containing Fibulin Extracellular Matrix Protein 2 (Efemp2, Fibulin-4)
levels in vitro and in vivo. Sevoflurane's effect on miR-211-5p expression was based on
enhancing primary miR-211 transcription. miR-211-5p targets Efemp2's mRNA 3′-untranslated
region, reducing Efemp2 expression. RNA immunoprecipitation revealed significant
enrichment of the miR-211-5p:Efemp2 mRNA dyad in the RNA-induced silencing complex.
miR-211-5p mimics downregulated Efemp2, leading to phosphorylation of Smad2 and Smad3,
upregulation of pro-apoptotic Bim, and mitochondrial release of allograft inflammatory
factor 1 and cytochrome C. In contrast, miR-211-5p hairpin inhibitor (AntimiR-211-5p)
negatively regulated this apoptotic pathway and reduced neuronal apoptosis in an
Efemp2-dependent manner. Sevoflurane-exposed mice administered AntimiR-211-5p displayed
reduced cortical apoptosis levels and near-term cognitive impairment. In conclusion,
sevoflurane-induced miR-211-5p promotes neuronal apoptosis via Efemp2 inhibition. Summary
statement: This study revealed the significance of sevoflurane-induced increases in
miR-211-5p on the promotion of neuronal apoptosis via inhibition of Efemp2 and its
downstream targets.
Collapse
Affiliation(s)
- Yousu Shen
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Tao Zhou
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Xiaobing Liu
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Yanlong Liu
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Yaqi Li
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Dewu Zeng
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Wensheng Zhong
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Mingsheng Zhang
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| |
Collapse
|
6
|
Cui Q, Ma YH, Yu HY, Zhang YL, Qin XD, Ge SQ, Zhang GW. Systematic analysis of the mechanism of hydroxysafflor yellow A for treating ischemic stroke based on network pharmacology technology. Eur J Pharmacol 2021; 908:174360. [PMID: 34302817 DOI: 10.1016/j.ejphar.2021.174360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023]
Abstract
In this study, we analyzed the mechanism of hydroxysafflor yellow A (HSYA) for treating ischemic stroke (IS) based on network pharmacology tools, and verified the kernel targets via animal experiments. The targets of HSYA were collected via PharmMapper server and the IS-related targets were searched using Genecards, Online Mendelian Inheritance in Man, Therapeutic Target, and Disgenet databases. The targets identified from the above two steps were overlapped to acquire candidate targets involved in the effects of HSYA for treating IS. Subsequently, the Database for Annotation, Visualization, and Integrated Discovery was used for gene ontology analysis and the Kyoto encyclopedia of genes and genomes pathway analysis. Cytoscape 3.7.1 was applied to establish the component-target-pathway network. Potential core targets were obtained by protein-protein interaction analysis. Furthermore, Autodock Vina was used to identify core genes, and animal experiments was used to verify the expression level of core genes. On the basis of the modified neurologic severity score and the results of 2,3,5-Triphenyltetrazolium chloride and Hematoxylin-eosin staining, we confirmed that HSYA reduced the infarct volume in rats and protected neuronal cells in the hippocampal region after IS. Western blot and immunohistochemical staining showed that HSYA increased the expression of epidermal growth factor receptor, hypoxia inducible factor 1 alpha, and endothelial nitric oxide synthase (P < 0.05). The effects of HSYA on IS are mediated through several targets and pathways related to the regulation of oxidative stress and the renewal of cell and blood vessels while improving post-ischemic brain impairment.
Collapse
Affiliation(s)
- Qian Cui
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China
| | - Yu-Hui Ma
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Hao-Yu Yu
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China
| | - Yu-Liang Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China
| | - Xiu-de Qin
- Shenzhen TCM Hospital, Shenzhen, Guangdong, 518000, China
| | - Shao-Qin Ge
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China
| | - Guo-Wei Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
7
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|
8
|
Liu S, Liu C, Xiong L, Xie J, Huang C, Pi R, Huang Z, Li L. Icaritin Alleviates Glutamate-Induced Neuronal Damage by Inactivating GluN2B-Containing NMDARs Through the ERK/DAPK1 Pathway. Front Neurosci 2021; 15:525615. [PMID: 33692666 PMCID: PMC7937872 DOI: 10.3389/fnins.2021.525615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/02/2021] [Indexed: 01/29/2023] Open
Abstract
Excitatory toxicity due to excessive glutamate release is considered the core pathophysiological mechanism of cerebral ischemia. It is primarily mediated by N-methyl-D-aspartate receptors (NMDARs) on neuronal membranes. Our previous studies have found that icaritin (ICT) exhibits neuroprotective effects against cerebral ischemia in rats, but the underlying mechanism is unclear. This study aims to investigate the protective effect of ICT on glutamate-induced neuronal injury and uncover its possible molecular mechanism. An excitatory toxicity injury model was created using rat primary cortical neurons treated with glutamate and glycine. The results showed that ICT has neuroprotective effects on glutamate-treated primary cortical neurons by increasing cell viability while reducing the rate of lactate dehydrogenase (LDH) release and reducing apoptosis. Remarkably, ICT rescued the changes in the ERK/DAPK1 signaling pathway after glutamate treatment by increasing the expression levels of p-ERK, p-DAPK1 and t-DAPK1. In addition, ICT also regulates NMDAR function during glutamate-induced injury by decreasing the expression level of the GluN2B subunit and enhancing the expression level of the GluN2A subunit. As cotreatment with the ERK-specific inhibitor U0126 and ICT abolishes the beneficial effects of ITC on the ERK/DAPK1 pathway, NMDAR subtypes and neuronal cell survival, ERK is recognized as a crucial mediator in the protective mechanism of ICT. In conclusion, our findings demonstrate that ICT has a neuroprotective effect on neuronal damage induced by glutamate, and its mechanism may be related to inactivating GluN2B-containing NMDAR through the ERK/DAPK1 pathway. This study provides a new clue for the prevention and treatment of clinical ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Chaoming Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Lijiao Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Cheng Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihua Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Liangdong Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Bai X, Wang WX, Fu RJ, Yue SJ, Gao H, Chen YY, Tang YP. Therapeutic Potential of Hydroxysafflor Yellow A on Cardio-Cerebrovascular Diseases. Front Pharmacol 2020; 11:01265. [PMID: 33117148 PMCID: PMC7550755 DOI: 10.3389/fphar.2020.01265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence rate of cardio-cerebrovascular diseases (CCVDs) is increasing worldwide, causing an increasingly serious public health burden. The pursuit of new promising treatment options is thus becoming a pressing issue. Hydroxysafflor yellow A (HSYA) is one of the main active quinochalcone C-glycosides in the florets of Carthamus tinctorius L., a medical and edible dual-purpose plant. HSYA has attracted much interest for its pharmacological actions in treating and/or managing CCVDs, such as myocardial and cerebral ischemia, hypertension, atherosclerosis, vascular dementia, and traumatic brain injury, in massive preclinical studies. In this review, we briefly summarized the mode and mechanism of action of HSYA on CCVDs based on these preclinical studies. The therapeutic effects of HSYA against CCVDs were presumed to reside mostly in its antioxidant, anti-inflammatory, and neuroprotective roles by acting on complex signaling pathways.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Huan Gao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
10
|
Yang Y, Gao H, Liu W, Jiang X, Shen Z, Li X, Ren T, Xu Z, Cheng G, Zhao Q. DCMQA, a caffeoylquinic acid derivative alleviates NMDA-induced neurotoxicity via modulating GluN2A and GluN2B-containing NMDA receptors in vitro. Toxicol In Vitro 2020; 67:104888. [PMID: 32416136 DOI: 10.1016/j.tiv.2020.104888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Compound DCMQA (4, 5-O-dicaffeoyl-1-O-[4-malic acid methyl ester]-quinic acid) is a natural caffeoylquinic acid derivative isolated from Arctium lappa L. roots. Caffeoylquinic acid derivatives have been reported to possess neuroprotective effects through inhibiting oxidative stress and apoptosis in vitro. However, whether DCMQA exerts protective effects on N-methyl-D-aspartate (NMDA)-induced neurotoxicity and the underlying mechanism has not been elucidated. In this study, the results indicated that pretreatment of DCMQA prevented the loss of cell viability and attenuated the LDH leakage in SH-SY5Y cells exposed to NMDA. Hoechst 33342 staining and Annexin V-PI double staining illustrated that DCMQA suppressed NMDA-induced morphological damage and neuronal apoptosis. Moreover, DCMQA inhibited NMDA-mediated Ca2+ influx, excessive intracellular ROS generation and loss of mitochondrial membrane potential (MMP). Western blot analysis showed that DCMQA attenuated the Bax/Bcl-2 ratio, release of cytochrome c as well as expression of caspase-9 and caspase-3. Besides, DCMQA down-regulated GluN2B-containing NMDA receptors (NMDARs) and up-regulated GluN2A-containing NMDARs, promoted the disruption of nNOS and PSD95 as well as activation of CaMK II-α. Furthermore, computational docking study indicated that DCMQA possessed a good affinity for NMDARs. These results indicated that DCMQA protects SH-SY5Y cells against NMDA-induced neuronal damage. In addition, the underlying mechanisms of DCMQA-mediated neuroprotection are associated with modulating NMDARs and disruption of nNOS-PSD95 as well as the activation of CaMK II-α.
Collapse
Affiliation(s)
- Yue Yang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Huan Gao
- Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Wenwu Liu
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Zexu Shen
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Xiang Li
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Tianshu Ren
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Zihua Xu
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Gang Cheng
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Qingchun Zhao
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China.
| |
Collapse
|
11
|
Safflower Yellow Improves the Synaptic Structural Plasticity by Ameliorating the Disorder of Glutamate Circulation in Aβ 1-42-induced AD Model Rats. Neurochem Res 2020; 45:1870-1887. [PMID: 32410043 DOI: 10.1007/s11064-020-03051-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023]
Abstract
Safflower yellow (SY) is the main effective component of Carthamus tinctorius L., and Hydroxysafflor yellow A (HSYA) is the single active component with the highest content in SY. SY and HSYA have been shown to have neuroprotective effects in several AD models. In this study, we aimed to clarify whether the effects of SY and HSYA on the learning and memory abilities of Aβ1-42-induced AD model rats are related to the enhancement of synaptic structural plasticity in brain tissues and the amelioration of disorder of glutamate circulation. We used rats injected with Aβ1-42 into the bilateral hippocampus as a model of AD. After treatment with SY and HSYA, the learning and memory abilities of the Aβ1-42-induced AD model rats were enhanced, Aβ deposition in the AD model rats was decreased, structural damage to dendritic spines and the loss of synaptic-associated proteins were alleviated, and the disorder of glutamate circulation was ameliorated. The results indicated that SY and HSYA improve synaptic structural plasticity by ameliorating the disorder of glutamate circulation in Aβ1-42-induced AD model rats.
Collapse
|
12
|
KLF2 protects BV2 microglial cells against oxygen and glucose deprivation injury by modulating BDNF/TrkB pathway. Gene 2019; 735:144277. [PMID: 31821872 DOI: 10.1016/j.gene.2019.144277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Cerebral ischemia injury is common in cerebral ischemic disease, and treatment options remain limited. Krueppel-like factor 2 (KLF2) is reported to negatively regulate inflammation in several ischemic diseases. Our study aimed to investigate the effects and underlying mechanism of KLF2 in BV2 microglial cells exposed to oxygen and glucose deprivation (OGD). We first found decreased KLF2 and toll-like receptor 2 (TLR2)/TLR4 in these cells. OGD also led to decrease in cell viability and increase in LDH release, apoptosis, the Bax/Bcl-2 ratio, and caspase3/9 expression, as well as production of inflammatory cytokines (e.g., TNFα, IL-1β and IL-6), reactive oxygen species (ROS), and TLR2/TLR4. To examine KLF2's effects on these OGD effects, we infected BV2 microglial cells with an ad-KLF2 or negative control vector, and we found that KLF2 reversed all of the effects of OGD exposure. Furthermore, KLF2 significantly increased levels of BDNF and TrkB in these cells, but these effects were blocked by K252a, a BDNF/TrkB inhibitor. K252a also decreased cell viability and increased apoptosis, inflammatory factors, ROS production, and TLR2/TLR4 expression in OGD-exposed BV2 cells that were treated with KLF2, were implying that K252a could reverse the effects of KLF2 on these cells. Taken together, our study results indicate that KLF2 may protect BV2 microglial cells against OGD injury by activating the BDNF/TrkB pathway.
Collapse
|
13
|
Hydroxysafflor Yellow A: A Promising Therapeutic Agent for a Broad Spectrum of Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8259280. [PMID: 30356354 PMCID: PMC6176289 DOI: 10.1155/2018/8259280] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/12/2018] [Indexed: 01/13/2023]
Abstract
Hydroxysafflor yellow A (HSYA) is one of the major bioactive and water-soluble compounds isolated from Carthami Flos, the flower of safflower (Carthamus tinctorius L.). As a natural pigment with favorable medical use, HSYA has gained extensive attention due to broad and effective pharmacological activities since first isolation in 1993. In clinic, the safflor yellow injection which mainly contains about 80% HSYA was approved by the China State Food and Drug Administration and used to treat cardiac diseases such as angina pectoris. In basic pharmacology, HSYA has been proved to exhibit a broad spectrum of biological effects that include, but not limited to, cardiovascular effect, neuroprotection, liver and lung protection, antitumor activity, metabolism regulation, and endothelium cell protection. Although a great number of studies have been carried out to prove the pharmacological effects and corresponding mechanisms of HYSA, a systemic review of HYSA has not yet been seen. Here, we provide a comprehensive summarization of the pharmacological effects of HYSA. Together with special attention to mechanisms of actions, this review can serve as the basis for further researches and developments of this medicinal compound.
Collapse
|
14
|
Zhang H, Wang J, Huang J, Shi T, Ma X, Luo X, Li X, Li M. Inhibiting Jumoji domain containing protein 3 (JMJD3) prevent neuronal apoptosis from stroke. Exp Neurol 2018; 308:132-142. [PMID: 30028997 DOI: 10.1016/j.expneurol.2018.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/12/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
Control of p53 by histone methylation is closely related in the neuronal apoptosis following ischemic stroke. In mammalian cells, demethylation of methylated lysine residue of histones is catalyzed by Jumonji domain-containing proteins (JMJD) family. Among them, JMJD3 is reported to be a hypoxic target gene and expressed in all cell types of brain including neurons. However, the role of JMJD3 on process of neuronal apoptosis after ischemic stroke is still largely unknown. PCR, immunostaining and Western blotting results indicated that JMJD3 expression was upregulated in cultured neurons upon oxygen-glucose deprivation (OGD) injury. Jmjd3-/- neurons exhibited inhibited cell apoptosis and tolerance to the OGD injury. Chromatin immunoprecipitation and promoter reporter assays showed that the underlying mechanism was through transcriptional activation of p53, thus altering the downstream Bax and Caspase-3 genes. Silencing Jmjd3 improved neurological deficit and reduced infarct volume following ischemic injury in vivo. The present study suggested that JMJD3 was a critical promoter of neuronal apoptosis by regulating the expression of Bax and Caspase-3, and inhibition of JMJD3 might provide a new therapeutic intervention for treating cerebral ischemia.
Collapse
Affiliation(s)
- Huinan Zhang
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Jun Wang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Huang
- Department of Outpatient, Air Force Engineering University, Xi'an, China
| | - Tingyu Shi
- Basic Medical Academy, The Fourth Military Medical University, Xi'an, China
| | - Xue Ma
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxing Luo
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Mingkai Li
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
15
|
Wu L, Tang Y, Shan C, Chai C, Zhou Z, Shi X, Ding N, Wang J, Lin L, Tan R. A comprehensive in vitro and in vivo metabolism study of hydroxysafflor yellow A. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:99-108. [PMID: 29076598 DOI: 10.1002/jms.4041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
As the most important marker component in Carthamus tinctorius L., hydroxysafflor yellow A (HSYA) was widely used in the prevention and treatment of cardiovascular diseases, due to its effect of improving blood supply, suppressing oxidative stress, and protecting against ischemia/reperfusion. In this paper, both an in vitro microsomal incubation and an in vivo animal experiment were conducted, along with an LC-Q-TOF/MS instrument and a 3-step protocol, to further explore the metabolism of HSYA. As a result, a total of 10 metabolites were searched and tentatively identified in plasma, urine, and feces after intravenous administration of HSYA to male rats, although no obvious biotransformation was found in the simulated rat liver microsomal system. The metabolites detected involving both phase I and phase II metabolism including dehydration, deglycosylation, methylation, and glucuronic acid conjugation. A few of the metabolites underwent more than one-step metabolic reactions, and some have not been reported before. The study would contribute to a further understanding of the metabolism of HSYA and provide scientific evidence for its pharmacodynamic mechanism research and clinical use.
Collapse
Affiliation(s)
- Liang Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Center for Drug Safety Evaluation and Research, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuping Tang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenxiao Shan
- Analytical Instrumentation Center, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chuan Chai
- Analytical Instrumentation Center, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhu Zhou
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Xuqin Shi
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Center for Drug Safety Evaluation and Research, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- Center for Drug Safety Evaluation and Research, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaying Wang
- Center for Drug Safety Evaluation and Research, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
16
|
Song XQ, Su LN, Wei HP, Liu YH, Yin HF. Protective Effects of Hydroxysafflor Yellow A against Oxidative Damage of β-Mercaptoethanol During Neural Differentiation of Mesenchymal Stem Cells. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Zhou ZY, Huan LY, Zhao WR, Tang N, Jin Y, Tang JY. Spatholobi Caulis extracts promote angiogenesis in HUVECs in vitro and in zebrafish embryos in vivo via up-regulation of VEGFRs. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:74-83. [PMID: 27989880 DOI: 10.1016/j.jep.2016.10.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spatholobi Caulis is a traditional blood-activating and stasis-dispelling herb medicine, which has been used to treat diseases related to blood stasis syndrome (BSS) by inhibiting platelet aggregation, stimulate hematopoiesis, etc. It has been demonstrated that pro-angiogenesis could improve BSS. However, the pro-angiogenic activity of Spatholobi Caulis was not well elucidated AIM OF STUDY: To determine the potential pro-angiogenic activity of Spatholobi Caulis and elucidate its underlying mechanism. The active fractions of Spatholobi Caulis were further screened. MATERIAL AND METHODS Gelatin precipitation and reversed-phase liquid chromatography (RPLC) were used to purify the methanol extracts of Spatholobi Caulis, respectively. The RPLC was also used to prepare fractions. Total flavonoids of purified methanol extracts of Spatholobi Caulis (PSC) were determined using ultraviolet spectrophotometry. The morphological observation of subintestinal vessel plexus (SIVs) and tyrosine kinase inhibitor II (VRI)-induced intersegmental blood vessels (ISVs) loss in transgenic zebrafish Tg(fli-1a: EGFP)y1 were selected to evaluate the pro-angiogenic activity of PSC in vivo. Cell proliferation by MTT assay and cell migration assay were used to evaluate the pro-angiogenesis effect of PSC in human umbilical vein endothelial cells (HUVECs) in vitro. Both zebrafish and HUVECs were used in screening active fractions of PSC. The mechanism of PSC promoting angiogenesis were studied by real-time PCR in zebrafish and western blotting in HUVECs. RESULTS Co-treatment PSC dramatically rescued VRI-induced ISVs loss in zebrafish embryos in a dose-dependent manner and 80% of the defective vascular recovered at the concentration of 30μg/ml compared with VRI-only group. PSC also concentration-dependently increased average sprouting number and diameter of SIVs in zebrafish embryo. Real-time PCR assay proved that PSC significantly restored the down regulation of VEGFRs including Flt-1, Kdr and Kdrl induced by VRI in zebrafish (P<0.001). Furthermore, PSC not only promoted proliferation and migration of normal HUVECs but also ameliorated VRI-induced HUVECs cytotoxicity. Western blotting assay showed that co-treatment of PSC increased the expression of VEGFRs and phosphorylation of MAPKs which decreased by VRI treatment. In addition, quality evaluation experiments showed that the content of total flavonoids of PSC reached 56.36% and the main pro-angiogenic fractions of PSC were F3, F4 and F5 both in zebrafish and HUVECs. CONCLUSIONS Our data demonstrated that PSC presented pro-angiogenic activity both in zebrafish and HUVECs, and principal pro-angiogenic active components were likely flavonoids. Thus, the current study provided evidence for the clinical usage of Spatholobi Caulis in promoting blood circulation and removing stasis in traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Li-Yun Huan
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Wai-Rong Zhao
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Nuo Tang
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jing-Yi Tang
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
18
|
Hydroxysafflor yellow A increases BDNF and NMDARs in the hippocampus in a vascular dementia rat model. Brain Res 2016; 1642:419-425. [DOI: 10.1016/j.brainres.2016.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/30/2016] [Accepted: 04/13/2016] [Indexed: 01/27/2023]
|
19
|
Wang X, Ma Z, Fu Z, Gao S, Yang L, Jin Y, Sun H, Wang C, Fan W, Chen L, Zheng QY, Bi G, Ma CL. Hydroxysafflor Yellow A Protects Neurons From Excitotoxic Death through Inhibition of NMDARs. ASN Neuro 2016; 8:8/2/1759091416642345. [PMID: 27067428 PMCID: PMC4828664 DOI: 10.1177/1759091416642345] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022] Open
Abstract
Excessive glutamate release causes overactivation of N-methyl d-aspartate receptors (NMDARs), leading to excitatory neuronal damage in cerebral ischemia. Hydroxysafflor yellow A (HSYA), a compound extracted from Carthamus tinctorius L., has been reported to exert a neuroprotective effect in many pathological conditions, including brain ischemia. However, the underlying mechanism of HSYA's effect on neurons remains elusive. In the present study, we conducted experiments using patch-clamp recording of mouse hippocampal slices. In addition, we performed Ca2+ imaging, Western blots, as well as mitochondrial-targeted circularly permuted yellow fluorescent protein transfection into cultured hippocampal neurons in order to decipher the physiological mechanism underlying HSYA's neuroprotective effect. Through the electrophysiology experiments, we found that HSYA inhibited NMDAR-mediated excitatory postsynaptic currents without affecting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and γ-aminobutyric acid A-type receptor-mediated currents. This inhibitory effect of HSYA on NMDARs was concentration dependent. HSYA did not show any preferential inhibition of either N-methyl d-aspartate receptor subtype 2A- or N-methyl d-aspartate receptor subtype 2B- subunit-containing NMDARs. Additionally, HSYA exhibits a facilitatory effect on paired NMDAR-mediated excitatory postsynaptic currents. Furthermore, HSYA reduced the magnitude of NMDAR-mediated membrane depolarization currents evoked by oxygen-glucose deprivation, and suppressed oxygen-glucose deprivation–induced and NMDAR-dependent ischemic long-term potentiation, which is believed to cause severe reperfusion damage after ischemia. Through the molecular biology experiments, we found that HSYA inhibited the NMDA-induced and NMDAR-mediated intracellular Ca2+ concentration increase in hippocampal cultures, reduced apoptotic and necrotic cell deaths, and prevented mitochondrial damage. Together, our data demonstrate for the first time that HSYA protects hippocampal neurons from excitotoxic damage through the inhibition of NMDARs. This novel finding indicates that HSYA may be a promising pharmacological candidate for the treatment of brain ischemia.
Collapse
Affiliation(s)
- Xingtao Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China "Brain stroke" Key Lab of Shandong Health Administration Institute, Binzhou Medical University, Yantai, Shandong, China Department of Internal Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Zhiyuan Ma
- School of Public Economics and Administration, Shanghai University of Finance and Economics, Shanghai, China
| | - Zhongxiao Fu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Su Gao
- Department of Internal Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Liu Yang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China "Brain stroke" Key Lab of Shandong Health Administration Institute, Binzhou Medical University, Yantai, Shandong, China
| | - Yan Jin
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Sun
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China "Brain stroke" Key Lab of Shandong Health Administration Institute, Binzhou Medical University, Yantai, Shandong, China
| | - Chaoyun Wang
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Weiming Fan
- Department of Internal Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Lin Chen
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing-Yin Zheng
- Department of Internal Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Guoqiang Bi
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chun-Lei Ma
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China "Brain stroke" Key Lab of Shandong Health Administration Institute, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
20
|
Tu Y, Xue Y, Guo D, Sun L, Guo M. Carthami flos: a review of its ethnopharmacology, pharmacology and clinical applications. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Li CY, Yin JG, Zhang J, Wang XX, Xu MJ, Liu F, Zou JD, Ju WZ. Pharmacokinetic profiles of hydroxysafflor yellow A following intravenous administration of its pure preparations in healthy Chinese volunteers. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:225-230. [PMID: 25576896 DOI: 10.1016/j.jep.2014.12.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/03/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hydroxysafflor yellow A (HSYA), the major active marker compound isolated from Carthamus tinctorius L., has been demonstrated to possess various attractive pharmacological activities. However, there is a lack of information about the complete clinical pharmacokinetic profiles of HSYA following the administration of its pure preparations. The purpose of this study was to fully characterize the pharmacokinetic (PK) properties of HSYA in healthy Chinese volunteers following drip intravenous infusion of injectable powder of pure HSYA (IPPH), a new drug recently approved for the phase I clinical study by China Food and Drug Administration. MATERIALS AND METHODS 36 healthy subjects of either sex were recruited in this single-center, and open-label, single doses (25, 50, and 75 mg) and multiple doses (50 mg, once daily, 7 consecutive days) study. Plasma samples were analyzed with a validated LC-MS/MS method. Various PK parameters were estimated from the plasma concentration versus time data using non-compartmental methods. RESULTS After single dose administration of IPPH, the values of AUC(0-t), AUC(0-∞) and C(max) for HSYA were statistically proportional over the dose range of 25-75 mg. After 7 repeated doses of 50 mg IPPH, both C(max) and AUC(0-∞) were significantly decreased, from 3207 to 2959 μg L(-1), and from 12,811 to 12,135 µg h L(-1) respectively, while t(1/2) was significantly prolonged from 3.912 to 4.414 h. The minimum plasma concentrations on day 5, 6 and 7 showed good stability with no significant difference. Both Cmax and AUC of HSYA in male volunteers were generally lower than that in females. IPPH was generally well tolerated in healthy volunteers by either single or multiple dosing. CONCLUSION HSYA displayed moderately linear PK properties over the doses ranging from 25 to 75 mg of IPPH. Repeated administration of IPPH once daily could not lead to the in-vivo drug accumulation, but significantly affect PK behavior of HSYA. Gender difference should be considered for dosage recommendation in the clinic.
Collapse
Affiliation(s)
- Chang-Yin Li
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Jun-Gang Yin
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Jun Zhang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Xiao-Xiao Wang
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Mei-Juan Xu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Fang Liu
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Jian-Dong Zou
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Wen-Zheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China.
| |
Collapse
|
22
|
Increased coupling of caveolin-1 and estrogen receptor α contributes to the fragile X syndrome. Ann Neurol 2015; 77:618-36. [DOI: 10.1002/ana.24358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/04/2015] [Accepted: 01/14/2015] [Indexed: 11/07/2022]
|
23
|
Silibinin Prevents Autophagic Cell Death upon Oxidative Stress in Cortical Neurons and Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2015; 53:932-943. [DOI: 10.1007/s12035-014-9062-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
|
24
|
Measurement of hydroxysafflor yellow A in human urine by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 974:131-7. [PMID: 25463208 DOI: 10.1016/j.jchromb.2014.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/20/2014] [Accepted: 10/26/2014] [Indexed: 11/21/2022]
Abstract
A rapid and specific high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the quantification of hydroxysafflor yellow A (HSYA) in human urine with isorhamnetin-3-O-neohespeidoside as internal standard (IS). HSYA and IS were extracted from urine samples by simple solid-phase extraction and separated on an Agilent Zorbax SB C18 column (4.6 mm × 150 mm, 5 μm) with the mobile phase of 0.2 mM ammonium acetate: methanol (30/70, v/v) at a flow rate of 0.4 mL/min. Polar endogenous interferences eluted in 0.1-2.5 min were switched into waste channel by the Valve Valco, to reduce the possible matrix effect for MS detection in each run. The MS detection of analytes was performed on a tandem mass spectrometer equipped with an electrospray ionization source in negative mode using multiple-reaction monitoring. The MS/MS ion transitions monitored were m/z 611.3→491.2 for HSYA and m/z 623.2→299.2 for IS. The method was fully validated for selectivity, sensitivity, linearity, precision, accuracy, recovery, matrix effect and stability, and then was applied to the urinary excretion study of injectable powder of pure HSYA in healthy Chinese volunteers for the first time. The results suggested that urine was the main excretion way of HSYA in healthy volunteers, further demonstrating the feasibility and necessity of our current method.
Collapse
|
25
|
Zhao S, Lu X, Xiao C, Ning Z, Zeng H, Ding X, Zhang Y, Lu C, Liu Y. Diversified bioactivities of four types of naturally occurring quinochalcones. Fitoterapia 2014; 99:7-20. [DOI: 10.1016/j.fitote.2014.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
26
|
Tavakkoli M, Miri R, Jassbi AR, Erfani N, Asadollahi M, Ghasemi M, Saso L, Firuzi O. Carthamus, Salvia and Stachys species protect neuronal cells against oxidative stress-induced apoptosis. PHARMACEUTICAL BIOLOGY 2014; 52:1550-1557. [PMID: 25243877 DOI: 10.3109/13880209.2014.908394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Finding effective therapies for neurodegenerative diseases is of utmost importance for the aging population. Plants growing in Iran are rich sources of antioxidants and active phytochemicals. OBJECTIVE The protective capacity of plants, with a special focus on those with reported antioxidant or neuroprotective potential or nervous system-related applications in folk medicine, was tested against oxidative stress-induced apoptosis. MATERIALS AND METHODS Aerial parts of 20 plants including Carthamus, Salvia, and Stachys species were extracted with 80% methanol and dichloromethane and preincubated with neuronal PC12 cells for 3 h. Oxidative stress and apoptosis were induced by hydrogen peroxide (75 µM, 1 h exposure). Cell viability and intracellular reactive oxygen species (ROS) were measured by MTT and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays, respectively, while apoptosis was determined by annexin V-FITC/propidium iodide staining by a flow cytometer. RESULTS Eighty percent methanol extracts of Carthamus oxyacantha Bieb. (Asteraceae), Salvia santolinifolia Boiss. (Lamiaceae), and Salvia sclarea L. (Lamiaceae) at the concentration of 100 μg/ml showed significant neuroprotection in the MTT assay by 38.7, 34.7, and 39.5%, respectively, and inhibited intracellular ROS by 48.6, 61.9, and 61.4%, respectively. The first two extracts also significantly inhibited apoptosis. Dichloromethane extracts of C. oxyacantha and Stachys pilifera Benth. (Lamiaceae) at the concentration of 25 μg/ml showed neuroprotection by 27.5 and 26.5%, respectively, and inhibited ROS by 44.5 and 39.4%, respectively. CONCLUSION The above-mentioned plants seem to have important biological activities and their further study may lead to the discovery of new natural therapeutics useful against disorders such as Alzheimer and Parkinson diseases.
Collapse
Affiliation(s)
- Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Qi FY, Yang L, Tian Z, Zhao MG, Liu SB, An JZ. Neuroprotective effects of Asiaticoside. Neural Regen Res 2014; 9:1275-82. [PMID: 25221579 PMCID: PMC4160853 DOI: 10.4103/1673-5374.137574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2014] [Indexed: 11/29/2022] Open
Abstract
In the central nervous system, Asiaticoside has been shown to attenuate in vitro neuronal damage caused by exposure to β-amyloid. In vivo studies demonstrated that Asiaticoside could attenuate neurobehavioral, neurochemical and histological changes in transient focal middle cerebral artery occlusion animals. In addition, Asiaticoside showed anxiolytic effects in acute and chronic stress animals. However, its potential neuroprotective properties in glutamate-induced excitotoxicity have not been fully studied. We investigated the neuroprotective effects of Asiaticoside in primary cultured mouse cortical neurons exposed to glutamate-induced excitotoxicity invoked by N-methyl-D-aspartate. Pretreatment with Asiaticoside decreased neuronal cell loss in a concentration-dependent manner and restored changes in expression of apoptotic-related proteins Bcl-2 and Bax. Asiaticoside pretreatment also attenuated the upregulation of NR2B expression, a subunit of N-methyl-D-aspartate receptors, but did not affect expression of NR2A subunits. Additionally, in cultured neurons, Asiaticoside significantly inhibited Ca2+ influx induced by N-methyl-D-aspartate. These experimental findings provide preliminary evidence that during excitotoxicity induced by N-methyl-D-aspartate exposure in cultured cortical neurons, the neuroprotective effects of Asiaticoside are mediated through inhibition of calcium influx. Aside from its anti-oxidant activity, down-regulation of NR2B-containing N-methyl-D-aspartate receptors may be one of the underlying mechanisms in Asiaticoside neuroprotection.
Collapse
Affiliation(s)
- Feng-Yan Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| | - Jia-Ze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University of Chinese PLA, Xi'an, Shaanxi Province, China
| |
Collapse
|
28
|
Cao J, Chen Z, Zhu Y, Li Y, Guo C, Gao K, Chen L, Shi X, Zhang X, Yang Z, Wen A. Huangqi-Honghua combination and its main components ameliorate cerebral infarction with Qi deficiency and blood stasis syndrome by antioxidant action in rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1053-1060. [PMID: 24960183 DOI: 10.1016/j.jep.2014.05.061] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/22/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Combination of Radix Astragali (Huangqi) and Carthamus tinctorius L. (Honghua) has been extensively used as traditional herb medicine in China for the treatment of stroke and myocardial ischemia diseases with Qi deficiency and blood stasis (QDBS) syndrome. AIM To investigate the effect of Huangqi-Honghua combination (HH) and its main components astragaloside IV (AS-IV) and Hydroxysafflor yellow A (HSYA) on cerebral ischemia-reperfusion (IR) with QDBS in rat model. MATERIALS AND METHODS Male rats were randomly divided into the following six groups: sham group, QDBS+I/R model group and treatment group including AS-IV, HSYA, AS-IV+HSYA and HH. The whole blood viscosity (WBV), plasma viscosity (PV), neurological examination, infarct volume, histopathology changes and some oxidative stress markers were assessed after 24h of reperfusion. RESULTS HH and its main components AS-IV+HSYA could significantly decrease WBV, PV, and also significantly ameliorate neurological examination and infarct volume after 24h of reperfusion. They also significantly increased expression of Nuclear factor erythroid 2-related factor 2 (Nrf2), activities of antioxidants, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GSH-Px), led to decrease levels of malondialdehyde (MDA) and reactive oxygen species (ROS). CONCLUSION AS-IV and HSYA are responsible for the main curative effects of HH. The study may provide scientific information to further understanding the mechanism(s) of HH and its main components in removing blood stasis and ameliorating cerebral infarction. Additionally, AS-IV and HSYA appear to have synergistic effects on neuroprotection.
Collapse
Affiliation(s)
- Jinyi Cao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi׳an 710032, PR China
| | - Zhengyu Chen
- Health Department of General Logistics Department, CPLA, Beijing 010842, PR China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi׳an 710032, PR China
| | - Yuwen Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi׳an 710032, PR China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi׳an 710032, PR China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi׳an 710032, PR China
| | - Lei Chen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi׳an 710032, PR China
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi׳an 710032, PR China
| | - Xiaofang Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi׳an 710032, PR China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi׳an 710032, PR China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi׳an 710032, PR China.
| |
Collapse
|
29
|
Xiang HF, Cao DH, Yang YQ, Wang HQ, Zhu LJ, Ruan BH, Du J, Wang MC. Isoflurane protects against injury caused by deprivation of oxygen and glucose in microglia through regulation of the Toll-like receptor 4 pathway. J Mol Neurosci 2014; 54:664-70. [PMID: 25012594 DOI: 10.1007/s12031-014-0373-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Oxygen and glucose deprivation (OGD) are the most important factors related to tissue damage resulting from stroke. Microglial cells have been found to be very vulnerable to ischemia and OGD. It has been reported that isoflurane exposure can protect the mammalian brain from insults such as ischemic stroke; however, the effects of isoflurane on OGD-induced injury in microglia are as yet unknown. In this study, we investigated the effects of isoflurane on OGD-induced injury in microglia. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) revealed that OGD did indeed induce cell death in microglia. However, isoflurane preconditioning attenuated OGD-induced cell death. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated that isoflurane treatment alleviated OGD-induced apoptosis. Toll-like receptor 4 (TLR4) plays a considerable role in the induction of innate immune and inflammatory responses. Our results indicate that isoflurane preconditioning inhibits the upregulation of TLR4 as well as the activation of its downstream molecules, such as c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB), in BV-2 microglia exposed to OGD. Importantly, we also found that isoflurane pretreatment significantly reduces the production of proinflammatory factors such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-β, and nitric oxide (NO). The results indicate that TLR4 and its downstream NF-κB-dependent signaling pathway contribute to the neuroprotection of microglia exposed to OGD/reoxygenation by administration of isoflurane.
Collapse
Affiliation(s)
- Hai-Fei Xiang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, No. 150 Ximen Street, Linhai, Zhejiang Province, 317000, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Huo XL, Min JJ, Pan CY, Zhao CC, Pan LL, Gui FF, Jin L, Wang XT. Efficacy of lovastatin on learning and memory deficits caused by chronic intermittent hypoxia-hypercapnia: through regulation of NR2B-containing NMDA receptor-ERK pathway. PLoS One 2014; 9:e94278. [PMID: 24718106 PMCID: PMC3981803 DOI: 10.1371/journal.pone.0094278] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/14/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chronic intermittent hypoxia-hypercapnia (CIHH) exposure leads to learnning and memory deficits in rats. Overactivation of N-methyl-D-aspartate receptors(NMDARs) can lead to the death of neurons through a process termed excitotoxicity, which is involved in CIHH-induced cognitive deficits. Excessively activated NR2B (GluN2B)-containing NMDARs was reported as the main cause of excitotoxicity. The ERK1/2 (extracellular signal-regulated kinase 1/2) signaling cascade acts as a key component in NMDARs-dependent neuronal plasticity and survival. Ca2+/calmodulin-dependent protein kinase II (CaMKII), synapse-associated protein 102 (SAP102) and Ras GTPase-activating protein (SynGAP) have been shown to be involved in the regulation of NMDAR-ERK signalling cascade. Recent studies revealed statins (the HMG-CoA reductase inhibitor) have effect on the expression of NMDARs. The present study intends to explore the potential effect of lovastatin on CIHH-induced cognitive deficits and the NR2B-ERK signaling pathway. METHODS AND FINDINGS Eighty male Sprague Dawley rats were randomly divided into five groups. Except for those in the control group, the rats were exposed to chronic intermittent hypoxia-hypercapnia (CIHH) (9 ∼ 11%O2, 5.5 ∼ 6.5%CO2) for 4 weeks. After lovastatin administration, the rats performed better in the Morris water maze test. Electron microscopy showed alleviated hippocampal neuronal synaptic damage. Further observation suggested that either lovastatin or ifenprodil (a selective NR2B antagonist) administration similarly downregulated NR2B subunit expression leading to a suppression of CaMKII/SAP102/SynGAP signaling cascade, which in turn enhanced the phosphorylation of ERK1/2. The phosphorylated ERK1/2 induced signaling cascade involving cAMP-response element-binding protein (CREB) phosphorylation and brain-derived neurotrophic factor (BDNF) activation, which is responsible for neuroprotection. CONCLUSIONS These findings suggest that the ameliorative cognitive deficits caused by lovastatin are due to the downregulation of excessive NR2B expression accompanied by increased expression of ERK signaling cascade. The effect of NR2B in upregulating pERK1/2 maybe due, at least in part, to inactivation of CaMKII/SAP102/SynGAP signaling cascade.
Collapse
Affiliation(s)
- Xin-long Huo
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing-jing Min
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cai-yu Pan
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cui-cui Zhao
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu-lu Pan
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fei-fei Gui
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Jin
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-tong Wang
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Chen J, Zheng Y, Xiong H, Ou Y. NMDA receptors are involved in the regulation of BMP4-mediated survival in rat cochlear epithelial cells. Neurosci Lett 2014; 566:275-9. [DOI: 10.1016/j.neulet.2014.02.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 11/28/2022]
|
32
|
Zhang ZH, Yu LJ, Hui XC, Wu ZZ, Yin KL, Yang H, Xu Y. Hydroxy-safflor yellow A attenuates Aβ₁₋₄₂-induced inflammation by modulating the JAK2/STAT3/NF-κB pathway. Brain Res 2014; 1563:72-80. [PMID: 24690200 DOI: 10.1016/j.brainres.2014.03.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/25/2022]
Abstract
Beta-amyloid (Aβ)-mediated inflammation plays a critical role in the initiation and progression of Alzheimer׳s disease (AD). Anti-inflammatory treatment may provide therapeutic benefits. In this study, the effect of hydroxy-safflor yellow A (HSYA) on Aβ1-42-induced inflammation in AD mice was investigated and the underlying mechanisms were explored. Aβ1-42 was injected into bilateral hippocampi of mice to induce AD models in vivo. Spatial learning and memory of mice were investigated by the Morris water maze test. Activated microglia and astrocytes were examined by immunofluorescence staining for ionized calcium-binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP). The mRNA of inflammatory cytokines were measured using real-time PCR. NF-κB p65 translocation was analyzed by western blotting and immunostaining. IκB and phosphorylation of JAK2 and STAT3 were tested by western blotting. The results showed that HSYA ameliorated the memory deficits in Aβ1-42-induced AD mice. HSYA suppressed Aβ1-42-induced activation of microglia and astrocytes and reduced the mRNA expression of pro-inflammatory mediators. HSYA up-regulated the JAK2/STAT3 pathway and inhibits the activation of NF-κB signaling pathways. Pharmacological inhibition of STAT3 by AG490 reversed the inactivation of p65 and anti-inflammatory effects of HSYA. In conclusion, these results suggest that HSYA protects Aβ1-42-induced AD model through inhibiting inflammatory response, which may involve the JAK2/STAT3/NF-κB pathway.
Collapse
Affiliation(s)
- Zuo-Hui Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, PR China
| | - Lin-Jie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China
| | - Xin-Chen Hui
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China; School of Clinical Medicine, South East University, Nanjing, Jiangsu 210008, PR China
| | - Zheng-Zheng Wu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China
| | - Kai-Lin Yin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China
| | - Hui Yang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China; School of Clinical Medicine, South East University, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu 210008, PR China.
| |
Collapse
|
33
|
Guo K, Mou X, Huang J, Xiong N, Li H. Trans-Caryophyllene Suppresses Hypoxia-Induced Neuroinflammatory Responses by Inhibiting NF-κB Activation in Microglia. J Mol Neurosci 2014; 54:41-8. [DOI: 10.1007/s12031-014-0243-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/15/2014] [Indexed: 12/18/2022]
|
34
|
Safflower yellow for acute ischemic stroke: A systematic review of randomized controlled trials. Complement Ther Med 2014; 22:354-61. [PMID: 24731908 DOI: 10.1016/j.ctim.2014.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Stroke is one of the most common causes of mortality worldwide. Safflower yellow is widely used for the treatment of acute ischemic stroke in China. Several trials comparing safflower yellow and placebo or no intervention were unavailable for prior meta-analysis. Here, we present an updated and expanded systematic review, including four new trials, to evaluate the efficacy and safety of safflower yellow for the treatment of acute ischemic stroke. METHODS A comprehensive search was performed in Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Embase, the Allied and Complementary Medicine Database (AMED), China National Knowledge Infrastructure (CNKI), China Biological Medicine Database (CBM), CQVIP Information and Wanfang Database until January 2013. Only randomized controlled trials (RCTs) evaluating the efficacy and safety of safflower yellow for acute ischemic stroke were included. Two researchers (Fan, S.Y. and Lin, N.) independently extracted data, assessed the study quality, and selected trials for inclusion. RESULTS 7 RCTs with 762 participants were included. None of the included studies were of high methodological quality. The meta-analysis showed that safflower yellow was more effective assessed by neurological improvement rate [odds ratio (OR), 3.11; 95% confidence interval (CI) 2.06-4.68, P<0.05] compared with control group. No death was reported in any of the included studies during the follow up period. Only four trials reported adverse events, and skin rash was observed in the treatment group of one trial. CONCLUSIONS Safflower yellow seems to be effective and safe in the treatment of acute ischemic stroke. However, RCTs of high methodological quality are warranted before drawing any conclusion on the efficacy or safety of safflower yellow for acute ischemic stroke.
Collapse
|
35
|
Li Y, Wu Y, Guan Y, Wang Z, Zhang L. Hydroxysafflor yellow A induces apoptosis in MCF-7 cells by blocking NFκB/p65 pathway and disrupting mitochondrial transmembrane potential. RSC Adv 2014. [DOI: 10.1039/c4ra07417c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms and the possible effects of hydroxysafflor yellow A (HSYA) on the induction of apoptosis in the human breast cancer MCF-7 cells were investigated.
Collapse
Affiliation(s)
- YuYing Li
- Key Laboratory for Chemical Biology and Molecular Engineering of Ministry of Education
- Shanxi University
- Taiyuan, China
| | - Yanzi Wu
- Key Laboratory for Chemical Biology and Molecular Engineering of Ministry of Education
- Shanxi University
- Taiyuan, China
| | - Yingying Guan
- Key Laboratory for Chemical Biology and Molecular Engineering of Ministry of Education
- Shanxi University
- Taiyuan, China
| | - ZhuanHua Wang
- Key Laboratory for Chemical Biology and Molecular Engineering of Ministry of Education
- Shanxi University
- Taiyuan, China
| | - Liwei Zhang
- Key Laboratory for Chemical Biology and Molecular Engineering of Ministry of Education
- Shanxi University
- Taiyuan, China
| |
Collapse
|
36
|
Zhou X, Tang L, Xu Y, Zhou G, Wang Z. Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: a phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:27-43. [PMID: 24212075 DOI: 10.1016/j.jep.2013.10.050] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carthamus tinctorius L. (Compositae), a widely used traditional Chinese medicine, was known as Hong hua (Chinese: ), safflower. Safflower with a wide spectrum of pharmacological effects has been used to treat dysmenorrhea, amenorrhea, postpartum abdominal pain and mass, trauma and pain of joints, etc. The present paper reviews the advancements in investigation of botany and ethnopharmacology, phytochemistry, pharmacology and toxicology of safflower. Finally, the possible tendency and perspective for future investigation of this plant are discussed, too. MATERIALS AND METHODS The information on safflower was collected via piles of resources including classic books about Chinese herbal medicine, and scientific databases including Pubmed, Google Scholar, ACS, Web of science, CNKI and others. RESULTS Over 104 compounds from this plant have been isolated and identified, and quinochalcones and flavonoids are considered as the characteristic and active constituents of safflower. Safflower with its active compounds possesses wide-reaching biological activities, including dilating coronary artery, improving myocardial ischemia, modulating immune system, anticoagulation and antithrombosis, antioxidation, antiaging, antihypoxia, antifatigue, antiinflammation, anti-hepatic fibrosis, antitumor, analgesia, etc. CONCLUSIONS As an important traditional Chinese medicine, it is important to investigate the pharmacological effects and molecular mechanisms of this plant based on modern realization of diseases' pathophysiology. More bioactive components should be identified using bioactivity-guided isolation strategies, and the possible mechanism of action as well as potential synergistic or antagonistic effects of multi-component mixtures derived from safflower need to be evaluated integrating pharmacological, pharmacokinetic, bioavailability-centered and physiological approaches. Further studies on safflower can lead to the development of new drugs and therapeutics for various diseases, and how to utilize it better should be paid more attention to.
Collapse
Affiliation(s)
- Xidan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yilong Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Guohong Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| |
Collapse
|
37
|
Chemical and biological properties of quinochalcone C-glycosides from the florets of Carthamus tinctorius. Molecules 2013; 18:15220-54. [PMID: 24335575 PMCID: PMC6270621 DOI: 10.3390/molecules181215220] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 11/24/2022] Open
Abstract
Quinochalcone C-glycosides are regarded as characteristic components that have only been isolated from the florets of Carthamus tinctorius. Recently, quinochalcone C-glycosides were found to have multiple pharmacological activities, which has attracted the attention of many researchers to explore these compounds. This review aims to summarize quinochalcone C-glycosides’ physicochemical properties, chromatographic behavior, spectroscopic characteristics, as well as their biological activities, which will be helpful for further study and development of quinochalcone C-glycosides.
Collapse
|
38
|
Yang L, Yang ZM, Zhang N, Tian Z, Liu SB, Zhao MG. Neuroprotective effects of vitexin by inhibition of NMDA receptors in primary cultures of mouse cerebral cortical neurons. Mol Cell Biochem 2013; 386:251-8. [PMID: 24141792 DOI: 10.1007/s11010-013-1862-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/09/2013] [Indexed: 11/27/2022]
Abstract
The accumulation of glutamate can excessively activate the N-methyl-D-aspartate (NMDA) receptors and cause excitotoxicity. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside, Vit) is a c-glycosylated flavone which was found in the several herbs, exhibiting potent hypotensive, anti-inflammatory, and neuroprotective properties. However, little is known about the neuroprotective effects of Vit on glutamate-induced excitotoxicity. In present study, primary cultured cortical neurons were treated with NMDA to induce the excitotoxicity. Pretreatment with Vit significantly prevented NMDA-induced neuronal cell loss and reduced the number of apoptotic neurons. Vit significantly inhibited the neuronal apoptosis induced by NMDA exposure by regulating balance of Bcl-2 and Bax expression and the cleavages of poly (ADP-ribose) polymerase and pro-caspase 3. Furthermore, pretreatment of Vit reversed the up-regulation of NR2B-containing NMDA receptors and the intracellular Ca(2+) overload induced by NMDA exposure. The neuroprotective effects of Vit are related to inhibiting the activities of NR2B-containing NMDA receptors and reducing the calcium influx in cultured cortical neurons.
Collapse
Affiliation(s)
- Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | |
Collapse
|
39
|
Hydroxysafflor yellow A protects against cerebral ischemia-reperfusion injury by anti-apoptotic effect through PI3K/Akt/GSK3β pathway in rat. Neurochem Res 2013; 38:2268-75. [PMID: 23990223 DOI: 10.1007/s11064-013-1135-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 01/10/2023]
Abstract
Hydroxysafflor yellow A (HSYA) is the major active chemical component of the flower of the safflower plant, Carthamus tinctorius L. Previously, its neuroprotection against cerebral ischemia-reperfusion (I/R) injury was reported by anti-oxidant action and suppression of thrombin generation. Here, we investigate the role of HSYA in cerebral I/R-mediated apoptosis and possible signaling pathways. Male Wistar rats were subjected to transient middle cerebral artery occlusion for 2 h, followed by 24 h reperfusion. HSYA was administered via tail-vein injection just 15 min after occlusion. The number of apoptotic cells was measured by TUNEL assay, apoptosis-related proteins Bcl-2, Bax and the phosphorylation levels of Akt and GSK3β in ischemic penumbra were assayed by western blot. The results showed that administration of HSYA at the doses of 4 and 8 mg/kg significantly inhibited the apoptosis by decreasing the number of apoptotic cells and increasing the Bcl-2/Bax ratio in rats subjected to I/R injury. Simultaneously, HSYA treatment markedly increased the phosphorylations of Akt and GSK3β. Blockade of PI3K activity by wortmannin dramatically abolished its anti-apoptotic effect and lowered both Akt and GSK3β phosphorylation levels. Taken together, these results suggest that HSYA protects against cerebral I/R injury partly by reducing apoptosis via PI3K/Akt/GSK3β signaling pathway.
Collapse
|
40
|
Zhang N, Xing M, Wang Y, Liang H, Yang Z, Shi F, Cheng Y. Hydroxysafflor yellow A improves learning and memory in a rat model of vascular dementia by increasing VEGF and NR1 in the hippocampus. Neurosci Bull 2013; 30:417-24. [PMID: 23979688 DOI: 10.1007/s12264-013-1375-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/30/2013] [Indexed: 01/17/2023] Open
Abstract
Hydroxysafflor yellow A (HSYA) has angiogenesis-regulating and neuro-protective effects, but its effects on vascular dementia (VaD) are unknown. In this study, 30 adult Sprague-Dawley rats were randomly allocated to five groups: normal, sham-operation, VaD alone (bilateral carotid artery occlusion), VaD plus saline (control), and VaD plus HSYA. One week after operation, the HSYA group received one daily tail-vein injection of 0.6 mg/100 g HSYA for two weeks. Five weeks after operation, the spatial memory of all five groups was evaluated by the water maze task, and synaptic plasticity in the hippocampus was assessed by the long-term potentiation (LTP) method. Vascular endothelial growth factor (VEGF) and N-methyl-Daspartic acid receptor 1 (NR1) expression in the hippocampus was detected via Western blot. We found that, compared with the group with VaD alone, the group with HSYA had a reduced escape latency in the water maze (P < 0.05), and the LTP at CA3-CA1 synapses in the hippocampus was enhanced (P < 0.05). Western blot in the late-phase VaD group showed slight up-regulation of VEGF and downregulation of NR1 in the hippocampus, while HSYA significantly up-regulated both VEGF and NR1. These results suggested that HSYA promotes angiogenesis and increases synaptic plasticity, thus improving spatial learning and memory in the rat model of VaD.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Yang L, Li XB, Yang Q, Zhang K, Zhang N, Guo YY, Feng B, Zhao MG, Wu YM. The neuroprotective effect of praeruptorin C against NMDA-induced apoptosis through down-regulating of GluN2B-containing NMDA receptors. Toxicol In Vitro 2013; 27:908-14. [DOI: 10.1016/j.tiv.2013.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/19/2012] [Accepted: 01/01/2013] [Indexed: 12/24/2022]
|
42
|
Protective Effects of Hydroxysafflor Yellow A on β-Amyloid-Induced Neurotoxicity in PC12 Cells. Neurochem Res 2013; 38:951-60. [DOI: 10.1007/s11064-013-1002-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
|
43
|
Zhang K, Li YJ, Yang Q, Gerile O, Yang L, Li XB, Guo YY, Zhang N, Feng B, Liu SB, Zhao MG. Neuroprotective effects of oxymatrine against excitotoxicity partially through down-regulation of NR2B-containing NMDA receptors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:343-350. [PMID: 23219339 DOI: 10.1016/j.phymed.2012.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/27/2012] [Accepted: 10/27/2012] [Indexed: 06/01/2023]
Abstract
Oxymatrine (OMT) is a major bioactive component derived from Sophora flavescens Ait (kushen), which is widely used in Chinese medicine. Recent studies have shown that it has neuroprotective effects; however, its underlying mechanisms remain unclear. We focus on the mechanisms of pharmacologic action in OMT by detecting its pharmacological properties against focal cerebral ischemia in vivo and NMDA-induced neurotoxicity in vitro. OMT prevented cerebral ischemic injury in mice induced via a 2 h middle cerebral artery occlusion and a 24 h reperfusion, in vivo. In vitro cultured neurons challenged with N-methyl-D-aspartate (NMDA, 200 μM) for 30 min showed significant decrease in the viability of neurons; however, OMT was able to protect neurons against induced neurotoxicity via NMDA exposure. Western blot analysis revealed that OMT decreased the expression of Bax and repaired the balance of pro- and anti-apoptotic proteins. Furthermore, OMT significantly reversed the up-regulation of NR2B and inhibited the calcium overload in the cultured neurons after challenging the NMDA. OMT showed partial protection in the cortical neurons via down-regulation of NR2B containing NMDA receptors and up-regulation of Bcl-2 family. Our results provide new insights into the development of natural therapeutic anti-oxidants against ischemia.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li J, Zhang S, Lu M, Chen Z, Chen C, Han L, Zhang M, Xu Y. Hydroxysafflor yellow A suppresses inflammatory responses of BV2 microglia after oxygen–glucose deprivation. Neurosci Lett 2013; 535:51-6. [DOI: 10.1016/j.neulet.2012.12.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/11/2012] [Accepted: 12/28/2012] [Indexed: 01/30/2023]
|
45
|
Tian Z, Liu SB, Wang YC, Li XQ, Zheng LH, Zhao MG. Neuroprotective Effects of Formononetin Against NMDA-Induced Apoptosis in Cortical Neurons. Phytother Res 2013; 27:1770-5. [PMID: 23362211 DOI: 10.1002/ptr.4928] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/21/2012] [Accepted: 12/19/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Tian
- Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 China
| | - Shui-bing Liu
- Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 China
| | - Yu-cai Wang
- Department of Orthopaedics, Tangdu Hospital; Fourth Military Medical University; Xi'an 710032 China
| | - Xiao-qiang Li
- Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 China
| | - Lian-he Zheng
- Department of Orthopaedics, Tangdu Hospital; Fourth Military Medical University; Xi'an 710032 China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 China
| |
Collapse
|
46
|
Li YJ, Yang Q, Zhang K, Guo YY, Li XB, Yang L, Zhao MG, Wu YM. Cytisine confers neuronal protection against excitotoxic injury by down-regulating GluN2B-containing NMDA receptors. Neurotoxicology 2013; 34:219-25. [DOI: 10.1016/j.neuro.2012.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 09/08/2012] [Accepted: 09/18/2012] [Indexed: 11/15/2022]
|
47
|
Chen YS, Lee SM, Lin CC, Liu CY, Wu MC, Shi WL. Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L. J Biosci Bioeng 2012; 115:242-5. [PMID: 23063243 DOI: 10.1016/j.jbiosc.2012.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/24/2022]
Abstract
Carthamus yellow (CY) is the major component of the yellow pigments of Carthamus tinctorius L. CY has been extensively used as a natural color additive for food and cosmetics. Here, our results demonstrate that carthamus yellow reduced the activity of mushroom tyrosinase in a dose-dependent manner with a half maximal inhibitory concentration (IC(50)) value of approximately 1.01 ± 0.03 mg/mL. A kinetic study of carthamus yellow on tyrosinase exhibited a mode of competitive inhibition with a Ki of 0.607 mg/mL. Moreover, cell viability analysis indicated that carthamus yellow used at concentrations of 1.0-4.0 mg/mL had no cytotoxicity in B16F10 melanoma cells. Melanin content analysis showed that melanin production in B16F10 melanoma cells treated with 4 mg/mL carthamus yellow can decrease to 82.3 ± 0.4% of the levels of melanin production of untreated cells. Thus, carthamus yellow has the potential to become a useful skin-whitening agent in the future.
Collapse
Affiliation(s)
- Yi-Shyan Chen
- Department of Cosmetic Science, Providence University, No. 200 Sec. 7 Taiwan Boulevard, Shalu, Taichung, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
48
|
Li XB, Yang ZX, Yang L, Chen XL, Zhang K, Yang Q, Wu YM, Liu SB, Tao KS, Zhao MG. Neuroprotective effects of flax lignan against NMDA-induced neurotoxicity in vitro. CNS Neurosci Ther 2012; 18:927-33. [PMID: 22970936 DOI: 10.1111/cns.12003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 01/12/2023] Open
Abstract
AIMS Flax Lignan (FLL), a chemical widespread within the plant and animal kingdoms, has antioxidant, antiinfectious, and antitumor activities. However, little is known about the effects of FLL on the central nervous system (CNS). METHODS The neuroprotective actions of FLL against N-methyl-d-aspartate (NMDA) are investigated in primary cultured cortical neurons by MTT assay. The expression levels of proteins related to apoptosis and GluN2-containing receptor were detected by Western blot analysis. Intracellular Ca(2+) was measured under a confocal laser scanning microscope. RESULTS After challenged with 100 μM NMDA for 30 min, loss of cell viability and excessive apoptotic cell death were observed in cultured cortical neurons. FLL protected the neurons against the NMDA-induced cell loss in a concentration-dependent manner. FLL also significantly inhibited the neuronal apoptosis induced by NMDA exposure through reversing intracellular concentration of Ca(2+) overload and balancing of Bcl-2 and Bax expression. Furthermore, FLL significantly reversed the upregulation of GluN2B-containing NMDA receptors by exposure to NMDA, but did not affect the expression of GluN2A-containing NMDA receptor. CONCLUSIONS These findings suggest that FLL protects cortical neurons by inhibiting the expression of GluN2B-containing NMDA receptor and regulating the Bcl-2 family.
Collapse
Affiliation(s)
- Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice. Neurobiol Dis 2012; 46:722-31. [PMID: 22426399 DOI: 10.1016/j.nbd.2012.03.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/07/2012] [Accepted: 03/01/2012] [Indexed: 12/27/2022] Open
Abstract
Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive effects of reduced levels of BDNF expression and corticosterone treatment on spatial memory and startle in male and female mice, accompanied by significant, but region-specific changes in NMDA receptor subunit levels in the dorsal and ventral hippocampus. These results could be important for our understanding of the interaction of neurodevelopmental stress and BDNF deficiency in cognitive and anxiety-related symptoms of psychiatric illnesses, such as schizophrenia.
Collapse
|
50
|
Fan L, Dang X, Shi Z, Zhang C, Wang K. Hydroxysafflor yellow A protects PC12 cells against the apoptosis induced by oxygen and glucose deprivation. Cell Mol Neurobiol 2011; 31:1187-1194. [PMID: 21688125 PMCID: PMC11498591 DOI: 10.1007/s10571-011-9720-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 05/28/2011] [Indexed: 01/09/2023]
Abstract
Hydroxysafflor yellow A (HSYA) was reported neuroprotective under several ischemic models in vivo. In this study, the direct effect of HSYA against oxygen-glucose deprivation (OGD) inducing acute neuronal injury and the underling mechanisms in vitro were investigated. Four-hour oxygen and glucose deprivation (OGD) followed by 20 h reperfusion (adding back oxygen and glucose, OGD-R) was used to induce in vitro ischemia reperfusion injury in differentiated rat pheochromocytoma PC12 cells. HSYA (1, 10, and 100 μmol/l) was added to the cultures 30 min prior to the ischemic insult and was present during OGD and reoxygenation phases. The survival rate of PC12 cells was detected by MTT assay. The contents of malondialdehyde (MDA), superoxide dismutase (SOD) activity were elevated by biochemical method. Hoechst 33258 staining and flow cytometric analysis were used to detect apoptosis; western blotting was used to detect the expression of Bcl-2, Bax, and Cytochrome C protein. The activity of caspase-3 was assessed by colorimetry. HSYA concentration-dependently attenuated neuronal damage with characteristics of increasing injured neuronal absorbance of MTT, decreasing cell apoptosis, and antagonizing decreases in SOD activity and increase in MDA level induced by OGD-R. Moreover, the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol and the consequent activation of caspase-3 were reversed by HSYA in a dose-dependent manner. These results suggest that apoptosis is an important characteristic of OGD-R-induced PC 12 death and that treatment of PC12 cells with HSYA can block OGD-R-induced apoptosis through suppression of intracellular oxidative stress and mitochondria dependent caspase cascade.
Collapse
Affiliation(s)
- Lihong Fan
- Department of Orthopedics, Second Affiliated Hospital of Medicine, School of Xi’an Jiaotong University, Xi’an, 710004 Shaanxi China
| | - Xiaoqian Dang
- Department of Orthopedics, Second Affiliated Hospital of Medicine, School of Xi’an Jiaotong University, Xi’an, 710004 Shaanxi China
| | - Zhibin Shi
- Department of Orthopedics, Second Affiliated Hospital of Medicine, School of Xi’an Jiaotong University, Xi’an, 710004 Shaanxi China
| | - Chen Zhang
- Department of Orthopedics, Second Affiliated Hospital of Medicine, School of Xi’an Jiaotong University, Xi’an, 710004 Shaanxi China
| | - Kunzheng Wang
- Department of Orthopedics, Second Affiliated Hospital of Medicine, School of Xi’an Jiaotong University, Xi’an, 710004 Shaanxi China
| |
Collapse
|